83 research outputs found

    Intelligent Methods for Condition Diagnosis of Plant Machinery

    Get PDF

    The Use of Advanced Soft Computing for Machinery Condition Monitoring

    Get PDF
    The demand for cost effective, reliable and safe machinery operation requires accurate fault detection and classification. These issues are of paramount importance as potential failures of rotating and reciprocating machinery can be managed properly and avoided in some cases. Various methods have been applied to tackle these issues, but the accuracy of those methods is variable and leaves scope for improvement. This research proposes appropriate methods for fault detection and diagnosis. The main consideration of this study is use Artificial Intelligence (AI) and related mathematics approaches to build a condition monitoring (CM) system that has incremental learning capabilities to select effective diagnostic features for the fault diagnosis of a reciprocating compressor (RC). The investigation involved a series of experiments conducted on a two-stage RC at baseline condition and then with faults introduced into the intercooler, drive belt and 2nd stage discharge and suction valve respectively. In addition to this, three combined faults: discharge valve leakage combined with intercooler leakage, suction valve leakage combined with intercooler leakage and discharge valve leakage combined with suction valve leakage were created and simulated to test the model. The vibration data was collected from the experimental RC and processed through pre-processing stage, features extraction, features selection before the developed diagnosis and classification model were built. A large number of potential features are calculated from the time domain, the frequency domain and the envelope spectrum. Applying Neural Networks (NNs), Support Vector Machines (SVMs), Relevance Vector Machines (RVMs) which integrate with Genetic Algorithms (GAs), and principle components analysis (PCA) which cooperates with principle components optimisation, to these features, has found that the features from envelope analysis have the most potential for differentiating various common faults in RCs. The practical results for fault detection, diagnosis and classification show that the proposed methods perform very well and accurately and can be used as effective tools for diagnosing reciprocating machinery failure

    An intelligent engine condition monitoring system

    Get PDF
    The main focus of the work reported here is in the design of an intelligent condition monitoring system for diesel engines. Mechanical systems in general and diesel engines in particular can develop faults if operated for any length of time. Condition monitoring is a method by which the performance of a diesel engine can be maintained at a high level, ensuring both continuous availability and design-level efficiency. A key element in a condition monitoring program is to acquire sensor information from the engine, and use this information to assess the condition of the engine, with an emphasis on monitoring causes of engine failure or reduced efficiency. A Ford 70PS 4-stroke diesel engine has been instrumented with a range of sensors and interfaced to a PC in order to facilitate computer controlled data acquisition and data storage. Data was analyzed to evaluate the optimum use of sensors to identify faults and to develop an intelligent algorithm for the engine condition monitoring and fault detection, and in particular faults affecting the combustion process in the engine. In order to investigate the fault-symptom relationships, two synthetic faults were introduced to the engine. Fuel and inlet air shortage were selected as the faults for their direct relationship to the combustion process quality. As a subtask the manually operated hydraulic brake was adapted to allow automatic control to improve its performance. Two modes of controlling were designed for the developed automatic control of the hydraulic brake system. A robust mathematical diesel engine model has been developed which can be used to predict the engine parameters related to the combustion process in the diesel engine, was constructed from the basic relationships of the diesel engine using the minimum number of empirical equations. The system equations of a single cylinder engine were initially developed, from which the multi-cylinder diesel engine model was validated against experimental test data. The model was then tuned to improve the predicted engine parameters for better matching with the available engine type. The final four-cylinder diesel engine model was verified and the results show an accurate match with the experimental results. Neural networks and fuzzification were used to develop and validate the intelligent condition monitoring and fault diagnosis algorithm, in order to satisfy the requirements of on-line operation, i. e. reliability, easily trained, minimum hardware and software requirements. The development process used a number of different neural network architecture and training techniques. To increase the number of the parameters used for the engine condition evaluation, the Multi-Net technique was used to satisfy accurate and fast decision making. Two neural networks are designed to operate in parallel to accommodate the different sampling rate of the key parameters without interference and with reduced data processing time. The two neural networks were trained and validated using part of the measured data set that represents the engine operating range. Another set of data, not utilized within the training stage, has been applied for validation. The results of validation process indicate the successful prediction of the faults using the key measured parameters, as well as a fast data processing algorithm. One of the main outcomes of this study is the development of a new technique to measure cylinder pressure and fuel pressure through the measurement of the strain in the injector body. The main advantage of this technique is that, it does not require any intrusive modification to the engine which might affect the engine actual performance. The developed sensor was tested and used to measure the cylinder and fuel pressure to verify the fuel fault effect on the combustion process quality. Due to high sampling rate required, the developed condition monitoring and fault diagnosis algorithm does not utilize this signal to reduce the required computational resources for practical applications.EThOS - Electronic Theses Online ServiceEgyptian GovernmentGBUnited Kingdo

    A Framework for Prognostics Reasoning

    Get PDF
    The use of system data to make predictions about the future system state commonly known as prognostics is a rapidly developing field. Prognostics seeks to build on current diagnostic equipment capabilities for its predictive capability. Many military systems including the Joint Strike Fighter (JSF) are planning to include on-board prognostics systems to enhance system supportability and affordability. Current research efforts supporting these developments tend to focus on developing a prognostic tool for one specific system component. This dissertation research presents a comprehensive literature review of these developing research efforts. It also develops presents a mathematical model for the optimum allocation of prognostics sensors and their associated classifiers on a given system and all of its components. The model assumptions about system criticality are consistent with current industrial philosophies. This research also develops methodologies for combine sensor classifiers to allow for the selection of the best sensor ensemble

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Performance-based health monitoring, diagnostics and prognostics for condition-based maintenance of gas turbines: A review

    Get PDF
    With the privatization and intense competition that characterize the volatile energy sector, the gas turbine industry currently faces new challenges of increasing operational flexibility, reducing operating costs, improving reliability and availability while mitigating the environmental impact. In this complex, changing sector, the gas turbine community could address a set of these challenges by further development of high fidelity, more accurate and computationally efficient engine health assessment, diagnostic and prognostic systems. Recent studies have shown that engine gas-path performance monitoring still remains the cornerstone for making informed decisions in operation and maintenance of gas turbines. This paper offers a systematic review of recently developed engine performance monitoring, diagnostic and prognostic techniques. The inception of performance monitoring and its evolution over time, techniques used to establish a high-quality dataset using engine model performance adaptation, and effects of computationally intelligent techniques on promoting the implementation of engine fault diagnosis are reviewed. Moreover, recent developments in prognostics techniques designed to enhance the maintenance decision-making scheme and main causes of gas turbine performance deterioration are discussed to facilitate the fault identification module. The article aims to organize, evaluate and identify patterns and trends in the literature as well as recognize research gaps and recommend new research areas in the field of gas turbine performance-based monitoring. The presented insightful concepts provide experts, students or novice researchers and decision-makers working in the area of gas turbine engines with the state of the art for performance-based condition monitoring

    Performance based diagnostics of a twin shaft aeroderivative gas turbine: water wash scheduling

    Get PDF
    Aeroderivative gas turbines are used all over the world for different applications as Combined Heat and Power (CHP), Oil and Gas, ship propulsion and others. They combine flexibility with high efficiencies, low weight and small footprint, making them attractive where power density is paramount as off shore Oil and Gas or ship propulsion. In Western Europe they are widely used in CHP small and medium applications thanks to their maintainability and efficiency. Reliability, Availability and Performance are key parameters when considering plant operation and maintenance. The accurate diagnose of Performance is fundamental for the plant economics and maintenance planning. There has been a lot of work around units like the LM2500® , a gas generator with an aerodynamically coupled gas turbine, but nothing has been found by the author for the LM6000® . Water wash, both on line or off line, is an important maintenance practice impacting Reliability, Availability and Performance. This Thesis aims to select and apply a suitable diagnostic technique to help establishing the schedule for off line water wash on a specific model of this engine type. After a revision of Diagnostic Methods Artificial Neural Network (ANN) has been chosen as diagnostic tool. There was no WebEngine model available of the unit under study so the first step of setting the tool has been creating it. The last step has been testing of ANN as a suitable diagnostic tool. Several have been configured, trained and tested and one has been chosen based on its slightly better response. Finally, conclusions are discussed and recommendations for further work laid out

    Fault diagnostics for advanced cycle marine gas turbine using genetic algorithm

    Get PDF
    The major challenges faced by the gas turbine industry, for both the users and the manufacturers, is the reduction in life cycle costs , as well as the safe and efficient running of gas turbines. In view of the above, it would be advantageous to have a diagnostics system capable of reliably detecting component faults (even though limited to gas path components) in a quantitative marmer. V This thesis presents the development an integrated fault diagnostics model for identifying shifts in component performance and sensor faults using advanced concepts in genetic algorithm. The diagnostics model operates in three distinct stages. The rst stage uses response surfaces for computing objective functions to increase the exploration potential of the search space while easing the computational burden. The second stage uses the heuristics modification of genetics algorithm parameters through a master-slave type configuration. The third stage uses the elitist model concept in genetic algorithm to preserve the accuracy of the solution in the face of randomness. The above fault diagnostics model has been integrated with a nested neural network to form a hybrid diagnostics model. The nested neural network is employed as a pre- processor or lter to reduce the number of fault classes to be explored by the genetic algorithm based diagnostics model. The hybrid model improves the accuracy, reliability and consistency of the results obtained. In addition signicant improvements in the total run time have also been observed. The advanced cycle Intercooled Recuperated WR2l engine has been used as the test engine for implementing the diagnostics model.SOE Prize winne

    Artificial neural networks for vibration based inverse parametric identifications: A review

    Get PDF
    Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters of that structure. Inverse problems dealing with vibration response utilize the response signals to find out input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier researches where ANNs were applied to solve different vibration-based inverse parametric identification problems. The adoption of different ANN algorithms, input-output schemes and required signal processing were denoted in considerable detail. In addition, a number of issues have been reported, including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN approaches with respect to general inverse methods Based on the critical analysis, suggestions to potential researchers have also been provided for future scopes
    corecore