5,266 research outputs found

    Mental rotation meets the motion aftereffect: the role of hV5/MT+ in visual mental imagery

    Get PDF
    A growing number of studies show that visual mental imagery recruits the same brain areas as visual perception. Although the necessity of hV5/MT+ for motion perception has been revealed by means of TMS, its relevance for motion imagery remains unclear. We induced a direction-selective adaptation in hV5/MT+ by means of an MAE while subjects performed a mental rotation task that elicits imagined motion. We concurrently measured behavioral performance and neural activity with fMRI, enabling us to directly assess the effect of a perturbation of hV5/MT+ on other cortical areas involved in the mental rotation task. The activity in hV5/MT+ increased as more mental rotation was required, and the perturbation of hV5/MT+ affected behavioral performance as well as the neural activity in this area. Moreover, several regions in the posterior parietal cortex were also affected by this perturbation. Our results show that hV5/MT+ is required for imagined visual motion and engages in an interaction with parietal cortex during this cognitive process

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    The contribution of fMRI in the study of visual categorization and expertise

    Get PDF
    No description supplie

    Identifying functional network changing patterns in individuals at clinical high-risk for psychosis and patients with early illness schizophrenia: A group ICA study.

    Get PDF
    Although individuals at clinical high risk (CHR) for psychosis exhibit a psychosis-risk syndrome involving attenuated forms of the positive symptoms typical of schizophrenia (SZ), it remains unclear whether their resting-state brain intrinsic functional networks (INs) show attenuated or qualitatively distinct patterns of functional dysconnectivity relative to SZ patients. Based on resting-state functional magnetic imaging data from 70 healthy controls (HCs), 53 CHR individuals (among which 41 subjects were antipsychotic medication-naive), and 58 early illness SZ (ESZ) patients (among which 53 patients took antipsychotic medication) within five years of illness onset, we estimated subject-specific INs using a novel group information guided independent component analysis (GIG-ICA) and investigated group differences in INs. We found that when compared to HCs, both CHR and ESZ groups showed significant differences, primarily in default mode, salience, auditory-related, visuospatial, sensory-motor, and parietal INs. Our findings suggest that widespread INs were diversely impacted. More than 25% of voxels in the identified significant discriminative regions (obtained using all 19 possible changing patterns excepting the no-difference pattern) from six of the 15 interrogated INs exhibited monotonically decreasing Z-scores (in INs) from the HC to CHR to ESZ, and the related regions included the left lingual gyrus of two vision-related networks, the right postcentral cortex of the visuospatial network, the left thalamus region of the salience network, the left calcarine region of the fronto-occipital network and fronto-parieto-occipital network. Compared to HCs and CHR individuals, ESZ patients showed both increasing and decreasing connectivity, mainly hypo-connectivity involving 15% of the altered voxels from four INs. The left supplementary motor area from the sensory-motor network and the right inferior occipital gyrus in the vision-related network showed a common abnormality in CHR and ESZ groups. Some brain regions also showed a CHR-unique alteration (primarily the CHR-increasing connectivity). In summary, CHR individuals generally showed intermediate connectivity between HCs and ESZ patients across multiple INs, suggesting that some dysconnectivity patterns evident in ESZ predate psychosis in attenuated form during the psychosis risk stage. Hence, these connectivity measures may serve as possible biomarkers to predict schizophrenia progression

    Brain enhancement through cognitive training: A new insight from brain connectome

    Get PDF
    Owing to the recent advances in neurotechnology and the progress in understanding of brain cognitive functions, improvements of cognitive performance or acceleration of learning process with brain enhancement systems is not out of our reach anymore, on the contrary, it is a tangible target of contemporary research. Although a variety of approaches have been proposed, we will mainly focus on cognitive training interventions, in which learners repeatedly perform cognitive tasks to improve their cognitive abilities. In this review article, we propose that the learning process during the cognitive training can be facilitated by an assistive system monitoring cognitive workloads using electroencephalography (EEG) biomarkers, and the brain connectome approach can provide additional valuable biomarkers for facilitating leaners' learning processes. For the purpose, we will introduce studies on the cognitive training interventions, EEG biomarkers for cognitive workload, and human brain connectome. As cognitive overload and mental fatigue would reduce or even eliminate gains of cognitive training interventions, a real-time monitoring of cognitive workload can facilitate the learning process by flexibly adjusting difficulty levels of the training task. Moreover, cognitive training interventions should have effects on brain sub-networks, not on a single brain region, and graph theoretical network metrics quantifying topological architecture of the brain network can differentiate with respect to individual cognitive states as well as to different individuals' cognitive abilities, suggesting that the connectome is a valuable approach for tracking the learning progress. Although only a few studies have exploited the connectome approach for studying alterations of the brain network induced by cognitive training interventions so far, we believe that it would be a useful technique for capturing improvements of cognitive function

    Neural correlates of phonological, orthographic and semantic reading processing in dyslexia

    Get PDF
    Developmental dyslexia is one of the most prevalent learning disabilities, thought to be associated with dysfunction in the neural systems underlying typical reading acquisition. Neuroimaging research has shown that readers with dyslexia exhibit regional hypoactivation in left hemisphere reading nodes, relative to control counterparts. This evidence, however, comes from studies that have focused only on isolated aspects of reading. The present study aims to characterize left hemisphere regional hypoactivation in readers with dyslexia for the main processes involved in successful reading: phonological, orthographic and semantic. Forty-one participants performed a demanding reading task during MRI scanning. Results showed that readers with dyslexia exhibited hypoactivation associated with phonological processing in parietal regions; with orthographic processing in parietal regions, Broca's area, ventral occipitotemporal cortex and thalamus; and with semantic processing in angular gyrus and hippocampus. Stronger functional connectivity was observed for readers with dyslexia than for control readers 1) between the thalamus and the inferior parietal cortex/ventral occipitotemporal cortex during pseudoword reading; and, 2) between the hippocampus and the pars opercularis during word reading. These findings constitute the strongest evidence to date for the interplay between regional hypoactivation and functional connectivity in the main processes supporting reading in dyslexia. Keywords: Dyslexia, Reading, Hypoactivation, Functional connectivity, Thalamus, Hippocampu

    Altered Effective Connectivity Network of the Amygdala in Social Anxiety Disorder: A Resting-State fMRI Study

    Get PDF
    The amygdala is often found to be abnormally recruited in social anxiety disorder (SAD) patients. The question whether amygdala activation is primarily abnormal and affects other brain systems or whether it responds “normally” to an abnormal pattern of information conveyed by other brain structures remained unanswered. To address this question, we investigated a network of effective connectivity associated with the amygdala using Granger causality analysis on resting-state functional MRI data of 22 SAD patients and 21 healthy controls (HC). Implications of abnormal effective connectivity and clinical severity were investigated using the Liebowitz Social Anxiety Scale (LSAS). Decreased influence from inferior temporal gyrus (ITG) to amygdala was found in SAD, while bidirectional influences between amygdala and visual cortices were increased compared to HCs. Clinical relevance of decreased effective connectivity from ITG to amygdala was suggested by a negative correlation of LSAS avoidance scores and the value of Granger causality. Our study is the first to reveal a network of abnormal effective connectivity of core structures in SAD. This is in support of a disregulation in predescribed modules involved in affect control. The amygdala is placed in a central position of dysfunction characterized both by decreased regulatory influence of orbitofrontal cortex and increased crosstalk with visual cortex. The model which is proposed based on our results lends neurobiological support towards cognitive models considering disinhibition and an attentional bias towards negative stimuli as a core feature of the disorder
    corecore