337 research outputs found

    802.11s QoS Routing for Telemedicine Service

    Get PDF
    The merits of 802.11s as the wireless mesh network standard provide a lowcost and high independent scalability telemedicine infrastructure. However,challenges in degradation of performance as hops increase and the absent of Quality of Service (QoS) provision need to be resolved. The reliability and timely manner are the important factor for successful telemedicine service. This research investigates the use of 802.11s for telemedicine services. A new model of 802.11s based telemedicine infrastructure has been developed for this purpose. A non deterministic polynomial path selection is proposed to provide end-to-end QoS provisioning in 802.11s. A multi-metric called QoS Price metric is proposed as measurement of link quality. The QoS Price is derived from multi layers values that reflect telemedicine traffic requirement and the resource availability of the network. The proposed solution has modified the path management of 802.11s and added resource allocation in distributed scheme.DOI:http://dx.doi.org/10.11591/ijece.v4i2.559

    Mesh networks for handheld mobile devices

    Get PDF
    Mesh communications emerge today as a very popular networking solution. Mesh networks have a decentralized and multihop design. These characteristics arouse interest in research for relevant novel features, such as cooperation among nodes, distribution of tasks, scalability, communication with limited infrastructure support, and the support of mobile devices as mesh nodes. In addition to the inexistence of a solution that implements mesh networks with mobile devices at the data link layer (Layer 2), there is also a need to reconsider existing metrics with new information to tackle the intrinsic characteristics of mobile devices, e.g., the limited energy resources of their battery. To tackle this problem, this thesis presents a detailed study about projects, routing protocols and metrics developed in the area of mesh networks. In addition, two data link layer solutions, Open802.11s and B.A.T.M.A.N-advanced, have been adapted and deployed in a real mesh network testbed with off the shelf routers devices installed with a customized operating system. From this testbed, Open802.11s has proved to offer better performance than B.A.T.M.A.N-advanced. Following this, a breakthrough in this work has been the integration of the 802.11s on an Android mobile device and its subsequent incorporation in the mesh network. This allowed the study of eventual limitations imposed by the mobile device on the operation of the mesh network, namely performance and energy scarcity. With this, another major novelty has followed, by designing, implementing and evaluating several energy related metrics regarding the battery status of mobile devices. This has enabled the participation of mobile devices in mesh routing paths in an efficient way. Our main objective was to implement a mesh network with mobile devices. This has been achieved and validated through the evaluation of diverse testing scenarios performed in a real mesh testbed. The obtained results also show that the operation of a mesh with mobile devices can be enhanced, including the lifetime of mobile devices, when an energy-aware metric is used.As redes mesh surgem hoje em dia como uma solução de rede em crescimento e expansão. Neste tipo de redes o comportamento entre os nós é descentralizado e numa topologia de multihop. Estas características despertam interesse na pesquisa e desenvolvimento de novas funcionalidades tais como: cooperação entre nós, distribuição de tarefas, escalabilidade da rede e comunicações mesmo em casos de uma infraestrutura limitada e o suporte de dispositivos móveis como nós de uma rede mesh. Associado à inexistência de um projecto que implemente redes mesh em dispositivos móveis na camada de ligação de dados (Layer 2), surge a necessidade de repensar as métricas já existentes com novas informações que façam face às novas características dos dispositivos móveis, neste caso, os recursos limitados de bateria. Por forma a resolver este problema, este trabalho apresenta um estudo detalhado sobre os projetos, protocolos de routing e métricas desenvolvidas na área das redes mesh. Além disso, duas soluções que utilizam a camada de ligação de dados, Open802.11s e BATMAN-advanced, estes foram adaptadao e implementados num testbed real utilizando routers com um sistema operacional costumizado instalado. Deste testbed, concluiu-se que o Open802.11s obtem um melhor desempenho que o BATMAN-advanced. Assim, um dos avanços deste trabalho foi a integração do Open802.11s num dispositivo móvel Android e sua posterior incorporação na rede mesh. Isto permitiu o estudo de eventuais limitações impostas pelo dispositivo móvel ao funcionar numa rede mesh, ou seja, desempenho e a escassez de energia. Com isso, foi concebida outra novidade, através da concepção, avaliação e implementação de várias métricas relacionadas com a energia e que têm por base o estado da bateria do dispositivo. Isto permitiu que os dispositivos móveis participem na rede mesh e a sua gestão de bateria seja feita de forma eficiente. O principal objectivo era a implementação de uma rede mesh com dispositivos móveis. Este foi alcançado e validado através de diversos cenários de teste reais. Os resultados obtidos demonstram também que o funcionamento de uma rede mesh com dispositivos móveis pode ser melhorada, incluindo o tempo de vida dos dispositivos móveis, quando uma métrica que considera a energia é utilizada

    A joint multi-path and multi-channel protocol for traffic routing in smart grid neighborhood area networks

    Get PDF
    In order to improve the management mechanisms of the electric energy transport infrastructures, the smart grid networks have associated data networks that are responsible for transporting the necessary information between the different elements of the electricity network and the control center. Besides, they make possible a more efficient use of this type of energy. Part of these data networks is comprised of the Neighborhood Area Networks (NANs), which are responsible for interconnecting the different smart meters and other possible devices present at the consumers' premises with the control center. Among the proposed network technologies for NANs, wireless technologies are becoming more relevant due to their flexibility and increasing available bandwidth. In this paper, some general modifications are proposed for the routing protocol of the wireless multi-hop mesh networks standardized by the IEEE. In particular, the possibility of using multiple paths and transmission channels at the same time, depending on the quality of service needs of the different network traffic, is added. The proposed modifications have been implemented in the ns-3 simulator and evaluated in situations of high traffic load. Simulation results show improvements in the network performance in terms of packet delivery ratio, throughput and network transit time.Peer ReviewedPostprint (published version

    An Optimization Framework for IEEE 802.11s Based Wireless Mesh Network

    Get PDF
    Wireless mesh network (WMN) is a promising area of research. Energy efficiency in WMN can play vital role in achieving green wireless communication. This research work considers IEEE 802.11s link based power saving modes. Energy aware joint optimization of routing, link scheduling under wireless interference and delay constraint has been considered. For given traffic load a model has been formulated to minimize network energy consumption by choosing optimum power saving mode for peer links. It is stressed that redundant links and nodes can be turned in low power state for energy savings

    Layer 2 Path Selection Protocol for Wireless Mesh Networks with Smart Antennas

    Get PDF
    In this thesis the possibilities of smart antenna systems in wireless mesh networks are examined. With respect to the individual smart antenna tradeoffs, a routing protocol (Modified HWMP, MHWMP) for IEEE 802.11s mesh networks is presented, that exploits the full range of benefits provided by smart antennas: MHWMP actively switches between the PHY-layer transmission/reception modes (multiplexing, beamforming and diversity) according to the wireless channel conditions. Spatial multiplexing and beamforming are used for unicast data transmissions, while antenna diversity is employed for efficient broadcasts. To adapt to the directional channel environment and to take full benefit of the PHY capabilities, a respective MAC scheme is employed. The presented protocol is tested in extensive simulation and the results are examined.:1 Introduction 2 Wireless Mesh Networks 3 IEEE 802.11s 4 Smart Antenna Concepts 5 State of the Art: Wireless Mesh Networks with Smart Antennas 6 New Concepts 7 System Model 8 Results and Discussion 9 Conclusion and Future Wor

    Emergency aware congestion control for smart grid neighborhood area networks

    Get PDF
    © . This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The evolution of traditional electricity distribution infrastructures towards Smart Grid networks has generated the need to carry out new research. There are many fields that have attracted the attention of researchers, among which is the improvement of the performance of the so-called Neighborhood Area Networks (NAN). In this sense, and given the critical nature of some of the data transmitted by these networks, maintaining an adequate quality of service (QoS) is absolutely necessary. In emergency situations, this need becomes even more evident. This article presents a congestion control mechanism, whose parameters are modified according to the network state of emergency. The mechanism also applies a multi-channel allocation technique, together with a differentiation in the QoS offered to the different data flows according to their relevance. These proposals have been evaluated in the context of a wireless mesh networks (WMN) made up by a set of smart meter devices, where various smart grids (SG) applications are sending their data traffics. Each SG application must meet its unique quality of service (QoS) requirements, such as reliability and delay. To evaluate the proposals, some NAN scenarios have been built by using the ns-3 simulator and its 802.11s basic model, which was modified to implement the proposed techniques. Compared with the basic Hybrid Wireless Mesh Protocol (HWMP), Emergency Aware Congestion Control proposal (EA-HWMP), shows significant improvements in terms of packet delivery ratio, network throughput and transit time.Peer ReviewedPostprint (published version

    Customized Wireless Mesh Routing Metric for Swarm of Drones Applications

    Get PDF
    With the proliferation of drones applications, there is an increasing need for handling their numerous challenges. One of such challenges arises when a swarm-of-drones is deployed to accomplish a specific task which requires coordination and communication. While this swarm-of-drones is essentially a special form of mobile ad hoc networks (MANETs) which has been studied for many years, there are still some unique requirements of drone applications that necessitates re-visiting MANET approaches. These challenges stem from 3-D environments the drones are deployed in, and their specific way of mobility which adds to the wireless link management challenges. In this thesis, we consider the existing 802.11s wireless mesh standard and adopt its routing capabilities for swarm-of-drones. Specifically, we propose two link quality routing metrics called SrFTime and CRP metrics as an improvement to the 802.11s default Airtime routing metric, to enable better network throughput for drone applications. SrFTime improve network performance of stationary and mobile Wireless Mesh Networks, while CRP is designed to fit the link characteristics of drones and enable more efficient routes from these to their gateway. The evaluations in the actual 802.11s standard indicate that our proposed metrics outperforms the existing one consistently under various conditions

    Improving the reliability of optimised link state routing in a smart grid neighbour area network based wireless mesh network using multiple metrics

    Get PDF
    © 2017 by the authors; licensee MDPI. Reliable communication is the backbone of advanced metering infrastructure (AMI). Within the AMI, the neighbourhood area network (NAN) transports a multitude of traffic, each with unique requirements. In order to deliver an acceptable level of reliability and latency, the underlying network, such as the wireless mesh network (WMN), must provide or guarantee the quality-of-service (QoS) level required by the respective application traffic. Existing WMN routing protocols, such as optimised link state routing (OLSR), typically utilise a single metric and do not consider the requirements of individual traffic; hence, packets are delivered on a best-effort basis. This paper presents a QoS-aware WMN routing technique that employs multiple metrics in OLSR optimal path selection for AMI applications. The problems arising from this approach are non deterministic polynomial time (NP)-complete in nature, which were solved through the combined use of the analytical hierarchy process (AHP) algorithm and pruning techniques. For smart meters transmitting Internet Protocol (IP) packets of varying sizes at different intervals, the proposed technique considers the constraints of NAN and the applications' traffic characteristics. The technique was developed by combining multiple OLSR path selection metrics with the AHP algorithm in ns-2. Compared with the conventional link metric in OLSR, the results show improvements of about 23% and 45% in latency and Packet Delivery Ratio (PDR), respectively, in a 25-node grid NAN

    IEEE 802.11s Mesh Deterministic Access : Design and analysis

    Get PDF
    IEEE 802.11s is a draft IEEE 802.11 amendment for mesh networking, defining how wireless devices can interconnect to create an ad-hoc network. It includes some mesh-specific optional MAC enhancements like Mesh Deterministic Access, Common Channel Framework, Intra-mesh Congestion Control and Power Management. Mesh Deterministic Access (MDA) is an access method that allows MPs to access the channel at selected times (called MDAOPs) with lower contention than would otherwise be possible. In this work we study Mesh Deterministic Access (MDA) feature. Specifically: we implement 802.11s in ns-2 simulator and evaluate performance comparing results with those obtained with DCF. We also propose an improvement called Dynamic Relocation. Dynamic Relocation permits to overcome MDA limits by reallocating MDAOPs basing on statistics collected during transmission times. The effectiveness of MDA improved with Dynamic Relocation in a scenario with realistic traffic is then confirmed via a simulation analysis
    corecore