4,700 research outputs found

    Hand Gestures Recognition for Human-Machine Interfaces: A Low-Power Bio-Inspired Armband

    Get PDF
    Hand gesture recognition has recently increased its popularity as Human-Machine Interface (HMI) in the biomedical field. Indeed, it can be performed involving many different non-invasive techniques, e.g., surface ElectroMyoGraphy (sEMG) or PhotoPlethysmoGraphy (PPG). In the last few years, the interest demonstrated by both academia and industry brought to a continuous spawning of commercial and custom wearable devices, which tried to address different challenges in many application fields, from tele-rehabilitation to sign language recognition. In this work, we propose a novel 7-channel sEMG armband, which can be employed as HMI for both serious gaming control and rehabilitation support. In particular, we designed the prototype focusing on the capability of our device to compute the Average Threshold Crossing (ATC) parameter, which is evaluated by counting how many times the sEMG signal crosses a threshold during a fixed time duration (i.e., 130 ms), directly on the wearable device. Exploiting the event-driven characteristic of the ATC, our armband is able to accomplish the on-board prediction of common hand gestures requiring less power w.r.t. state of the art devices. At the end of an acquisition campaign that involved the participation of 26 people, we obtained an average classifier accuracy of 91.9% when aiming to recognize in real time 8 active hand gestures plus the idle state. Furthermore, with 2.92mA of current absorption during active functioning and 1.34mA prediction latency, this prototype confirmed our expectations and can be an appealing solution for long-term (up to 60 h) medical and consumer applications

    Putting artificial intelligence into wearable human-machine interfaces – towards a generic, self-improving controller

    Get PDF
    The standard approach to creating a machine learning based controller is to provide users with a number of gestures that they need to make; record multiple instances of each gesture using specific sensors; extract the relevant sensor data and pass it through a supervised learning algorithm until the algorithm can successfully identify the gestures; map each gesture to a control signal that performs a desired outcome. This approach is both inflexible and time consuming. The primary contribution of this research was to investigate a new approach to putting artificial intelligence into wearable human-machine interfaces by creating a Generic, Self-Improving Controller. It was shown to learn two user-defined static gestures with an accuracy of 100% in less than 10 samples per gesture; three in less than 20 samples per gesture; and four in less than 35 samples per gesture. Pre-defined dynamic gestures were more difficult to learn. It learnt two with an accuracy of 90% in less than 6,000 samples per gesture; and four with an accuracy of 70% after 50,000 samples per gesture. The research has resulted in a number of additional contributions: • The creation of a source-independent hardware data capture, processing, fusion and storage tool for standardising the capture and storage of historical copies of data captured from multiple different sensors. • An improved Attitude and Heading Reference System (AHRS) algorithm for calculating orientation quaternions that is five orders of magnitude more precise. • The reformulation of the regularised TD learning algorithm; the reformulation of the TD learning algorithm applied the artificial neural network back-propagation algorithm; and the combination of the reformulations into a new, regularised TD learning algorithm applied to the artificial neural network back-propagation algorithm. • The creation of a Generic, Self-Improving Predictor that can use different learning algorithms and a Flexible Artificial Neural Network.Open Acces

    Design of Participatory Virtual Reality System for visualizing an intelligent adaptive cyberspace

    Get PDF
    The concept of 'Virtual Intelligence' is proposed as an intelligent adaptive interaction between the simulated 3-D dynamic environment and the 3-D dynamic virtual image of the participant in the cyberspace created by a virtual reality system. A system design for such interaction is realised utilising only a stereoscopic optical head-mounted LCD display with an ultrasonic head tracker, a pair of gesture-controlled fibre optic gloves and, a speech recogni(ion and synthesiser device, which are all connected to a Pentium computer. A 3-D dynamic environment is created by physically-based modelling and rendering in real-time and modification of existing object description files by afractals-based Morph software. It is supported by an extensive library of audio and video functions, and functions characterising the dynamics of various objects. The multimedia database files so created are retrieved or manipulated by intelligent hypermedia navigation and intelligent integration with existing information. Speech commands control the dynamics of the environment and the corresponding multimedia databases. The concept of a virtual camera developed by ZeIter as well as Thalmann and Thalmann, as automated by Noma and Okada, can be applied for dynamically relating the orientation and actions of the virtual image of the participant with respect to the simulated environment. Utilising the fibre optic gloves, gesture-based commands are given by the participant for controlling his 3-D virtual image using a gesture language. Optimal estimation methods and dataflow techniques enable synchronisation between the commands of the participant expressed through the gesture language and his 3-D dynamic virtual image. Utilising a framework, developed earlier by the author, for adaptive computational control of distribute multimedia systems, the data access required for the environment as well as the virtual image of the participant can be endowed with adaptive capability

    Human–Machine Interface in Transport Systems: An Industrial Overview for More Extended Rail Applications

    Get PDF
    This paper provides an overview of Human Machine Interface (HMI) design and command systems in commercial or experimental operation across transport modes. It presents and comments on different HMIs from the perspective of vehicle automation equipment and simulators of different application domains. Considering the fields of cognition and automation, this investigation highlights human factors and the experiences of different industries according to industrial and literature reviews. Moreover, to better focus the objectives and extend the investigated industrial panorama, the analysis covers the most effective simulators in operation across various transport modes for the training of operators as well as research in the fields of safety and ergonomics. Special focus is given to new technologies that are potentially applicable in future train cabins, e.g., visual displays and haptic-shared controls. Finally, a synthesis of human factors and their limits regarding support for monitoring or driving assistance is propose
    corecore