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Abstract— Indoor environments can typically be divided into
places with different functionalities like corridors, kitchens,
offices, or seminar rooms. The ability to learn such semantic
categories from sensor data enables a mobile robot to extend the
representation of the environment facilitating the interaction with
humans. As an example, natural language terms like “corridor”
or “room” can be used to communicate the position of the
robot in a map in a more intuitive way. In this work, we first
propose an approach based on supervised learning to classify the
pose of a mobile robot into semantic classes. Our method uses
AdaBoost to boost simple features extracted from range data and
vision into a strong classifier. We present two main applications
of this approach. Firstly, we show how our approach can be
utilized by a moving robot for an online classification of the poses
traversed along its path using a hidden Markov model. Secondly,
we introduce an approach to learn topological maps from
geometric maps by applying our semantic classification procedure
in combination with a probabilistic relaxation procedure. We
finally show how to apply associative Markov networks (AMNs)
together with AdaBoost for classifying complete geometric maps.
Experimental results obtained in simulation and with real robots
demonstrate the effectiveness of our approach in various indoor
environments.

I. INTRODUCTION

In the past, many researchers have considered the problem
of building accurate maps of the environment from the data
gathered with a mobile robot. The question of how to augment
such maps by semantic information, however, is virtually
unexplored. Whenever robots are designed to interact with
their users, semantic information about places can improve
the human-robot communication. From the point of view of
humans, terms like “corridor” or “room” give a more intuitive
idea of the position of the robot than using, for example, the
2D coordinates in a map.

In this work, we address the problem of classifying places
of the environment of a mobile robot using range finder and
vision data, as well as building topological maps based on
that knowledge. Indoor environments, like the one depicted
in Figure 1, can typically be divided into areas with different
functionalities such as laboratories, office rooms, corridors, or
kitchens. Whereas some of these places have special geometric
structures and can therefore be distinguished merely based on
laser range data, other places can only be identified according
to the objects found there like, for example, monitors in a
laboratory. To detect such objects, we use vision data acquired
by a camera system.

corridor room doorway

Fig. 1. The left image shows a map of a typical indoor environment.
The middle image depicts the classification into three semantic classes as
colors/grey levels. For this purpose the robot was positioned in each free pose
of the original map and the corresponding laser observations were simulated
and classified. The right images show typical laser and image observations
together with some extracted features, namely the average distance between
two consecutive beams in the laser and the number of monitors detected in
the image.

The key idea is to classify the pose of the robot based on
the current laser and vision observations. Examples for typical
observations obtained in an office environment are shown in
the right images of Figure 1. The classification is then done
applying a sequence of classifiers learned with the AdaBoost
algorithm [18]. These classifiers are built in a supervised
fashion from simple geometric features that are extracted from
the current laser scan and from objects extracted from the
current images as shown in the right images of Figure 1. As
an example, the left image in Figure 1 shows a typical indoor
environment and the middle image depicts the classification
obtained using our method.

We furthermore present two main applications of this ap-
proach. Firstly, we show how to classify the different poses
of the robot during a trajectory and improve the final classifi-
cation using a hidden Markov model. Secondly, we introduce
an approach to learn topological maps from geometric maps
by applying our semantic classification in combination with a
probabilistic relaxation procedure. In this last case we com-
pare the results when using an associative Markov networks
(AMNs) with those obtained with AdaBoost.

The rest of this work is organized as follows. Section II
presents related work. In Section III, we describe the se-
quential AdaBoost classifier. In Section IV, we present the
application of a hidden Markov model to the online place
classification with a moving robot. Section V contains our
approach for topological map building. In Section VI we
present some results when using a range finder with a restricted
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field of view. Finally, Section VII presents experimental results
obtained using our methods.

II. RELATED WORK

In the past, several authors considered the problem of adding
semantic information to places. Buschka and Saffiotti [5]
describe a virtual sensor to identify rooms from range data.
Koenig and Simmons [9] apply a pre-programmed routine
to detect doorways. Finally, Althaus and Christensen [1]
use sonar data to detect corridors and doorways. Learning
algorithms have additionally been used to identify objects
in the environment. For example, Anguelov et al. [2], [3]
apply the EM algorithm to cluster different types of objects
from sequences of range data and to learn the state of doors.
Limketkai et al. [12] use relational Markov networks to detect
objects like doorways based on laser range data. Finally,
Torralba and colleagues [23] use hidden Markov models for
learning places from image data.

Compared to these approaches, our algorithm is able to
combine arbitrary features extracted from different sensors to
form a sequence of binary strong classifiers to label places.
Our approach is also supervised, which has the advantage that
the resulting labels correspond to user-defined classes.

On the other hand, different algorithms for creating topolog-
ical maps have been proposed. Kuipers and Byun [11] extract
distinctive points in the map defined as local maxima of a
distinctiveness measure. Kortenkamp and Weymouth [10] fuse
vision and ultrasound information to determine topologically
relevant places. Shatkey and Kaelbling [19] apply a HMM
learning approach to learn topological maps. Thrun [22] uses
the Voronoi diagram to find critical points, which minimize the
clearance locally. Choset [7] encodes metric and topological
information in a generalized Voronoi graph to solve the SLAM
problem. Additionally, Beeson et al. [4] used an extension of
the Voronoi graph for detecting topological places. Zivkovic
et al. [26] use visual landmarks and geometric constraints
to create a higher level conceptual map. Finally, Tapus and
Siegwart [20] used fingerprints to create topological maps.

In contrast to these previous approaches, the technique
described in this paper applies a supervised learning method to
identify complete regions in the map like corridors, rooms or
doorways that have a direct relation with a human understand-
ing of the environment. This knowledge about semantic labels
of places is used then to build topological maps with a mobile
robot. We also apply associative Markov networks (AMNs)
together with AdaBoost to label each point in a geometric
map.

III. SEMANTIC CLASSIFICATION OF POSES USING
ADABOOST

Boosting is a general method for creating an accurate
strong classifier by combining a set of weak classifiers. The
requirement to each weak classifier is that its accuracy is
better than a random guessing. In this work we will use the
boosting algorithm AdaBoost in its generalized form presented
by Schapire and Singer [18]. The input to the algorithm is a

set of labeled training examples (xn, yn), n = 1, . . . , N , where
each xn is an example and each yn ∈ {+1,−1} is a value
indicating whether xn is positive or negative respectively.
In our case, the training examples are composed by laser
and vision observations. In several iterations the algorithm
repeatedly selects a weak classifier using a weight distribution
over the training examples. The final strong classifier is a
weighted majority vote of the best weak classifiers.

Throughout this work, we use the approach presented by
Viola and Jones [25] in which the weak classifiers depend on
single-valued features fj ∈ <. For a more detail description
see [17].

The so far described method is able to distinguish between
two classes of examples, namely positives and negatives. In
practical applications, however, we want to distinguish be-
tween more than two classes. To create a multi-class classifier
we used the approach applied by Martı́nez Mozos et al. [14]
and create a sequential multi-class classifier using K − 1
binary classifiers, where K is the number of classes we want
to recognize. The classification output of the decision list is
then represented by a histogram z. Each bin of z stores the
probability that the classified example belongs to the k-th
class. The order of the classifiers in the decision list can be
selected according to different methods as described in [13]
and [14].

A. Features from Laser and Vision Data

In this section, we describe the features used to create
the weak classifiers in the AdaBoost algorithm. Our robot
is equipped with a 360 degree field of view laser sensor
and a camera. Each laser observation consists of 360 beams.
Each vision observation consists of eight images which form a
panoramic view. Figure 1 shows a typical laser range reading
as well as one of the images from the panoramic view taken
in an office environment. Accordingly, each training example
for the AdaBoost algorithm consist of one laser observation,
one vision observation, and its classification.

Our method for place classification is based on single-valued
features extracted from laser and vision data. All features are
invariant with respect to rotation to make the classification
of a pose dependent only on the position of the robot and
not on its orientation. Most of our laser features are standard
geometrical features used for shape analysis as the one shown
in Figure 1. In the case of vision, the selection of the features is
motivated by the fact that typical objects appear with different
probabilities at different places. For example, the probability
of detecting a computer monitor is larger in an office than
in a kitchen. For each type of object, a vision feature is
defined as a function that takes as argument a panoramic vision
observation and returns the number of detected objects of this
type in it. This number represents the single-valued feature fj

as explained in Section III. As an example, Figure 1 shows
one image of a panoramic view and its detected monitors. A
more detailed list of laser and image features is contained in
our previous work [14].



IV. PROBABILISTIC CLASSIFICATION OF TRAJECTORIES

The approach described so far is able to classify single
observations only but does not take into account past classifica-
tions when determining the type of place the robot is currently
at. However, whenever a mobile robot moves through an
environment, the semantic labels of nearby places are typically
identical. Furthermore, certain transitions between classes are
unlikely. For example, if the robot is currently in a kitchen
then it is rather unlikely that the robot ends up in an office
given it moved a short distance only. In many environments,
to get from the kitchen to the office, the robot has to move
through a doorway first.

To incorporate such spatial dependencies between the indi-
vidual classes, we apply a hidden Markov model (HMM) and
maintain a posterior Bel(lt) about the type of the place lt the
robot is currently at

Bel(lt) = αP (zt | lt)
∑

lt−1

P (lt | lt−1, ut−1)Bel(lt−1).(1)

In this equation, α is a normalizing constant ensuring that
the left-hand side sums up to one over all lt. To implement
this HMM, three components need to be known. First, we
need to specify the observation model P (zt | lt) which is the
likelihood that the classification output is zt given the actual
class is lt. Second, we need to specify the transition model
P (lt | lt−1, ut−1) which defines the probability that the robot
moves from class lt−1 to class lt by executing action ut−1.
Finally, we need to specify how the belief Bel(l0) is initialized.

In our current system, we choose a uniform distribution
to initialize Bel(l0). The quantity P (zt|lt) has been obtained
by a statistics about the classification output of the AdaBoost
algorithm given that the robot was at a place corresponding
to lt. To realize the transition model P (lt|lt−1, ut−1) we
only consider the two actions ut−1 ∈ {MOVE ,STAY }.
The transition probabilities were estimated by running 1000
simulation experiments. A more complete description is given
in [17].

V. TOPOLOGICAL MAP BUILDING

A second application of our semantic place classification
is the extraction of topological maps from geometric maps.
Throughout this section we assume that the robot is given a
map of the environment in the form of an occupancy grid [15].
Our approach then determines for each unoccupied cell of such
a grid its semantic class. This is achieved by simulating a range
scan of the robot given it is located in that particular cell, and
then labeling this scan into one of the semantic classes. To
remove noise and clutter from the resulting classifications,
we apply an approach denoted as probabilistic relaxation
labeling [16]. This method takes into account the labels of the
neighborhood when changing (or maintaining) the label of a
given cell. From the resulting labeling we construct a graph
whose nodes correspond to the regions of identically labeled
poses and whose edges represent the connections between
them. Additionally we apply a heuristic region correction
to the topological map to increase the classification rate. A

typical topological map obtained with our approach is shown
in the Figure 7. For more detail see [14].

A. Semantic Classification of Maps using Associative Markov
Networks

The improvement on the labeling of free cells given by
our AdaBoost approach can also be seen as a collective
classification problem [6]. In this approach, the labeling of
each free cell in the map is also influenced by the labeling
of other cells in the vicinity. One popular method for the
task of collective classification are relational Markov networks
(RMNs) [21]. In addition to the labels of neighboring points,
RMNs also consider the relations between different objects.
E.g., we can model the fact that two classes A and B are more
strongly related to each other than, say, classes A and C. This
modeling is done on the abstract class level by introducing
clique templates [6]. Applying these clique templates to a
given data set yields an ordinary Markov network (MN). In this
MN, the result is a higher weighting of neighboring points with
labels A and B than of points labeled A and C. Additionally,
each node in the network is associated a set of features.

The whole process of labeling is composed of two steps.
First, a supervised learning process is used to learn the
parameters of the RMN used as a training set. Second, a new
network is classified using these parameters. This last step is
also called inference. In this work, we will use a special type
of RMNs known as associative Markov networks (AMNs).
Efficient algorithms are available for learning and inference in
AMNs (for more detail see [24]).

In our case we create an AMN in which each node rep-
resents a cell in the geometric map. Each node is given a
semantic label corresponding to the place in the map (corridor,
doorway or room). We also create a 8-neighborhood for each
cell. Furthermore, a set of features is calculated for each cell.
These features correspond to the geometric ones extracted
from a simulated laser beam as explained in Section III-A. To
reduce the number of features during the training and inference
steps, we select a subset of them. This selection is done using
the AdaBoost algorithm [13].

VI. LASER OBSERVATIONS WITH RESTRICTED FIELD OF
VIEW

In this section we present some practical issues when
classifying a trajectory using range data with a restricted field
of view. Specifically, we explain how to extract features when
using a laser range finder which only covers 180o in front
of the robot. This is one of the most common configurations
when using mobile robots. As an example, if a robot is looking
at the end of a corridor, then it is not able to see the rest of
the corridor, as is the case with an additional rear laser. This
situation is shown in Figure 2. When classifying a trajectory
we propose to maintain a local map around the robot as shown
in the right image of Figure 2. This local map can be updated
during the movements of the robot and then used to simulate
the rear laser beams. In Section VII we show some results
when learning and classifying a place using this method.



Fig. 2. The left image shows a robot at the end of a corridor with only a
front laser (red). In the middle image the robot has an additional rear laser
(blue). The right image depicts an example local map (shaded area).
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Fig. 3. The left image depicts the training data. The right image shows the
test set with a classification rate of 97.3%. The training and test data were
obtained by simulating laser range scans in the map.

VII. EXPERIMENTS

The approaches described above have been implemented
and tested on real robots as well as in simulation. The robots
used to carry out the experiments were an ActivMedia Pioneer
2-DX8 equipped with two SICK lasers, an iRobot B21r robot
equipped with a camera system and an ActivMedia PowerBot
equipped only with a front laser.

The goal of the experiments is to demonstrate that our
simple features can be boosted to a robust classifier of places.
Additionally, we analyze whether the resulting classifier can
be used to classify places in environments for which no
training data was available. Furthermore, we demonstrate the
advantages of utilizing the vision information to distinguish
between different rooms like, e.g., kitchens, offices, or seminar
rooms. Additionally, we illustrate the advantages of the HMM
filtering for classifying places with a moving mobile robot. We
also present results applying our method for building semantic
topological maps. Finally, we show experiments using a robot
with only a front laser.

A. Results with the Sequential Classifier using Laser Data

The first experiment was performed using simulated data
from our office environment in building 79 at the University
of Freiburg. The task was to distinguish between three different
types of places, namely rooms, doorways, and a corridor based
on laser range data only. In this experiment, we applied the
sequential classifier without any filtering. For the sake of
clarity, we separated the test from the training data by dividing
the overall environment into two areas. Whereas the left part of
the map contains the training examples, the right part includes
only test data (Figure 3). The optimal decision list for this
classification problem, in which the robot had to distinguish
between three classes, is room-doorway. This decision list
correctly classifies 97.3% of all test examples (right image
of Figure 3). Additionally, we performed an experiment using
a map of the entrance hall at the University of Freiburg which

corridor room doorway

Fig. 4. The left map depicts the occupancy grid map of the Intel Research
Lab and the right image depicts the classification results obtained by applying
the classifier learned from the environment depicted in Figure 1 to this
environment. The fact that 83.0% of all places could be correctly classified
illustrates that the resulting classifiers can be applied to so far unknown
environments.

contained four different classes, namely rooms, corridors,
doorways, and hallways. The optimal decision list is corridor-
hallway-doorway with a success rate of 89.5%. The worst
configurations of the decision list are those in which the
doorway classifier is in the first place. This is probably due to
the fact, that doorways are hard to detect because typically
most parts of a range scan obtained in a doorway cover
the adjacent room and the corridor. The high error in the
first element of the decision list then leads to a high overall
classification error.

B. Transferring the Classifiers to New Environments

The second experiment is designed to analyze whether a
classifier learned in a particular environment can be used to
successfully classify the places of a new environment. To carry
out this experiment, we trained our sequential classifier in
the left map of Figure 1, which corresponds to the building
52 at the University of Freiburg. The resulting classifier was
then evaluated on scans simulated given the map of the Intel
Research Lab in Seattle depicted in Figure 4. Although the
classification rate decreased to 83.0%, the result indicates
that our algorithm yields good generalizations which can
also be applied to correctly label places of so far unknown
environments. Note that a success rate of 83.0% is quite
high for this environment, since even humans typically cannot
consistently classify the different places.

C. Classification of Trajectories using HMM Filtering

The third experiment was performed using real laser and
vision data obtained in an office environment, which contains
six different types of places, namely offices, doorways, a
laboratory, a kitchen, a seminar room, and a corridor. The
true classification of the different places in this environments
is shown in Figure 5. The classification performance of the
classifier along a sample trajectory taken by a real robot is
shown in the left image of Figure 6. The classification rate in
this experiment is 82.8%. If we additionally apply the HMM



F
D

C

K

D D D

DDD
C

F

F

L

S

L Laboratory

C Corridor

D Doorway

S Seminar

F Office

K Kitchen

Fig. 5. Ground truth labeling of the individual areas in the environment.
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Fig. 6. The left image depicts a typical classification result for a test set
obtained using only the output of the sequence of classifiers. The right image
shows the resulting classification in case a HMM is additionally applied to
filter the output of the sequential classifier.

for temporal filtering, the classification rate increases up to
87.9% as shown in the right image of Figure 6.

A further experiment was carried out using test data ob-
tained in a different part of the same building. We applied
the same classifier as in the previous experiment. Whereas
the sequential classifier yields a classification rate of 86.0%,
the combination with the HMM generated the correct answer
in 94.7% of all cases. A two-sample t-test applied to the
classification results obtained along the trajectories for both
experiments showed that the improvements introduced by the
HMM are significant on the α = 0.05 level. Furthermore, we
classified the same data based solely on the laser features and
ignoring the vision information. In this case, only 67.7% could
be classified correctly without the HMM. The application of
the HMM increases the classification performance to 71.7%.
These three experiments illustrate that the HMM signifi-
cantly improves the overall rate of correctly classified places.
Moreover, the third experiment shows that only the laser
information is not sufficient to distinguish robustly between
places with similar structure (see “office” and “kitchen” in
Figure 6).

D. Building Topological Maps

The next experiment is designed to analyze our approach
to build topological maps. It was carried out in the office
environment depicted in the motivating example shown in
Figure 1. The length of the complete corridor in this environ-
ment is approx. 20 m. After applying the sequential AdaBoost
classifier (see middle image in Figure 1), we applied the
probabilistic relaxation method together with the heuristics
explained in Section V. The resulting topological map is
shown in Figure 7. The final result gives a classification rate of
98.0% for all data points. The doorway between the two right-
most rooms under the corridor is correctly detected. Therefore,

Door 4Door 3

Room 4 Room 5
Door 5

Corridor

Door 2

Door 6
Room 3

Room 2

Door 1
Room 1

Fig. 7. Final tropological map with of building 52 at Freiburg University.

the rooms are labeled as two different regions in the final
topological map.

E. Learning Topological Maps of Unknown Environments

This experiment is designed to analyze whether our ap-
proach can be used to create a topological map of a new
unseen environment. To carry out the experiment we trained a
sequential AdaBoost classifier using the training examples of
the maps shown in Figure 3 and Figure 1 with different scales.
The resulting classifier was then evaluated on scans simulated
in the map denoted as “SDR site B” in Radish [8]. This map
represents an empty building in Virginia, USA. The corridor
is approx. 26 meters long. The whole process for obtaining
the topological map is depicted in Figure 8. The Adaboost
classifier gives a first classification of 92.4%. As can be seen
in Figure 8(d), rooms number 11 and 30 are actually part of
the corridor, and thus falsely classified. Moreover, the corridor
is detected as only one region, although humans potentially
would prefer to separate it into six different corridors: four
horizontal and two vertical ones. Doorways are difficult to
detect and the majority of them dissappear after the relaxation
process because they are very sparse. In the final topological
map 96.9% of the data points are correctly classified.

F. Learning Topological Maps using Associative Markov Net-
works (AMNs)

In this experiment, we classify the map of the building
79 at the University of Freiburg applying the learning and
inference process for AMNs as explained in Section V-A.
We divide the map in two parts and use one of them for
training (see left image in Figure 3) and the second one for
testing. In this experiment we reduce the resolution of the
maps to 20cm. The reason is that the original resolution of
5cm generates a huge network which exceeds the memory
resources of our computers during the training step of the
corresponding AMN. The left image of Figure 9 shows the
results of the classification using AMNs. The classification rate
using AMNs was 98.8%. We compare this method with the
classification obtained using our sequential AdaBoost together
with the probabilistic relaxation procedure. The right image
of Figure 9 depicts the classification results. In this case only
92.1% of the cells were correctly classified. As we can see,
one consequence of changing the resolution to 20cm, is that
the classification rate decreases (see right image of Figure 3).
We think this is due to the worse quality of the simulated
beams in such a granulated map. On the other hand, AMNs
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Fig. 8. This figure shows (a) the original map of the building, (b) the results
of applying the sequential AdaBoost classifier with a classification rate of
93%, (c) the resulting classification after the relaxation and region correction,
and (d) the final topological map with semantic information. The regions are
omitted in each node. The rooms are numbered left to right and top to bottom
with respect to the map in (a). For the sake of clarity, the corridor-node is
drawn maintaining part of its region structure.

corridor room doorway

Fig. 9. The left image depicts a classification of 98.8% of the building 79 at
University of Freiburg using AMNs. The right image shows the classification
of the same building using the sequential AdaBoost classifier together with the
probabilistic labeling method. In this case the classification rate was 92.1%.
The training and test data were obtained by simulating laser range scans in
the left map of Figure 3.

seems to be more robust to changes in resolution and give
better classifications results.

G. Laser Observations with Restricted Field of View

In this experiments we show the results of applying our clas-
sification methods when the laser range scan has a restricted
field of view. No image data was used. We first steered a
PowerBot robot equipped with only a front laser along the 6th
floor of the CAS building at KTH (right to left). The trajectory
is shown in the top image of Figure 10. The data recorded in
this floor was used to train the AdaBoost classifier. We then
classified a trajectory on the 7th floor in the same building. We
started the trajectory in an opposite direction (left to right). The

corridor room doorway

Fig. 10. The top image shows the training trajectory on the 6th floor of the
CAS building at KTH. The middle image depicts the labeling of the trajectory
of the 7th floor using only a front laser with a classification rate of 84.4%.
Finally, the bottom image shows the same labelled trajectory using a complete
laser field of view together with a local map. In this case the classification
rate decreases slightly to 81.6%.

resulting classification rate of 84.4% is depicted in the middle
image of Figure 10. We repeated the experiment simulating
the rear laser using a local map. The classification decreases
slightly to 81.6%. Most of the errors appear in poses where
the robot still sees a doorway due to the rear beams. This is
not the case when using only a front laser, because the robot
only sees a doorway when facing it.

To verify that the doorways can be the reason of the lack of
improvement using local maps, we repeat both experiments,
but in this case using only two classes, namely room and corri-
dor. The results are shown in Figure 11. The top image depicts
the labeling using only a front laser with a classification rate
of 87.3%. The bottom image shows the result of simulating
the rear beams using a local map. The classification rate in
this case increases to 95.8%.

VIII. CONCLUSION

In this paper, we presented a novel approach to classify
different places in the environment of a mobile robot into
semantic classes, like rooms, hallways, corridors, offices,
kitchens, or doorways. Our algorithm uses simple geometric
features extracted from a single laser range scan and infor-
mation extracted from camera data and applies the AdaBoost
algorithm to form a binary strong classifier. To distinguish
between more than two classes, we use a sequence of strong
binary classifiers arranged in a decision list.

We presented two applications of our approach. Firstly, we
perform an online classification of the positions along the
trajectories of a mobile robot by filtering the classification



corridor room

Fig. 11. In this experiments only two classes where used, namely room and
corridor. The top image depicts the classification of the trajectory of the 7th
floor using only a front laser with a classification rate of 87.3%. The bottom
image shows the same trajectory using a complete laser field of view together
with a local map. In this case the classification rate increases to 95.8%.

output using a hidden Markov model. Secondly, we present
a new approach to create topological graphs from occupancy
grids by applying a probabilistic relaxation labeling to take
into account dependencies between neighboring places to
improve the classifications.

Experiments carried out using real robots as well as in sim-
ulation illustrate that our technique is well-suited to reliably
label places in different environments. It allows us to robustly
separate different semantic regions and in this way it is able to
learn topologies of indoor environments. Further experiments
illustrate that a learned classifier can even be applied to so far
unknown environments.
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