1,175 research outputs found

    Hierarchical Deep Feature Learning For Decoding Imagined Speech From EEG

    Full text link
    We propose a mixed deep neural network strategy, incorporating parallel combination of Convolutional (CNN) and Recurrent Neural Networks (RNN), cascaded with deep autoencoders and fully connected layers towards automatic identification of imagined speech from EEG. Instead of utilizing raw EEG channel data, we compute the joint variability of the channels in the form of a covariance matrix that provide spatio-temporal representations of EEG. The networks are trained hierarchically and the extracted features are passed onto the next network hierarchy until the final classification. Using a publicly available EEG based speech imagery database we demonstrate around 23.45% improvement of accuracy over the baseline method. Our approach demonstrates the promise of a mixed DNN approach for complex spatial-temporal classification problems.Comment: Accepted in AAAI 2019 under Student Abstract and Poster Progra

    Neurolinguistics Research Advancing Development of a Direct-Speech Brain-Computer Interface

    Get PDF
    A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to imagined speech, then processes and decodes these signals to produce a linguistic output in the form of phonemes, words, or sentences. Recent research has shown the potential of neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of semantics and phonology in experimental procedures. As neurolinguistics research findings are beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough understanding of imagined speech, and its relationship with overt speech, must be considered an integral feature of research in this field. With a focus on imagined speech, we provide a review of the most important neurolinguistics research informing the field of DS-BCI and suggest how this research may be utilized to improve current experimental protocols and decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-BCI research, in which neurolinguistics concepts and methods are utilized to aid development of a naturalistic mode of communication. : Cognitive Neuroscience; Computer Science; Hardware Interface Subject Areas: Cognitive Neuroscience, Computer Science, Hardware Interfac

    Characterization and Decoding of Speech Representations From the Electrocorticogram

    Get PDF
    Millions of people worldwide suffer from various neuromuscular disorders such as amyotrophic lateral sclerosis (ALS), brainstem stroke, muscular dystrophy, cerebral palsy, and others, which adversely affect the neural control of muscles or the muscles themselves. The patients who are the most severely affected lose all voluntary muscle control and are completely locked-in, i.e., they are unable to communicate with the outside world in any manner. In the direction of developing neuro-rehabilitation techniques for these patients, several studies have used brain signals related to mental imagery and attention in order to control an external device, a technology known as a brain-computer interface (BCI). Some recent studies have also attempted to decode various aspects of spoken language, imagined language, or perceived speech directly from brain signals. In order to extend research in this direction, this dissertation aims to characterize and decode various speech representations popularly used in speech recognition systems directly from brain activity, specifically the electrocorticogram (ECoG). The speech representations studied in this dissertation range from simple features such as the speech power and the fundamental frequency (pitch), to complex representations such as the linear prediction coding and mel frequency cepstral coefficients. These decoded speech representations may eventually be used to enhance existing speech recognition systems or to reconstruct intended or imagined speech directly from brain activity. This research will ultimately pave the way for an ECoG-based neural speech prosthesis, which will offer a more natural communication channel for individuals who have lost the ability to speak normally

    Characterization of Language Cortex Activity During Speech Production and Perception

    Get PDF
    Millions of people around the world suffer from severe neuromuscular disorders such as spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis (ALS), and others. Many of these individuals cannot perform daily tasks without assistance and depend on caregivers, which adversely impacts their quality of life. A Brain-Computer Interface (BCI) is technology that aims to give these people the ability to interact with their environment and communicate with the outside world. Many recent studies have attempted to decode spoken and imagined speech directly from brain signals toward the development of a natural-speech BCI. However, the current progress has not reached practical application. An approach to improve the performance of this technology is to better understand the underlying speech processes in the brain for further optimization of existing models. In order to extend research in this direction, this thesis aims to characterize and decode the auditory and articulatory features from the motor cortex using the electrocorticogram (ECoG). Consonants were chosen as auditory representations, and both places of articulation and manners of articulation were chosen as articulatory representations. The auditory and articulatory representations were decoded at different time lags with respect to the speech onset to determine optimal temporal decoding parameters. In addition, this work explores the role of the temporal lobe during speech production directly from ECoG signals. A novel decoding model using temporal lobe activity was developed to predict a spectral representation of the speech envelope during speech production. This new knowledge may be used to enhance existing speech-based BCI systems, which will offer a more natural communication modality. In addition, the work contributes to the field of speech neurophysiology by providing a better understanding of speech processes in the brain

    Speech Processes for Brain-Computer Interfaces

    Get PDF
    Speech interfaces have become widely used and are integrated in many applications and devices. However, speech interfaces require the user to produce intelligible speech, which might be hindered by loud environments, concern to bother bystanders or the general in- ability to produce speech due to disabilities. Decoding a usera s imagined speech instead of actual speech would solve this problem. Such a Brain-Computer Interface (BCI) based on imagined speech would enable fast and natural communication without the need to actually speak out loud. These interfaces could provide a voice to otherwise mute people. This dissertation investigates BCIs based on speech processes using functional Near In- frared Spectroscopy (fNIRS) and Electrocorticography (ECoG), two brain activity imaging modalities on opposing ends of an invasiveness scale. Brain activity data have low signal- to-noise ratio and complex spatio-temporal and spectral coherence. To analyze these data, techniques from the areas of machine learning, neuroscience and Automatic Speech Recog- nition are combined in this dissertation to facilitate robust classification of detailed speech processes while simultaneously illustrating the underlying neural processes. fNIRS is an imaging modality based on cerebral blood flow. It only requires affordable hardware and can be set up within minutes in a day-to-day environment. Therefore, it is ideally suited for convenient user interfaces. However, the hemodynamic processes measured by fNIRS are slow in nature and the technology therefore offers poor temporal resolution. We investigate speech in fNIRS and demonstrate classification of speech processes for BCIs based on fNIRS. ECoG provides ideal signal properties by invasively measuring electrical potentials artifact- free directly on the brain surface. High spatial resolution and temporal resolution down to millisecond sampling provide localized information with accurate enough timing to capture the fast process underlying speech production. This dissertation presents the Brain-to- Text system, which harnesses automatic speech recognition technology to decode a textual representation of continuous speech from ECoG. This could allow to compose messages or to issue commands through a BCI. While the decoding of a textual representation is unparalleled for device control and typing, direct communication is even more natural if the full expressive power of speech - including emphasis and prosody - could be provided. For this purpose, a second system is presented, which directly synthesizes neural signals into audible speech, which could enable conversation with friends and family through a BCI. Up to now, both systems, the Brain-to-Text and synthesis system are operating on audibly produced speech. To bridge the gap to the final frontier of neural prostheses based on imagined speech processes, we investigate the differences between audibly produced and imagined speech and present first results towards BCI from imagined speech processes. This dissertation demonstrates the usage of speech processes as a paradigm for BCI for the first time. Speech processes offer a fast and natural interaction paradigm which will help patients and healthy users alike to communicate with computers and with friends and family efficiently through BCIs

    Leveraging EEG-based speech imagery brain-computer interfaces

    Get PDF
    Speech Imagery Brain-Computer Interfaces (BCIs) provide an intuitive and flexible way of interaction via brain activity recorded during imagined speech. Imagined speech can be decoded in form of syllables or words and captured even with non-invasive measurement methods as for example the Electroencephalography (EEG). Over the last decade, research in this field has made tremendous progress and prototypical implementations of EEG-based Speech Imagery BCIs are numerous. However, most work is still conducted in controlled laboratory environments with offline classification and does not find its way to real online scenarios. Within this thesis we identify three main reasons for these circumstances, namely, the mentally and physically exhausting training procedures, insufficient classification accuracies and cumbersome EEG setups with usually high-resolution headsets. We furthermore elaborate on possible solutions to overcome the aforementioned problems and present and evaluate new methods in each of the domains. In detail we introduce two new training concepts for imagined speech BCIs, one based on EEG activity during silently reading and the other recorded during overtly speaking certain words. Insufficient classification accuracies are addressed by introducing the concept of a Semantic Speech Imagery BCI, which classifies the semantic category of an imagined word prior to the word itself to increase the performance of the system. Finally, we investigate on different techniques for electrode reduction in Speech Imagery BCIs and aim at finding a suitable subset of electrodes for EEG-based imagined speech detection, therefore facilitating the cumbersome setups. All of our presented results together with general remarks on experiences and best practice for study setups concerning imagined speech are summarized and supposed to act as guidelines for further research in the field, thereby leveraging Speech Imagery BCIs towards real-world application.Speech Imagery Brain-Computer Interfaces (BCIs) bieten eine intuitive und flexible Möglichkeit der Interaktion mittels Gehirnaktivität, aufgezeichnet während der bloßen Vorstellung von Sprache. Vorgestellte Sprache kann in Form von Silben oder Wörtern auch mit nicht-invasiven Messmethoden wie der Elektroenzephalographie (EEG) gemessen und entschlüsselt werden. In den letzten zehn Jahren hat die Forschung auf diesem Gebiet enorme Fortschritte gemacht, und es gibt zahlreiche prototypische Implementierungen von EEG-basierten Speech Imagery BCIs. Die meisten Arbeiten werden jedoch immer noch in kontrollierten Laborumgebungen mit Offline-Klassifizierung durchgeführt und finden nicht denWeg in reale Online-Szenarien. In dieser Arbeit identifizieren wir drei Hauptgründe für diesen Umstand, nämlich die geistig und körperlich anstrengenden Trainingsverfahren, unzureichende Klassifizierungsgenauigkeiten und umständliche EEG-Setups mit meist hochauflösenden Headsets. Darüber hinaus erarbeiten wir mögliche Lösungen zur Überwindung der oben genannten Probleme und präsentieren und evaluieren neue Methoden für jeden dieser Bereiche. Im Einzelnen stellen wir zwei neue Trainingskonzepte für Speech Imagery BCIs vor, von denen eines auf der Messung von EEG-Aktivität während des stillen Lesens und das andere auf der Aktivität während des Aussprechens bestimmter Wörter basiert. Unzureichende Klassifizierungsgenauigkeiten werden durch die Einführung des Konzepts eines Semantic Speech Imagery BCI angegangen, das die semantische Kategorie eines vorgestellten Wortes vor dem Wort selbst klassifiziert, um die Performance des Systems zu erhöhen. Schließlich untersuchen wir verschiedene Techniken zur Elektrodenreduktion bei Speech Imagery BCIs und zielen darauf ab, eine geeignete Teilmenge von Elektroden für die EEG-basierte Erkennung von vorgestellter Sprache zu finden, um so die umständlichen Setups zu erleichtern. Alle unsere Ergebnisse werden zusammen mit allgemeinen Bemerkungen zu Erfahrungen und Best Practices für Studien-Setups bezüglich vorgestellter Sprache zusammengefasst und sollen als Richtlinien für die weitere Forschung auf diesem Gebiet dienen, um so Speech Imagery BCIs für die Anwendung in der realenWelt zu optimieren
    • …
    corecore