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ABSTRACT

CHARACTERIZATION OF LANGUAGE CORTEX ACTIVITY
DURING SPEECH PRODUCTION AND PERCEPTION

Hassan Baker
Old Dominion University, 2018
Director: Dr. Dean Krusienski

Millions of people around the world suffer from severe neuromuscular disorders such as

spinal cord injury, cerebral palsy, amyotrophic lateral sclerosis (ALS), and others. Many

of these individuals cannot perform daily tasks without assistance and depend on care-

givers, which adversely impacts their quality of life. A Brain-Computer Interface (BCI) is

technology that aims to give these people the ability to interact with their environment and

communicate with the outside world. Many recent studies have attempted to decode spoken

and imagined speech directly from brain signals toward the development of a natural-speech

BCI. However, the current progress has not reached practical application. An approach to

improve the performance of this technology is to better understand the underlying speech

processes in the brain for further optimization of existing models. In order to extend research

in this direction, this thesis aims to characterize and decode the auditory and articulatory

features from the motor cortex using the electrocorticogram (ECoG). Consonants were cho-

sen as auditory representations, and both places of articulation and manners of articulation

were chosen as articulatory representations. The auditory and articulatory representations

were decoded at different time lags with respect to the speech onset to determine optimal

temporal decoding parameters. In addition, this work explores the role of the temporal

lobe during speech production directly from ECoG signals. A novel decoding model us-

ing temporal lobe activity was developed to predict a spectral representation of the speech

envelope during speech production. This new knowledge may be used to enhance existing

speech-based BCI systems, which will offer a more natural communication modality. In

addition, the work contributes to the field of speech neurophysiology by providing a better

understanding of speech processes in the brain.
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CHAPTER 1

INTRODUCTION

Technology has been evolving in many aspects to help humans to perform tasks more

efficiently, yet there are people who are not able to benefit from current technologies: people

who suffer from severe neuromuscular disorders such as spinal cord injury, cerebral palsy,

amyotrophic lateral sclerosis (ALS), and others. This group cannot perform daily tasks

without assistance, and they depend on caregivers which adversely impacts their quality

of life. Existing assistive technologies have limitations that do not allow these patients

to communicate and perform their tasks in an independent and efficient way. A Brain-

Computer Interface (BCI) is a promising tool for these patients. BCI technologies act

as the pathway between the brain and other devices, such as wheelchairs, artificial limbs,

and speech synthesizers. BCI technologies are also evolving beyond traditional domains to

Augment and Virtual Reality [1], improving athletic performance [2], and helping doctors

cure diseases like Attention-deficit/hyperactivity disorder (ADHD) [3].

1.1 BRAIN-COMPUTER INTERFACE

A Brain-Computer Interface (BCI) is a way to build a bridge between computers or

machines and the brain. Its ultimate goal is to give people the ability to control, modulate

the environment, augment, and communicate with the outside world [4]. There are many

BCI techniques that have been developed based on different physiological signals like elec-

troencephalogram (EEG), which is a non-invasive way to measure brain signals by placing
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electrodes over the scalp, in addition to, Electrocorticography (ECoG) (see 2.1 for further

details). Where each one of these has its own advantages and drawbacks.

The general framework for BCI is depicted in Fig. 1, which is constituted of four stages:

signal acquisition, feature extraction, translational algorithm, and device commands. These

modules will be briefly explained in this section, and more explanation will be provided

in 2.3.1. Different neural signals are acquired from the brain; some of them are non-invasive,

such as EEG and functional magnetic reasoning imaging (fMRI), and others are invasive

like ECoG and stereotactic EEG (sEEG). Brain signals need to be analyzed and converted

into better representations, and here comes the role of the signal processing module. Brain

signals are commonly characterized in terms of frequency bands or oscillatory activities such

as Delta [.5-4]Hz, Theta [4-8]Hz, Alpha [8-15]Hz, sensorimotor rhythms(SMR) [12.5-15.5]Hz,

Beta [15-30]Hz and Gamma [30-250]Hz [5]. Unified definitions for these oscillation terms

have not been agreed on, and they can vary slightly in other literature. Although it was

empirically found that the frequency domain is a better representation for neural signals

in general, the time domain still provides unique information. For instance, knowing the

temporal propagation for speech-related neural activities is a fundamental key to decoding

speech from neural signals.

After converting signals to a more informative representation, the step of constructing

features from that representation is taken. For instance, the mean of the gamma band

power in specific time duration. Then, translation algorithms map the resulting features on

specific commands or other signals like speech or text [7]. The common implementations for

these translational algorithms come from machine learning, where the problem turns into a
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Fig. 1: The general framework for BCI. First of all, the signal acquisition is performed then
the signals are processed using various signals processing techniques, yields features. Those
features are fed into a translation model such as machine learning models. These models
map the features into their corresponding action [6].

classification or regression problem.

1.2 SPEECH-BASED BCI

Various attempts to decode the intent of users have been employed [8]. Techniques

based on ERP, like P300 and SSVEP were developed [9, 10, 11, 12, 13, 14, 15]. There is also

motor imagery based BCI where the patient imagines moving hands, arms, or feet to issue

a certain command [16]. These BCI techniques have many limitations: for example, the

number of commands they can provide is generally insufficient or restricted, or they require

a distracting focus on the paradigm and not the task. On the other hand, speech is the

most natural way for humans to communicate. It can be decomposed into smaller units like

auditory (e.g., formants, Mel frequencies) and articulatory features (e.g., place and manner
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of articulations), yet composing these units gives a rich and dense way to convey informa-

tion. The ability to decode such information from the brain will give humans the ability

to communicate in a more natural and dynamic way. However, this proves to be a very

challenging proposition. First of all, the brain is responsible for many tasks and actions and

yields speech-related neural activities that are tangled with other information related to

completely different tasks. For instance, the motor cortex plays an important role in speech

production [17] and voluntary movements [18]. Therefore, if the patient attempts to move

a finger while trying to convey his inner voice, it will cause a change in the information

structure embedded in the neural signals from that area. Secondly, the spatial-temporal

mapping for speech propagation in the brain is not well understood. This limits our knowl-

edge of what timings and which electrodes should be used. Thirdly, the best representation

of the speech-related neural signals is not well understood. Many hypotheses have been

proposed to determine whether the best representation is articulatory, auditory, semantic

features, or all of these combined. The answer to this question is critical to speech-based

BCI since this prior knowledge will dramatically change the design and implementation of

such a system. Fourthly, speech-based BCI aims to decode the inner(imagined) speech.

Because there are no external cues about the exact onset and offset times for the inner

speech, it becomes harder to isolate the inner-speech-related neural activity. Thus, there

are many challenges to developing a practical speech-based BCI system; a system that works

in a ”plug-and-play” fashion like virtual assistants such as Siri, Google assistant, and others.
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1.3 MOTIVATION

Current BCI techniques suffer from low information transfer rate (ITR) and very restric-

tive paradigms. For instance, the highest ITR that is reported to date from a BCI is 5.32

bits/second [19]. The ITR for spoken communication, however, is much higher. Therefore,

having a device that is capable of compensating for the absence of the ability to speak due

to neuromuscular diseases is the ideal solution.

The development of a BCI that decodes speech directly from the brain will lead to a

more natural communication modality as well as higher ITR. In addition, speech-based BCI

is closely tied to well-studied fields such as speech science, neuroscience, cognitive science,

and speech signals processing. Thus, speech decoding work builds from a strong foundation

of a confluence of existing studies.

Several prior studies have attempted to decode speech based on the state-of-the-art

modeling techniques from signals processing and machine learning methods [20, 21, 22,

23, 24, 25], but the results were not good enough for practical applications. An alternate

approach is to better understand the speech processes in the brain to build more prior

knowledge into the models.

The current approach of understanding the speech-correlated neural signals is done by

mapping these signals to corresponding articulatory and auditory features [26, 27, 28, 29, 30].

As an extension to this approach, this thesis aims to address the following questions:

1. How is speech-related neural activity in the motor cortex represented in terms of

the articulatory and auditory features? The place and manner of articulations were

chosen as representations for the articulatory features. Phonemes were chosen as
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representations for the auditory features.

2. What is the nature of temporal activations for each representation in the motor cortex?

3. What is the role of the temporal lobe during speech production? And how are the

neural activities represented during speech production?

1.4 PRIMARY CONTRIBUTIONS OF THIS THESIS

A majority of earlier studies discussed what feature representation is encoded in the

motor cortex. Also, they discussed the role of different speech-related regions in speech

production and perception stages. The first contribution of this thesis is that it provides

a comprehensive summary and review of earlier studies for decoding and characterizing

speech-related activities in the brain in both stages, as described in Chapter 2. An important

contribution of this study is that it decodes and characterizes the temporal propagation

of the auditory and articulatory features in the motor cortex. Discovering the temporal

propagation of these two representations is important to know how the neural activities in

the motor cortex will be used in a speech-based BCI system. Another contribution of this

thesis is that it defines the role of the temporal lobe during speech production. Although

the role of the temporal lobe is known during speech perception (especially, the auditory

cortex), its role during speech production is still not well-defined. Discovering the role of the

temporal lobe while speech production takes place can increase the amount of information

that is obtained during speech production, which will increase the efficiency of a speech-

based BCI system. Thus, this thesis contributes to providing new knowledge to address

these two issues as follows:
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1. Characterization and decoding the auditory and articulatory features of speech in

the motor cortex: Auditory representations were chosen to be phonemes and two

articulatory features were chosen, which are places and manners of articulation. These

representations were decoded using gamma ECoG activity in the motor cortex. Also,

their temporal propagation before and after the speech onset was performed using

classification and statistical tests.

2. Defining the role of the temporal lobe during speech production: a modified version

of speech spectrogram was chosen to be a speech representation and decoded using

gamma ECoG activity. Deep learning was utilized in this analysis.

These analyses highlight the temporal propagation of articulatory and auditory features

with respect to the onset at a high temporal resolution. Previous researchers have not used

ECoG in such a way. Instead, there were attempts to understand the temporal differences

between each representation using fMRI which has a poor temporal resolution. Secondly,

these analyses highlight the role of the temporal lobe during speech production as well as

the activation/engagement of the temporal lobe along different time lags with respect to

speech onset. A very recent fMRI study indicated that there is predictive coding in the

auditory cortex during speech production. This analysis confirms this conclusion. Lastly,

these analyses highlight the usefulness of deep learning as an analysis tool in BCI. These

collective findings provide important insights toward developing an efficient speech-based

BCI system.
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1.5 DISSERTATION OUTLINE

The remainder of this thesis is organized as follows: Chapter 2 discusses the background

for this study, highlighting the state of the art in both speech decoding from ECoG signals

and characterizing speech-related neural activities studies. Chapter 3 covers the datasets

analyzed and their corresponding experimental paradigm in this thesis, in addition to the

procedure of data analysis. Chapter 4 details the decoding and temporal propagation char-

acterization of auditory and articulatory features, in addition to the characterization of

the temporal lobe role in speech production and perception with respect to different lags.

Chapter 5 concludes the thesis with a discussion of the main results and possible future

work.
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CHAPTER 2

BACKGROUND

This chapter provides a comprehensive overview of the properties, advantages, and draw-

backs of ECoG signals and explains why they are considered superior over other types of

electrophysiological signals such as EEG. In addition, it gives a comprehensive overview of

current knowledge and research that has been conducted on speech production and percep-

tion. Lastly, a comprehensive overview of research on spoken and perceived speech decoding

from the brain is provided.

2.1 ECOG PROPERTIES

Electrocorticography (ECoG), or intracranial electroencephalography (iEEG), is a type

of invasive electrophysiological signal that is the result of voltage differences between elec-

trodes placed directly on the exposed surface of the brain. Fig. 2 shows the anatomical

structure for ECoG placement in relation to other electrophysiological signals. ECoG has a

better temporal and spatial resolution compared to other techniques like EEG and fMRI.

In addition to a high signal-to-noise ratio (SNR), ECoG is less susceptible to artifacts. The

temporal and spatial resolutions are less than 1 millisecond and 1 cm respectively [31].

Although fMRI has high spatial resolution and it has been used in the characterization

of speech production and perception (see, for example, [32] and [33]), it lacks sufficient

temporal resolution for BCI applications. Also, in comparison, EEG has an excellent tem-

poral resolution but poor spatial resolution(about 6–9 cm) [34], which makes it incapable
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of capturing the subtle variations of speech-related neural activity. Therefore, ECoG has

significant benefits for the development of neuroprosthetic devices. Nevertheless, it is worth

mentioning a recent study done by Ibayashi et al. (2018), where they tried to classify five

vowels using three different invasive techniques: single/multi-unit activity (SUA/MUA),

local field potential (LFP), and ECoG. Their aim was to test which signal gave the better

representation of speech-related neural activities in the human ventral sensorimotor cortex

(vSMC). Their conclusion was that no significant difference existed among the decoding

accuracies of the three individual signal modalities when averaged across subjects. On the

other hand, when all three signal modalities were combined, it was found that the decoding

performance was significantly improved. This suggests multi-scale signals convey comple-

mentary information for speech, at least from the vSMC area [35].

Since ECoG is a valuable technique for brain mapping, it is routinely applied for clinical

purposes such as epilepsy monitoring. Data collection is done while the electrodes are

implanted in the patients, and experiments are conducted while ECoG data are collected.

In short, ECoG is a very promising tool to study speech-related neural activities because of

its spatial and temporal resolution. All other methods compromise spatial resolution over

the temporal or vice versa.

2.2 SPEECH-RELATED NEURAL ACTIVITIES

In this section, the focus will be on ECoG-related studies and non-ECoG studies (i,e.

fMRI) with notable results. Our knowledge of spatial and temporal characterization for

speech production and comprehension in the brain is still scarce. Many challenges exist for

thorough characterization of these phenomena. Firstly, it is vital to understand which brain
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.

Fig. 2: Anatomical structure for different electro-physiological signals. Adapted from [4].

regions are involved in speech production and comprehension and what specific function-

alities these regions are responsible for. Also, it is important to understand the nature of

interactions between these brain regions and associated networks. Moreover, it is necessary

to discern the temporal propagation of speech activities through the language cortex.

Local field potentials (LFP) recordings have been used to classify words from face motor

cortex (FMC) and Wernicke’s area [23]. FMC is known to be involved in controlling the

articulation of speech [36], so the capability of decoding words from FMC may result from

that unique sequence of articulations for each word. The capability to decode words from

Werchicke’s area is primarily due to two reasons. Firstly, Wernicke’s area is identified as an

important unit in language processing [37]. Secondly, words have unique semantics in addi-

tion to auditory and articulatory features. Brumberg et al. (2016) showed that fronto-motor

areas become active in the planning and execution of speech, while auditory regions are pri-

marily active for the role of acoustic feedback processing. They also showed that speech

intensity is an appropriate representation for overt but not for covert speech production and

a new way of alternative features that better represent covert speech is needed. In addition,

between the two conditions, covert and overt, the auditory, pre-motor and motor areas were
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activated [38]. Another study showed that in speech perception experiments, replacing or

masking a phoneme by noise will induce a neural representation correlated with the actual

phoneme [39, 40]. This phenomenon is called the phonemic masking effect. This may mean

that a phonemic-related neural representation exists during speech imagining [41]. Bouton

et al. (2018) hypothesized that the current models (especially those which rely on machine

learning models) are capturing speech-related information from associative or redundant

neural processes. Using a combination of fMRI, ECoG, and EMG they argue that early

neural activity in posterior superior temporal gyrus (pSTG) is sufficient to decode syllables

by a machine and all more distributed activity patterns, although classifiable by machine,

reflect collateral processes of sensory perception and decision [42].

Music and speech processes share common brain networks [43], so any progress in one

of these areas may improve the other. Martin et al. (2017) designed a novel experimen-

tal paradigm that allows a more accurate temporal localization of imagined music. They

recorded ECoG signals while a piano player played two piano pieces with and without au-

ditory feedback of the sound produced by the piano. The piano signal was recorded in both

conditions in synchrony with the ECoG which allowed a more accurate temporal localiza-

tion for the covert condition. They found robust similarities between the neural activities of

both conditions in both temporal and frequency properties in auditory areas [30, 41]. This

supports the possibility of implementing a BCI device based on inner voice, like imagining

a musical tone or a speech sound.

To summarize, models of speech processes in the brain include the following cortical
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regions: ventral primary motor cortex, ventral premotor cortex, inferior frontal gyrus, so-

matosensory cortex, primary auditory cortex, and peri-Sylvian auditory regions. Models

show that those regions have roles in speech production, perception, or both [38].

2.2.1 SPATIAL AND TEMPORAL CHARACTERIZATION OF COVERT AND

OVERT SPEECH PRODUCTION

Kellis et al. (2010) showed that face-motor cortex performance in words classification is

superior over Wernicke’s area. Pulvermller et al. (2006) showed in a fMRI study with spo-

ken syllables that the motor cortex maps the articulatory features of speech sounds[44]. In

another study, Pei et al. (2011) showed in an overt and covert (inner voice) word repetition

task that the overt word production was associated with high gamma activities in superior

and middle parts of the temporal lobe, Wernicke’s area, the supramarginal gyrus, Broca’s

area, premotor cortex (PMC), and primary motor cortex. Covert word production was as-

sociated with high gamma activities in the superior temporal lobe and the supramarginal

gyrus. Moreover, this study showed that the articulatory processing for overt and covert

speech of the subjects was correlated with changes in high gamma power. This study also

showed that in the covert condition, the (inner) speech-related activities are weaker than the

overt condition, except at the superior temporal lobe where they were the same. In addi-

tion, this study was one of the first studies that successfully classified imagined speech [45].

Bouchard et al. (2013) showed that speech-articulatory representations in vSMC reflect

a temporal organization during speech production. Each articulatory representation was

spatially distributed across vSMC and a discriminability of consonants and vowels through

temporal propagation in the same area was also found [46]. Bouchard et al. (2014) showed
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that the acoustic features (formants) of cardinals vowels can be decoded from the sensori-

motor cortex during speech production [47]. Mugler et al. (2014) classified all phonemes

from the functional speech motor cortex [20]. The interesting observation from this study

is that the neural activities in the motor cortex after the phoneme uttering onset were still

related, which may give a hint that the motor cortex role goes beyond speech production

to monitoring. Furthermore, the misclassified phonemes were correlated with the phoneme

that shares similar articulatory features, which points to the role of articulatory features in

speech processing. Flinker et al. (2015) showed that Broca’s area mediates the activations

of sensory representations from the temporal lobe to their corresponding articulatory fea-

tures in the motor cortex. Thus, Broca’s area coordinates the information processing on

large-scale cortical networks before articulations [48]. Martin et al. (2016) showed in an

imagined words classification study that speech imagination is represented in the tempo-

ral lobe, frontal lobe and sensorimotor cortex, consistent with previous findings in speech

perception and production [49].

A recent fMRI study, however, suggests that there is predictive coding in the auditory

cortex during speech production [50], where it was activated during silent uttering compar-

ing with an imagined condition. Nonetheless, this suggestion is inconclusive and different

interpretations of such results can be proposed. Thus, further investigation must be done.

Conant et al. (2018) designed a novel experimental paradigm to detect supralaryngeal

articulators (lips, jaw, and tongue) by combining ultrasound and video monitoring with

ECoG recording during vowel production, which gives the capability to measure articula-

tory parameters, for instance, vertical distance between lips, in sync with ECoG recordings.
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They found that the high gamma activities in vSMC electrodes strongly encode at least one

of the kinematics (position, speech, velocity, and acceleration) of the previously mentioned

articulators but less for vowel formants and identity. The best kinematic parameter repre-

sented in the high gamma activity was speed. They also found that the best encoding and

decoding occur at the onset and offset of the articulators [51].

2.2.2 SPATIAL AND TEMPORAL CHARACTERIZATION OF COVERT AND

OVERT SPEECH PERCEPTION

As in the case of speech production, the picture of spatiotemporal propagation for speech

perception has not been completed yet, so there are many efforts to extend the current

knowledge of speech perception. It is worth mentioning that speech production and percep-

tion complement one another, since the process of speech is a closed-loop of production and

perception. Crone et al. (2001) showed that the neural responses for speech and non-speech

(tones) stimuli differ, where speech-related gamma power is higher than the nonspeech-

related high gamma power [52]. Kubanek et al. (2013) showed that while listening to a

stream of verbs associated with hand(e.g., throw) and mouth(e.g., blow) embedded within

an unintelligible nonwords sequence, the perception of verbs compared to nonwords acti-

vates first the posterior STG, then the middle STG, followed by the superior temporal sulcus

(STS) [26]. This supports previous studies that STG plays a major role in speech compre-

hension [53]. Chang et al. (2013) showed that the alteration of the pitch in the subject’s

recorded voice will activate the auditory cortex more than listening to unaltered speech

recordings compared to the auditory cortex activities while speaking. The subjects were

found to compensate for this perturbation by changing the pitch of their sound [54]. This
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high activation reflects a sensitivity to unexpected feedback. This also implies the complex

interaction between speech production and perception. Cheung et al. (2016) showed that

speech-related activities in the motor cortex while listening, substantially differ during ar-

ticulation of the same sounds. In addition, they found that the structure of these activities

during listening was organized in an auditory-cortex-acoustic-features pattern. This leads

us to conclude that while listening to speech, the motor cortex neural activities represent

auditory-vocal information [55].

Commonly, speech-perception-related neural activities are studied in terms of speech

signal features. Numerous studies showed that these features can be reconstructed from

high gamma activities in the auditory cortex. Pasley et al. (2010) demonstrated that

the high gamma band is correlated with spectro-temporal fluctuations of aurally presented

words and sentences, where the spectrogram for single words was constructed from ECoG

signals. They found that speech signal is represented by two models in the auditory cortex.

The first one is the spectrogram which well-represents low frequency speech features such as

syllable rates while fast temporal fluctuations like syllable onset and offset are represented

in a nonlinear transformation of the spectrogram model, which is the second model [28]. It

also was shown that the auditory cortex tracks the speech envelope and this correlation has

a phonological nature [26]. In another study, Chang et al. (2010) found that speech-related

neural activities in the STG have a representation of phonemes, which is direct evidence

for acoustic-to-higher order phonetic level encoding of speech sounds [56]. Mesgarani et al.

(2012) showed that the auditory cortex gives rise to the perceptual aspects relevant to the

listener’s intended goal in a mixed speakers experiment. They found that the spectrogram
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of mixed speech reconstructed from neural data reveals the salient spectral and temporal

features of the attended speaker[57]. Mesgarani et al. (2014) studied phoneme category

(high-front vowel, nasals, etc.) representations in STG and found that speech-related sites

in STG are selective to specific phoneme groups. Furthermore, the manner of articulations

plays a major role in this selectivity and secondarily by place of articulation. In addition, an

encoding of acoustic formants, voice onset time (VOT), and spectral peak from STG were

successfully done. As a result, STG appears to give rise to the phoneme representations [58].

Martin et al. (2014) showed that the neural activities for both overt and covert speech have

similar encoding for speech features (spectrogram features and non-linear transformation

of the spectrogram) where the linear model built based on the overt condition was used to

predict speech features for the covert condition [25].

Berezutskaya et al. (2017) conducted a study based on ECoG and fMRI to investigate the

neural representations during continuous speech comprehension before they are processed

in the STG area. Their results showed that low-level speech features propagate throughout

the perisylvian cortex [59]. The speech envelope contains key information about speech

intensity and phonemic content essential for a complete understanding of speech. The

neural response in the auditory cortex is temporally aligned with the speech envelope in

the delta/theta band. This phenomenon is called “speech-brain entrainment” [60]. Lower

frequencies (<4Hz) are associated with syllable ( defined as a cluster of sounds that contains

at least one vowel) rate, but higher frequencies (>16Hz) are related to syllable onsets and

offsets. Formants (defined as the spectral peaks in the spectrogram space) are relatively

unique for each phoneme(they vary for each person) [61, 62, 63]. Riecke et al. (2018)
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showed that this entrainment has a causal role in speech intelligibility using brain stimulation

experiments [60].

Chang et al. (2015) were able to decode the intended speech in a multi-speakers environ-

ment (cocktail party problem) using neural features from the STG area. Their experimental

paradigm was to represent two speakers at the same time and let the subject focus on a

specific target. Using neural signals outperforms the acoustic signal when they were used

to build a model to detect the target speaker, which suggests that the brain ignores the

non-target-related speech signal [64].

2.3 DECODING SPEECH FROM ECOG SIGNALS

Research of characterization of speech-related neural activities in the brain started many

decades ago. Decoding speech from neural signals, however, has only recently been at-

tempted while the goal for the former is to better understand speech propagation in the

brain in such a way, for instance, to better diagnose speech-related diseases. The goal of

the latter is to provide technology for the severely disabled to improve their quality of life.

Although decoding speech from the brain is not fully concerned with discovering the na-

ture of speech-related activities, it is often necessary to advance the quality of the decoding

schemes since traditional black box approaches have limited efficacy. Thus, prior knowledge

is required to enhance these models or to create new approaches based on the special charac-

teristics for speech-related neural signals. Other methods to process a speech signal (before

the appearance of deep learning), were influenced by the way the auditory system processes

speech (see MFCC method as an example). Based on that, revealing prior knowledge of

very complicated and dynamic signals like ECoG is a logical pursuit.
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This section provides a detailed explanation of both the general framework of decoding

speech from ECoG signals and the literature review for related studies. The section will

conclude with a discussion of the limitations of existing techniques.

2.3.1 THE FRAMEWORK OF DECODING SPEECH FROM ECOG

The general framework of extracting speech-related information from brain signals was

briefly discussed. In this section, a detailed review will be presented. The proposed speech-

based BCI decoding models either perform continuous speech reconstruction, such as the

spectrogram of an intended speech, or they perform a discrete output, such as phonemes,

words, or articulation places. The discrete output systems have an advantage over the

continuous ones as their margin of error is narrower. On the other hand, the discrete output

systems are highly restricted and may not be able to be generalized to build an efficient

speech-based BCI system. For example, a speech-based BCI which can decode five words

that cannot be generalized to be used in complicated tasks, such as generating continuous

speech. Therefore, the choice of either a discrete or a continuous output system depends

on the application, for instance, a system that reliably decodes ten words might be suitable

for some scenarios. Fig. 1 shows the different modules that compose a speech-based BCI

system. In the following, each module will be discussed in detail by providing the working

principle, considerations, challenges, and conclusions from recent investigations.

Signal Acquisition and Characteristics

Although there are different types of neural signals to capture speech-related activities,

the focus will be on ECoG signal acquisition and properties. ECoG is used clinically for
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locating epilepsy seizure foci prior to surgical resection. An ECoG electrodes grid is placed

on the cortex, usually beneath the dura. The typical number of electrodes in a grid is 8× 8

electrodes of 4 mm diameter each and a 1 cm inter-electrode distance. It is typical to require

5-12 days of continuous recording to localize epileptic foci [31]. Additionally, the location

of electrodes is solely chosen based on clinical purposes.

Signal Processing and Features Extraction

The raw ECoG signals are pre-processed by first filtering using the common average

reference (CAR) filter. This process reduces the common components across channels such

as global artifacts [52, 53]. Next, the signals are high-pass-filtered with a cutoff frequency

between 0.5-2 Hz to eliminate DC drift. The signal is notched-filtered around the funda-

mental power line frequency and its harmonics (60 or 50 Hz depending on the electrical

system).

The Discrete Fourier Transform (DFT) is commonly used to extract the features of the

signals as much of the information in ECoG can be captured by the spectral dynamics. For

example, information related to phenomena such as speech, memory, cognitive function,

learning and motor tasks has been mostly found in the Gamma band [65, 66, 67, 68, 28].

To take into account the temporal variability of the signal, the short time Fourier transform

(STFT) and wavelet transform (WT) are the common tools to perform time-frequency

domain analysis [69, 20]. After transferring signals to more informative representations

(e.g., time-frequency domain), features can be extracted. For example, in the case of the

usage of STFT in decoding speech from neural signals, the average power of the gamma band

with a 50 ms time window was taken [28, 20, 21]. Generally speaking, feature extraction
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algorithms must represent the information in the neural signals to better facilitate modeling

that will be carried out by the feature translation module.

Features Translations

After obtaining features from the extraction module, the translation module tries to

translate these features into a certain command or an output, such as a phoneme. Feature

translation relies on machine learning algorithms where it learns what feature vector rep-

resents the desired output, based on a mathematical model. These models can be linear,

for instance, linear discriminant analysis (LDA), or nonlinear like artificial neural networks.

Neural signals are very dynamic and they vary according to many factors, such as disease,

emotional state, etc., since brain regions that are related to speech are responsible for many

other functions. Therefore, there are many other factors and variables that implicitly exist

in the neural signals that carry speech-related information. Based on that, and up to now,

most feature translation algorithms have been subject-dependent and require training on

data acquired from an individual subject.

After constructing the model of feature translation, it needs to be validated. A compli-

cated model can simply over-fit the data which may hinder performance on independent test

data, which is a well-known issue in machine learning. The common technique to handle

this is to divide the data into training and testing data. The ratio of training to testing data

can vary in the BCI literature from 7:3 to 9:1. Moreover, a further step is taken to ensure

that over-fitting has not occurred which is to partition the data into n chunks (usually 5 or

10) and build the model using n−1 chunks and the remaining chunk will be used as testing

data. This process is repeated n times where each chunk is used exactly once as testing
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data. Next, the average of the testing performances of each chunk is taken. This is known

as cross-validation.

Other fields like image and audio processing started using deep learning to combine this

module and the feature extraction module in one algorithm. However, for neural signals, this

remains a challenge because of lack of data, data variability, and complexity. Nonetheless,

the deep network seems to be a valuable tool in speech-based BCI, which will be explained

in section 2.3.2

Output Device

An Output device will convert the command into an actual output. This can vary

depending on the application, where it can be a wheelchair, a prosthetic arm, or a speech

synthesizer.

2.3.2 DECODING SPEECH FROM BRAIN

Several recent studies have attempted to decode speech from the brain. In this sec-

tion, the decoding of imagined and actual speech will be discussed. The main focus will

be on ECoG related studies. In an earlier work, Kellis et al. (2010) classified a set of 10

words from local field potential (LFP) recordings from the motor cortex and Wernicke’s

area with an above average chance of accuracies. Their feature extraction algorithm relies

on the gamma band power and principal component analysis (PCA) for features reduction.

To improve their classification, channels’ selection were applied and it was found that the

best performance was obtained based on motor cortex electrodes. Their conclusion demon-

strates the importance of the motor cortex in speech processing, where the motor cortex
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is responsible for monitoring speech articulations muscles and joints [23]. Blakely et al.

(2008) classified four phonemes in a pair-wise fashion. They used the support vector ma-

chine (SVM) to classify the features which were the power of six different frequency bands

for 0.265 s time window with 37% overlap [70]. Pei et al. (2011) decoded four vowels and

nine pairs of consonants in a monosyllabic words experiment, where words were composed

of a Consonant-Vowel-Consonant (CVC) pair. The experiment was conducted under two

conditions: imagined and spoken conditions. For both conditions, the classification results

were statistically significant above the level of chance. Their classification was based on

naive Bayesian classifier and feature selection was applied using a maximum relevance and

minimum redundancy technique [24]. Their study was one of the first efforts to examine

the possibility of classifying imagined vowels and consonants [71]. Leuthardt et al. (2011)

were able to classify two imagined phonemes in an online study on two subjects. Their

experimental paradigm was based on two conditions: covert and overt. In their study, the

same feature extraction and classification techniques were used for both conditions, which

demonstrates the similar characteristics of overt and covert speech [72]. Zhang et al. (2012)

classified two spoken sentences from the posterior part of the inferior frontal gyrus using

high gamma power envelop and Fisher discriminant analysis as a classifier. Dynamical time

warping (DTW) was used in their study to find the optimal temporal onset of sentence

uttering, where it is used to overcome the variability in time and speed of single-trial speech

such that an assumption was made where there is a unique temporal-neural pattern for

each class or category follows. They avoided using trials averaging as it determinates find-

ing this pattern. Their results are much higher than the level of chance and the DWT
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approach outperforms an approach that was based on SVM without DWT [73]. Extending

these ideas, Mugler et al. (2014) classified all American phonemes in a words-repetition

experiment. They classified all phonemes with up to 36% accuracy. In their procedure,

STFT was applied on ECoG signals and feature selection was performed based on analysis

of variance (ANOVA) and LDA was used as a classifier [20]. Lotte et al. (2015) demon-

strated that phonetic features can be decoded from ECoG data. They tried to identify

which brain regions and what time in respect of phoneme onset are most activated under

three different features representations, i.e phonemes, place of articulations, and manner

of articulations. They used LDA to model neural activities based on the three mentioned

representations. In their procedures, different models were built using different sets of fea-

tures that vary in their spatial and temporal characteristics or parameters. The model that

performs the best based on the level of chance baseline, its spatiotemporal characteristics

were given the highest score. Furthermore, nearly all speech-related brain regions were in-

cluded. Although their results were statistically significant above the level of chance, they

did not report their classification accuracies [74]. Kanas et al. (2014) worked on detecting

speech activities from different areas of the brain. Their experimental paradigm was based

on repeating two syllable nonwords composed from both a consonant among six different

consonants and a vowel among two different vowels (e.g. pah, dah). Their methodology was

based on joint spatial-frequency clustering of the ECoG feature space where they grouped

both spatial (channels) and frequencies features based on their contribution to the target

using a k-means algorithm. In particular, the first group contains the top features which

make the best contributions to the target, and the second group contains the second-top
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features and so on so forth. Then, different models were built based on these groups of

features. For instance, the first model was built based on the first group features, and then

another one was built based on the first and the second group, etc. The model which shows

the best performance was chosen for testing. A 98.8% testing accuracy was achieved and

also based on their analysis the 8 Hz frequency was the optimal frequency to detect speech

activities in the brain. However, this study was based on one subject [75]. Herff et al.

(2015) utilized a language model to classify phones and words during a continuous speech

experiment. Gaussian models were used to map ECoG to the corresponding phones and a

bi-gram language model was used to support or oppose the Gaussian ECoG-based models.

In this case, the language model is known as prior knowledge and the Gaussian models as a

posterior probability. The final decision is taken for the class which maximizes the product

of these two quantities [21].

So far, the aforementioned studies are based on the discrete output (phonemes, conso-

nants, vowels, sentences, etc.). On the other hand, many attempts to decode speech from

ECoG signals in a continuous output fashion have been conducted. In a consonant-vowel

syllables (CVs) uttering experiment, Bouchard et al. (2014) were able to predict the formant

frequencies from ECoG data that were recorded from the vSMC area. In their procedure,

they used adaptive principal components regression as a feature extraction algorithm [47].

Martin et al. (2014) successfully decoded two representations of the speech signal. The first

one is the spectrogram of the speech signal, which is defined as the amplitude of speech

over time and frequencies. The second one is modulation-based speech signal, which is

a nonlinear transformation of the spectrogram. Their work was based on two conditions,
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overt and covert, wherein the overt condition, subjects loudly read short paragraphs and

in the covert condition, subjects silently read the same paragraph. The experiment was

designed in a way to ensure the pace of both silent and loud readings were the same. Since

there are no covert speech markers, the authors used DTW to realign the constructed overt

speech with the covert speech. A linear decoding model was used to predict both repre-

sentations of the two conditions based on overt condition data. That is, the prediction of

the two representations in the case of the covert condition was based on the overt condition

data. The correlation coefficient was the metric to validate the model. More specifically,

the realigned (using DTW) constructed overt speech was correlated with the corresponding

speech yielded from the overt condition. The reconstructions of both representations in the

two conditions were found statistically significant. This study provides a proof of concept

that covert speech can contribute to overt speech decoding [25]. Also, Martin et al. (2016)

conducted a word repetition experiment in both overt and covert conditions. They utilized

an SVM model based on DTW distance kernel. That is the time series of ECoG segments

was realigned using DTW and then they were inputted into the SVM model. The reason-

ing behind DTW-based kernel SVM is that imagined speech lacks obvious markers, which

means that two trials that belong to the same class may have different time alignments.

Therefore, the classifier might not recognize two trials as belonging to the same class. The

classification was done in a pair-wise fashion, where both covert and overt conditions were

statistically significant above the level of chance. The mean accuracy for the overt condition

was 89% and for the covert one was 58%[49].

Decoding speech from the brain while listening is also considered a very important tool in
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the development of efficient BCI devices which help people who suffer from hearing impair-

ments. Decoding speech perception can also play an important role in decoding the intended

speech since auditory feedback has a role in monitoring speech during speech production [76].

Chang et al. (2010) were able to classify three consonant-vowel syllables from the pSTG

area in a listening task. They achieved that by characterizing differences between neural

representations of each syllable using L1-regularized logistic regression. Then, the output

of L1-regularized logistic regression was fed into the k-means algorithm to determine the

final classification decision [56]. Pasley et al. (2012) examined constructing spectrograms of

speech from the auditory cortex in a listening to sentences experiment. Two representations

were found in the auditory cortex: spectrogram and modulation-based representation. The

accuracy of word identification was 0.89 median percentile rank for 47 words [28]. Moses et

al. (2016) utilized automatic speech recognition (ASR) techniques in classifying perceptual

speech. Their approach was based on using hidden Markov models (HMM) that use proba-

bilities coming from both the language model and ECoG-based models. The features were

extracted by applying eight semilogarithmic-bandwidth-increasing bandpass Gaussian fil-

ters on the gamma band (70-150). Then, the envelop of each resulted band was taken using

Hilbert transform. A feature reduction was applied using the first principal component. To

find the better temporal characteristics of feature vectors, a Grid search was performed for

each subject. Their results were similar to what Herff et al. (2015) showed; the performance

was better when using the language model [77]. Moses et al. (2018) were able to classify

10 sentences in real time. They used a phoneme-based analysis using HMM, where they

broke each sentence down into its phonemes. They also used a direct classification based on
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sentence-level neural activities using LDA. They achieved 98% using HMM and 90% using

LDA. The training time required to achieve this accuracy was less than seven minutes [78].

Deep Learning Role in Decoding Speech from the Brain

Deep learning recently has been demonstrated as a powerful tool in machine learning

for many classification and regression problems. However, the main challenge for deep

learning in the BCI field is lack of data, especially for a hard-to-obtain signal such as

ECoG. Nevertheless, many studies utilize deep learning in neural data analysis (i.e., EEG

and ECoG signals analysis). In this section, the focus will be on deep learning utilizations

in speech-based BCI. Chang et al. (2015) were able to decode target speech based on STG

neural signals during a multi-speakers task, where they asked the subject to pay attention

to a specific speaker and to try to ignore the rest. The performance of the model which

was built based on neural signals was much better than the model which was built based on

acoustic signals. They used a deep neural network (DNN) and HMM, where DNN outputs

were used as posteriors to derive emission probabilities for HMM [64]. Their results suggest

that the STG area acts as a filter which removes unintended-speech-related information.

This study can help people who are suffering from hearing impairments to better distinguish

sounds in a multi-speakers environment. Livezey et al. (2018) built a DNN to be used as a

classification and analysis tool. They exploited neural data which were recorded from the

vSMC area during consonant-vowels (CV) syllables uttering. For a consonant-vowel pair

classification task (57 classes), the deep network outperformed the logistic regression with

a statistically significant difference for two among four subjects. The performance of these

two subjects was increased by 50% and 100% respectively over logistic regression using deep



29

networks. For the consonants classification task (19 classes) the deep network outperformed

logistic regression but exhibited similar performance to LDA. They also reported that the

deep network’s accuracy has been increasing with increasing data size for all subjects, which

was not observed when using linear models. This result demonstrates the capability of deep

learning to better model speech-related ECoG data than traditional methods. Furthermore,

they showed that the confusion of the deep network, which is defined as being where the

misclassification of a class is distributed over other classes, follows the articulatory structure

of the phonemes [79]. O’Sullivan et al. (2017) used a long-short-term-memory-based DNN

(LSTM-DNN) to implement a source separation system in a multi-speakers environment

based on neural signals from the STG area. Their experimental paradigm was similar to

the previously mentioned paradigm of Livezey et al. (2018), as they designed it in a way

that subjects listened to different speakers reading a story at the same time and they were

asked to focus on one of them. Their implementation was based on implementing a DNN for

each target speaker to distinguish against the other. That is, each DNN was trained using

a spectrogram of the speech signals mixture and with the intended speaker spectrogram as

the output. Next, the output of these DNNs was correlated with a spectrogram constructed

based on the neural data that were recorded from the STG during listening, where they

employed a method known as stimulus-reconstruction to reconstruct the spectrogram from

neural data. The final decision of what the subject was attempting to attend to was taken

based on the DNN that gave the best correlation. For instance, if the first DNN gave the

best correlation, then the first speaker will be considered what the subject was listening

to. Electrodes selection was based on statistical significance for each electrode in the task
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of distinguishing speech from silent. The validation of this system showed it was able to

decode the attention of subjects. They also identified the electrodes that contributed the

most to this task within the auditory cortex [80]. In a recent study, Akbari et al. (2018)

showed that DNN outperforms traditional methods in auditory stimulus reconstruction by

65% over the baseline (traditional classifiers accuracy). Their experimental paradigm was

that three subjects listened to isolated digits, where the goal was to reconstruct speech

signals from auditory cortex neural activities. They used two different representations for

acoustic signals: auditory spectrogram, which is obtained based on auditory perception

model, in addition to speech vocoder, which synthesizes speech from four main parameters:

1) spectral envelop, 2) fundamental frequency, 3) band aperiodicity, and 4) a voiced-unvoiced

(VUV) excitation label. To evaluate the models, subjective and objective evaluations were

performed, where the subjects were asked to listen to a digit pronunciation and then speech

signal was reconstructed from neural signals that were recorded during listening. After

that, subjects listened to the reconstructed speech and reported what they had heard. The

accuracy of this subjective measure was 75%. For the objective evaluation, they used the

extended short time objective intelligibility (ESTOI) measure, which is a measure for the

intelligibility assessment of speech synthesis technologies. The average ESTOI of all subjects

was consistent with what subjects reported. Furthermore, they measured the correlation

coefficient for decoding a speech spectrogram from neural signals taken from STG area.

DNN outperformed the linear models such as linear regression in all cases. Also, according

to the deep network model, the lower frequencies (0-50 Hz) have also contributed to the

spectrogram reconstruction [81].
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CHAPTER 3

METHODOLOGY

This chapter describes the methodologies for experimental paradigms used in this the-

sis. Firstly, experimental paradigms and data acquisition procedures will be described.

Secondly, the signal processing, as well as the technique to decode articulatory and audi-

tory features will be discussed. Thirdly, the primary technique to characterize the temporal

propagation of auditory and articulatory features in the motor cortex will be explained.

Since characterizing the temporal propagation of these two features representations needs a

more controlled events localization (e.g., speech preparation and perception do not overlap),

data obtained from a monosyllabic word repetition experiment was used. The experimental

paradigm of this dataset gives the ability to eliminate any neural activities related to utter-

ing other phonemes, which gives the ability to study neural activities that exclusively related

to a particular auditory or articulatory feature. Characterization of a certain phenomenon

requires eliminating any other factors that can change the measured signal. Lastly, the

technique of decoding and characterizing the speech-related activities in the temporal lobe

during speech production and comprehension will be discussed. Since this goal is defined on

a macro level, where the ultimate goal is to determine the main function or role of the tem-

poral lobe during speech production, ECoG data based on a continuous speech experiment

was used. The continuous speech will generate neural activities that combine to perform

the main function (e.g., speech monitoring). Therefore, the usage of a continuous speech
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dataset is appropriate for defining the role of the temporal lobe during speech production

and comprehension without considering the micro details.

3.1 DATA ACQUISITION AND EXPERIMENTAL PARADIGM

Two different datasets were used in this thesis. The first one, called the monosyllabic

word dataset, was used to decode and characterize the articulatory and auditory features in

the motor cortex. The second, called the continuous speech dataset, was used for decoding

and characterizing speech-related activities in the temporal lobe during speech production

and comprehension.

3.1.1 MONOSYLLABIC WORDS DATASET

Data Acquisition

Data were collected from three subjects who required intraoperative ECoG monitor-

ing during awake craniotomies for glioma removal. All three subjects were native English

speakers with no tumor-related symptoms affecting speech production. All of them gave

informed consent to participate in the experimental paradigm, which was approved by the

Institutional Review Board at Northwestern University. Both anatomical landmarks and

functional responses to direct cortical stimulation were used to determine electrodes grid

placements. Areas producing reading arrest when they were stimulated were designated

as being associated with language. Areas producing movements of the articulators when

they were stimulated were designated as being associated with speech prodution. ECoG

grid placement covered targeted areas of ventral motor cortex (M1v) and premotor cortex
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(PMv).

A 64-channel, 8×8 ECoG grid (Integra, 4 mm spacing) was placed over the speech motor

cortex connected to a Neuroport data acquisition system (Blackrock Microsystems, Inc.).

A customized version of the BCI2000 software was used to control stimulus presentation

and to collect data [82]. A unidirectional lapel microphone (Sennheiser) was placed near

the patient’s mouth to measure the acoustic energy. The microphone signal was wirelessly

transmitted directly to the recording computer (Califone), sampled at 48 kHz, and synchro-

nized to the neural signal recording. All ECoG signals were bandpass-filtered from 0.5-300

Hz and sampled at 2 kHz.

Experimental Paradigm

Words were presented in randomized order on a screen at a rate of a single word every

2 seconds, in rounds of 4.5 in minutes length. Subjects were instructed to read each word

aloud as soon as it appeared. Each subject completed 2 or 3 rounds. Stimulus words

were chosen based on their simplicity, and phoneme frequency and variety. The words were

monosyllabic words with consonant-vowel-consonant (CVC) structure and were selected

from the Modified Rhyme Test [83], where the frequency of phonemes is approximately like

the American English phoneme frequency [84]. Additional CVC words were added to the

set to include all American English phonemes in a uniform frequency.

Events Labeling

Since the recorded speech signal was synchronized with ECoG signals, ECoG data were

temporally aligned with phonemes based on the recorded speech signal. Phoneme labeling
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based on speech signal was done using “Penn Phonetics Lab Forced Aligner for English”

software 1, which is built based on hidden Markov model kit (HKT) 2. In short, HKT is

based on HMM using both continuous density mixture Gaussians and discrete distributions.

The labels were validated visually and aurally using Praat software 3. For articulatory fea-

tures representations, the phonemes were grouped according to their articulation properties.

Places of articulation and manners of articulation were chosen as two different grouping

techniques.

The places of articulation are defined as where the vocal tract is either constricted or

closed by one of the articulators. In this thesis, places of articulation were divided into

four different groups: labial, coronal, dorsal, and laryngeal. Labial consonants occur when

one or both lips participate in producing a consonant (e.g., /m/). Coronal consonants use

the front part of the tongue (e.g., /n/). Dorsal consonants occur when the back of the

tongue (the dorsum) has a role in the articulation (e.g., /k/). Laryngeal consonants have

the primary articulation in the larynx (e.g., /h/).

The manners of articulation are defined as the configuration and interaction between

articulators when producing a sound. The manners of articulation that were considered

are: nasal, plosive, fricative, approximant, flap, and lateral approximant. Nasal sounds are

nasal occlusive (i.e., closed vocal tract) sounds that are produced while the velum is in

the lower position, and the air flows freely from the nose(e.g., /m/). Plosive sounds are

sounds that are oral occlusive sounds produced by completely restricting the vocal tract

with explosive release (e.g., /p/). Fricative sounds are produced by partially restricting the

1https://web.sas.upenn.edu/phonetics-lab/facilities/
2http://htk.eng.cam.ac.uk/
3http://www.fon.hum.uva.nl/praat/

https://web.sas.upenn.edu/phonetics-lab/facilities/
http://htk.eng.cam.ac.uk/
http://www.fon.hum.uva.nl/praat/
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vocal tract (a narrow channel), by placing two articulators close together and passing air

through the channel (e.g., /s/). Approximant sounds are less extreme than Fricative, since

they place two articulators together but not to the point that a turbulent airflow occurs

(e.g., /r/). Flap sounds are produced when a single articulator is thrown against another

for a short time such that no burst can happen, as in the medial sound in “ready”. Lateral

approximant sounds are produced only when the center of the tongue touches the roof of

the mouth (e.g., /l/).

3.1.2 CONTINUOUS SPEECH DATA ACQUISITION

Data Acquisition

Data were collected from four subjects who suffer from intractable epilepsy and were

undergoing treatment at Albany Medical Center. All of them gave informed consent to

participate in the experimental paradigm, which was approved by the institutional review

board of the hospital. The subjects were physically and visually able to perform the task

and all of them had an IQ of at least 85.

The implanted electrode grids (Ad-Tech Medical Corp., Racine, WI) consisted of platinum-

iridium electrodes (4 mm in diameter, 2.3 mm exposed) that were embedded in silicone and

spaced at an inter-electrode distance of 1 cm. One subject was implanted with an electrode

grid (PMT Corp., Chanhassen, MN) with 6 mm inter-electrode spacing. Grid placement

and duration of ECoG monitoring were based on clinical purposes without considerations

of this study’s requirement. Fig 3 shows the electrode location of each subject.
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Data Collection and Experimental paradigm

ECoG signals were recorded using eight 16-channel g.USBamp biosignal acquisition de-

vices (g.tec, Graz, Austria). ECoG signals were recorded simultaneously along with speech

signal at a sampling rate of 9600 Hz. Electrodes distant from epileptic foci and areas of

interest were used for reference and ground. After removing channels which did not contain

ECoG activity, subjects had 56-120 channels. The subjects’ eye gaze was also recorded using

a monitor with a built-in eye tracking system (Tobii Tech., Stockholm, Sweden). BCI2000

software was used to collect the ECoG, microphone, and eye tracker, in addition, to control

the experimental paradigm [82].

Each subject was seated in a semi-recumbent position in a hospital bed facing a video

screen with 1m distance. The text of a famous passage (e.g., Gettysburg Address or Humpty

Dumpty nursery rhyme) ranging from 109 to 411 words, scrolled from right to left across

the video screen at a constant rate between 20% and 35% per second. The pace was chosen

based on the preference and cognitive capabilities of each subject. This resulted in run

durations between 129.9 and 590.1 seconds. Each subject spoke the scrolling text aloud and

the speech was recorded using the microphone.

3.2 DATA ANALYSIS

Data analysis is divided into two different parts, the first part regarding the monosyl-

labic words dataset, was chosen because it gives the ability to ensure the speech-perception

and speech-preparation neural activities do not overlap; the second part regarding the con-

tinuous speech dataset, was used because it gives the ability to define the main function of
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Fig. 3: The electrodes location of each subjects

the temporal lobe during speech production and perception. The pre-processing for both

datasets is the same, but the data analysis is specific to each part.

3.2.1 PRE-PROCESSING THE DATA

ECoG channels were visually inspected for abnormal activities which were excluded from

the analysis. Then, the data were high-pass-filtered with a cutoff frequency of .01 Hz to

remove low-frequency components that do not contribute with information. After that, the

common average reference (CAR) was applied. CAR removes the average of ECoG channels

from each channel. Following this, a notch filter at the multiples of 60 Hz that lie within

the range [70,290] Hz was applied to remove the power line noise. The resulting signals were

band-passed in the range [70, 290] Hz. All applied filters were zero-phase filters since this

guarantees that signals original components were not shifted or changed.
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3.2.2 MONOSYLLABIC WORDS DATASET

Features Extraction

Pre-processed ECoG signals were segmented based on the onset of the phonemes. Each

segment starts 300 ms before the phoneme onset and ends 300 ms after onset. Each segment

was divided into 50 ms chunks, and each chunk was processed by applying equally-spaced

bandpass filters with 20 Hz bandwidth. Although the signals were notch-filtered at 60 Hz

and its harmonics, the bandwidths containing the 60 Hz harmonics were excluded from

analysis to further eliminate the possibility of effects caused by the filtering. This yields

8 different band-passed signals ranging from [70-90] to [270-290]. Lastly, the log of the

average of the absolute value for each band-passed segment was taken. The final number of

features, in the case of 300 ms before and after the onset, is NumberOfChannels× 12× 8.

Class labels and the corresponding feature vectors that had fewer than 15 instances were

deemed insufficient for model training and excluded from the analysis. Thus, there are a

different number of classes for each subject based on the total number of words presented

during the experiment, which varied based on experimental time and subject compliance.

Features Selection

Since the number of dimensions for the feature vector is too high, a subset of features

based on analysis of variance (ANOVA) was selected based on the K lowest p-values. The K

was chosen empirically, based on each subject’s data. Table 1 shows the number of features

selected for each subject.
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TABLE 1: Number of features selected for each subject

Subject Number of features

A 140
B 140
C 160

3.2.3 CLASSIFICATION INDEX PROCEDURE

In this thesis, the classification index is used to indicate the statistically-significant brain

activity. This procedure compares the output of a model built using actual data with the

output of a model built using randomized data having similar spectral characteristics as the

actual data. This type of test is well-established in BCI literature [38, 74]. This procedure

will be also applied in Continuous Speech Dataset 3.2.5. This procedure is performed as

follows:

1. The dataset is divided into a training and test set. The model created using the

training data and the performance is evaluated using the testing data. This represents

the performance based on the actual data.

2. For the randomization test, the data is again divided into training and test sets as in

step one. The data in each set is then shuffled by randomly shuffling the output cross

trials.

3. A model is built using the shuffled training data and the performance is evaluated

using the shuffled testing data.

4. Steps 2 and 3 are repeated n times to fit a statistical distribution.
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5. The actual performance is compared to the statistical distribution by computing the

p-value.

6. the p-value that is larger than .05 (not statistically significant) is set to 1.

7. −log is applied to the p-value.

3.2.4 ESTIMATING THE CRITICAL VALUE OF THE LEVEL OF CHANCE

In statistics, the critical value of .05, α.05, is a point on an statistical distribution with

a probability of 0.05 to occur. In order to estimate the α.05 of the level of chance perfor-

mance the continuous density function (CDF) of level of chance performance is obtained

by applying the second, third and fourth steps of the classification index procedure 3.2.3.

Next, α.05 is estimated using the percent point function (PPF), which is the inverse of the

obtained CDF. Using this procedure, the estimated α.05 is considered one of the extreme

values (e.g., one of the highest accuracies) that a model based on shuffled data may have.

Using the α.05 of level of chance will make the interpretation of the results easier for the

reader. For instance, when averaging Pearson correlation coefficients cross subjects, it is

hard to tell when the mean is statistically significant. Estimating the critical value of the

level of chance will determine whether the mean is statistically significant, where if the mean

is well-above the critical value then it is statistically significant. Therefore, the reader will

have an idea when the mean is significant by comparing with this baseline. In addition, it

will save many runs of randomization tests. For instance, in case of a regression problem,

estimating α.05 of Pearson correlation coefficients for a shuffled-data-based model can avoid
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running the classification index procedure many times to judge whether a result is statisti-

cally significant above the level of chance. As will be illustrated in section 4.3, it is shown

that α.05 of the possible Pearson correlation coefficients of an LSTM-RNN model that was

built using shuffled output, is the same for all subjects (follows the same distribution with

the same parameters).

Segmenting and Classification

The classification was done on the features that were selected using linear discriminant

analysis (LDA). In order to determine the testing accuracy, the data was divided randomly

into training and testing data with 8:2 proportion, and this was repeated ten times. The final

testing accuracy was calculated by averaging the resulting ten values. To test the statistical

significance of the model performance, the classification index procedure 3.2.3 was applied.

A classification index of zero means no statistical significance for the classification results

(i,e. the classification performance is at chance level).

The existence of representations for both auditory and articulatory features in the motor

cortex has been discussed in the literature [55, 85, 51]. In this analysis, the nature of

temporal propagation for each feature representation in the motor cortex is investigated.

Examining the temporal characteristics of each representation will help reveal how and when

each representation appears in the motor cortex. Due to the inconsistent electrode locations

across subjects, the analysis was presented for each subject individually.
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Fig. 4: An exemplary illustration of choosing the stimuli procedure for articulatory and
auditory features characterization in the motor cortex. The leftmost arrow represents the
onset time x of the first phoneme. A vertical line indicates 300 ms after the onset of
the first phoneme. The second arrow represents the onset of the next phoneme. The
gray curve represents the neural activities of the first phoneme. The pink curve represents
the neural activities of the second phoneme. It is illustrated that the neural activities of
speech perception for the first phoneme is effectively diminished after 300 ms and the neural
activities of speech production for the next phoneme begins.

Characterization

ECoG data used in characterization of the temporal propagation were chosen to exclude

the influence of auditory feedback. If two consecutive phonemes have a less than 800 ms

temporal difference based on their onset, then the data corresponding to the second label in

the sequence were excluded from the analysis. The 800 ms interval was chosen based on the

work of Brumberg et al. (2016) [38], where they showed that after 300 ms from the start

of the uttering, the perception speech-related activities begin to diminish. Furthermore,

they showed that neural activity for speech preparation starts approximately 500 ms before

speech onset. Based on their analysis, an 800 ms temporal difference between two consecu-

tive phonemes will ensure that the auditory feedback from previous phoneme utterance has

concluded before speech production of the next phoneme. Fig 4 provides an illustration of

this concept.

Windows of length 300 ms and 600 ms were used for features extraction as described in

Section 3.2.2. The 300 ms window’s length was chosen to be half of the window’s length
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used in classification and approximately half of the window’s length used in some of the

most related work in the literature [85, 74]. Choosing a shorter window would presumably

limit the amount of the information obtained about classes, but it would also increase the

temporal resolution. The 600 ms window’s length based analysis is necessary to compare

the 300 ms based analysis. In other words, the 300 ms based analysis provides a more

temporally-localized characterization and the 600 ms analysis provides richer information

(technically speaking, higher classification indexes) about the classes. The 300 ms and 600

ms windows started at 500 ms prior to the phoneme onset and ended 200 ms prior to the

onset and 100 ms after onset, respectively. Both windows were shifted by 50 ms and for

each shift the classification index procedure 3.2.3 was applied. Higher activation indices

indicate model outputs that are significantly different from random chance. That is, the

model is able to capture meaningful structure related to the speech activity.

Because the shuffling procedure may affect the quality of the trained models, to ensure

that the activation indices are valid, the classification index procedure 3.2.3 was repeated m

times. The approximated classification indexes were calculated by averaging the resulting

classification indexes of the m trials. The 95% confidence interval for the estimated mean

was computed using student’s distribution since the true standard deviation is unknown.

The confidence interval tells the range of possible classification indexes generated by the

estimation process, that would contain the true value of these classification indexes with

a probability of 95%. This can be considered as the error bar of the estimation. The

confidence interval of true mean µ is given by

µ̄± tα/2σ/
√
n
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where µ̄ is the estimated mean of the population, tα/2 is obtained from student’s distri-

bution, where it was chosen to be at .05 confidence interval, n is the number of samples, σ

is the standard deviation of the samples.

3.2.5 CONTINUOUS SPEECH DATA ANALYSIS

Feature Extraction and Characterization

After pre-processing signals as described in Section 3.2.1, electrodes were inspected and

those outside of the temporal lobe were excluded from the analysis. This was done by visual

inspection. Then, the Hilbert transform of the gamma-band filtered signal was computed.

Also, the Hilbert transform was computed for speech signals. The Hilbert transform is used

to derive the analytical signal, which is expressed in terms of real and imaginary parts.

Taking the absolute value of the analytical signal gives the instantaneous envelope of the

signal. As a final step, the gamma-band filtered signal was low-pass filtered with a cutoff

frequency of 8 Hz. Finally, ECoG and speech envelopes were decimated to 100 Hz.

To decode and characterize speech information from ECoG data, the gamma ECoG

envelope was used as an input to the characterization/decoding model. However, the output

of the model was represented by a modified version of the speech envelope’s spectrogram.

The short time Fourier transform with 300 ms length Hanning window with 50% overlap was

applied on the speech envelope. Then, the absolute value was taken to give the spectrum

magnitude. After that, the averages of seven spectral bands were calculated, where each

band is defined by spectrum values of each three consecutive integer frequencies starting

from 1 Hz to 21 Hz resulting in seven values. The spectral values larger than 21 Hz were
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Fig. 5: Characterization procedure of Continuous speech dataset: Each 150 ms of ECoG
envelopes is associated with an output, that corresponds to 300 ms speech envelope. LSTM-
RNN model was used to map the 150 ms ECoG envelopes to the seven spectral bands within
the range [1,21] Hz.

very low in power and do not contribute much in composing the original signal, so they

were neglected. The envelope of the gamma-band activity over 150 ms was used to predict

this speech signal representation (i.e., seven bands from speech envelope). Fig. 5 illustrates

this procedure.

The goal of this analysis is to predict the speech signal representation from the neural

activities in the temporal lobe in speech production and comprehension stages. In the

production stage, the neural activities in the temporal lobe must lead the speech signal.

Thus, both the speech signal and ECoG signals were shifted by the same amount in a way

that ECoG signals lead the speech signal. Starting in a position where ECoG signals lead

speech signal by 500 ms, this temporal difference was decreased by 100 ms until ECoG and

speech signals were synchronized (no shift). In the speech comprehension stage, the same

procedure was applied but in a way that ECoG signals lag the speech signal. For each shift,
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a decoding/characterization model was built and it was evaluated as will be described in

3.2.5. The best temporal point where the neural activities correlate or represent speech

activities is when the model performance reaches its peak.

Decoding Model and Evaluation

The Long-short-term-memory-based recurrent neural network (LSTM-RNN) was used as

a model to characterize the relationship between the envelope of ECoG and speech features

described above. Since the temporal propagation of neural signals is very important for

monitoring and controlling speech (e.g., controlling articulators), it is necessary to model

such propagation. LSTM-RNN is an efficient tool to account for the temporal propagation

of the input in modeling the input-output relationship. RNNs are well-known in their

capability to model time series. However, one of the main drawbacks of traditional RNNs

is that they cannot resolve the long-term dependencies in the data. They are not capable

of catching subtle information in the short term that would inform the next prediction,

in addition to the optimization problem of vanishing and exploding gradients. An LSTM

implementation of RNN was capable of compensating for these two issues [86]. The Pearson

correlation coefficient between the actual and the predicted output for each frequency band

was considered as the evaluation metric. This yields seven different correlation coefficients.

The data were randomly divided into training, validation and testing data. The portion of

the testing data was 20%, validation data was 10%, and the training data was 70%. This

was repeated five times and the final testing correlation was the average of these five times.

In order to measure the amount of information that was learned by this model and to

evaluate the statistical significance of the resulting correlation coefficients, the classification
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index procedure 3.2.3 was applied such that the output was shuffled across the input trials.

The number of iterations n in the classification index procedure was set to 100 because

of the time complexity of building an LSTM-RNN model. Furthermore, the procedure of

estimating the critical value of the level of chance which was explained in 3.2.4 was applied.
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CHAPTER 4

RESULTS

4.1 DECODING AUDITORY AND ARTICULATORY FEATURES

The classification results were normalized to the level of chance, which was approximated

by taking the mean of the randomization test results. Since different sets of words were

presented for each subject, and any class that has less than 15 instances is excluded to avoid

bias, the number of classes for each subject varies. After excluding rare classes, the number

of classes for each subject is shown in Table 3. The number of electrodes for each subject

is shown in Table 2.

Fig 6 shows the classification results for the three subjects. The consonants classification

had the better performance, while places and manners of articulation results were merely

the same with respect to each other. All results were statistically significant above the

level of chance (p-value ≤ .05). It is worth mentioning that excluding the 300 ms segment

after the speech onset degraded the performance significantly such that all of classification

accuracies were no longer statistically significant. This result confirms that neural activity

in the motor cortex in the speech perception stage is still strongly related to speech.
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TABLE 2: The number of electrodes that are located in the motor cortex for each subject.

Subject Electrodes number

A 30
B 8
C 20

Fig. 6: Subjects A, B, and C Classification Results, the y-axis shows the accuracy per
chance.

TABLE 3: Subjects’ classes: Flap class was excluded from the manners of articulation
classes due to an insufficient number of samples. Also, Laryngeal class was excluded from the
places of articulation classes for the same reason. M.of A stands for manners of articulation
and P.of A stands for places of articulation.

Subject Consonants classes number M.of A classes P.of A classes

Subject A 10 5 3
Subject B 12 5 3
Subject C 12 5 3
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4.2 CHARACTERIZING THE TEMPORAL PROPAGATION OF

THE AUDITORY AND ARTICULATORY FEATURES

After applying the characterization procedure described in Section 3.2.4, where two

consecutive phonemes were excluded if the time difference was less than 800 ms, in addition

to applying the classification index procedure on each different temporal parameters, the

curves for each subject were plotted. The classification indexes curves are based on two

different window lengths: 300 ms and 600 ms.

The analysis started with a time interval, starting from 500 ms prior to the onset for

both 300 and 600 ms windows, and ending at 100 ms or 450 ms after the onset in case of 300

ms and 600 ms windows, respectively. Herein, timings before speech onset will be indicated

as negative. For all the following characterization figures, the x-axis represents the end of

window for each shift in ms.

Starting with subject A, the places of articulation classification indexes curve based on

a 300 ms window length is shown in Fig. 7b, which indicates a significant positive gain in

the performance in the interval [-.35,.05]s which can be described as the interval where the

speech production stage is active. The gradual increase and decrease of the classification

indexes curve show the consistency of the temporal propagation for this representation.

Speech-related information gradually starts to sum up in the speech production stage and

then gradually starts to diminish. However, for both consonants and manners of articulation

classification indexes in Fig. 7a and Fig. 7c respectively, there are two peaks. The first and

the second one occur in the intervals [-450,-150] and [-300,0] respectively for both represen-

tations. The curve also shows no consistent decrease or increase through time. It shows

that speech-related information in the motor cortex occurs as a discrete burst. Discrete
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bursts are not supported by the literature and many studies indicate that speech-related

neural activity is continuously modulated over time [38, 74, 79]. This can be interpreted by

the window length that was chosen (300 ms), which is too short to capture the information

related to these two representations. In other words, the similar curves for both consonants

and manners of articulation classification may reflect time-broad representations that need

a longer time window to be captured. Moreover, the wide confidence interval around the

second peak of manners of articulation characterization compared to the other two curves

may indicate that the second peak is superficial.

In order to validate the 300 ms-based analysis as well as to test the effect of the win-

dow’s length, the analysis was repeated with the 600 ms window’s length, which is the same

window length of the classification analysis. Since the classification results were statistically

significant using this window’s length, it is reasonable to speculate a higher classification

index, at least in the [-300,300] interval. Fig 8 shows that classification indexes were im-

proved as it was speculated. This points to the prolonged-time window of neural activity

which is needed to capture the features. The consonants representation’s maximum classi-

fication index was found in the interval [-200,400] which is shown in Fig. 8a. For the places

of articulation which is shown in Fig 8b, the classification indexes reached their maximum

in the time intervals [-300,300]. In case of the manners of articulation, the peak of clas-

sification index is around [-150,450], where an increase occurs as the window goes to the

speech perception stage. Nevertheless, the values of the classification indexes for manners

of articulation are very small compared to the other two representations.
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 7: The estimated mean of the classification indexes for all articulatory and auditory
features of subject A using 300 ms window’s length. The shaded area represents the 95%
confidence interval. The X-axis represents the shift by 50 ms of the features window. The
Y-axis represents the classification index.
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 8: The estimated mean of the classification indexes for all articulatory and auditory
features of subject A using 600 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the classification index.
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 9: The estimated mean of the classification Indexes for all articulatory and auditory
features of subject C using 300 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the classification index.

The time-propagation of the classification indexes for subject C based on the 300 ms win-

dow is shown in Fig. 9. The manners of articulation curve, in Fig. 9c, shows a very small

peak with a wide confidence interval for classification index in the early stage of speech

production, then the classification index reached a maximum in the interval [-150,150].

However, the values of the classification indexes are not high compared with the other two

plots.

On the other hand, when increasing the window’s length to 600 ms, shown in Fig. 10c,



55

the performance was enhanced and reached its maximum in the interval [-400,200], then

decreased and remained constant with a smooth oscillation. The steady state of the curve

(smooth oscillations) indicates that no information is gained or lost by shifting the window

farther. The places of articulation classification indexes based on the 300 ms window’s

length are shown in Fig. 9b, which shows an increase in the classification indexes all along

the interval of [-300,1500] and the maximum classification index occurred in the interval

[-150,150]. When increasing the window’s length to 600 ms, the places of articulation classi-

fication indexes curve did not change as is shown in Fig. 10b. The consonants classification

indexes based on 300 ms window’s length is shown in Fig.9a. This curve shows no signifi-

cant classification index except in the interval [-150,150]. Nonetheless, after increasing the

window’s length to 600 ms, the consonants classification indexes curve, which is shown in

Fig.10a, shows a high classification index in the interval [-300,300] and the performance

remains merely constant up to the interval [-100,400], which indicates that no information

is gained or lost when shifting the window from [-300,300] to [-100,400].

The analysis of the subject B based on the 300 ms window’s length is shown in Fig. 11.

Consonants classification index based on the 300 ms window’s length curve in Fig. 11a is

maximized during the interval [-150,150] which is the closest interval to speech perception.

The manners of articulation classification indexes based on the 300 ms window’s length

curve is shown in Fig. 11c, which has a behavior similar to the consonants curve, where it is

maximized in the interval [-150,150]. However, the values of manners of articulation classi-

fication indexes are much less than consonants. Places of articulation classification indexes

based on the 300 ms window’s length curve is shown in Fig 11b, where it starts to increase
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 10: The estimated mean of the classification indexes for all articulatory and auditory
features of subject C using 600 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the classification index.
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in the interval [-400,-100] up to the interval [-200,100] which includes a speech-perception

related activity. To further investigate the effect of the speech-perception stage, the analysis

was extended to the 600 ms window’s length which is shown in Fig. 12. The manners of

articulation classification indexes curve is shown in Fig. 11c, where it is maximized in the

interval [-250,350]. The places of articulation classification indexes curve, which is shown

in Fig. 12b, has a consistent increase starting from the interval of [-500, 100] and then it

is maximized in the interval [-.3,.3], and after that, the curve starts to decrease. The con-

sonants classification indexes curve is shown in Fig. 12a, which has a consistent increase

starting from [-500,100] and then it is maximized in the interval [-250,350], then it is followed

by a decrease. The decrease of both consonants and places of articulation curves tells that

shifting the window farther after the classification index-maximized interval causes loss of

information.

Based on the extended analysis of each subject, the temporal characterization of the

auditory features, which are represented by consonants, based on the 300 ms window length

shows a higher classification index as temporal-parameters of the features go toward the

speech perception stage. Furthermore, the temporal characterization based on the 600 ms

window length supports this conclusion, that the speech-perception stage is more related

to auditory features than speech-production. Neither of the articulatory features represen-

tations, however, show consistent temporal classification indexes across subjects for both

representations. For instance, subject B showed high manners of articulation temporal

classification indexes but also showed weak temporal classification indexes for the places of
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 11: The estimated mean of the activation Indexes for all articulatory and auditory
features of subject B using 300 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the activation index.
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(a) Consonants Classification Indexes (b) Places of articulation Classification Indexes

(c) Manners of Articulation Classification Indexes

Fig. 12: The estimated mean of the classification Indexes for all articulatory and auditory
features of subject B using 600 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the classification index.
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articulation. In general, the articulatory features and auditory features show higher classifi-

cation indexes in the case of the 600 ms window’s length compared to the 300 ms window’s

length. In other words, both representations are distributed in a prolonged-time window

and they are represented in a time interval larger than 300 ms. Nevertheless, the 600 ms

window seems to be too long since the curves usually showed a steady-state classification

index when shifting the window farther, for instance, subject C consonants ( 10c) and man-

ners of articulation ( 10a) classification indexes curves, in addition to subject A places of

articulation classification indexes curve ( 8b). Further analysis must be done to capture the

best window length for each representation.

In general, the temporal characterization of the auditory features has a more consistent

classification indexes curve. On the other hand, the temporal characterization of the artic-

ulatory features, which are represented by place and manners articulations, varied across

subjects. More specifically, subjects A and C have consistent classification indexes for the

places of articulation, but subject B has more consistent classification indexes for the man-

ners of articulation. Fig. 13 shows the average and standard deviation of all representations

across the three subjects. The Consonants curve, shown in Fig. 13a shows that the classifi-

cation indexes increase as the time window is shifted toward speech perception. Places and

manners of articulation show a high standard deviation since the classification indexes for

these two representations significantly varied across subjects. However, since places of ar-

ticulation were better represented for two subjects and manners of articulation were better

represented for a single subject, the standard deviation of the places of articulation is less

than the standard deviation of manners of articulation across subjects.
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(a) Average and Standard Deviation of
Consonants Classification Indexes across
Subjects

(b) Average and Standard Deviation of
Places of Articulation Classification Indexes
across Subjects

(c) Average and Standard Deviation of Manners
of Articulation Classification Indexes across sub-
jects

Fig. 13: The estimated mean of the classification Indexes for all articulatory and auditory
features of subject B using 600 ms window. The shaded area represents the 95% confidence
interval. The X-axis represents the shift by 50 ms of the features window. The Y-axis
represents the classification index.
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TABLE 4: The best time interval where each auditory and articulatory features classification
indexes were maximized in ms

Subject Articulatory Features Auditory Features

A [-300,300] [-200,400]
B [-400,200] [-250,350]
C [-300,300] [-250,350]

Nonetheless, the final conclusion about the maximum classification indexes based on the

temporal characteristics is provided in Table 4, which shows the time interval for each sub-

ject in which the classification indexes for each representation (i,e. auditory and articulatory

representations) was maximized. Since the 600 ms window’s length showed a better per-

formance, the maximum classification index interval was set based on the 600 ms window’s

length analysis. Furthermore, since the manners of articulation are better represented for

subject C and places of articulation are better represented for both subjects A and B, the

manners of articulation were chosen as an articulatory features representative for subject C

and places of articulation were chosen as a representative for subjects A and B.

Based on Table 4, the auditory and articulatory features exist in both stages: production

and perception. Moreover, the articulatory features show up earlier than the auditory

features by [50-150] ms. Table 4 also suggests that although both auditory and articulatory

features are represented in both speech production and perception, the auditory features

tend to be dominant in the speech perception stage.

4.3 MODELING SPEECH-RELATED NEURAL ACTIVITIES IN

THE TEMPORAL LOBE

The electrodes located on the temporal lobe were visually selected. Table 5 shows the
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number of the selected electrodes for each subject. Most of the selected electrodes of subject

A were located at the inferior part of the temporal lobe, which is distant from the auditory

cortex. Subject D has the best coverage of the temporal lobe, especially the auditory cortex.

The critical value α.05 of the chance level Pearson correlation coefficient was estimated in

order to have a simple and easy way to read results. The α.05 of the chance level Pearson

correlation coefficient was calculated for each shift, subject, and frequency group as it was

demonstrated in Section 3.2.4. That is, 4 × 11 × 7 different critical values were obtained,

where the first number refers to the number of subjects, the second refers to the number of

shifts, and the third refers to the number of frequencies group. In order to understand how

these critical values differ according to their parameters (i.e., subjects, frequency groups,

and lags), they were grouped based on their shift. For instance, all critical values of -500

ms lag were best-fitted to a distribution. It was found that all shift-based groups followed

a Normal distribution with very close means [.7,.10]. This means that the distributions of

these grouped critical values are merely the same. Therefore, all critical values were best-

fitted to a distribution, and it was found that they followed a Gaussian distribution with

a mean of .09. This means that different parameters (i.e., subjects, frequency groups, and

lags) do not affect the values of α.05. In other words, the distribution of the possible critical

values is merely the same for all subjects, lags, and frequencies group. When having atypical

values (e.g. .27), the analysis for that particular point was repeated using larger numbers

of iterations since more iterations will indicate whether this atypical value is superficial.

The triple or double of the original iteration number was chosen. These abnormal values

would be changed to be consistent with the general samples. Based on this, the final critical
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Fig. 14: The Historgram of the critical values obtained from different shifts, frequency
groups, and subjects.

value α.05 was estimated by fitting all obtained critical values to a Gaussian distribution

and then calculating the critical value at .05 based on this distribution. This calculation

yields α.05 = .0.1145, which would be considered one of the largest extreme values that a

level of chance correlation could take. Fig 14 shows the distribution of all the estimated

critical values.

Fig. 15 shows the mean, which is represented by the black curve, and the standard

deviation, which is represented by the gray shaded area, of the correlation coefficients over

different lags across the four subjects. The lowest frequency group [1-3]Hz starts from

the top, and the higher frequency group [19-21]Hz ends down at the bottom. The x-axis

represents the lags starting from -500 ms and up to 500 ms (11 shifts). The red horizontal

line represents the critical value α.05 of the level of chance. Based on Fig. 15, which shows

the Pearson correlation coefficients from -500 ms to 500 ms lags with 100 ms increase, the

propagation curves start to increase from -.5 s to a point in the interval [.1,.2] s and then

start to decrease where speech-related activity starts to diminish. This observation holds

for all frequency groups. Lower frequency groups ( frequency groups with higher power)
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TABLE 5: The number of electrodes that are mainly located in the temporal lobe for each
subject.

Subject Electrodes number

A 43
B 34
C 20
D 70

have stronger correlations than high frequency groups (frequency groups with lower power).

Since the variance is very high, this means that the performance varied significantly across

subjects. The next section will draw conclusions based on subject D since this subject has

the best electrodes coverage and the best performance.

Fig. 16 shows the Pearson correlation coefficients of subject D. Each curve represents

a frequency group. The analysis starts at 500 ms before the onset and ends at 500 ms

after the onset with an increase of 100 ms. Thus, the continuous curve was interpolated

using Matlab software. All values on the curve are statistically significant above the level

of chance (p ≤ .001) except when speech leads ECoG signals by 500 ms (i.e., the last point

on the curve).

The power of each frequency group is positively correlated with the ability to be decoded

from the temporal lobe neural activities. For instance, the first group (f1 in Fig. 7), which

is the mean of values at the integer frequencies power in the interval [1-3], has the best

correlation with the actual signal and the second higher correlation is assigned to the second

group of frequencies [4-6] and so on.

These curves are very similar to the activation index curve of speech-related activities in

the temporal cortex in a study that was done by Brumberg et al. (2016), where they used the
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Fig. 15: The Mean and standard deviation of the average correlation coefficient across the
four subjects for each frequency group between predicted and the actual output of the
testing data. The first group of frequencies [1-3] starts from the top, down to the seventh
group of frequencies [19-21]. The red reference line represents the estimated critical value
α.05.

same data and paradigm. This analysis shows that there is stronger speech-related neural

activity in the very early stage of speech production (-500 ms prior) whereas the previous

analysis showed there is either no or very weak speech-related activity in the temporal lobe

before -220 ms with respect to the speech onset. It can be interpreted by the LSTM-RNN

model is able to capture the nonlinear correlations between the ECoG and speech signals

since the prior work was based on Pearson correlation coefficients between speech and neural

activities. In order to test this hypothesis, a linear regression instead of LSTM-RNN was

built. The performance of the linear regression along with the performance of the LSTM-

RNN model is shown in Fig. 17. For time lags -200 ms prior, the linear model shows much

weaker correlation coefficients compared with LSTM-RNN model. This may indicate the
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Fig. 16: Decoding the frequencies of speech envelope from subject D temporal lobe using the
gamma envelope based on LSTM-RNN model. The x-axis represents the time differences
between speech and ECoG signals in seconds, where negative numbers point to when the
ECoG signals lead the speech signal and positive numbers point to when speech leads ECoG
signals. Y-axis represents the Pearson correlation coefficient between the predicted and true
values based on testing data. F1 stands for the mean of the power of the first three integers
[1-3], f2 stands for the mean of the power of the next three integers [4-6] and so on.
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Fig. 17: Linear Model Performance VS LSTM-RNN performance: The testing performance
of linear model is shown in solid lines and the testing performance of LSTM-RNN is shown
in dashed lines.

nonlinear relationship between the neural activity in the temporal lobe in the very early the

speech production stage and the speech activity. Fig. 17 also shows the better performance

of LSTM-RNN over the linear model. The previous hypothesis may also be validated by

duplicating the work of Brumberg et al. using a nonlinear correlation technique instead of

the Pearson correlation coefficient. Another interpretation is that, in this work, the spectral

power of the speech envelope provides a better representation than the raw envelope used

in the prior study.

Also, another analysis was conducted that included all the frequencies [0-50]Hz. The

results were similar to the curve in Fig. 16 for high-power frequency components. For low-

power frequencies, the correlation was very low and statistically insignificant. Moreover,

the analysis of classification indexes was applied but it is presented because the high values
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of correlations makes the classification indexes nearly constant, not showing any differences

in the decoding capabilities at different lags.
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CHAPTER 5

CONCLUSIONS

The first aim of this thesis was to decode the auditory and articulatory features and

characterize the temporal propagation of each representation in the motor cortex. The

second aim was to decode speech envelop frequencies from the temporal lobe and characterize

speech-related activity in the temporal lobe during speech production and perception. This

chapter concludes the thesis with a summary of the main contributions and several possible

future directions for this research.

5.1 MAIN CONTRIBUTIONS

Places of articulation and manners of articulation were selected as relevant articulatory

features and they were successfully decoded (i,e. statistically significant above the chance

level) from the motor cortex. Consonants were chosen as relevant auditory features and

they were also successfully decoded from the motor cortex. Temporal characterization of

auditory features suggests that they are better represented in the speech perception stage

and in the very late speech production stage (150-100 ms before the onset). The articulatory

features (either places or manners of articulation) appear before the auditory features by 50

to 150 ms. The temporal lobe can provide a predictive model of speech envelope frequencies

during speech production and perception.
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The Contribution of this Work in Speech-based BCI

In addition to providing new knowledge about the speech-related neural activities for

advancing the speech-based BCI, this work can be applied directly in a speech-based BCI

system. The two main results of the thesis indicate that, firstly, the articulatory features

appear before the auditory features in the motor cortex by 50 to 150 ms, and auditory

features are most relevant to the speech perception stage. Secondly, the temporal lobe

is able to predict speech information in the production stage. These two results suggest

that multiple decisions can be taken from different regions across different time intervals.

Combining these decisions will improve the reliability of the BCI system. For instance, a

speech-based BCI can detect the articulatory features from the motor cortex and auditory

features from the temporal lobe at the very early stage of speech production. After that,

the auditory features are detected from both the motor cortex and the temporal lobe in the

late speech production and speech perception stage. Finally, these decisions are combined

together to reduce the error and maximize the probability that a detection is correct since

more knowledge minimizes the error of machine learning models. This means that a speech-

based BCI system can be composed of multiple modules, where each one works on a specific

feature representation (e.g., articulatory and auditory) from a specific brain region and at

a specific time interval. In other words, each module is specialized in the representation-

spatial-temporal decoding technique. Such implementation would lead to improving the

real-time speech-based BCI system in a way that if the decision in the early production

stage is very confident (i.e., probability of error is too low) then this will help to reduce

the response time (i.e., time required to issue a command). This thesis contributes to
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giving possible prototypes of such modules. Another possible usage is that if a speech-

based BCI system is mainly implemented to decode the auditory features (e.g., phonemes),

an articulatory features-based BCI system can provide support when the former system

is confused, in a way that opposes or supports the decision of the auditory features-based

system.

5.2 FUTURE WORK

In this thesis, the representations of speech were chosen to be the power of the frequen-

cies of the speech envelope. However, potentially better representations can be tested, for

instance, a representation based on the human auditory system, as presented by Chi et al.

(2015) [87]. Also, two different window lengths were evaluated, assuming the duration of

speech-related activity is greater than 300 ms. On the other hand, 600 ms might be too

long. Determining the optimal temporal durations for auditory and articulatory features

representations in the motor cortex will help to increase both the ITR and efficiency of a

speech-based BCI system.

Both representations of the articulatory features in this thesis were essentially based on

the auditory features (i.e., phonemes). However, the articulatory features are related to both

the timing of articulators’ kinematics and the articulators involved in the uttering. In this

work, the choice of articulatory features is based on the articulators involved in uttering but

not on the timing of the articulators’ kinematics since the collected data does not support

measuring the kinematics in an accurate way. However, deep learning speech recognition

research has started to explore the possibility of decoding the timings of the articulatory

features based on speech signals. Nonetheless, a baseline to validate the output of these deep
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networks is not provided, but this seems a promising tool for decoding articulatory features

from neural data. Taking the timings of the articulators’ kinematics into consideration will

represent the articulatory features in a more accurate way, hence, better characterizing the

propagation of the articulatory features through time. It is hypothesized in this thesis that

the LSTM-RNN is able to predict a nonlinear correlation between ECoG and speech signals.

This assumption can be validated by replicating the work of Brumberg et al. by using a

nonlinear correlation technique.

5.3 DISCUSSION

The best representation for neural signals in the motor cortex during speech production

and perception in terms of auditory and articulatory features has been discussed in the litera-

ture. However, no conclusive results were presented regarding this research problem. As was

discussed in chapter 2, there are reports that have indicated that both representations ex-

ist. For instance, Cheung et al. (2016) suggested the auditory features are well-represented

in the motor cortex while listening and articulatory features exist during speech produc-

tion [55]. Mugler et al. suggested in two studies that the articulatory features are superior

over auditory features in the motor cortex [85, 22]. Also, Conant et al. (2018) showed that

kinematics of articulatory features are well-represented in vSMC which is part of the motor

cortex during vowel production [51]. In this thesis, the temporal differences of auditory and

articulatory representations in the motor cortex are presented. This thesis also presents the

decoding of the auditory and articulatory features of speech based on neural activities in

the motor cortex.

The characterization of speech-related neural activities in the temporal lobe during
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speech production and perception is presented. While the temporal lobe is well known

to be correlated with speech in the perception stage, its role is not well known in the pro-

duction stage. Since the motor cortex has a role in speech perception, we hypothesized that

the temporal lobe also has a role in speech production. Moreover, this hypothesis is sup-

ported by a very recent fMRI study by Okada et al. (2018) where they concluded that the

temporal lobe can provide a predictive model during speech production [50]. These thesis

results were consistent with this prior work. However, this was observed in a single subject

who had the best coverage for the temporal lobe, especially the auditory cortex. Having

subjects with similar electrode coverage would be beneficial to generalize this conclusion to

more subjects.

For some subjects, the location of the electrodes on both the motor cortex and the

temporal lobe were chosen by visual inspection, which may introduce error. Also, an exper-

imental paradigm of single phoneme/syllable uttering would be more beneficial to be used

in characterizing the auditory and articulatory features since the neural activity of each

phoneme will be definitely isolated from other phonemes’ activities. For the monosyllabic

word dataset, there were subjects who were not presented in this analysis since they did

not show statistically significant performance.

The results obtained in this thesis will contribute to advancing speech-based BCI and

the communication disorders field. It will contribute to providing tools for people who suffer

from neuromuscular diseases to improve their quality of life. Moreover, the results of this

thesis contribute to the speech neurophysiology field, where it gives a better understanding

of speech processes in the brain.
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