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Abstract  9 

A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to 10 

imagined speech, then processes and decodes these signals to produce a linguistic output in the 11 

form of phonemes, words or sentences. Recent research has shown the potential of 12 

neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of 13 

semantics and phonology in experimental procedures. As neurolinguistics research findings are 14 

beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough 15 

understanding of imagined speech, and its relationship with overt speech, must be considered 16 

an integral feature of research in this field. With a focus on imagined speech, we provide a 17 

review of the most important neurolinguistics research informing the field of DS-BCI, and 18 

suggest how this research may be utilised to improve current experimental protocols and 19 

decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-20 

BCI research, in which neurolinguistics concepts and methods are utilised to aid development 21 

of a naturalistic mode of communication.  22 

1 Seeking a naturalistic form of communication through Direct-speech 23 

BCI  24 

A direct-speech brain-computer interface (DS-BCI) is one that captures and decodes neural 25 

signals corresponding directly to speech production, enabling a naturalistic mode of 26 

communication (Iljina et al., 2017). Such a system has the potential to transform the lives of 27 

patients with severe motor dysfunction, including pathologies such as amyotrophic lateral 28 

sclerosis resulting in locked-in syndrome. Loss of verbal communication has a profound effect 29 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287023406?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
2 

on those inflicted, with loss of social interaction and the potential for isolation. In parallel with 30 

this personal degeneration, a caregiver faces a more difficult challenge in ascertaining the needs 31 

of the patient. These factors have played a crucial role in driving the development of DS-BCIs 32 

(Brumberg et al., 2011; Oken et al., 2014).  33 

It is our view that development of a functional DS-BCI must be predicated on imagined speech 34 

(see section 3 for a detailed description) as the communicative modality. However, several 35 

other types of speech have been utilised in experiments referenced throughout this text, making 36 

it important to define their meanings. Table 1 is a categorisation of the different types of speech 37 

typically used in DS-BCI experimentation. Three types of speech are presented, namely overt 38 

(Blakely et al., 2008), intended (Guenther et al., 2009) and imagined (D’Zmura et al., 2009), 39 

and these are subcategorised according to whether the speech is being produced or perceived 40 

by a subject. Overt speech production results in an audible output that can be heard by the 41 

person speaking, and by others within range of the sounds produced. Intended speech is the 42 

name given to describe when a person tries to speak but does not have the capacity to produce 43 

an audible output. Imagined speech is the internal pronunciation of words without any audible 44 

output or associated movement. These are types of speech production and possible methods of 45 

communication with DS-BCI. However, several studies have used decoding approaches 46 

applied to the neural correlates of speech perception as evidence for the potential of decoding 47 

speech processeses for communication (Di Liberto et al., 2015; Wang et al., 2018). We consider 48 

it to be extremely important to distinguish speech perception studies from speech production 49 

studies, and to be aware that the ‘speech’ in these studies refers to different phenomena. In 50 

perception studies, the speech being considered is the stimulus provided by the experimenter. 51 

The corresponding response of the subject, typically in the auditory cortex, is the neural activity 52 

being decoded. This differs greatly from the study of speech production in which the subject is 53 

actively producing phones, words or sentences, whether prompted or unprompted, with neural 54 

correlates typically corresponding to brain regions associated with speech production. 55 

Although speech perception studies are important for DS-BCI research, this review, is 56 

primarily concerned with speech production, and in particular, imagined speech production.  57 

Table 1 Categorisation of types of speech typically used in DS-BCI experiments. 58 

 Production Perception 

Overt Fully-articulated speech with 

audible output.  

Active or passive hearing of 

audible speech (one’s own 
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speech or from another 

source). 

Intended Intention to produce overt 

speech but without the 

capacity to produce audible 

output.  

Perception of one’s own 

intended speech production.  

Imagined Internal pronunciation of 

words, independent of 

movement and without any 

audible output.  

Perception of one’s own 

imagined speech production.  

 59 

A DS-BCI consists of several important stages (see Figure 1). The stages depicted in Figure 60 

1B-G have each been extensively covered in the literature (Blakely et al. 2008, Guenther et al. 61 

2009, reviewed in Bocquelet et al. 2017). However, there is relatively little consideration of 62 

the difficulty in modelling the first of these stages (Figure 1A), namely imagined speech 63 

production, during which a participant articulates words internally without any motor 64 

movement. Neurolinguistics research is providing insight into the cognitive function, 65 

phenomenology and neurobiology of speech production in general (Hickok, 2014), and 66 

imagined speech in particular (Alderson-Day and Fernyhough, 2015; Perrone-Bertolotti et al., 67 

2014) and it is our view that these insights should be utilised within DS-BCI research. We 68 

concur with the arguments expressed by Iljina et al. (Iljina et al., 2017) that, given the 69 

complexity of speech production processes, combining research from the fields of BCI and 70 

neurolinguistics must be seen as an important approach for those seeking to capture and decode 71 

the phenomena.  72 

Imagined speech is the internal pronunciation of words without any motor movement or 73 

acoustic output (Torres-García et al., 2016) (see Section 3). Related, and overlapping, 74 

terminology for imagined speech includes self-talk, sub-vocal/covert speech, internal 75 

dialogue/monologue, sub-vocalisation, utterance, self-verbalisation and self-statement (Morin 76 

and Michaud, 2007). However, for the purposes of performing controlled experiments in the 77 

field of DS-BCI, it is necessary to maintain a consistent terminology and description of the 78 

phenomena (see Section 3). Although not identical, there is overlap between imagined and 79 

overt speech production, and imagined speech has become an alternative neuro-paradigm for 80 

communicative BCI (D’Zmura et al., 2009; DaSalla et al., 2009; Deng et al., 2010). Such a 81 

system differs from other types of communicative BCIs (Chaudhary et al., 2017; Pandarinath 82 
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et al., 2017), in that it relies on tapping directly into a person’s speech production processes, 83 

rather than using some unrelated neural activity as the method of communication.  84 

Several DS-BCI studies have used neurolinguistics approaches within their experimental 85 

procedures (González-Castañeda et al., 2017; Kim et al., 2013; Wang et al., 2011; Zhao and 86 

Rudzicz, 2015). In general, the approaches used have been to design a constrained dictionary 87 

of words categorised according to their relative semantic or phonological relationships. The 88 

basic principle underpinning this approach is that the categorical features of a word may aid 89 

decoding accuracy in imagined speech. There is some evidence that this is a valid approach to 90 

take, particularly in relation to semantic categorisation, which has received greater attention in 91 

the literature.  Studies examining the feasibility of decoding semantic information from neural 92 

signals have shown that semantic category can be predicted from brain activity (Kim et al., 93 

2013; Wang et al., 2011). However, further research is required to determine the true potential 94 

of neurolinguistics research in relation to the neurobiology of imagined speech and the 95 

structured processes underlying speech production, to inform DS-BCI research. 96 

Here, we review trends in DS-BCI research, and the current understanding of speech 97 

production processes, with an emphasis on imagined speech. We consider the potential 98 

implications of attempting to harness neurolinguistics concepts and the limitations of working 99 

directly with imagined speech. An argument is presented, that effective research in the field of 100 

DS-BCI should incorporate neurolinguistics research and a thorough understanding of 101 

imagined speech where possible to aid the development of a naturalistic mode of 102 

communication. 103 
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 104 

Figure 1 Seeking a Naturalistic form of communication through direct-speech BCI. 105 

2 Trends in Direct-Speech BCI  106 

The development of a ‘silent’ interface has long been an active area of research to enable users 107 

to communicate without audible articulation of their speech. Several modalities have been 108 

developed to facilitate such communication through movement-independent BCI, including 109 

BCI-spellers (e.g. D’albis et al. 2012), BCIs based on steady-state visually evoked potential 110 

(SSVEP) (e.g. Bin et al., 2009) and BCIs based on motor imagery (e.g. Tabar and Halici, 111 

2017a), (see  AlSaleh et al., 2016; Tabar and Halici, 2017b see for reviews). There are 112 

numerous forms which these silent interfaces have taken to provide a more naturalistic, 113 

language-based mode of communication, including ultrasound imaging of lip profiles (Denby 114 

et al., 2006) and word recognition using magnetic implants and sensors (Gilbert et al., 2010). 115 

However, approaches such as these require active motor skills that can be readily utilised as 116 

the communicative modality and are therefore not movement-independent BCIs. The utility of 117 

BCI as a mode for language-based communication has been noted by researchers for many 118 

years (Denby et al., 2006; Donchin et al., 2000), with the concept for a DS-BCI being a 119 

movement-independent BCI based on neural activity corresponding directly to imagined 120 

speech production processes. However, the possibility of developing a BCI predicated purely 121 
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on imagined speech has only recently begun to gather momentum (Ikeda et al. 2014, Yoshimura 122 

et al. 2016, Nguyen, Karavas and Artemiadis 2017) as researchers have revealed promising 123 

results in attempts to classify units of imagined speech (González-Castañeda et al., 2017; 124 

Martin et al., 2014; Pei et al., 2011a; Yoshimura et al., 2016; Zhao and Rudzicz, 2015). There 125 

have been several incarnations of DS-BCIs, including a wireless BCI for real-time speech 126 

synthesis (Guenther et al., 2009) and a concept for continuous speech recognition (Herff et al., 127 

2017). The current stream of DS-BCI research indicates a trend towards improved 128 

classification of imagined speech units for decoded brain activity (González-Castañeda et al., 129 

2017; Martin et al., 2014) and the development of methodologies for continuous decoding of 130 

imagined speech (Brumberg et al., 2016). There have also been recent developments in 131 

classification of the neural correlates of speech perception (Di Liberto et al., 2015; Wang et al., 132 

2018), one of which demonstrates real-time classification of auditory sentences from neural 133 

activity (Moses et al., 2018). Although this research is vital for the implementation of a closed-134 

loop DS-BCI, it is important that results from speech perception studies are assessed 135 

independently of speech production studies as the neural activity corresponding to each cannot 136 

be assumed to have similar properties.  137 

There have been notable successes in attempts to improve the decoding of language content 138 

directly from neural activity. The neural correlates of vowels and consonants (Idrees and 139 

Farooq, 2016; Pei et al., 2011b; Yoshimura et al., 2016), phonemes (Brumberg et al., 2011; 140 

Leuthardt et al., 2011), syllables (Deng et al., 2010), whole words (González-Castañeda et al., 141 

2017; Martin et al., 2016) and even sentences (Herff et al., 2015) have all been evaluated using 142 

advanced decoding algorithms. Decoding of discrete units of speech, single vowels for example, 143 

has been a popular experimental paradigm in DS-BCI to date (Ikeda et al., 2014).  Sereshkeh 144 

et al. (Rezazadeh Sereshkeh et al., 2017a) presented evidence suggesting that it is possible to 145 

classify units of imagined speech from electroencephalogram (EEG), presenting 63.2% ± 6.4 146 

accuracy for pairwise classification tasks. Other studies have shown that decoding accuracies 147 

of vowels and consonants were similar for both overt and imagined speech (Pei et al., 2011a). 148 

Elsewhere, linguistic content has been harnessed to aid discrimination of both overt and 149 

imagined speech, with phonology (Zhao and Rudzicz, 2015), semantics (Kim et al., 2013) and 150 

syntax (Herff et al., 2015) each showing some potential to aid classification in DS-BCI. Figure 151 

2, and the corresponding data in Table 2 categorise DS-BCI studies according to recording 152 

technique and the type of speech being investigated. The time-period for this analysis begins 153 

with the study of Blakely et al. (Blakely et al., 2008), due to this being the first study based on 154 
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the BCI paradigm depicted, and runs through to 2018. Criteria for inclusion in this analysis are 155 

those studies using typical recording techniques (EEG, electrocorticogram (ECoG), Micro-156 

arrays, functional magnetic resonance imagining (fMRI) and functional near-infrared 157 

spectroscopy (fNIRS) to decode speech production (overt, imagined, intended), but not speech 158 

perception, directly from neural activity. Studies utilising speech imagery or imagined hearing 159 

have been excluded as we do not consider these modalities to be representative of the speech 160 

production required of a DS-BCI. The cross-sectional data (Figure 2A) indicates that studies 161 

have favoured two recording techniques and two types of speech. Clearly, EEG and ECoG are 162 

the most dominant recording techniques, having been cited in 16 and 20 studies respectively 163 

(Figure 2B). The likely reason being the high temporal resolution (milliseconds) they both 164 

possess, particularly in comparison to imaging techniques such as fMRI (with temporal 165 

resolution in the order of seconds). This high temporal resolution is required to capture the 166 

dynamic processes associated with speech production (Herff et al., 2016). As a non-invasive 167 

recording technique, EEG makes recruitment of experimental participants easier, but the 168 

greater spatial resolution of ECoG render it a better candidate for decoding imagined speech 169 

signals when participants are made available due to treatment for pre-existing medical 170 

conditions (e.g. epilepsy) (Martin et al., 2016). Although they have shown good performance 171 

in fields such as neuromotor prostheses (e.g. Hochberg et al. 2012), relatively few studies have 172 

utilised microelectrode arrays for recording the spiking activity of single or multiple units (SU 173 

or MU) i.e., neurons, during imagined speech. However, the SU or MU offer the required signal 174 

specificity to improve imagined speech decoding processes given its success in movement and 175 

movement intention decoding (Bouton et al., 2016).  176 



 
8 

  177 

Figure 2 Direct-speech BCI studies categorised according to recording techniques and 178 

types of speech.  179 

It is clear from the data presented in Figure 2 that overt speech production is heavily-utilised 180 

in experimental trials. Overt speech is included in a total of 26 studies (17 solely overt and 9 181 

alongside imagined speech) (Figure 2B). There are several reasons for this trend, including the 182 

lack of behavioural verification associated with imagined speech, whereby it is difficult to 183 

confirm whether experimental tasks have been performed correctly, and the lower amplitude 184 

of EEG/ECoG signals it produces (Palmer et al., 2001; Shuster and Lemieux, 2005). Despite 185 

lower amplitude signals, there is evidence to suggest that EEG can provide considerable 186 

information on imagined speech that can be utilised for a DS-BCI (D’Zmura et al., 2009). 187 

Attempts to decode continuous overt speech have been made (Herff et al., 2015), and it is 188 

anticipated that further developments may enable adaptation of this approach for imagined 189 

speech. As stated, the use of overt speech is prevalent in DS-BCI research. However, if a truly 190 

naturalistic form of communication is to be achieved using imagined speech, then a thorough 191 

understanding of the phenomena is required. 192 
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Table 2 Overview of DS-BCI studies attempting to decode speech from neural activity. 193 

Reference Recording 

Technique 

Type of 

Speech 

Experimental Paradigm 

Blakely et 

al., 2008 

Micro-

electrode 

Overt  Phoneme pronunciation.  

D’Zmura et 

al., 2009 

EEG Imagined Imagined speech of two syllables spoken in one of 

three rhythms. 

Guenther et 

al., 2009 

Micro-

electrode 

Intended Vowel production involving movement from a 

central vowel location to one of three peripheral 

vowel locations. 

Porbadnigk 

et al., 2009 

EEG Imagined Five words, presented in block, sequential or 

random order. 

Brigham 

and Kumar, 

2010 

EEG Imagined Imagined speech of two syllables, /ba/ and /ku/ at 

two rhythms. 

Deng et al., 

2010 

EEG Imagined Imagined speech of two syllables spoken in one of 

three rhythms. 

Kellis et al., 

2010 

Micro-

electrode 

Overt Repetition of one of ten words. 

Brumberg 

et al., 2011 

Micro-

electrode 

Intended Intended production of 38 American English 

phonemes. 

Chi et al., 

2011 

EEG Imagined Generation of five types of phonemes that differ in 

their manner vocal articulation. 

Leuthardt et 

al., 2011  

ECoG Overt/ 

Imagined 

Overt and imagined phoneme articulation. 

 Pei et al., 

2011a 

ECoG Overt/ 

Imagined 

Overt and imagined repetition of 36 monosyllabic 

words. 

Wang et al., 

2011 

ECoG Overt Three language tasks based on picture-naming. 

Pei et al., 

2011b 

ECoG Overt/ 

Imagined 

Word repetition using overt or covert speech in 

response to visual or auditory stimuli. 

Derix et al., 

2012 

ECoG Overt Spontaneous speech in non-experimental setup. 
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Herff et al., 

2012 

fNIRS  Overt/ 

Imagined 

Utterances produced in auditory, silent and 

imagined speech. 

Zhang et al., 

2012 

ECoG Overt Articulation of Chinese sentences. 

Kim et al., 

2013 

EEG Overt/ 

Imagined 

Speech of monosyllabic Korean words 

representing two categories of meaning (number 

and face). 

Bouchard 

and Chang, 

2014 

ECoG Overt Reading of consonant-vowel syllables. 

Derix et al., 

2014 

ECoG Overt Spontaneous speech in non-experimental setup. 

Ikeda et al. 

2014 

ECoG Imagined Imagined speech production of three Japanese 

vowels. 

Kanas et al., 

2014 

ECoG Overt Two syllable repetition tasks. 

Martin et 

al., 2014  

ECoG Overt/ 

Imagined 

Overt and covert reading of short-stories. 

Mugler et 

al., 2014a 

ECoG 

 

Overt Overt speech used to identify different phonemes 

by where they place in different words. 

Mugler et 

al., 2014b 

ECoG Overt Overt speech used to identify different phonemes 

by where they place in different words. 

Song and 

Sepulveda, 

2014 

EEG Overt/ 

Imagined 

High tone production in overt, inhibited and 

imagined speech. 

Herff et al., 

2015 

ECoG Overt Reading from well-known texts. 

Iqbal et al., 

2015a 

EEG Imagined  Imagined speech of vowels /a/ and /u/, and no 

action. 

Iqbal et al., 

2015b 

EEG Imagined Imagined speech of vowels /a/ and /u/, and no 

action. 

Lotte et al., 

2015 

ECoG Overt Reading from well-known texts. 
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Zhao and 

Rudzicz, 

2015 

EEG Overt/ 

Imagined 

Imagined speech production of seven phonemes 

and two pairs of phonologically-similar words. 

Herff et al., 

2016 

ECoG Overt Recitation of a presented sentence. 

Martin et 

al., 2016 

ECoG Overt/ 

Imagined 

Overt and imagined speech production of words 

selected to maximise variability of number of 

syllables and semantic category. 

Yoshimura 

et al., 2016  

EEG/fMRI  Imagined Imagined speech production of Japanese vowels 

/a/ and /i/. 

González-

Castañeda 

et al., 2017 

EEG Imagined Imagined speech production of five Spanish 

words. 

Nguyen et 

al., 2017 

EEG Imagined Imagined speech of short words, long words and 

vowels. 

Ramsey et 

al., 2017  

ECoG Overt Overt speech production of four phonemes. 

Rezazadeh 

Sereshkeh 

et al., 2017a 

EEG Imagined Imagined speech repetition of the words "yes" or 

"no". 

Rezazadeh 

Sereshkeh 

et al., 2017b 

EEG Imagined Imagined speech repetition of the words "yes" or 

"no". 

Fargier et 

al., 2018 

EEG Overt Overt word production corresponding to presented 

pictures. 

Hashim et 

al., 2018 

EEG Imagined Imagined speech word production. 

Ibayashi et 

al., 2018 

ECoG Overt Overt speech of 15 Japanese syllables. 

Livezey et 

al., 2018 

ECoG Overt Overt speech of 57 different consonant-vowel 

syllables. 

 194 
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3 Imagined Speech: A Special Case of Speech  195 

3.1 The phenomena of Imagined Speech 196 

As mentioned above, many definitions for imagined speech are present in the literature 197 

(Alderson-Day and Fernyhough, 2015; Hirshorn and Thompson-Schill, 2006), one of which 198 

refers to it as the internal pronunciation of words without emitting sounds or making facial 199 

movements (Torres-García et al., 2016). Research has demonstrated that imagined speech 200 

involves many cognitive functions including learning (Alderson-Day and Fernyhough, 2015), 201 

task-production (Dolcos and Albarracin, 2014) and memory (Perrone-Bertolotti et al., 2014). 202 

Despite its central position in everyday life, imagined speech has been the subject of relatively 203 

little research. Behavioural evidence has indicated that imagined speech is provided by the 204 

motor system’s prediction of sensory actions (corollary discharge) (Scott et al., 2013) and it 205 

has been suggested that imagined speech is produced in much the same way as overt speech, 206 

without the motor-based articulation which generates auditory output (Oppenheim and Dell, 207 

2010). Martínez-Manrique and Vicente (Martínez-Manrique and Vicente, 2015) support an 208 

“activity” view of imagined speech, in which the phenomena does not have a “proper function” 209 

in cognition but has simply inherited its suite of functions from overt speech.  210 

Other studies have characterised imagined speech as the basis for rehearsal in short-term 211 

memory (Baddeley et al., 1975) and as having a phonological influence in reading and writing 212 

(Oppenheim and Dell, 2008). Further studies concur with these findings, suggesting that inner 213 

rehearsal is a central tenet of imagined speech within the phonological loop, i.e. the temporary 214 

storage of information in short-term memory (Perrone-Bertolotti et al., 2014), and that 215 

imagined speech may interact with working memory to enhance the encoding of new material 216 

(Marvel and Desmond, 2012). It has been suggested that imagined speech serves a regulatory 217 

role in social speech communication, meaning that it is utilised in overt speech communications 218 

(speaking and listening), as well as being implicated as part of a covert articulatory planning 219 

process within the speech-motor processing paradigm (see Price (2012) for review).  220 

It has been proposed that imagined speech may be used to generally represent, maintain, and 221 

organise task-relevant information and conscious thoughts (Dolcos and Albarracin, 2014). 222 

Although not normally associated with executive control processes, the role of imagined speech 223 

in task switching, for example, switching attention across multiple arithmetic problems, has 224 

been studied (Emerson and Miyake, 2003). The difficulties associated with studying imagined 225 
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speech in experimental research has led to the use of overt speech as a proxy for the phenomena 226 

in DS-BCI research (e.g. Martin et al., 2014; Pei et al., 2011b). Therefore, it is useful to have 227 

a clear picture of the relationship between the two types of speech.  228 

3.2 The relationship between overt and imagined speech production 229 

The relationship between overt speech and imagined speech has been extensively debated 230 

(Brocklehurst and Corley, 2011; Corley et al., 2011; Oppenheim and Dell, 2010, 2008), though 231 

at present there is no definitive position on the precise nature of this relationship. Here, we 232 

present the evidence for a close relationship between overt and imagined speech, before 233 

considering the ways in which the two differ. Finally, we discuss the implications of this 234 

relationship for DS-BCI research.  235 

It has been posited that imagined speech is a truncated form of overt speech, in that the stages 236 

of production are the same for both, prior to the articulatory effects associated with overt speech 237 

(Oppenheim and Dell, 2010). Subjective accounts of imagined speech indicate that it resembles 238 

overt speech in tempo, pitch and rhythm (MacKay and others, 1992) and studies have found 239 

that imagined speech retains deep-lying features such as lexical and semantic information 240 

(Oppenheim and Dell, 2008). The motor simulation hypothesis places overt and imagined 241 

speech on a continuum, on which linguistic mechanisms and physiological correlates are shared 242 

(Perrone-Bertolotti et al., 2014), albeit with features attenuated in imagined speech (Alderson-243 

Day and Fernyhough, 2015). Importantly, the motor simulation hypothesis assumes that 244 

imagined speech necessarily includes fully-specified articulatory detail (e.g. Levelt, 1989), 245 

merely lacking observable sound and movement. 246 

Phonemic-similarity (in which mistaken phonemes are replaced with similar phonemes) has 247 

been observed with similar magnitudes for both overt and imagined speech production 248 

(Brocklehurst and Corley, 2011) and further findings suggest that imagined speech is specified 249 

at the sub-phonemic level, and that its process of production must be similar to that of overt 250 

speech (Corley et al., 2011). The implication here is that imagined speech does contain much 251 

of the featural richness associated with overt speech, a view fully compatible with evidence 252 

that phonological representations are fully-encoded in imagined speech. Imagined speech has 253 

been considered part of an overall speech production system, in which it is used for predictive 254 

simulation or “forward models” of linguistic representations, suggesting that it is produced in 255 

much the same way as overt speech, minus overt articulation (Levelt et al., 1999).  256 
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There is considerable overlap between the neurobiology of overt and imagined speech (Marvel 257 

and Desmond, 2012), with neural activations in typical left-hemispheric language regions, in 258 

general, being associated with both (Basho et al., 2007; Huang et al., 2002; McGuire et al., 259 

1996a; Palmer et al., 2001) (see section 3.3, below). Activation of Broca’s area during imagined 260 

speech indicates that this typical language region is associated with its production, and is 261 

consistent with results from functional imaging studies examining silent articulation (Paulesu 262 

et al., 1993). fMRI results have shown activation of the supplementary motor area (SMA), 263 

inferior frontal gyrus (IFG) and insula during phonological processing of imagined and overt 264 

speech (Aleman et al., 2005). Furthering current understanding of the neuroanatomy and neural 265 

correlates of imagined speech production is an important aspect of research in this field. 266 

Although they suggest that there is significant overlap between overt and imagined speech, 267 

Oppenheim and Dell (Oppenheim and Dell, 2008), also advise that imagined speech is 268 

impoverished at the featural level and thus abstract and underspecified. It has been suggested 269 

that imagined speech is often attenuated at the surface level, lacking phonological (Oppenheim 270 

and Dell, 2008) or phonetic (Wheeldon and Levelt, 1995) detail. Countering the view that 271 

imagined speech is intrinsically similar to overt speech, the abstraction hypothesis contends 272 

that imagined speech is produced as a consequence of activation of abstract linguistic 273 

representations (e.g. Indefrey and Levelt, 2004). The theory states that imagined speech is 274 

activated before the speaker retrieves any articulatory information, and therefore should not 275 

require any motor activations. There are several arguments in favour of the abstraction view 276 

(summarised in Oppenheim and Dell, 2010), first of which is that imagined speech is produced 277 

faster than overt speech, suggesting that imagined speech is abbreviated in some respect (e.g. 278 

MacKay and others, 1992), and thus lacks the articulatory properties associated with overt 279 

speech. Another argument is that attenuated activity in language-related brain regions during 280 

imagined speech indicates that the processes of production are not as complete as in overt 281 

speech. The third argument presented is that imagined speech does not require articulatory 282 

abilities and so articulation is not required for complete use of imagined speech. The authors 283 

also observe that articulatory suppression does not necessarily eliminate imagined speech. 284 

Moreover, imagined speech does not (necessarily) translate to overt speech performance. 285 

Theoretically, were overt and imagined speech to involve similar planning processes, then it 286 

would be reasonable to expect practice of an utterance in one form of speech to improve 287 

performance in the other. However, evidence has indicated that this is not the case (Corley et 288 

al., 2011).  289 
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Alternatively, the flexible abstraction hypothesis states that there is a single form of imagined 290 

speech, which is represented at the phonemic-selection level (Oppenheim and Dell, 2010). The 291 

hypothesis states that representations can be modulated by articulation to include more explicit 292 

features, and the authors suggest that cases where imagined speech appears to have 293 

phonological features may be caused by participants deploying a form of imagined speech 294 

involving a greater degree of articulation. The flexible abstraction hypothesis suggests that 295 

imagined speech may fail to involve articulatory representations but it can incorporate lower 296 

level articulatory planning when speakers silently articulate. The surface-impoverished 297 

hypothesis states that imagined speech is impoverished at the surface level, having weaker 298 

lower-level representation (e.g. featural level), and the deep-impoverished hypothesis states 299 

that imagined speech represents sounds and gestures, but not higher level information  300 

(Oppenheim and Dell, 2008). Imagined speech may be formed as a featurally-abstract forward 301 

model (Pickering and Garrod, 2013), and phonological features may be experienced due to the 302 

sensory prediction created (Scott, 2013). Imagined speech may also vary depending on 303 

cognitive and emotional conditions, causing changes between abstract and concrete forms 304 

(Fernyhough, 2004). 305 

As stated above, neuro-anatomical overlap between regions associated with overt and imagined 306 

speech has been observed. Nevertheless, there are significant differences in brain activity 307 

between the two processes (e.g. Basho et al. 2007). For example, fMRI has discovered that 308 

imagined speech elicits greater activation in several areas of the brain (e.g. Basho et al. 2007) 309 

and a lesion symptom mapping (LSM) study of patients with aphasia showed that participants 310 

with poor overt speech retained relatively strong imagined speech in comparison (Stark et al., 311 

2017), suggesting a dissociation of the cognitive mechanisms generating overt and imagined 312 

speech. Previous work with aphasics, indicating that imagined speech abilities were more 313 

effected by lesions to the left pars opercularis than overt speech production, led Geva, Jones et 314 

al. (Geva et al., 2011b) to state that imagined speech cannot be assumed to be overt speech 315 

without a motor component. For further information on the neuro-biology of imagined speech, 316 

see section 3.3.  317 

Perrone-Bertolotti et al. (Perrone-Bertolotti et al., 2014) astutely observe that the variance in 318 

results between overt and imagined speech experiments may, at least partially, be explained by 319 

the different speech tasks involved in the studies. Word repetition, object naming, verb 320 

generation, etc., all require different speech production processes and thus engage different 321 

areas of the brain. It is also conceivable that differences between the two types of speech could 322 
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be put down to participants being better able to perceive certain types of error in overt speech. 323 

Perrone-Bertolotti et al. (Perrone-Bertolotti et al., 2014) also suggest that differing results may 324 

indicate that imagined speech consists of flexible subtypes or levels, and that the experimental 325 

paradigm may be partially responsible for the differences observed between the two types of 326 

speech. 327 

Clearly, there is no definitive description of the precise relationship between overt and 328 

imagined speech, and this is a subject that requires further elucidation from neurolinguistics 329 

research. We agree with Martínez-Manrique and Vicente (Martínez-Manrique and Vicente, 330 

2015), that a comprehensive view of imagined speech will require precise models of linguistic 331 

production and comprehension, and a cognitive account will require more data than is currently 332 

available. Therefore, we must also agree with Geva, Jones et al. (Geva et al., 2011b) that overt 333 

speech cannot simply be assumed to be a reliable substitute for imagined speech. It is our 334 

contention, in relation to DS-BCIs, that it is not possible to reliably infer performance in an 335 

imagined speech paradigm from results obtained during overt speech experiments. This is not 336 

to say that there is no value in overt speech paradigms, and given that there is much overlap in 337 

the linguistic theory and neurobiology associated with both, there is certainly a lot to be gained 338 

from such experiments. However, as the communicative paradigm for an eventual operational 339 

DS-BCI is imagined speech, we must emphasise the importance of utilising this modality, when 340 

possible, in experimental protocols.   341 

3.3 The neuroanatomy of imagined speech 342 

Alderson-Day and Fernyhough (Alderson-Day and Fernyhough, 2015) suggest that a prima 343 

facie assumption about the neural correlates of imagined speech might be that they closely 344 

resemble an attenuated version of the neural activity associated with overt speech. There is 345 

evidence supporting activation in Broca’s area, SMA and parts of the prefrontal cortex, having 346 

been observed during both overt and imagined speech (see Price, 2012 for review). Studies 347 

have shown that overt and imagined speech do produce similar neural activations, with the 348 

exception of certain motor-related activity associated with overt speech (Palmer et al., 2001), 349 

and that the blood oxygen level-dependent (BOLD) response measured from fMRI recordings 350 

was greater during overt than imagined speech (Shuster and Lemieux, 2005). However, the 351 

neuro-anatomy of imagined speech has been shown to differ from that of overt speech (e.g. 352 

Basho et al. 2007). It is important to identify the regions specifically correlated with imagined 353 

speech in the context of development of a DS-BCI that are independent of movement and 354 
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therefore not overt speech production, and are independent of stimuli and therefore not speech 355 

perception.   356 

Reports on the anatomical underpinnings of imagined speech have consistently implicated the 357 

left inferior frontal gyrus (LIFG) as the anatomical basis for the phenomena (Aleman et al., 358 

2005; McGuire et al., 1996a, 1996b; Shergill et al., 2002) (see Figure 3 (Berwick et al., 2013)). 359 

Positron Emission Topography (PET) has attributed LIFG activation to imagined speech 360 

during sentence and single-word production (McGuire et al., 1996b) and fMRI was used to 361 

observe LIFG activation during imagined sentence production (Shergill and Bullmore, 2001; 362 

Shergill et al., 2002). In the second of these fMRI studies (Shergill et al., 2002), the  LIFG, 363 

along with other regions, was associated with increased activation corresponding to increased 364 

rates of imagined speech production. The region has also been associated with increased 365 

activation during dialogic, in comparison with monologic, imagined speech (Alderson-Day et 366 

al., 2015). Morin and Michaud (Morin and Michaud, 2007) note that the LIFG exhibits 367 

functional heterogeneity, observing that its most anterior parts (Brodmann’s Area (BA)45) are 368 

involved in word retrieval and their associated meanings, while the posterior (BA46/47) 369 

specialises in accessing words through an articulatory code (Paulesu et al., 1997). It has been 370 

observed that task-elicited imagined speech results in increased activation in the LIFG, in 371 

comparison with spontaneous imagined speech (Hurlburt et al., 2016). The authors suggest that 372 

activation of LIFG during task-elicited imagined speech may be a reflection of elicitation tasks 373 

rather than the speech itself, as the LIFG is thought to be integral to planning and execution of 374 

hierarchical sequences. 375 

Among regions most often observed as corresponding to imagined speech production are SMA 376 

(Shergill and Bullmore, 2001; Shergill et al., 2002), insula (Aleman et al., 2005), premotor 377 

cortex (McGuire et al., 1996a), STG, and middle temporal gyrus (MTG) (Shuster and Lemieux, 378 

2005). The SMA, left precentral gyrus and the right inferior parietal lobe are all associated with 379 

increased activation at slower rates of imagined speech production (Shergill et al., 2002). The 380 

SMA has also been associated with sentence-repetition tasks (Shergill and Bullmore, 2001) 381 

and phonological processing during imagined speech (Aleman et al., 2005). The insula has 382 

been implicated in multiple studies reporting on imagined word production (Aleman et al., 383 

2005; Hubbard, 2010; McGuire et al., 1996a; Shergill and Bullmore, 2001) but may not be 384 

representative of imagined speech given that it is often associated with imagined hearing (see 385 

below) and overt speech. However, Shuster and Lemieux (Shuster and Lemieux, 2005) 386 

observed that many studies which have failed to report involvement of the insula in speech 387 
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production have typically only used imagined or silently-articulated speech (Wildgruber et al., 388 

2001).     389 

Increased activation has been observed in the left MTG and STG during the production of 390 

multisyllabic words in imagined speech trials (Shuster and Lemieux, 2005) and the posterior 391 

STG has been implicated in metric stress evaluation in the phonological loop (Aleman et al., 392 

2005) (see Figure 3). Interestingly, the left MTG and STG are often associated with increased 393 

activity during trials involving imagined hearing or dialogic imagined speech (see Alderson-394 

Day and Fernyhough, 2015 for review). This type of task, in which a participant is asked to 395 

imagine hearing speech in another person’s voice, is thought to rely on memory for 396 

phonological information (Alderson-Day and Fernyhough, 2015), and to activate the primary 397 

auditory cortex (Heschl’s gyrus) (Hurlburt et al., 2016). Other findings indicate that dialogic 398 

imagined speech draws from a range of regions beyond a typical left-sided perisylvian language 399 

network, including the right IFG, right MTG and the right STG/STS (Alderson-Day et al., 400 

2015). The precuneus, posterior cingulate, left insula and cerebellum are also implicated. The 401 

dorsal pathways between BA44 and the posterior superior temporal cortex (pSTC) subserve 402 

higher-order hierarchical sequences and thus support core syntactic processes (Friederici, 403 

2018), whereas the ventral pathways, including between BA45 and the temporal cortex (TC), 404 

support processing of semantic and conceptual information (Berwick et al., 2013). 405 

Hurlburt, Heavey and Kelsey (Hurlburt et al., 2013) state that both  production, and perception, 406 

of imagined speech exhibit activations in regions such as the IFG, SMA, insula and posterior 407 

STG (Hubbard, 2010; Price, 2012). Although there certainly appears to be overlap between 408 

imagined speech and imagined hearing, they are, in general, anatomically separable. Imagined 409 

speech is typically associated with left-hemispheric regions, including the LIFG, insula and 410 

STG (McGuire et al., 1996a), whereas imagined hearing corresponds to a bilateral network 411 

with activation of SMA, posterior parietal cortex, STG and MTG (Zatorre and Halpern, 2005). 412 

It has been suggested that differences between the two conditions may be the result of 413 

additional motor elements of imagined speech which involve the deployment of a 414 

somatosensory forward model (Tian and Poeppel, 2013). 415 
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 416 

Figure 3 Neuroanatomical regions associated with imagined speech production. 417 

Concerns have been raised surrounding the ecological validity of findings on the neural 418 

components of imagined speech (Alderson-Day and Fernyhough, 2015). Paradigms are often 419 

simple word or sentence-repetition tasks, ignoring the complexity of imagined speech (Jones 420 

and Fernyhough, 2007). Although experiments such as these are a common approach in 421 

language studies, it is our view that further studies examining spontaneously-produced speech 422 

(Derix et al., 2014, 2012; Ruescher et al., 2013), and imagined speech (Hurlburt et al., 2016), 423 

are required to provide greater elucidation of the neural underpinnings of the phenomena. It is 424 

also important to note that, as well as general activations associated with imagined speech 425 

production, processing of complex lexical, phonological, semantic (Basho et al., 2007) or word 426 

retrieval (Hirshorn and Thompson-Schill, 2006) tasks correspond to additional activity in the 427 

inferior frontal cortex (IFC) of the left hemisphere. We concur with Bocquelet et al. (Bocquelet 428 

et al., 2017) that neuro-anatomical findings indicate high-level processing of imagined speech 429 

requires left-lateralisation.  430 

Information on the neuroanatomical regions associated with imagined speech production is 431 

enhanced by consideration of the characteristics of the corresponding neural activations, and 432 

in particular, the frequency bands that may provide the most discriminable content. Activations 433 
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in the beta band above Broca’s area and the frontal cortex have been associated with imagined 434 

speech production (Rezazadeh Sereshkeh et al., 2017b). In one study, increased activity was 435 

observed in EEG channels located close to Broca’s area in the frequency range of 20-30 Hz, 436 

whereas activity in Wernicke’s area appeared primarily below 15 Hz (Nguyen et al., 2017). 437 

This may indicate that separate frequency bands contain information relating to different 438 

speech production processes. In the same study, the authors use evidence from the classification 439 

of short versus long words to suggest that differences in the complexity of words could create 440 

discriminative features across frequency bands. In an imagined speech yes/no classification 441 

task, no discriminative difference was detected in the delta, theta, alpha and mu rhythms. 442 

However, in the higher frequency ranges (beta and gamma), a discriminative pattern was 443 

associated with typical left-sided speech regions (Rezazadeh Sereshkeh et al., 2017b). 444 

MEG measurements obtained during a silent reading task showed event-related 445 

desynchronization (ERD) in the alpha and beta bands over Broca’s area (Goto et al., 2011). 446 

The results of an ECoG study into imagined speech vowel articulation suggested that signals 447 

in the alpha (8-13 Hz) and beta (14-30 Hz) bands over Broca’s area may contain information 448 

about the articulatory code of single vowels but not about segmentation of a phoneme sequence 449 

(Ikeda et al., 2014). Clearly, the recording technique employed impacts the frequency ranges 450 

that can be analysed. For example, filtering imagined speech EEG data between 3 and 20 Hz, 451 

(Deng et al., 2010) found considerable energy in the alpha band (8-14 Hz), whereas using 452 

ECoG has allowed researchers to obtain features from the high gamma (70-150 Hz) band 453 

(Martin et al., 2016), which is useful for its association with spike rate and local field potential, 454 

and its reliable tracking of rapid neural fluctuations during speech perception and production 455 

(e.g. Pei, Barbour, et al. 2011). It is our view that this information on the important frequency 456 

bands associated with imagined speech can aid decoding approaches in future research. 457 

However, it is also important that further research in this area is undertaken so that a detailed 458 

and accurate picture of the spatial-temporal-spectral correlates of imagined speech is developed. 459 

In section four, we extend our analysis on the neuroanatomical underpinning of imagined 460 

speech to include current understanding of speech production processes and the anatomical 461 

regions-of-interest they correspond to. 462 
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4 How is (Imagined) Speech Produced?  463 

4.1 Models of Speech Production 464 

It is a matter of consensus in psycholinguistic research that speech production is planned across 465 

multiple hierarchically organised levels of analysis (Hickok, 2012) and that word production 466 

involves at least two stages of processing: a lexical and a phonological stage (Levelt et al., 467 

1999) (Figure 4B). Models of speech production can differ in terms of the number of distinct 468 

stages involved (Hickok, 2014, 2012; Levelt, 1999; Levelt et al., 1999), but there is general 469 

agreement that it involves a staged, hierarchical process with a temporal structure, as indicated 470 

by the models in Figure 4. 471 

According to Levelt (Levelt, 1999), spoken word production includes lexical selection, lemma 472 

retrieval, morphological and phonological code retrieval, and is completed with articulation 473 

(Figure 4A). Models of speech production typically begin with an input from the conceptual 474 

system, i.e. the message to be expressed (Levelt, 1999). This is then mapped to a corresponding 475 

lexical representation, encoding properties such as grammatical features but not a phonological 476 

form. Following selection of a lemma, the morphological stage bridges the gap between the 477 

conceptual domain and the phonological or articulatory domain. Phonetic encoding and 478 

articulation, seen in Figure 4A, are stages of the speech production process concerned with 479 

acoustic output. The speech production models, as stated here, are based primarily on work in 480 

the fields of motor control and psycholinguistics, and it has been noted that linguistic models 481 

are currently constrained by the need for further developments in neuroscience (Hickok, 2012). 482 

EEG studies have been used to study the time courses associated with the processing stages in 483 

word production (see Indefrey 2011 for review). Following analysis of several event-related 484 

potential (ERP) studies, Indefrey (Indefrey, 2011) presented the following estimated onset 485 

times and durations for overt speech production: conceptual preparation (0-200ms), lemma 486 

retrieval (200-275ms), phonological code retrieval (275ms onset), syllabification (355ms onset; 487 

20ms per phonemes, 50-55ms per syllable), phonetic encoding (455ms onset) and articulation 488 

(600ms) (Figure 4A). Although this research is based on overt speech, and the articulation stage 489 

is not relevant, the estimated timings can be informative for DS-BCI researchers seeking to 490 

target a specific stage of the production process during signal decoding.   491 
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 492 

Figure 4 Speech production models with estimated time courses.  493 

Language production involves multiple levels of representation and this modular system 494 

incorporates various sub-systems, i.e. semantics, syntax and phonology. Different brain regions 495 

in the left and right hemispheres have been identified as supporting these language functions, 496 

with  syntactic processing supported by networks involving the temporal cortex and inferior 497 

frontal cortex, and less lateralised temporo-frontal networks subserving semantic processing 498 

(see Friederici, 2011). In discussing Hebbian theory, Pulvermüller (Pulvermüller, 1999) 499 

considers whether lexical or semantic distinctions reflect differences that are biologically real, 500 

using it to explain the observation that word meanings can be mapped to different cortical 501 

regions, for example. This results in words that are distinguished on the basis of linguistic 502 

criteria being represented differently in the brain. Investigations into the neural correlates of 503 

language function and competence commonly employ functional imaging approaches (see 504 

Indefrey and Levelt, 2004), as well as LSM to determine the links between linguistic 505 

pathologies and corresponding lesion sites in aphasics (Bates et al., 2003). Linguistic research 506 

can be considered within the context of several modular domains, four of which (semantics, 507 

lexical access, syntax and phonology) are discussed in the following sections.   508 
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4.2 Semantics and the meaning of words 509 

Semantic knowledge has been referred to as the ability to assign and use the meaning of words, 510 

relying on both stored semantic knowledge and executive control to enable semantic activation 511 

in line with goals and constraints (Whitney et al., 2012). The term semantics refers to the 512 

meaning of a word or collection of words. In the models of speech production in Figure 4, 513 

semantic information forms part of the conceptual stage in which a message to be expressed is 514 

conceived. This conceptual stage precedes lexical selection, syntactic encoding and 515 

phonological encoding, with the process leading up to selection of a lexical concept referred to 516 

as “conceptual preparation.” Mapping between the semantic concept to be expressed and a 517 

lexical formulation of this message is not a simple one-to-one process, as there are often 518 

multiple ways to refer to a single concept (e.g. a car may be referred to as a vehicle, saloon, 519 

motorcar, etc.) (Levelt et al., 1999).   520 

Semantic comprehension studies indicate that semantic operations are normally slower to 521 

develop and longer lasting than syntactic operations (Piñango et al., 2006) and thus 522 

accommodate slower lexical activation than syntactic dependencies (Love et al., 2008). 523 

However, it cannot simply be assumed that the relationship between semantic and syntactic 524 

comprehension is mirrored in speech production processes. One study has posited the 525 

possibility of an intermediate layer between semantics and phonology due to the arbitrary 526 

nature of the mapping from meaning to sounds, i.e. words with similar meanings do not tend 527 

to have similar sounds associated (Lambon Ralph et al., 2002), and the Hebbian associationist 528 

model predicts that semantic differences between word categories generate patterns of neural 529 

activity reflective of those differences (Pulvermüller, 1999). For example, naming of living 530 

versus inanimate objects was more strongly correlated with integrity of the middle temporal 531 

cortex (MTC), while both categories showed significant overlap in the frontal cortex (Henseler 532 

et al., 2014). Additionally, large parts of the IFG appear to be involved in semantic 533 

differentiation of verbs versus nouns. Activation in the LIFG is typically exhibited when 534 

difficult semantic relationships, such as the meaning of ambiguous words (e.g. words such as 535 

break, light and head have multiple meanings) within a sentence, need to be parsed. These 536 

difficult relationships may be weak or unusual associations, an increased number of response 537 

options or competition among potential targets in a semantic network (Badre et al., 2005). 538 

Although many neuroimaging studies have concentrated on the LIFG as the basis for semantic 539 

processing and control, other studies show that damage to a wide distribution of brain regions 540 

results in impairment of semantic control (Whitney et al., 2012). The orbital IFG exhibited 541 
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higher correlation with the semantic differentiation of nouns, whereas a more posterior, 542 

triangular/opercular part of the IFG was associated with the impaired differentiation of verbs. 543 

Results from action word studies have indicated that semantic processing can engage many 544 

different cortical areas, with Pulvermüller (Pulvermüller, 2005) stating that this contradicts the 545 

view that processing of meaning is concentrated in a single cortical location. Moreover, it has 546 

been demonstrated that word class-distinctions can be made in relation to different types of 547 

action words (Hauk et al., 2004), with different cortical activations associated with the muscles 548 

used to perform a given action, the complexity of the movement and the number of muscles 549 

involved (Pulvermüller, 1999).      550 

4.3 Lexical access maps meaning to words 551 

Lexical access is the process that facilitates access to the words retained in memory that are 552 

required for language production. Dell, Martin and Schwartz (Dell et al., 2007) present a two-553 

step model of lexical access in which a network consists of a semantic layer connected to words, 554 

and words connected to a phoneme layer. Word retrieval begins when the semantic features of 555 

an intended word are activated. This activation proceeds through the network resulting in the 556 

selection of the most active word from a grammatical category. A phonological retrieval stage 557 

begins with the activation of this selected word.  558 

Lexical access effects the fluency and speed at which speech is produced. For example, it has 559 

been shown that function words (i.e. contributing to syntax/grammar) are accessed faster than 560 

content words (i.e. contributing to information/meaning), independent of perceptual 561 

characteristics (Segalowitz and Lane, 2004). Another factor influencing lexical fluency is the 562 

frequency with which a word is used (Mohr et al., 1996). In a picture-naming paradigm, 563 

participants displayed quicker response-times in object-naming tasks than they did in action-564 

naming tasks, leading the authors to posit that the process of mapping between the picture and 565 

the name itself appears to differ between lexical categories, namely nouns versus verbs 566 

(Szekely et al., 2005). Other evidence taken from studies involving patients with aphasia has 567 

shown that the mental lexicon distinguishes grammatical classes (Benetello et al., 2016). 568 

There are several brain regions associated with word production during lexical selection. 569 

Indefrey and Levelt (Indefrey and Levelt, 2004) reviewed 82 functional imaging studies of 570 

single word production, identifying 11 regions in the left hemisphere (posterior IFG, ventral 571 

precentral gyrus, SMA, mid and posterior STG and MTG, posterior temporal fusiform gyrus, 572 

anterior insula, thalamus, and medial cerebellum) and four in the right (mid-STG, medial and 573 
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lateral cerebellum and SMA) involved in core processes of word production. Other functional 574 

imaging studies have demonstrated that lexical-semantic knowledge is stored in the temporal 575 

lobe (Vigneau et al., 2006) and that the region can operate as a lexical interface linking 576 

phonological and semantic information in a sound-to-meaning interface (Hickok and Poeppel, 577 

2007). Elsewhere, the left MTG has been found to associate with lexical selection (Indefrey 578 

and Levelt, 2004). The spatiotemporal dynamics of word retrieval, including lexical selection, 579 

are not well understood, but Riès et al. (Riès et al., 2017) have shown that activation of word 580 

representations and their selection temporally co-occur and that a widespread network of 581 

overlapping brain regions is associated. The variety of brain regions implicated in word 582 

production suggests that there is potential for exploiting semantics, syntax and phonology to 583 

activate different regions during imagined speech production to maximise the separability of 584 

brain activations for DS-BCI.  585 

4.4 The hierarchical structure of syntax 586 

Contemporary linguistic theories contend that syntactic and sentential representations are 587 

complex sets of hierarchically organised syntactic categories, and that the relationships 588 

between categories in this hierarchy determine the different aspects of propositional meaning 589 

(see Zaccarella and Friederici (2016) for a neurobiological review of syntactic hierarchies). 590 

During syntactic encoding, a conceptual message is linguistically encoded by retrieval of 591 

corresponding words from the lexicon, and grammatical ordering of these words (Indefrey et 592 

al., 2001). Stored syntactic information, such as word class, are used to compute a structure 593 

that specifies the relationships between words in a sentence, e.g. order and inflection. 594 

It has been proposed (Frazier, 1987), and countered (Friederici, 2002), that there is an isolated 595 

syntactic processing mechanism that has no relation to semantics or other non-syntactic 596 

information. It has been stated that syntactic encoding in speech production exhibits close 597 

temporal overlap with other processes (Indefrey et al., 2001) and that brain activations in the 598 

frontotemporal language network have indicated that syntactic processing occurs prior to 599 

semantic processing, but that these processes are not isolated mechanisms (Friederici, 2002).     600 

Syntactic processing is specifically associated with BA44, located in the posterior portion of 601 

Broca’s area in the LIFG, and its white matter connection to the posterior temporal cortex 602 

(Friederici, 2018). A functional imaging study has provided evidence that hierarchical syntactic 603 

conditions localised in the ventral portion of BA44 (Zaccarella and Friederici, 2015). In 604 

contrast, activations corresponding to processing of two-word sentences without syntactic 605 
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hierarchy were associated with the frontal operculum/anterior insula. Love et al. (Love et al., 606 

2008) provide evidence that the LIFC supports syntactic processing because it sustains the 607 

requisite lexical activation speed needed for the real-time formation of a syntactic dependency. 608 

Elsewhere,  PET has been used to identify both sentence-level and local syntactic encoding of 609 

speech in the Rolandic operculum, adjacent to Broca’s area (Indefrey et al., 2001). 610 

4.5 The internal phonological speech code 611 

Within psycholinguistic theory the assumption exists that speech articulation is preceded by an 612 

internal abstract speech code (Wheeldon and Levelt, 1995). In speech production, a word can 613 

have different intonation, duration and amplitude, leading to the proposal that each linguistic 614 

unit has a phonological representation encoding features unique to that unit. Phonological 615 

representations are categorical and consist of discrete timeless segments (Wheeldon and Levelt, 616 

1995). Models differ as to the timing and order at which phonemes are assigned to a 617 

phonological structure. Following the syntactic computation phase, stored information on the 618 

sounds of words is retrieved as “phonological codes”. These are then transformed to produce 619 

an executable code i.e., speech (Indefrey et al., 2001). 620 

It has been proposed that phonological word representation is accessed from Broca’s area and 621 

compiled into segments of syllables (Indefrey and Levelt, 2004). Other studies indicate that the 622 

posterior middle and inferior portions of the temporal lobes are linked to phonological and 623 

semantic processing (see Hickok and Poeppel, 2007). Another suggestion (Edwards et al., 2010) 624 

is that speech production is enabled through verbal/phonological working memory using the 625 

dorsal stream areas implicated in speech perception and phonological working memory (e.g. 626 

Hickok and Poeppel, 2007). It has been suggested that phonological encoding exhibits 627 

correlation with the superior temporal sulcus (STS) (Llorens et al., 2011), while the authors of 628 

one study linked the IFG and STS gamma band responses (>40 Hz) to the phonological 629 

retrieval processes and imagined speech production, using intracranial EEG recordings (Mainy 630 

et al., 2008). Although it is well known that lemma selection begins earlier than phonological 631 

encoding it seems that there is some temporal overlap between the two activations (Sedivy, 632 

2014) and it is possible that phonologically-similar words are represented by overlapping cell 633 

assemblies sharing a single perisylvian region (Pulvermüller, 1999). It is possible for a 634 

phonological word form to have two meanings (e.g. the noun/verb dichotomy of the/to beat), 635 

and it has been suggested that there must be an underlying mechanism for realising the 636 

exclusive-or relationship between the two.  637 
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The review of the literature presented in sections 2, 3 and 4 provides the basis for our discussion 638 

on the role of linguistics within the framework of DS-BCI research. This discussion is 639 

presented in section 5. 640 

5 An Enhanced Role for Linguistics in BCI Research  641 

Overt speech is a rich tapestry of sound, pitch, rhythm, structure and meaning, and studies have 642 

shown that imagined speech retains many of these articulatory characteristics (Alderson-Day 643 

and Fernyhough, 2015; Scott et al., 2013). It is one of the great challenges of DS-BCI research 644 

to represent this communicative richness through the modality of a BCI. With this goal in mind, 645 

improvements to experimental protocol have been suggested, including the use of a vocabulary 646 

of words with semantic meaning to improve discrimination between words, and a normalisation 647 

of word length to mitigate the high variance of this feature (Porbadnigk et al., 2009). We 648 

advocate the use of novel experimental design to enhance effective elicitation of imagined 649 

speech and improve discriminability between phonemes, words and sentences. Further 650 

investigation into the neurological and neuroanatomical underpinnings of imagined speech 651 

production and the development of a more concrete understanding of the information contained 652 

within different frequency bands at different brain foci, is also required. The importance of 653 

consistency in the way imagined speech is produced by experimental participants, and the 654 

effect of providing them with a thorough understanding of what is meant by imagined speech 655 

production, are additional areas for investigation that may improve the robustness of 656 

experimentation.  In the following subsections, we  extend the work of Iljina et al. (Iljina et al., 657 

2017) by highlighting three key areas where BCI research can benefit from findings in the field 658 

of neurolinguistics.    659 

5.1 Incorporating the structure of speech production processing 660 

The sheer complexity of the neural mechanisms underpinning speech is one of the primary 661 

factors causing resistance to the development of a DS-BCI. In comparison with many of the 662 

previous incarnations of communicative BCI (Chaudhary et al., 2017; Pandarinath et al., 2017), 663 

the character of the modality of interaction, i.e. imagined speech, is still a relatively poorly 664 

understood phenomenon. In relation to DS-BCIs, the following question has been put forward: 665 

when does semantic, phonological, or syntactic processing occur (Iljina et al., 2017)? The 666 

analysis of Indefrey (Indefrey, 2011) provides some insight into the relative timings associated 667 

with the stages of speech production (see Figure 4) and indicates that it may be possible to 668 

target decoding of semantic information at an earlier stage than the phonological representation. 669 
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The temporal sequence of these processes is an important consideration for BCI researchers 670 

seeking to extract meaning from imagined speech, but there are opposing views to navigate. 671 

One of these is a sequential model in which word production involves a series of separate stages 672 

from semantic concept through word retrieval and phonological articulation (Levelt et al., 673 

1999). Alternative models hypothesize a parallel architecture in which neuro-linguistic 674 

processes occur simultaneously (Jackendoff, 2007). Whichever of these models is correct, they 675 

must be incorporated into the DS-BCI paradigm. 676 

The speech production process as depicted in section 4 offers a staged process with the potential 677 

to be mined for more targeted decoding approaches. Models of speech processing, for example, 678 

have proposed that accessing the phonological representation of a word releases two kinds of 679 

information: a frame which specifies the structure of a word and phonemes to fill slots in this 680 

structure (Dell, 1988; Levelt, 1992). An interesting operation referred to as gap filling (Love 681 

et al., 2008) has been observed in studies of lexical priming where the meaning of a displaced 682 

constituent is activated when it is first encountered in a sentence and then reactivated at a site 683 

indexed by a trace. Consider the following sentence as an example: “(𝑇ℎ𝑒 𝑏𝑜𝑦)𝑖 that the horse 684 

chased (𝑡)𝑖 is tall.” In a case like this, activation is present for “boy” and again at the gap 685 

indexed by “t” where there is no phonologically realised word. Crucially, there is no activation 686 

before the word “chased”, indicating that the activation for “boy” at the gap is not residual 687 

activation but the result of reactivation (Love et al., 2008). This may have important 688 

implications for the development of a DS-BCI which decodes continuous imagined speech 689 

from brain activity, as the neurological basis of syntax requires a complex series of operations 690 

not simply based on surface word order. Understanding of the widely distributed brain regions 691 

associated with semantic and syntactic processing, and speech production (as discussed in 692 

section 4.2 and 4.4) should be harnessed along with enhanced methods for eliciting imagined 693 

speech, to improve the decoding accuracy of DS-BCIs.    694 

Herff et al. (Herff et al., 2017) have shown that continuous speech is represented as a sequence 695 

of phones within the brain and is thus a legitimate target for DS-BCI research. Following this, 696 

it seems reasonable to suggest that concatenation of imagined speech units can be used to 697 

produce words and sentences. Perrone-Bertolotti et al. (Perrone-Bertolotti et al., 2014) discuss 698 

concerns over the way imagined speech manifests itself and how personal agency or lack 699 

thereof leads to different forms of imagined speech. The more active form, described as 700 

“deliberate covert production of speech”, is consciously-generated speech and the target of DS-701 

BCI research. However, a less deliberate manifestation known as “verbal mind wandering” can 702 
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occur spontaneously. Despite not being the direct target of DS-BCIs, this second state of 703 

imagined speech may influence the performance of such a device or even activate 704 

communication when none was intended.  705 

5.2 Leveraging neurolinguistics concepts to improve discriminability 706 

The ability to effectively discriminate between neural recordings is an essential component of 707 

any BCI, and it is a particularly complicated challenge in relation to DS-BCIs, given the 708 

complex and dynamic processes of speech production. Decoding brain activity corresponding 709 

to imagined speech, given the dense vocabulary and the volume of potential semantic 710 

combinations that humans possess is an exceptional challenge. In Section 4.2, evidence is 711 

presented linking different semantic categories to different lesion foci, and semantic 712 

categorisation of words appears to be a promising method for improving classification from a 713 

constrained lexicon. Content words i.e., words with rich semantic meaning (e.g. words 714 

referring to tastes, sensations, sounds, motor activities etc.) have been associated with distinct 715 

regions of the brain and may enable classification of words based on semantic criteria 716 

(Pulvermüller, 1999). Although this may appear to be a somewhat contrived method for 717 

improving accuracy, this approach can help elucidate the degree to which semantic 718 

categorisation contributes to differentiation between words (Wang et al., 2011). Categorical 719 

differences between words can induce significantly different brain activity and this variance 720 

may be an aid to classification. For example, action words (e.g. kick, throw, blink) can have 721 

the effect of activating brain regions actually involved in carrying out the activity (Hauk et al., 722 

2004). Similarly, words corresponding to touch may include significant activation in the 723 

somatosensory cortices and sound words may cause increased activation in bilateral auditory 724 

cortices (Pulvermüller, 1999). 725 

Imagined speech’s close association with working memory (Marvel and Desmond, 2012), the 726 

range of articulatory forms it can take (Alderson-Day et al., 2015; Deng et al., 2010) and the 727 

different neural activations it exhibits in relation to overt speech (Basho et al., 2007), contribute 728 

to making imagined speech extremely difficult to decode effectively. Methods employed in 729 

neurolinguistics can help DS-BCI researchers improve cuing and elicitation techniques, 730 

making it easier to determine precisely what is being decoded from brain activity. This may 731 

take the form of semantic or phonological priming, as suggested above, or improvement of 732 

experimental protocols to ensure participants are clear on what is expected from them. It may 733 



 
30 

also be possible to protect against unwanted noise in the data, for example, via articulatory 734 

suppression.  735 

The previously-stated proposal that each linguistic unit has a unique phonological 736 

representation (Section 4.5) is a potential avenue for improving imagined speech 737 

discriminability (Zhao and Rudzicz, 2015). Clearly, if the assertion of a unique phonological 738 

code is correct, this would be a primary target of DS-BCI decoding approaches, as a single 739 

representation corresponding to a single word or phoneme would make those approaches easier 740 

to implement, given that the prior stages in the speech production process may not be required. 741 

It is the recommendation of this review that further investigation into the potential phonological 742 

discriminability of units of imagined speech is pursued. 743 

Although much of the research to date into a possible DS-BCI has focused on discrete linguistic 744 

units, i.e. vowels, consonants etc., it has been suggested that the neural substrates responsible 745 

for the representation of phonemes may differ depending on whether they are processed as part 746 

of a sequence or processed alone (Ikeda et al., 2014). Di Liberto, O’Sullivan and Lalor (Di 747 

Liberto et al., 2015) lament the lack of research present in the literature regarding the parsing 748 

and processing of continuous speech. However, the difficulty of experimentation with 749 

imagined speech and the impracticality of attempting to decode continuous speech, at a time 750 

when decoding discrete units of speech is still enormously challenging, has meant that to-date 751 

the majority of studies have focused on discrete units of speech in the development of decoding 752 

strategies.  753 

If progress is to be made using these approaches, the anatomical information summarised in 754 

Sections 3 and 4 will be important for informing decoding strategies. Targeting regions-of-755 

interests specific to speech production may be a promising approach to the development of a 756 

DS-BCI (Guenther et al., 2009), particularly considering that speech processing is a highly-757 

distributed operation with semantics, lexical access, syntax and phonology all correlated to 758 

different regions. Although we agree with Bocquelet et al. (Bocquelet et al., 2017) that the 759 

LIFG is clearly implicated in imagined speech production, and a promising candidate for DS-760 

BCI research, we think it is important to consider a wider, and probably bilateral, network 761 

where the distributed connectivity predicted by Hebbian theory is accounted for. The evidence 762 

presented here indicates a wide cortical network associated with different linguistic categories 763 

and stages of the speech production process. It is our assertion that a complete picture of the 764 

neuro-anatomical correlates of imagined speech will provide greater opportunities for effective 765 

discriminability.  766 
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5.3 Mitigating the limitations of experimental methodology 767 

Progress towards a DS-BCI is dependent on the effectiveness of future research methodologies 768 

and on novel approaches to system development. It has been noted that researchers seeking to 769 

distinguish word classes from neural activation should consider the effect of word length, word 770 

frequency, emotional properties of the stimuli, word repetition, priming and syntactic and 771 

semantic context when designing experiments (Pulvermüller, 1999). The same author also 772 

warns of the possible unintended effects of presenting words in sentences or word-strings, due 773 

to the neurophysiological response being a complex blend of the semantic and syntactic 774 

interactions of the given words. One of the difficulties associated with development of a DS-775 

BCI is inferring from experimental participants that the required tasks have been performed 776 

(Geva et al., 2011b). The lack of behavioural output from participants has meant that 777 

researchers have been faced with a choice of whether to accept assertions that a given task has 778 

been correctly undertaken, to design their experimental procedure in a manner that will elicit 779 

the required imagined speech activity (Geva et al., 2011a), or to merge their imagined speech 780 

protocols with an overt action in an attempt at cross-verification (Oppenheim and Dell, 2008). 781 

Limitations to the scope of empirical study in the case of imagined speech has induced the 782 

development of methods for indirect study of the phenomenon (Filik and Barber, 2011; 783 

Oppenheim and Dell, 2008). Alderson-Day and Fernyhough (Alderson-Day and Fernyhough, 784 

2015) present recent methodological advances in the field, including imagined speech 785 

inducement and inhibition as a means of studying its effects.  786 

Neuroimaging studies into the nature of imagined speech have often asked participants to 787 

simply articulate some words or sentences in imagined speech, or to imagine speech with 788 

different characteristics. A danger associated with these studies is the lack of ecological validity 789 

in eliciting imagined speech (Alderson-Day and Fernyhough, 2015) and the failure of 790 

researchers to acknowledge the possibility that imagined speech is present during baseline 791 

assessments (Jones and Fernyhough, 2007). A technique known as articulatory suppression 792 

might provide some assistance in ameliorating this issue (Miyake et al., 2004). The evidence 793 

presented in Section 3.1 indicated variation in the phenomena of imagined speech, both in 794 

terms of how it is activated and how it is perceived. Studies have shown that imagined speech 795 

is not generally understood in the same way by participants and can vary widely in its 796 

phenomenology (Alderson-Day and Fernyhough, 2015). It is the job of the DS-BCI researcher 797 

to ensure that each participant is well-informed prior to engaging in experimentation. The 798 

methodology employed by Geva, Jones, et al. (Geva et al., 2011b) may be an interesting avenue 799 
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for exploration in DS-BCI research. Their use of rhyming words and/or homophones is 800 

commonly applied in linguistics (Badre et al., 2005; Filik and Barber, 2011) to allow 801 

researchers to know whether participants are using imagined speech or resorting to other 802 

linguistic/cognitive strategies. For example, ‘might’ and ‘mite’ are homophones, while ‘ear’ 803 

and ‘oar’ are not. These are tasks that could not be solved by orthography alone and thus require 804 

the use of imagined speech. 805 

Research methodology using overt speech to represent imagined speech within experimental 806 

paradigms is flawed, at least to some degree. Overt speech-trained models for example, are an 807 

active research area but it must be understood that neural representations of overt and imagined 808 

speech are not identical (Chakrabarti et al., 2015). Hubbard (Hubbard, 2010) reflects that 809 

differences in experimental results between overt and imagined speech may simply be a 810 

function of a participant’s ability to self-monitor and report accurately. There is general 811 

agreement that overt speech engages greater activation across a broader network of the brain 812 

than imagined speech, with areas including the mesial temporal lobe and sub-cortical structures 813 

(Kielar et al., 2011). Due to some notable differences observed from neural responses in overt 814 

and imagined conditions, inferences drawn from language processing studies should be 815 

considered with caution (Llorens et al., 2011). However, Iljina et al. (Iljina et al., 2017) believe 816 

that the body of research presented on both overt and imagined speech supports the premise of 817 

being able to decode expressive language from neuronal processes as well as translation of 818 

findings from overt to imagined speech.  819 

Experimental results can be negatively affected by experimental conditions and an alternative 820 

approach to improving the robustness of results in relation to speech production and 821 

communicative interaction is the use of non-experimental, “real-world” speech (Derix et al., 822 

2014, 2012; Ruescher et al., 2013). Spontaneous language can reflect mental states and thus 823 

constitutes a fundamental link between externally-observable behaviour and internal cognitive 824 

processes (Derix et al., 2014). Using their methodology, in which simultaneous ECoG and 825 

digital video recordings are used to identify periods of spontaneous communication between 826 

interlocutors, the group cited above has conducted studies based on concepts developed in 827 

psycholinguistic research into spontaneously-spoken language. The authors highlight the 828 

importance of study paradigms in which real-world situations can be investigated in a way not 829 

possible under strict experimental procedures. They present the use of stimuli such as 830 

naturalistic texts, recordings of interacting individuals and virtual reality simulations as 831 

associated methods being employed elsewhere (Derix et al., 2014). 832 
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In a series of studies, the research team used their methodology to study the neuronal processes 833 

related to real-life communication in a non-experimental scenario (Derix et al., 2014, 2012; 834 

Ruescher et al., 2013). This involved a technique for identifying time-periods in which patients 835 

were involved in conversation with either partners or physicians (Derix et al., 2012). Extracted 836 

epochs consisted of periods of natural, uninstructed conversation, with the results indicating 837 

that the choice of linguistic and non-linguistic behaviours depends on whom a person is 838 

speaking with. The authors suggest that such meta-information may have utility in BCI 839 

applications aimed at restoration of expressive speech. Although non-experimental conditions 840 

do facilitate the study of spontaneous speech, it is important to acknowledge, as the research 841 

team has, that participants’ behaviour may be moderated by the knowledge that they are under 842 

surveillance, and therefore not completely natural (Derix et al., 2014). However, we agree with 843 

Iljina et al. (Iljina et al., 2017) that a thorough understanding of brain activity during real-world 844 

speech is required for the development of truly naturalistic DS-BCI. 845 

As indicated throughout this review, there are several ways in which DS-BCI research can 846 

benefit from neurolinguistics research advances. Understanding the phenomena of imagined 847 

speech and individual speech processes is crucial, but looking towards neurolinguistics to 848 

enhance experimental methodology and interpretation of results is also advocated here. Other 849 

avenues exist for exploration of improvements to the performance of DS-BCIs, including signal 850 

acquisition and advanced classification algorithms, but it would be wrong to ignore the 851 

potential utility of cross-disciplinary research in neurolinguistics and DS-BCI. 852 

6 Concluding Remarks  853 

Development of a DS-BCI is an extremely challenging undertaking. It is the assertion of this 854 

review that a cross-disciplinary approach must be taken to advance the field towards a 855 

naturalistic form of communication. Here, we advocate the integration of neurolinguistics 856 

within the DS-BCI paradigm for the improvement of experimental methodology and to aid 857 

approaches to the decoding of neural signals. Insights into the nature of imagined speech, and 858 

speech production processes, can inform research practices, while methodological approaches 859 

common in linguistics can help improve procedural robustness in studies involving imagined 860 

speech.  861 

Clearly, there is no definitive description of the phenomena of imagined speech. Independently 862 

depicted as a truncated form of overt speech, as showing greater activation in several brain 863 

regions than overt speech and as having attenuated features in comparison with overt speech, 864 
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imagined speech is still relatively poorly understood. Continuing research into imagined speech 865 

from a neurolinguistics perspective will be vital for DS-BCI. Imagined speech manifests itself 866 

in different forms, whether that be through active or passive generation of imagined speech, 867 

through accent, rhythm or pitch, or through conversational or single-speaker scenarios. That 868 

being the case, future research in this field must make it abundantly clear to experimental 869 

participants precisely what is being asked of them. The field of neurolinguistics can help inform 870 

DS-BCI research on methods for targeting the imagined speech content required. Not unrelated 871 

to this is the potential for additional information to be encoded in the neural recordings 872 

extracted during periods of imagined speech production. Working memory and imagined 873 

speech appear to be intrinsically linked and imagined speech trials are susceptible to influence 874 

from the auditory or visual cues presented. It is therefore important that experimental 875 

methodologies and decoding approaches mitigate against this unwanted content where possible. 876 

This review has shown that not only is DS-BCI concerned with the phenomena of imagined 877 

speech and how it differs from overt speech, but also with the neuroanatomy and  specific 878 

processes involved in the production of speech. Speech production is a temporal process with 879 

a hierarchical structure and it is clear that it cannot be considered a single function localised in 880 

a single brain region. Evidence has been presented from neurolinguistics research to indicate 881 

that different systems of speech production, such as semantics and syntax, operate at distinct 882 

time periods (sometimes overlapping) across a distributed network of brain regions, and that 883 

these systems activate patterns of brain activity which may be useful for approaches to 884 

decoding imagined speech.        885 

A fully-functioning DS-BCI may, at present, seem a long way off and it may appear that there 886 

are more pressing concerns, such as improving signal acquisition, for the field to be focused 887 

on at present. However, it is our contention that it would be remiss to ignore the field of 888 

neurolinguistics in DS-BCI research, given the potential benefits it can offer in the short-term 889 

and the high-probability that it will be required in the longer-term development of a naturalistic 890 

mode of communication. 891 
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Figure Descriptions 1356 

Figure 5 Seeking a Naturalistic form of communication through Direct-speech BCI. A 1357 

DS-BCI is a system that decodes neural signals (e.g., electroencephalography (EEG) or 1358 
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electrocorticography (ECoG) (B) corresponding to imagined speech (A). Recorded 1359 

signals are processed to facilitate maximal information extraction and improvement of 1360 

signal-to-noise ratio (C). The feature extraction (D) and classification (E) stages compute 1361 

the most discriminative information in the recorded signals and classify them as a part-1362 

of-speech. The output of a DS-BCI system is a textual representation of the imagined 1363 

speech (F) and auditory representation which can be used for both communication and 1364 

feedback (G). 1365 

In this example, the user actively produces the words “I am thirsty!” with imagined speech. 1366 

The signals acquired are temporally-aligned with each word to facilitate feature extraction and 1367 

classification. The system produces two outputs: a text print-out of the imagined speech words 1368 

being produced and a synthesised audio output, i.e. “I am thirsty!” 1369 

Figure 6 Direct-speech BCI studies categorised according to recording techniques and 1370 

types of speech. (A) is a cross-categorisation of DS-BCI studies according to the recording 1371 

techniques applied and the types of speech being investigated. The time-period for this 1372 

analysis begins with the study of Blakely et al. (Blakely, Miller, Rao, Holmes, & Ojemann, 1373 

2008), due to this being the first study based on the BCI paradigm depicted, and runs to 1374 

2018. Criteria for inclusion in this analysis are those studies using said recording 1375 

techniques to decode speech production (overt, imagined, and intended) directly from 1376 

neural activity. EEG and ECoG are the most-often used recording approaches. High 1377 

temporal resolution is an important feature of both. Although micro-electrodes do offer 1378 

high spatial and temporal resolution, their use is not always possible or appropriate. 1379 

Overt speech has been used as a proxy for imagined speech, or in comparative studies. 1380 

The behavioural difficulty of studying imagined speech is, at least in-part, a reason for 1381 

this trend. The two bar-graphs (B) show the distribution of measurement techniques and 1382 

of types of speech used across all studies. ECoG is utilised in a total of twenty studies and 1383 

EEG in a total of sixteen. See Table 2. 1384 

Figure 7 Neuroanatomical regions associated with imagined speech production. The 1385 

diagram depicts brain regions typically associated with language function in the left-1386 

hemisphere (Berwick, Friederici, Chomsky, & Bolhuis, 2013), with each of the numbered 1387 

sections indicating one of Brodmann’s Areas (BA). The IFG, which includes BA44 and 1388 

BA45, is the most common region associated with imagined speech production. Single 1389 

word and sentence production both activate the IFG, and the region is thought to be 1390 

associated with word retrieval and associated meanings (BA45). Both the STG and MTG 1391 
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have been implicated in imagined speech studies as relating to the phonological loop and 1392 

to production of dialogic imagined speech. The dorsal pathways between BA44 and the 1393 

posterior superior temporal cortex (pSTC) supports core syntactic processes. The ventral 1394 

pathways, including between BA45 and the temporal cortex (TC), support processing of 1395 

semantic and conceptual information. Reprinted with permission from (Berwick et al., 1396 

2013), copyright 2013,  Elsevier. 1397 

Figure 8 Speech production models with estimated time courses. Although models can 1398 

differ in the number of components, there is general agreement that speech production is 1399 

a staged, hierarchical process with a temporal structure, as indicated in the diagram. In 1400 

(A), estimated time courses associated with the stages of production are provided in 1401 

milliseconds (ms) (Indefrey, 2011) along with a production model containing two major 1402 

components. These are the word (lemma) level and the phonological level (Hickok, 2012). 1403 

In (B), a more detailed model depicts several different phases in the production process 1404 

(Levelt, Roelofs, & Meyer, 1999). The initial stage is conceptual preparation, where a 1405 

message to be expressed is formulated and a lexical concept produced. Next is lexical 1406 

selection, in which a word or lemma is retrieved for use. Following selection of a lemma, 1407 

the morphological stage bridges between the conceptual domain and the phonological, or 1408 

articulatory domain. A word is then encoded in syllabic form before being encoded in 1409 

phonetic form, from which the audible output is produced. In (C), a truncated version of 1410 

the model in (A) is presented to highlight the stages of production corresponding to 1411 

imagined speech. The estimated time courses end with the phonological 1412 

encoding/syllabification stage. A is adapted with permission from (Hickok, 2012), 1413 

copyright 2012, Springer Nature. B is adapted with permission from (Levelt, Roelofs, & 1414 

Meyer, 1999), copyright 1999, Cambridge University Press. *upper boundary. 1415 
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