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Last year I spoke about the progress being made in machine intelligence[1] and with sensors and 
networks of sensors[2].  Earlier this year (in this journal) I spoke about ambient-intelligence, rapid-
prototyping and the role of humans in the factories of the future[3].  I addressed new applications 
and technologies such as merging machines with human beings, micro-electromechanics, electro-
mechanical systems that can be personalized, smarter than human intelligence and swarms of 
smart sensors.  Although the research to get us to all that will include human-machine interfaces, 
sensors, Artificial Intelligence (AI) and Ambient Intelligence (AmI), there is one technology above 
all others that has the potential to get us there fast… and that is the creation and development of 
intelligent micro-electromechanical machines (MEMS). 
 
The potential of very small machines was appreciated long before the technology existed to 
actually make them.  For example, the Nobel Laureate (Feynman) considered the ability to 
manipulate matter on an atomic scale[4] and he concluded his 1959 talk with two challenges: first 
for anyone to build a tiny motor and second for anyone to write the information from a book page 
onto a surface 1/25,000 smaller.  He offered prizes of $1000 for each[4].  The prize for the motor 
was won quickly using conventional tools but it was much later in 1985 when Tom Newman 
successfully reduced the first paragraph of “A Tale of Two Cities” and collected the second $1000 
prize[5]. 
 
MEMS only became practical once they could be fabricated using modified semiconductor 
fabrication technologies such as moulding and plating, wet and dry etching and electro-discharge 
machining.  MEMS are made up of components between 1 to 100 micrometres in size and MEMS 
devices are smaller than a millimetre long.  They usually consist of a central microprocessor and 
other components that can interact with the outside world such as micro-sensors[6].  At these 
sizes, the customary classical physics (that we are all used to) do not always hold true.  Because 
of the much larger surface areas compared to volumes, surface effects such as electrostatics can 
dominate effects such as inertia or thermal mass.  For example gravity becomes less important 
and instead Van der Waals attraction and surface tension can become more important.   
 
MEMS devices will use less energy, space and time, and we will come to expect more and more 
output for less cost.  Sensors and networks of sensors are already transforming manufacturing 
and assembly by scrutinizing our industrial environment and sometimes feeding into control 
systems to improve our processes.  Individual sensors have tended to obtain data and then to 
transform that data into electrical signals to feed higher level systems[2].  The development of such 
sensors has been driven by needs to reduce size and cost while increasing performance and 
MEMS could revolutionize the sensor markets by providing very small and very reliable devices at 
very little cost. 
 
Until recently… sensors tended to be simple, unintelligent, connected directly into control systems, 
and static (or at best moved from place to place by separate transportation systems)… but all that 
is changing.  Wireless networks are becoming more and more common and some smaller sensors 
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are becoming mobile so that networks of sensors can work in mobile teams (or swarms)[2].  They 
can deploy and locate themselves around a factory or a machine to efficiently sample (and 
sometimes then control).  Sensors are becoming “Smart Sensors” that can pre-process their own 
data to improve quality and reduce communications.  These sensors become really smart when 
integral processing results in an adaptive sensing system that can react to external conditions and 
still provide useful measurements in harsh manufacturing and assembly conditions.  Our future 
may be set to change through a combination of: smart mobile industrial sensors with enough 
energy to change themselves within their environment (for example, to move themselves around); 
effective wireless communication; automatic ranging; remote calibration; advances in 
microprocessors; new algorithms; and reduced costs in some key areas[2]. 
 
Increasing processing power within individual industrial sensors is improving the performance of 
sensor arrays and allowing for more accurate sensing of some phenomena that have traditionally 
required a large amount of off-line signal processing, such as image processing, sensor 
integration and gas sensor arrays[2].  As the information from numbers of sensor arrays becomes 
larger (and therefore more complicated) then this leads to a need for systems to model and then 
convey the information in a simple way (and sometimes in real time) to human beings.  These 
electronic sensor systems and their components are sometimes exposed to harsh environmental 
conditions and some new industrial sensors could be especially robust in harsh conditions.  For 
example, some MEMS-sensors appear to be able to withstand very high humidity, pressure and 
temperature and these sensors-on-a-chip are potentially low cost [2]. 
 
Meanwhile, AI systems have been improving for a decade[1,3,7] and AmI for assembly and 
manufacturing has been developing slowly[3,8,9].  They promise to bring improvements in flexibility, 
reconfigurability and reliability.   Machine Intelligence combines a wide variety of advanced 
technologies to give machines an ability to learn, adapt, make decisions and display new 
behaviours[1,3].  This is achieved using technologies such as neural networks[10-14], expert 
systems[15-18], self-organizing maps[2,19], fuzzy logic[3,20] and genetic algorithms[1,21] and that 
machine intelligence technology has been developed through its application to many areas, such 
as: assembly[3,13,22,23], building modelling[3, 24,25], computer vision[13,26-30], environmental 
engineering[2,31-35], human–computer interaction[12,14,36-38], internet use[39,40], powered-wheelchair 
assistance[41-44], maintenance and inspection[45,46], medical systems[37,41,47], robotic 
manipulation[11,18,48,49], robotic programming[18, 50-55] and sensing[2,7,28,58-60]. 
 
Our machines are exceeding human performance in more and more tasks (from guiding objects to 
assembling other machines) and some developments in machine intelligence are already being 
introduced into new manufacturing methods such as rapid-manufacture[3] and the manufacture of 
composites[61-63].  If they can be effectively introduced into MEMS devices and into the 
manufacture of MEMS devices then machines can be made to merge with us more intimately and 
we should be able to combine our brain power with computer capacity to create a powerful 
artificial intelligence.  It is difficult to see the boundaries to what may be possible then and some 
scientists are predicting a period when the pace of technological change will be so fast and far-
reaching that our lives will be irreversibly altered[1].  At that point we may need a different type of 
engineer[64, 65]. 
 
There are some interference problems that might become critical for wireless communications 
between MEMS and they can also be limited by antenna size, power and bandwidth, and that is 
all being explored by some radio engineers.  MEMS will need the ability to cope with technology or 
communication failures and large scale deployments and large amounts of data will need new 
computer science algorithms.  The computer scientists are investigating some of that.  The big 
future problems for MEMS may include constraints on resources such as energy, memory, 
computational speed and bandwidth.  These limitations really push research towards distributed 
energy-efficiency.  It is that potential need for smaller and more energy efficient sensors that can 
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operate autonomously in harsh industrial conditions that will drive research towards more robust 
and fault tolerant MEMS that can automatically compensate for variables such as temperature.   
 
For the immediate and medium term future, useful advances will come from research into: human-
machine interfaces, sensors, AI, AmI, modelling, and improving MEMS manufacturing and design 
techniques.  In the longer term, understanding the properties of MEMS materials and then 
creating more capable and intelligent MEMS machines will lead to direct brain-computer interfaces 
that will allow us to communicate our ideas directly to machines (and to other human members of 
virtual teams) and that may change our world beyond recognition. 
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