8,188 research outputs found

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Efficient Rewirings for Enhancing Synchronizability of Dynamical Networks

    Full text link
    In this paper, we present an algorithm for optimizing synchronizability of complex dynamical networks. Based on some network properties, rewirings, i.e. eliminating an edge and creating a new edge elsewhere, are performed iteratively avoiding always self-loops and multiple edges between the same nodes. We show that the method is able to enhance the synchronizability of networks of any size and topological properties in a small number of steps that scales with the network size.Although we take the eigenratio of the Laplacian as the target function for optimization, we will show that it is also possible to choose other appropriate target functions exhibiting almost the same performance. The optimized networks are Ramanujan graphs, and thus, this rewiring algorithm could be used to produce Ramanujan graphs of any size and average degree

    Nonuniform random geometric graphs with location-dependent radii

    Full text link
    We propose a distribution-free approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function nf()nf(\cdot), where nNn\in \mathbb{N}, and ff is a probability density function on Rd\mathbb{R}^d. A vertex located at xx connects via directed edges to other vertices that are within a cut-off distance rn(x)r_n(x). We prove strong law results for (i) the critical cut-off function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large nn and (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.Comment: Published in at http://dx.doi.org/10.1214/11-AAP823 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Appearance-based localization for mobile robots using digital zoom and visual compass

    Get PDF
    This paper describes a localization system for mobile robots moving in dynamic indoor environments, which uses probabilistic integration of visual appearance and odometry information. The approach is based on a novel image matching algorithm for appearance-based place recognition that integrates digital zooming, to extend the area of application, and a visual compass. Ambiguous information used for recognizing places is resolved with multiple hypothesis tracking and a selection procedure inspired by Markov localization. This enables the system to deal with perceptual aliasing or absence of reliable sensor data. It has been implemented on a robot operating in an office scenario and the robustness of the approach demonstrated experimentally

    Asimov's Coming Back

    Get PDF
    Ever since the word ‘ROBOT’ first appeared in a science\ud fiction in 1921, scientists and engineers have been trying\ud different ways to create it. Present technologies in\ud mechanical and electrical engineering makes it possible\ud to have robots in such places as industrial manufacturing\ud and assembling lines. Although they are\ud essentially robotic arms or similarly driven by electrical\ud power and signal control, they could be treated the\ud primitive pioneers in application. Researches in the\ud laboratories go much further. Interdisciplines are\ud directing the evolution of more advanced robots. Among these are artificial\ud intelligence, computational neuroscience, mathematics and robotics. These disciplines\ud come closer as more complex problems emerge.\ud From a robot’s point of view, three basic abilities are needed. They are thinking\ud and memory, sensory perceptions, control and behaving. These are capabilities we\ud human beings have to adapt ourselves to the environment. Although\ud researches on robots, especially on intelligent thinking, progress slowly, a revolution\ud for biological inspired robotics is spreading out in the laboratories all over the world

    Semantic labeling of places using information extracted from laser and vision sensor data

    Get PDF
    Indoor environments can typically be divided into places with different functionalities like corridors, kitchens, offices, or seminar rooms. The ability to learn such semantic categories from sensor data enables a mobile robot to extend the representation of the environment facilitating the interaction withhumans. As an example, natural language terms like corridor or room can be used to communicate the position of the robot in a map in a more intuitive way. In this work, we firrst propose an approach based on supervised learning to classify the pose of a mobile robot into semantic classes. Our method uses AdaBoost to boost simple features extracted from range data and vision into a strong classifier. We present two main applications of this approach. Firstly, we show how our approach can be utilized by a moving robot for an online classification of the poses traversed along its path using a hidden Markov model. Secondly, we introduce an approach to learn topological maps from geometric maps by applying our semantic classification procedure in combination with a probabilistic relaxation procedure. We finally show how to apply associative Markov networks (AMNs) together with AdaBoost for classifying complete geometric maps. Experimental results obtained in simulation and with real robots demonstrate the effectiveness of our approach in various indoor environments
    corecore