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ABSTRACT 

The main focus of the work reported here is in the design of an intelligent 

condition monitoring system for diesel engines. Mechanical systems in general 

and diesel engines in particular can develop faults if operated for any length of 

time. Condition monitoring is a method by which the performance of a diesel 

engine can be maintained at a high level, ensuring both continuous availability and 
design-level efficiency. A key element in a condition monitoring program is to 

acquire sensor information from the engine, and use this information to assess the 

condition of the engine, with an emphasis on monitoring causes of engine failure 

or reduced efficiency. 

A Ford 70PS 4-stroke diesel engine has been instrumented with a range of sensors 

and interfaced to a PC in order to facilitate computer controlled data acquisition 

and data storage. Data was analyzed to evaluate the optimum use of sensors to 

identify faults and to develop an intelligent algorithm for the engine condition 

monitoring and fault detection, and in particular faults affecting the combustion 

process in the engine. In order to investigate the fault-symptom relationships, two 

synthetic faults were introduced to the engine. Fuel and inlet air shortage were 

selected as the faults for their direct relationship to the combustion process 

quality. As a subtask the manually operated hydraulic brake was adapted to allow 

automatic control to improve its performance. Two modes of controlling were 
designed for the developed automatic control of the hydraulic brake system. 

A robust mathematical diesel engine model has been developed which can be used 

to predict the engine parameters related to the combustion process in the diesel 

engine, was constructed from the basic relationships of the diesel engine using the 

minimum number of empirical equations. The system equations of a single 

cylinder engine were initially developed, from which the multi-cylinder diesel 

engine model was validated against experimental test data. The model was then 

tuned to improve the predicted engine parameters for better matching with the 

available engine type. The final four-cylinder diesel engine model was verified 

and the results show an accurate match with the experimental results. 



Neural networks and fuzzification were used to develop and validate the 

intelligent condition monitoring and fault diagnosis algorithm, in order to satisfy 

the requirements of on-line operation, i. e. reliability, easily trained, minimum 

hardware and software requirements. The development process used a number of 

different neural network architecture and training techniques. To increase the 

number of the parameters used for the engine condition evaluation, the Multi-Net 

technique was used to satisfy accurate and fast decision making. Two neural 

networks are designed to operate in parallel to accommodate the different 

sampling rate of the key parameters without interference and with reduced data 

processing time. The two neural networks were trained and validated using part of 

the measured data set that represents the engine operating range. Another set of 

data, not utilized within the training stage, has been applied for validation. The 

results of validation process indicate the successful prediction of the faults using 

the key measured parameters, as well as a fast data processing algorithm. 

One of the main outcomes of this study is the development of a new technique to 

measure cylinder pressure and fuel pressure through the measurement of the strain 

in the injector body. The main advantage of this technique is that, it does not 

require any intrusive modification to the engine which might affect the engine 

actual performance. The developed sensor was tested and used to measure the 

cylinder and fuel pressure to verify the fuel fault effect on the combustion process 

quality. Due to high sampling rate required, the developed condition monitoring 

and fault diagnosis algorithm does not utilize this signal to reduce the required 

computational resources for practical applications. 
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Chapter 1. Introduction 

CHAPTER I 

INTRODUCTION 

The history of the diesel engine extends back to the end of the nineteenth century 

when Dr. Rudolf Diesel began his pioneering work on air blast injected stationary 

engines, and maintains a dominant position in many applications throughout 

industry and transport such as, marine, automotive, and power generation plants. 

The diesel engine is capable of further improvement and will continue to have an 

assured place as the most efficient liquid fuel burning prime mover yet devised, 

Baranescu, [1999]. They have a very wide operating range and engine 

performance depends mainly on the operating conditions which change due to 

variations in load, speed, rate of fuel consumption, as well as environmental 

conditions. To maintain engine performance as high as possible, it is vital to adjust 

the engine parameters within an optimum range, corresponding to its wide 

operating envelope, and keep the engine operating in an efficient, safe and reliable 

way. 

The reasons for the diesel engines success can be summarised by simple operation, 

fuel availability, high reliability, high thermal efficiency, and low fuel 

consumption. The continuous availability of the engine is vital where safety is 

important and depends upon it. This investigation focuses on achieving continuous 

availability and reliability of the diesel engine at highest efficiency using 

condition monitoring and fault diagnosis. During condition monitoring 

information is collected from the engine whilst in operation, and compared against 

prior knowledge from a healthy engine. An evaluation is then carried out to 

meaningfully interpret the actual engine condition and includes the ability to 

identify any degradation that may result in reduced performance or equipment 

malfunction. In the fault diagnosis stage, the collected data is used to support a 

decision on the source of fault and its level. How long the machine can continue to 

be safely operated can also be evaluated. With this kind of knowledge, the engine 

can serve the owner with high efficiency and continuous availability, and 

furthermore, there may be no need to perform any periodic maintenance that is 

usually required to ensure the highest reliability. 
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Chapter 1. Introduction 

1.1 BACKGROUND TO CONDITION MONITORING AND FAULT 

DIAGNOSIS 

The traditional method of condition monitoring was carried out using manual 

inspection, relying on the expertise of a technician to monitor and check the 

engine performance. For example, when the technician observes a reduction in the 

generated power, he will undertake a sequence of inspections which may involve 

measuring the off-line cylinder compression pressure. A reduction in the peak 

pressure might indicate leakage from the cylinder which could be attributable to 

damaged valves, rings, or cylinder head gasket. To ascertain the specific fault it 

will then be necessary for the technician to dismantle the cylinder head and inspect 

the condition of the internal parts. By introducing continuous on-line condition 

monitoring, it is possible to measure the condition and performance of the diesel 

engine whilst it is running. At the same time, measurements can identify when it is 

necessary to renovate or replace engine parts. This measurement data could 

therefore be uploaded to an automated system that evaluates the engine condition 

and can predict the possible fault cause and level. 

Many researchers and manufacturers have paid close attention to developing a 

variety of fault diagnosis methods or systems. Among these, the researcher's effort 
is focused on robust and economic condition monitoring and fault diagnosis 

systems for the overall diesel engine or a specific subsystem. Most of the engine 

condition monitoring and fault diagnosis systems that have been reviewed are 
based on off-line testing and analysis. Since the 1980s, many scientists and 

researchers have developed models using knowledge based diagnostic reasoning 

that can solve various types of problem. Conventional models have bottlenecks, 

such as knowledge acquisition, complexity, and required a large knowledge base. 

Recently researchers have carried out considerable work using a diagnostic 

approach based on neural networks, fuzzy logic, or a combination of the two. 
Because of its high compatibility with non-linear complex systems, the neural 

network was selected for the proposed engine condition monitoring and fault 

diagnosis system. In addition, neural networks offer a promising solution that can 

mimic the human information processing capability. Fuzzification, which is only 

part of the fuzzy logic structure, was utilized to develop a simple output that gives 

the user a simple recommended action. 
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Chapter 1. Introduction 

A data acquisition system has been constructed to collect information using 

appropriate sensors on an existing four cylinder Ford 4-stroke diesel engine. The 

collected information is used to monitor the engine condition as well as detect any 

changes that may develop and cause a mechanical fault or reduction in 

performance. The acquired data was used to construct a Neural Network algorithm 

that can evaluate the engine condition and detect a fault before it develops to a 

severe level. A review of previous research in this field shows that the most 

suitable neural network architectures for the non-linear system are the Radial 

Basis Function (RBF) and Multi-Layer Perceptron (MLP). A comparison between 

the two topologies was carried out to evaluate the optimum architectures for the 

diesel engine application, with the aim of minimizing the number of sensors for 

the condition monitoring and fault diagnosis system algorithm. This was evaluated 
by only using the key parameters that is able to detect and evaluate the engine 

condition and possible faults. 

The neural network accuracy depends primarily upon the amount of available data. 

However, to increase the testing regime an analytical engine model has been 

constructed using the chemical, thermodynamic and dynamic mathematical 

relationships that govern the different engine processes. This model was verified 

and then utilized to investigate the effect of various changes in the engine 

parameters, as well as being used to generate another set of data for evaluating the 

condition monitoring and fault diagnosis algorithm. The proposed model was 

constructed using general relationships that can be adopted to suit high speed 

medium size diesel engines. 

1.2 AIM, OBJECTIVES AND HYPOTHESIS 

The aim of this research is to design and develop an intelligent engine monitoring 

system using a set of sensors to establish the engine status. This information was 

used to arrive at an informed decision regarding the continued operation and status 

of the engine and to predict the likely mode of failure. The hypothesis of this work 
is whether it is possible to implement a condition monitoring and fault diagnosis 

system using a limited number of low cost sensors coupled to a Neural Networks 

system to predict the mode of failure. As the system is in the development stage it 

was designed for use in a maintenance shop environment taking into account the 

3 



Chapter 1. Introduction 

future application of the system in an on-line engine CMFD. This aim and 
hypothesis in addition to the basis of condition monitoring and fault diagnosis 

(CMFD) systems for diesel engine prompted the author to set the objectives of the 

research as follows: 

* Review the past and current practice and application of condition monitoring 

and fault diagnosis (CMFD) systems in the area of diesel engine application. 

* Integrate an available diesel engine with appropriate sensors to monitor its 

condition under different operating conditions. 

* Design and implement a data acquisition system for an automotive diesel 

engine. 

* Design and implement an analytical model for the diesel engine system that 

has the capability to investigate the effect of physical parameters change on 

the engine performance. 

* Construct a neural network algorithm that has the ability to evaluate the 

engine condition according to the minimum possible sensor signals. 

In order to design and validate a new CMFD, an experimental test facility was 
developed and instrumented with the required sensors. An existing four cylinder 
Ford 4-stroke diesel engine (Type 70PS) was utilized for the experimental test 

programme. The engine was connected to a manually controlled Froude DPX3 

200hp sluice plate hydraulic dynamometer to provide the engine load. It was 
decided to automate the brake control to provide the test system with the facility 

of actual load simulation throughout the evaluation of the proposed CMFD 

algorithm. 

Following the engine instrumentation, the data acquisition code was designed 

using Labview (National Instruments) utilizing a high speed data acquisition card. 

After implementing and testing the whole system, the performance of the engine 

was fully investigated to establish the ability of the engine CMFD system to 

diagnose faults. Synthetic faults were introduced on the engine to simulate the 

actual situation, and the ability of the CMFD system to detect the fault nature was 

then explored. 
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Because of the non-linearity and complex dynamic characteristics of the diesel 

engine, neural networks and fuzzy logic techniques were selected for the fault 

diagnosis algorithm. Little or almost no process knowledge is required, and the 

neural networks rely on the fact that knowledge about fault patterns is already 

embedded in the measured sensor signals. Therefore, this technique requires 

extensive training sets of data to cover all of the possible operating conditions. 
The time and cost of collecting all of the data experimentally was an issue and it 

was decided to develop an analytical engine model that is capable to work in 

parallel with the actual engine to increase the amount of the available data for 

training and testing process of the proposed CMFD algorithm of the diesel engine. 
The model was designed to be applicable for most medium size diesel engine 

types; and was constructed using MATLAB/SIMULINK (Mathworks). 

1.3 RESEARCH OUTCOME 

As a result of the presented work, all of the above objectives and the hypothesis 

had been achieved as well as subtasks challenges raised through the research 

progress. The main outcomes can be summarized as follows: 

* Developments of a new technique for cylinder and injection fuel pressure 

measurements. 

* Evaluate the key parameters to detect the presence of air inlet and fuel 

blockage faults. 

* Development a neuro-fuzzy engine CMFD algorithm that is able to utilize 

the key parameters of the engine to detect the air inlet and fuel blockage 

faults and evaluate its severity level. 

* Building up of analytical simulation model of diesel engine that had the 

capability of predicting the main parameters of the diesel engine. 

1.4 OVERVIEW OF THE THESIS CONSTRUCTION 

The thesis comprises seven chapters as follows: 

The background as well as the aims, objectives and hypotheses of the research 
have been introduced in the Chapter One. A detailed literature review and 

discussion of the previous research in the field of condition monitoring and fault 
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diagnosis of the diesel engine is covered in Chapter Two, and aims to give the 

reader a classification of the different methods used to construct a condition 

monitoring and fault diagnosis systems starting from early in the 1970s until the 

recent available techniques. The limitations and the reasons for the selection of 

neural network for the proposed algorithm are summarised at the end of the 

chapter. 

In Chapter Three, a detailed explanation of the experimental diesel engine testing 

system is covered. The hydraulic brake modification to improve loading 

performance with sensors, actuator and control system is discussed. The selected 

measured parameters and the appropriate sensors used for the engine condition 

monitoring and fault diagnosis testing system are introduced. The hardware and 

software requirements for the data acquisition system are also explained, and the 

Labview software developed for the data collection program is described in detail. 

Chapter Four includes all experimental results. The data is analysed and different 

operating conditions compared. The discussion leads to a selection of the physical 

parameters that reveal the engine condition under different operating conditions. 
The data was subsequently used for the verification of the constructed analytical 

model. 

Chapter Five focuses on the proposed engine model and explains the rational and 

mathematical relationships used for the model. The relationships are classified into 

two main sections. The dynamics of the engine form one part while the 

thermodynamic and chemical subsystems of the diesel engine represent the second 

part. The proposed model is constructed in the MATLAB/SIMULINK 

environment. The simulation results are presented at the end of this chapter. 

The main outcome of the present work comprises Chapter Six, where the engine 

condition monitoring and fault diagnosis algorithm are described in detail. This 

chapter aims to explain the principle on which the neural network topology was 

selected, and how it satisfies the complex requirements and non-linearity of the 

diesel engine. In addition, a detailed description of the technique used to train the 

Neural Network for fault detection and diagnosis is also included. The validation 

and testing steps using experimental results of the engine are evaluated. A brief 
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discussion of the possible applications of the developed engine condition 

monitoring and fault diagnosis algorithm is included. 

A summary of the outcome from the present work is given in Chapter Seven, 

along with suggestions for future work. The technical specifications for the 

components used in the test system are listed in Appendix A and a detailed 

description of the designed electronic circuits required for the signal processing of 

the measured signal is given in Appendix B. Appendix C details the mathematical 

calculations used within the design of the new pressure sensor utilized for 

measuring the cylinder and injection fuel pressures. The calculations include both 

the design equations and calculations used for conversion of measured signal. 
Finally, additional experimental results, which had not been included in the thesis 

context, are included in Appendix D. 
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CHAPTER 2 

LITERATURE REVIEW 

Engine health monitoring, more commonly described as performance or condition 

monitoring, has been totally revolutionized by the development of the 

microprocessor and associated software programs. Condition monitoring has 

perhaps always had higher priority on ships at sea and power plant units than in 

any other application; for obvious reasons since here an engine failure can result in 

large loss in life and money. The engine room log sheet, in which the watch 
keeper records many parameters such as loads, speeds, key pressures and 

temperatures and the results of occasional manual checks on such measurements 

as maximum cylinder pressures, is a primitive example of condition monitoring. 
Such monitoring however has many limitations. 

Most of these limitations may now be transcended as a result of two main 
developments; the vast range of robust and reasonably cheap transducers that are 

now available, and the ready availability of computer systems capable of storing 

and handling a vast amount of data, with the ability to recognize complex patterns 

and trends of behaviour that may represent deterioration or actual danger, as well 

as the capability of issuing appropriate warnings. 

Nevertheless, when making the change from a manned to an unmanned or partially 

manned system it is well to be aware of what may be lost, as well as what it is 

hoped to be gained. In a manned installation, the 'expert man system', the 

engineer, is capable of a range of diagnostic skills and responses that cannot be 

fully equalled artificially; he will be, for example, have the ability to use historical 

background experience with the engine to evaluate the meaning of the 

measurements. 

It will be evident that the 'intelligence' of an automated or so-called 'expert' system 

will be only as good as the model embodied in the computer software; there are 

many possible models just as there are many possible engine installations. An 

engineer responsible for choosing such a system for a given application should 
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check that it is capable of recognizing all the types of malfunction and 
deterioration that he can foresee, also that it has sufficient built-in flexibility to 

allow development as experience with the particular installation is accumulated. 

Moving from a traditional method of condition monitoring, which is carried out by 

means of inspection, to a modern condition monitoring system began in the 1970s, 

where Langballe et al., [1975], describe the development of instrumentation 

systems for monitoring diesel engines. The development of these condition 

monitoring systems involved details research into the failure mechanisms in diesel 

engines and how they behave under wide range of service conditions over a long 

period of time. It had been shown that it was possible and advantageous to monitor 

the process and the components directly by means of special sensors to provide 

more efficient condition monitoring performance than relying on derived 

information from indirect physical measurements. 

Sletmo, [1978], introduce the CYLDET-CM system for condition monitoring of 

marine diesel engines built up from modules in the alarm system and 

microcomputer-based digital electronic system DS-8. This system was based on 

the use of a number of different transducers for the direct, continuous 

measurements of the cylinder parameters such as combustion pressure and liner 

surface temperature. Due to the available computational resources at this time, 

many limitations were found through the development of this system such as low 

processing speed and utilization of intrusive and unreliable sensors. However, the 

results were promising and forward looking to the different challenges. 

Since then, many researchers have been focused on complete Condition 

Monitoring and Fault Diagnosis (CMFD) systems for the diesel engine such as, 

Tjong et al., [1993] Jones and Li, [2000]; Yin et al., [2003]; and Jiang et al., 

[2008]. The CMFD developer has access to many techniques, such as expert 

systems, feature extraction, parameter estimation, neural networks, and model- 

based CMFD systems to monitor the diesel engine condition. Both off-line and on- 

line CMFD were investigated indicating the advantage and disadvantage of each 

method. 
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This chapter covers previous literature in the main areas relating to the diesel 

engine condition monitoring and fault diagnosis systems. A brief discussion of the 

different fault detection and diagnostic techniques had been introduced. A review 

of the different methods used for the diesel engine simulation modeling is 

included and discusses the advantages and disadvantages of each method. As the 

neural networks represent one of the most promising techniques in the building of 

CMFD for internal combustion engines in general and diesel engine specifically, a 

detailed discussion of the general considerations required for the design and 

training processes is also explained. The classification of the neural networks 

topology is covered as well as the training methods for neural networks. A 

summary of the main outputs of the chapter is also included. 

2.1 FAULT DETECTION AND DIAGNOSTIC TECHNIQUES 

In this section, a number of techniques proposed for computerised decision 

making are presented. Note that some conditions can be identified with relative 

ease if there is a readily available variable for measurement that relates directly to 

the fault. An example of this is the flow through the oil filter. This condition may 
be evaluated through the differential pressure over the oil filter, the higher it is the 

dirtier the filter. Such straightforward condition monitoring techniques are useful 

to identify, and the required sensors may be fitted and inspected after doing a cost 

- necessity analysis. As an example, the sensors are usually fitted to evaluate the 

condition of a lubrication oil filter, but not in the case of an air filter. This is 

because the health of the engine is more vulnerable to a lack of oil than a shortage 
in air, i. e. the engine will not be permanently damaged from limited air supply. 

Other faults may not be directly related to a simple measurable quantity, or a 

suitable sensor may not be fitted due to restraints in space or resources. The 

intention of the following section is to review some techniques that help to 

identify these faults based on more indirect information that is simply measured 

using reasonable cost sensors. 

2.1.1 Expert system 

An expert system is a computer program in which the knowledge of an expert on a 

specific subject can be incorporated in order to solve problem or give advice and 

thus is capable of emulating human cognitive skills such as problem solving, 
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visual perception and language understanding. An expert system usually consists 

of a knowledge base, an interface mechanism, an explanation component, a user 

interface and acquisition component. Expert system can capture the knowledge of 

an expert in a particular area, computerize it into some software then transfer it to 

others users. Similar to human expert, expert system can reason logically, make 

decisions and explain the final conclusions. 

Some engine manufacturers have been conducting extensive research to produce 

an efficient engine that satisfies customer requirements and complies with 

environmental legislation. For example, the Ford Motor Company has designed a 

Service Bay Diagnosis System (SBDS), an expert system to replace traditional 

printed service manuals and analogue test devices, Bielawski and Lewand, [1991]. 

A DIAgnosing expert System DIAS 1 is being developed using the Seoul national 

university Artificial Intelligent Language with Objects and Rules (SAILOR) 

expert shell, which is an expert diagnosis system for ECU controlled automobile 

engines produced by Hyundai Morots Corporation in Korea, Yoo and Kim, [1992]. 

Later, Gelgele and Wang, [1998], introduce EXpert Engine Diagnosis System 

(EXEDS) which is a prototype intelligent diagnostic for automobiles engines. The 

objective is to help mechanics and car drivers in systematic diagnosis of their daily 

engine failure and be able to give both low-level and expert assistance in fixing 

engine malfunctions. It consists of diagnostic rules that progressively led to the 

possible causes of failure by utilizing a decision tree that represent the expertise in 

a clear and compact way. 

In general, all expert systems face the same problem where knowledge acquisition 

was the first and most difficult task in the developing process. The knowledge 

should not only based on correct facts and data, but should also include all 

possible alternatives to avoid any incorrect diagnosis that leads to unnecessary 

repair or replacements. In addition, the rule processing mechanism chosen are of 

primary importance in determining the performance of the entire system. Different 

types of problems require different type of inference mechanisms that must be 

adapted to the problem to be solved, Kalogirou, [2003]. 
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2.1.2 Parameter estimation approach 

From a theoretical point of view, any linear dynamic system may be represented as 

a coupled set of first order differential equations: 

x'= Az + Bu (2-1) 

y= Cx + Du (2-2) 

Here x is a vector containing the states of the system. The states are any selected 

physical variables in time which will fully define the system, e. g. for a second 

order system mass-spring system, two states, typically position and velocity, are 

required. u represent the input and y represent the output of the system. A, B, C, 

and D are matrices defining physical relationships. The matrix D is usually zero, 

and will be omitted in the following discussion. In the case of D=0, the states are 

easily found from equation (2-2) thus 

x= C-' y (2-3) 

This simple relationship is only valid if C is invertible, i. e. only for linear systems. 
In the more likely general case the system equations take the following form 

x' = f, (x, u, t, B) (2-4) 

y= g, (x, u, t, 9) (2-5) 

where f,, and g, are non-linear equations. 9 is a vector of parameters, equivalent 

to the coefficients of the matrices A, B, C and D. In the general case these 

coefficients may change, hence the system behaviour will change. 

The presence of faults will cause the system to change its behaviour, i. e. the 6 

vector will change. In the linear system analogy, when this system of matrices A, 

B, and C could change. Any model of the healthy engine will produce incorrect 

states and output vector in the case of a fault. Thus the faults or abnormal situation 
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can be identified. Pursuing this idea, the model could be adjusted such that it will 

give an output that is more like the actual engine output by changing the parameter 

vector 0; the values that gives the minimal errors is considered to best describe 

the engine. By correlating the values of the parameters and a range of faults, 

successful diagnostics is achieved. 

H Engine 
Y 

Boundary 
conditions 

ý Simulator y 

Parameter 
estimator 

Figure 2.1 Parameter estimation approach to fault diagnosis. 

A block diagram of this approach is given in Figure 2.1. The engine itself will at 

all times run under specific boundary conditions, e. g. set speed and load. The same 

conditions are fed into a comprehensive simulator model of the engine. The engine 

produces measured outputs, such as a range of temperatures and pressures, speed 

etc. The simulator has the same outputs. By comparing these, the validity of the 

current model can be assessed, and identified parameters or coefficients in the 

model are changed, based on the output error vector e. The new parameters are fed 

into the simulator, and the process iterates until the convergence is reached. The 

values of the parameters are used to identify the faults. However, convergence of 

parameters may be difficult to achieve since the engine system provides an 

unpredictable disturbance. In addition, a particular fault may not correlate to any 

specific parameter, with the result that the fault will not be found and that a 

residual error e will remain. The presence of such a residual error can serve as a 

mechanism for novelty detection. Novelty detection is an approach that does not 

aim at identifying which fault is emerging, but simply identify that something 

abnormal has happened, requiring further inspection. 
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Kim et al., [1998], utilized this technique in the estimation of unmeasured or un- 

measurable physical parameters of the engine for the control and diagnosis 

processes. Based on the Nonlinear Parity Equation Residual Generation (NPERG) 

diagnosis scheme, the input and state observers were used to provide fault 

detection and isolation using dynamic models of the system. the observer was 

configured such that sensors faults are detected and isolated using (nonlinear) 

output estimators, while input and plant parameter faults are isolated using 
(nonlinear) input estimators. The NPERG observer configuration successfully 
diagnosis faults caused by position sensor fault and fuel injector faults which were 

considered to demonstrate the diagnosis methods used. 

2.1.3 Feature extraction and pattern recognition 

Feature extraction and pattern classification algorithms have been used for 

analyzing signals and for classifying (parts of) the signal into classes Grimmelius 

et al., [1999]. The classification is done by matching (part of) the signal with a set 

of reference signals. The isolation of interested parts of the signal is called the 

feature extraction process. By reducing the signal, noise and parts of the signal 

that originates from an irrelevant process can be removed. By targeting the feature 

extraction towards identified fault, one at the time, several faults can be detected 

independently using the same signal. The matching process, where the conditioned 

signal is compared to a set of reference signals and assigned to the class that it 

matches most closely, is termed pattern recognition. 

Using the same signal for detecting multiple fault conditions has in theory the 

potential of reducing the number of sensors used. Alternatively, this benefit can be 

achieved without performing of state or parameter estimation as discussed above 

in order to deduce more information than that is directly available from the fitted 

sensors. Thus the method is suitable for monitoring machinery where a suitable 

model is not available. The method requires a mathematical model or a lookup 

table for each feature corresponding to a fault, over a wide operating condition 

range. Process knowledge is only needed to indicate the (expected) behaviour of 

the sensor signals, or extensive testing with simulated faults can be conducted. 

An advantage of this method is that a library of fault-condition features can be 

extended over time, spreading the cost of implementation. Another advantage is 
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that, depending on the actual algorithms, insight into the decision process is 

possible. Disadvantages include the large effort required to supply reference data 

and development of algorithms and high-performance computing required 
depending on the complexity of the signals. 

In order to draw the full potentials out of these techniques, a lot of process details 

must be embedded in the signals, indicating that they must be complex. Signals 

that may be useful in this context fall into two categories: 

* Rapid time-variant signals such as, acoustic emission and dynamic pressure 
information. 

* Group of signals that are static and not interesting in isolation e. g. air and 

exhaust temperatures and mean velocity measurements. 

2.1.4 Neural networks 

Neural networks are able to perform a classification similar to the feature 

extraction and pattern classification technique, although the method by which this 

is done is different. A neural network is built up from ä large set of simple neurons 
in a network, and simple calculations are associated with each neuron. The 

advantage with neural networks is that, once properly trained, they are able to 

differentiate between subtle relationships and features of the incoming signal, 

whilst also being quite robust to noise in the signal. 

Figure 2.2 shows how information is processed through a single node. The node 

receives weighted activation of other nodes through its incoming connections. 

First, these are added up (summation). The result is then passed through an 

activation function; the outcome is the activation of the node. For each of the 

outgoing connections, this activation value is multiplied with the specific weight 

and transferred to the next node. By learning, it means that the system adapts 

(usually by changing suitable controllable parameters) in a specified manner so 

that, some parts of the system suggests a meaningful behaviour, projected as an 

output. The controllable parameters have different names such as synaptic 

weights, synaptic efficacies, free parameters and others. 
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Figure 2.2 Information processing in a neural network unit, Kalogirou, [2003]. 

There are a number of factors which will influence the ability of a neural network 
to identify faults when used in a condition monitoring system. Defining a suitable 
layout is of great importance. This is an inexact science at the moment, and 

several attempts might be required. Having established a (trial) layout, the network 
is trained, where a large set of data is required, including many valid data sets for 
healthy and faulty condition. The test data is fed into the network, and the output 
is compared with the desired (known) output. The parameters in the network are 

changed, and the process repeats until a required accuracy is achieved. 

Neural networks have the advantage that little or no process knowledge is 

required, nor is knowledge about fault patterns embedded in the sensor signals. 
Also, the network will provide no insight into the decision process, as the 
knowledge is spread over all the nodes in the network. On the other hand, the 
disadvantages are that extensive training sets are required, the network will only 

provide valid answers within the trained range, and any change to the system will 

require retraining. 

There has been considerable interest in recent years in the use of neural networks 
for the modelling and control of combustion processes as well as fault diagnosis of 
diesel engine because of their ability to represent non-linear systems and their self- 
learning capabilities. Through the review of research carried out in both areas, 

many interesting working articles were identified. Morita, [1993], attempted to 

replace the conventional method used for combustion parameters control, which is 

called the table looking-up with a neural network method. The control of 

combustion parameters by neural networks, and especially the learning 
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characteristics of the networks when the control is adopted on-line control is 

presented. As a result, it was found that the neural networks are more suitable for 

on-line control of a car engine than the conventional table look-up map. 

Advanced engine control systems require accurate dynamic models of the 

combustion process, which are substantially non-linear. The application of fast 

neural network models for engine control design purpose is presented by Hafner et 

al., [2000]. The special local linear radial basis function (RBF) network is initially 

introduced followed by a description of the process of building adequate engine 
dynamic models. These neuro-models were then integrated into an upper-level tool 

emission optimization tool, which calculated a cost function for exhaust versus 

consumption/torque and determined optimal settings. The results showed that the 

system allows a fast application of the optimization tool on the test stand. 

The development of a neural network system for fault diagnosis in a marine diesel 

engine is described in Sharkey et al., [1996]. Neural networks were trained to 

classify combustion quality on the basis of simulated data. Three different types of 
data were used: pressure, temperature and combined pressure and temperature. 

Subsequent to training, three Neural Networks were selected and combined by 

means of a majority vote to form a system, which achieved 100% generalization to 

the test set. This performance is attributable to a reliance on the software 

engineering concept of diversity. Following experimental evaluation of methods of 

creating diverse neural networks solutions, it was concluded that the best results 

should be obtained when data is taken from two different sensors (e. g. a pressure 

and a temperature sensor), or where this is not possible, when new data sets are 

created by subjecting a set of inputs to non-linear transformations. According to 

the authors, these conclusions have far reaching implications for other neural 

network applications. 

A multi-network fault diagnosis system designed to provide an early warning of 

combustion-related faults in a diesel engine is presented by Sharkey et al., 

[2000b]. Two faults (a leaking exhaust valve and a leaking fuel injector nozzle) 

were physically induced (at separate times) in the engine. A pressure transducer 

was used to sense the in-cylinder pressure changes during engine cycles under 

both of these conditions, and during normal operation. Data corresponding to these 
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measurements were used to train the neural network to recognize the faults, and to 

discriminate between them and normal operation. Individually trained networks, 

some of which were trained on sub-tasks, were combined to form a multi-network 

system. The multi-network system is shown to be effective when compared with 

the performance of the component networks from which it was assembled. The 

system is also shown to outperform a decision-tree algorithm and a human expert. 

Comparisons presented show the complexity of the required discrimination. The 

results illustrate the improvements in performance that can come about from the 

effective use of both problem decomposition and redundancy in the construction 

of multi-network systems. 

Jones and Li, [2000] reviewed some of the used techniques for condition 

monitoring and fault diagnosis for diesel engines. Firstly, the common faults, fault 

mechanisms and their expected development and effect of diesel engine 

performance were summarised. The discussed common faults include power loss, 

emission changes, lubricating system faults, and mechanical noise. Some of the 

advanced CMFD techniques are discussed such as, Diesel Engine Fault Diagnosis 

(DEFD) developed by Lloyd's, Knowledge-Based system for Marine Engine 

Diagnosis (KBMED) developed by Huazhong University of Science and 
Technology-China, and Condition/Performance Monitoring and Predictive System 

for Diesel Engines (CPMPS). A final conclusion indicates that, since the diesel 

engine is a complex system with highly non-linear characteristics, it is difficult to 

establish analytical models for the purpose of overall fault diagnosis. However, 

since neural networks systems mimic the way that humans process information, it 

is likely that this technique will play an important role in the field of intelligent 

engine diagnosis. 

2.2 DIESEL ENGINE MODELLING 

Mathematical modelling of internal combustion engines is a far reaching subject. 

In the development of engine models over the years we may distinguish three main 

steps: (1) thermodynamic models based on mass and energy conservation laws 

have been used since 1950 to help engine design or subsystems matching and to 

enhance engine processes understanding; (2) Empirical models based on input- 

output relations were introduced in early 1970s for primary control investigation; 
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(3) Physically based nonlinear models for both engine simulation and control 
design. Engine modelling for control tasks involves researchers from different 

disciplines, i. e. engineering, control and physics. Therefore, several specific 

nominations may be used for the same class of model in accordance with the 

framework. To avoid any misunderstanding, Guzzella and Amstutz, [1998] show 

three categories to classify the different modelling approaches with terminology 

adapted to the basic principle of the model: 

Thermodynamic-based models (known also as, knowledge model, or parametric 

model, or white box), have been derived using physical first principles and include 

relatively few physical parameters which are very suitable for control. 

Non-thermodynamic models (black-box, or non-parametric model), that use a 

prior chosen structure, and reflect the input output relationship of the engine based 

on experimental input-output analysis. 

Semi-physical approximate models (or grey-box) which is an intermediate 

category where the model was built with equations derived from physical laws and 

which parameters are measured or estimated using identification techniques. 

This classification is very helpful but it may be oversimplified because a complete 

engine model would be a mixture of physical and experimental sub-models. The 

following section will focus on the first two categories as the third category is 

mixture of the first two. 

2.2.1 Thermodynamic-based model 

Thermodynamic diesel engine modelling passed through a long term development 

as early efforts in the 1950s focused on the closed part of the engine cycle, i. e. the 

compression/combustion/expansion sequence. These models evolved from the 

ideal cycle calculations in the 1950s to simple component matching models in the 

1960s and multizone and multidimensional combustion models in the 1980s and 

early 1990s, Chow and Wyszynski, [1999]. High resolution multidimensional 

models, such as KIVA II 3-D introduced by Mariani and Postrioti, [1996], are 

often used for specific problem areas in engine design, where details of fluid 

transport processes or those involving subtle geometry changes dominate. These 

models are capable of simulating detailed airflow, spray and combustion events in 
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local geometries. The lower resolution multizone combustion models such as ISIS, 

discussed by Ball et al., [ 1999], are able to predict power output, emissions, losses 

in the engine, fuel consumption and efficiency. Therefore, multizone combustion 

models are used in the conceptual and development stages of design in order to 

explore a larger range of alternative within acceptable time and cost limits. 

Thermodynamic modelling techniques can be divided into the following groups: 

(i) quasi-steady, (ii) filling and emptying, and (iii) gas dynamic models. Models 

that can be adapted to meet the requirement of control systems development are 

cylinder-by-cylinder (CCEM) and Mean value model (MVEM) while application 

of the gas dynamic model is very restricted due to its complexity level, Grondin et 

al., [2004]. The basic classification of thermodynamic models and emergence of 

models suitable for control are displayed in Figure 2.3. 

Thermodynamic Models 
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Quasy-steady 
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Filling & Empting 
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real time Simulation 
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4 10 

complex 
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Figure 2.3. Basic classifications for thermodynamic-based models of internal 

combustion engines, Grondin et al., 120041. 

2.2.1.1 Quasi-steady 

The first diesel engine simulations using the quasi-steady method were carried out 

in the early 1970s. The aim of researchers at this time was to develop an engine 

model as a tool to study and improve the transient performance of the diesel 

engine. The basic idea behind the quasi-steady technique is to model engine 

components in term of steady state, where the transient was assumed to be a 

sequence of steady state points or conditions. The quasi-steady model includes the 

dynamics of all moving parts such as crankshaft, piston, connecting road and 
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turbocharger as well as empirical relations representing engine thermodynamics. 

These simulations are dependent on empirical knowledge and do not allow for 

mass accumulation between components. 

Quasi-steady models are simple and have the advantage of short run times, and for 

this reason they are suitable for real-time simulation. On the other hand, among 

the disadvantages of quasi-steady models are their heavy reliance on experimental 
data and low accuracy. A quasi-steady model requires a large amount of data to 

obtain empirical relations or maps for each engine component; furthermore, it 

cannot be transposed to other engines. Complex phenomena such as combustion or 

gas flow are oversimplified and thus reduce the simulation accuracy. These 

models do not provide a sufficient level of detail to reflect design change or to 

predict parameters that influence exhaust emissions Watson, [1984]. 

2.2.1.2 Filling and Emptying 

The filling and emptying models are based on solving the mass and energy 

conservation equations of a thermodynamic control volume. This method 

represents the unsteady flow phenomena more realistically as it models the time 

varying properties of flow and allows for mass accumulation between the engine 

system components. The main motivation for using the filling and emptying 

method is to give general engine models with minimum empirical data 

requirement. Therefore, the model may be adapted to different types of engines 

with minimum effort. Filling and emptying model exhibit good prediction of 

engine performance under both steady and transient conditions and gives 

information on parameters known to influence pollutant emissions or noise. 

However, assumption of uniform state of gas covers up complex acoustic 

phenomena (resonance). Wave effects inside the manifold can affect engine 

performance, and thus, the error introduced by filling and emptying method must 

be considered. The filling and empting model is not suitable to control design 

application because of their prohibitive computing time, Chow and Wyszynski, 

[ 1999]. 

2.2.1.3 Cylinder-by-cylinder 

The cylinder-by-cylinder model, based on the filling and emptying method firstly 

established by Watson, [1984], was of a turbocharged diesel engine simulator 
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which has been designed to help in the development of an electronic controller. A 

nonlinear dynamic simulation of a turbocharged diesel engine was presented. The 

detail of the model was governed by the desire to accurately predict fuel economy 

of new engine designs currently on the drawing board, but without any empirical 
input, and respond correctly to changing ambient conditions, design alterations 

etc. Thus the model treats cylinders and manifolds as thermodynamic control 

volumes, solving energy and mass conservation equations with subroutines for 

combustion, heat transfer, turbocharger, dynamic aspects etc. In-cylinder 

calculations are performed in small engine crank-angle steps so that the correct 
ignition crank angle is predicted as well as the subsequent fuel burning rate. This 

enables parameters such as the cylinder pressure and diffusion burning factor to be 

predicted. It is shown how the run time of a previous model has been reduced by 

an order of magnitude. The accuracy of the model was tested and verified by 

comparison between measured and predicted performance over the complete 

steady state operating range of the engine. Also, the engine response to 

acceleration and full-load application was tested. 

Later, Kao and Moskwa, [1995] improved the accuracy of the Watson model with 

a formulation adapted to control design. Two main changes were introduced to 

modify the cylinder-by-cylinder engine model (CCEM). A time varying inertia 

model derived using Lagrangian principles was introduced to enable the model to 

reproduce engine speed oscillations. Watson's model does not include such benefit 

because it was utilizing a simple dynamic model. On the other hand, cylinder-by- 

cylinder simulation with a detailed combustion model is too slow for real time 

application. In order to decrease computing times and to make their model 

compliant with the control formulation, Kao and Moskwa replaced the cylinder 

model used in Watson's model with a simpler in-cylinder pressure equation 

relating the cylinder pressure to the fuel mass and cylinder gases properties. 

Accurate prediction of in-cycle engine states evolution makes CCEM well suited 

for fault diagnostic. In-cylinder pressure and fuel burning rate observers based on 

sliding mode observer theories have been designed from the simplified cylinder- 

by-cylinder engine model introduced by Kao and Moskwa, [1994]; and Kao and 

Moskwa, [1995]. In-cylinder pressure is a useful indicator of combustion quality; 
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therefore, its estimate can be utilized in fault diagnostics schemes instead of 

employing high cost pressure transducers and intrusive action required for fitting 

such transducers. 

2.2.1.4 Mean Value Engine Modelling 

During the early 1990s, the research team at the University of Denmark 

investigated an alternative technique by introducing non-linear models of 

reciprocating engines using a concept halfway between quasi-steady and filling 

and emptying methods. This team named this new class of model mean value 

engine model (MVEM). The motivation was to reduce computing time compared 

to more complex phenomenological filling and emptying models. The early 

publications of the research team is found in Hendricks, [1989a], and introduces 

the basic idea of the MVEM modelling applied it to a large two stroke 

turbocharged diesel engine. Mean value models describe dynamically the 

development of engine physical variables over time periods which are long 

compared to an engine cycle but short compared to the dominant time constants of 

the engine. The time scale for the mean value engine model is on the order of 3 to 

5 revolutions. It is therefore, fast enough to give an accurate prediction of overall 

dynamic engine operation. Such models do not include explicitly description of 

the intake, exhaust or combustion processes but simply represent the overall result 

of the processes as described by the crank speed, the mean scavenge pressure, the 

air mass flow rate or a small number of the other measurable engine variables. 

Cyclic to cyclic variation is implicitly included in the model. 

Because of the simplicity of the model it has been possible to expose a number of 

the details of how the overall system performs and to focus attention on the main 

performance controlling factors. In particular, it has been possible to give a 

quantitative description of the turbocharger lag and to map the model engine's 

transient behaviour over a large range of operating points. Also, it had been shown 

that the MVEM is a valuable tool in predicting engine frequency response and in 

forming an idea of what control problem might arise in common operating 

conditions. The model was verified against experimental data from a large 

turbocharged two-stroke marine diesel engine and published in Hendricks, 

[1989b]. A model for a small (1.6 litre) turbocharged indirect injection four stroke 

diesel engine was introduced by Jensen et al., [1991] based on the MVEM 
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principle. The model was successfully able to predict all significant engine 

variables to better than 10% for both transient and steady state operation. Later in 

the 1990s significant contributions on diesel engine modelling using mean value 

approach have been published by Kao and Moskwa, [1995]; and Amstutz and 

Luigi, [1995]. More discussion of the theoretical background can be found in the 

work proposed by Guzzella and Amstutz, [1998]. 

2.2.2 Non-thermodynamic models 

Complex thermodynamic models are unsuitable for analytical controller design 

where it used to solve complex differential and algebraic equations; hence simple 

non-thermodynamic models were the first kind of engine models used for control 

purposes. Non-thermodynamic, known as black-box, models they were built with 

the minimum level of knowledge about the system, and no fundamental principles 

are involved. However, they can include a priori information about the engine 

such as, time delay or engine nonlinearities. These models have to reproduce the 

input-output behaviour of the system and their structure (transfer function or state- 

space representation) complies with the control requirement. The modelling 

procedure consists of four important steps: (1) Experimental data recording, (2) 

choosing an adequate model structure and the identification algorithm, (3) 

calculation of the model parameters and (4) validation. In the following section, 

the "black-box" models of diesel engine will be split into two classes: linear and 

nonlinear models. 

2.2.2.1 Linear models 
In the early 1970's, the first linear engine models introduced by Flower and 

Hazell, [1971]; Hazell and Flower, [1971a] and. Hazell and Flower, [1971b]. This 

linear discrete engine model was based on the analogy with sampled-data process 

(see Figure 2.4). For constant speed, the fuel is injected at constant time interval, 

thus the injector is considered as a pure sampler. The engine converts this fuel 

mass impulse to a torque pulse at the crankshaft. The inertial load acts as a low 

pass filter, thus, the torque development can be modelled by a zero-order hold 

circuit, as shown in Figure 2.5, for a four-cylinder engine. The model output is a 

stepwise signal with the same area as the experimental torque pulse. 
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Later, Flower and Windett, [1976], introduced the pseudo-random binary sequence 
(PRBS) method to identify diesel engine dynamics. PRBS signal is added to the 

control signal (which is the fuel rack position). This signal and the output signal 

(the engine speed) are recorded. Samples of input and output are employed to 

estimate the engine frequency response and to obtain the discrete transfer 

functions of the engine Jiang, [1994]. 
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Closed loop engine speed control is the standard application of the low order 
linear model. This problem was mentioned in many research papers involving 

several control techniques. The universal PID (proportion + integration + 
derivation) controller has been used extensively with linear models and a wide 

range of modern model-based control techniques have been introduced to enhance 

control. A few of the theoretical aspects of the control strategies are listed below: 

* Optimal control. 

* Gain scheduling controller. 

* Adaptive and self-tuning controllers. 

Whatever type of linear model (continuous or discrete) is employed, it still has the 

advantage of short run time and simplicity, and is very suitable for analytical 

controller design. However, validity of linear black-box models is restricted to a 

narrow operating range and needs to be proceeded by a test on the engine to fit its 

parameters. In addition, the inherent difficulties are choosing the ideal 

measurements, the best model architecture, and a good identification method. 

2.2.2.2 Non-Linear models 

While the linear model can only reproduce the engine dynamics around definite 

operating points, non-linear models are able to overcome this problem. From the 

literature, two important directions have been discussed: 

" NARMAX modelling of diesel engine 
In general, NARMAX model can be expressed mathematically in the form of a 

nonlinear difference equation: 

y(t) = Fl 
, 
At -1ý ....., y(t - ny ý u(t -4 ....., u(t - ny 

)J 
(2-6) 

Where F is a nonlinear function of input u and output y. The main problem of the 

NARMAX approach is the accurate choice of the nonlinear function that correctly 

represents the engine. In addition, a complex structure may lead to difficult 

parameter identification. A convenient solution for the parameter identification 

problem was the use of a polynomial expansion of the function F, but selecting a 

suitable order of the polynomial is still difficult. The first attempt to model the 
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diesel engine was carried out by Billing et al, 1988, where they relate the fuel rack 

position to the engine speed with some nonlinear difference equations. 

NARMAX modelling methodology is effective in capturing engine dynamics even 

when there are complex processes such as pollutant formation. On the other hand, 

nonlinear models make the control design rather difficult. Nonlinear model 

predictive control or nonlinear adaptive control using a NARMAX model can be 

considered, but these problems are still present in diesel engine applications, Glass 

and Franchek, [1999]. 

" Neural networks models 

In the last decade neural networks have become increasingly popular for industrial 

processes identification. Neural architectures may be characterized by the 

following statements: 

* Inspired by biological neural systems 

* Network structure of simple processing nodes 

* Usually nonlinear 

* Adjustable by training 

A basic feed-forward neural network is composed of one input and one output 

layer with intermediate hidden layers between them, as shown in Figure 2.6. 

input layer hidden layer output layer 

Figure 2.6 Typical feed-forward network with one hidden layer. 
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The input-layer neurons distribute the inputs to the neurons of the hidden layer. In 

the neurons of the second layer, the weighted sum of the inputs is passed through 

an activation function (usually a sigmoid or threshold function). The neurons of 

the output layer only compute the weighted sum of their inputs. On the other hand, 

a Radial Basis Function (RBF) network is a two-layer net in which the first layer 

has radial basis functions while the second consists of linear functions, as 

illustrated in Figure 2.7. 

Figure 2.7 Basic Layout of Radial Based Function (RBF) neural network. 

To adapt the weights, the input-output data measured on the system are applied to 

the input layer; this phase is called the learning or training phase. The best 

parameters are obtained by minimization of a quadratic cost function (i. e. the 

mean square error between network output and measured output). This nonlinear 

optimization problem can be solved using Newton's method, a genetic algorithm 

or other techniques. 

Neural network models of compression ignition engines first appeared at the end 

of the 1990s. Multilayer perceptron (MLP) models have been used to predict 

crankshaft speed and opacity of a diesel engine. Ayoubi, [1998] and Gamo et al., 

[1999] demonstrated the potential of Dynamic Multilayer Perceptron (DMLP) to 

model the charging process of a turbocharged diesel engine, with the neural model 

giving good prediction of the boost pressure taking the fuel mass and engine speed 

as inputs. Hafner et al., [1999] and Hafner et al., [2001] developed an exhaust 

model of turbocharged diesel engine based on an extended radial basis function 

(RBF) network. Their models predict opacity and NOx emissions using a fast 
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neural network that accelerates the training phase. The model takes exhaust gas 

recirculation, injected fuel mass, start of injection angle, variable geometry 
turbocharger position and oxygen concentration as inputs. 

RBF networks offer a flexible and robust approach to the typification of non-linear 

engine processes. The representation of the data is transparent in so much as the 

RBF neurons can be regarded as locally applicable sub-models which are linearly 

combined to reflect the behaviour of the process over the training data range. 
Moreover, by the use of stabilization techniques, such as regularization, the model 

can be made robust, Jacob et al., [1999]. Gu et al., [1999], obtained promising 

results from using the RBF network to engine modelling and cylinder pressure 

waveform reconstruction. This model assumes that the instantaneous speed 

signature is the only required input to the model where the external load 

information is already embedded in the speed signature. This assumption was 

empirically validated in this study. 

" Fuzzy system 

Control engineering always faces the problem of controlling and modelling 

nonlinear systems. The diesel engine is a complicated nonlinear system and 

composed of several subsystems which have complex dynamic characteristics. 
Therefore, it is very difficult to find an accurate nonlinear model for the real plant. 

Nevertheless, researchers have proposed some approaches for modelling these 

engines. Gamo et al., [1998] used the Group Method Data Handing (GMDH) 

technique for identification of fuel injection system of a diesel engine. Hafner et 

al., [1999] applied a fast neural network of LOLIMOT (LOcal LInear MOdel) type 

to model the exhaust gases of a diesel engine. This model was integrated into an 

upper-level optimization tool to calculate a cost function for exhaust versus 

consumption of fuel and determine the optimum fuel injection angle. The 

LOLIMOT algorithm was based on the concept of dividing the input space of 

nonlinear process into regions with local linear models. The model output was 

calculated as the weighted sum of all region local linear models. 

In the 1990's, a new strategy based on fuzzy logic and neural network provided 

another solution to model the diesel engine. A variety of different modelling 

schemes based on neural-fuzzy techniques have been proposed and applied in 
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engineering practice. Culliere et al., [1995] proposed a neuro-fuzzy model based 

on a concept of cut-off input space in areas as the first stage in using a fuzzy- 

module, and then used a multi-layer network, and backpropagation (BP) algorithm 

to identify local characteristics of the system. The main advantage of the first 

stage was that it rapidly gives a fuzzy model from the initial network of input 

space, which can provide more accurate results by increasing the size of the fuzzy 

set, while the second stage gives the benefit of quickly converging toward the 

solution, but only if the decomposition base is well chosen. This problem can be 

avoided by choosing an orthogonal base. 

Chen and Linkens, [1998] and Wu and Tam, [1999] introduced a simple and 

effective method for building a fuzzy model from data using a three-layered RBF 

network. The advantage of using RBF neurons to construct the fuzzy neural 

network is the functional equivalence between RBF network and fuzzy inference. 

However, the equivalence relationship between the models has to satisfy the 

condition that the number of hidden units in the hidden layer of the RBF network 
is equal to the number of rules of the fuzzy inference system. Instead of adapting 

previous clustering-based methods, the structure identification of this approach 
include input selecting and partition validation implemented on the basis of a class 

of sub-clusters created by a self-organizing network instead of on raw data. The 

important input variables which independently and significantly influence the 

system output can be extracted by a fuzzy neural network. In addition, the optimal 

number of fuzzy rules can be determined separately via the fuzzy algorithm. Since 

this method focuses on model simplicity and computing efficiency to satisfactory 

modelling accuracy, the model produced may not be optimal and will require 
further improvement. 

Another approach for automatically generating fuzzy rules from sample patterns 

using generalized dynamic fuzzy neural networks (GD-FNNs) was presented by 

Wu et al., [2001]. The GD-FNN was based on an ellipsoidal basis function (EBF) 

network combined with a Takagi-Sugeno-Kang (TSK) fuzzy system. The 

characteristics of the GD-FNN are: (1) structure identification and parameters 

estimation are performed automatically and simultaneously without partitioning 

the input space and selecting initial parameters; (2) fuzzy rules can be recruited or 
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deleted dynamically; (3) fuzzy rules can be generated quickly without resorting to 

the back-propagation (BP) iteration learning. The GD-FNN is employed in a wide 

range of applications. Comprehensive comparisons with other latest approaches 

show that the proposed approach is superior in terms of learning efficiency and 

performance. 

Twiddle and Jones, [2002], developed a fuzzy model based CMFD systems to 

model the cooling system components of the diesel engine, in parallel with non- 

linear parameter estimation techniques and neural network classifier approaches. 

The main disadvantage of only using a neural network classifier approach is that 

fault condition data must be obtained to train the network. Also, the fault class is 

defined for the specific magnitude of the fault; therefore, additional data must be 

acquired to broaden the range of fault magnitudes which may be successfully 

diagnosed. The fuzzy models were found to be generally effective at generating 

residuals where deviations from the normal condition are very small, although for 

larger deviations robustness of models is not guaranteed or expected. In fact, each 

technique is shown to be capable of producing good results in their respective 

formats. The fuzzy systems approach has provided a flexible means for 

incorporating heuristics into both models and diagnostics systems where 

knowledge of the system was incomplete. 

The two stage fault diagnosis system, shown in Figure 2.8, was designed to map 

the residual vector to one of the number of prescribed system conditions where X 

represents the input vector to the three fuzzy models, y the model outputs, and y 

the corresponding measured variables. The diagnostic system is designed to output 

a vector of numbers, d, that represents the truth value of a number of propositions 

describing possible conditions of the diesel engine cooling system. The diagnosis 

is defined to be the condition with the highest associated truth value. The 

magnitude and sign of the residual components of r together with other 

information regarding the state of the thermostat valve, are used to diagnose the 

cooling system. 

The fuzzy model inputs and outputs have been selected to be representative of the 

physical system, while the outputs are also suitable reference values for generation 

of residuals. The developed system offer certain benefits in terms of providing a 
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CMFD system for an engine cooling system based on a small number of low cost 

sensors with a success rate ranging from 73 to 98% in the fault diagnosis. 

Recursive fuzzy models have been shown to be an effective technique for 

modelling of hysteresis in the thermostatic valve of the cooling system, Twiddle 

and Jones, [2002]. 

Two stage fault 
diagnosis block 

0= Fuzzy System 

Component 
models 

Residual Fault 
classification inference 

Figure 2.8. Schematic diagram showing the structure of the models and the 

diagnostic system [Twiddle and Jones, [20021. 

Zhang et al., [2003] proposed a new nonlinear fuzzy model for the diesel engine 

generated using a Modified Self-Organizing Map (MSOM) network. Based on the 

MSOM, fuzzy rules are determined automatically according to the distribution of 

training data in the input-output space and the given approximating error. The 

simulated result indicates that the nonlinear model predicts both the static and 

dynamic behaviour of the diesel engine accurately and could be used to design the 

control system of the engine, and help to understand its complex dynamics. 

2.3 NEURAL NETWORKS 

Before laying out the principles for choosing the best Neural Networks (NN) 

topology, learning method and data handling, it is important to understand how 

artificial intelligence (AI) evolved with required computational resources. 

Artificial intelligence applications have moved away from laboratory experiments 

to real world implementations, therefore, software complexity also became an 

issue to withstand the symbolic processing, nondeterministic computations, 
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dynamic execution, parallel, distributed processing, and management of extensive 
knowledge bases. In many Al applications, the knowledge needed to solve a 

problem may be incomplete, because the source of the knowledge is unknown at 

the time the solution is devised, or the environment may be changing and cannot 
be anticipated at the design stage. Al systems should be designed with an open 

concept that allows continuous refinement and acquisition of new knowledge. 

Many existing engineering problems require a practically impossible amount of 

resources to find the perfect solution; therefore, an acceptable solution would be 

fine. NNs can give good solutions for such classes of problems. In some cases, 

getting the best NN topology, learning method and data handling could become an 

engineering approach in itself. The success of using NN for any application 
depends highly on the data processing, i. e. data handling before or during network 

operation. Once variables have been identified and data has been collected and is 

ready to use, it can be processed in several ways, to squeeze more information out 

and filter it to achieve the optimum condition. 

An ANN must be used in problems exhibiting knottiness, nonlinearity, and 

uncertainties that justify its utilization. They present the following features to cope 

with such complexities: 

* Learning from training data used for system identification; finding a set of 

connection strengths will allow the network to carry out the desired 

computation. 

* Generalization from inputs not previously presented during the training 

phase; by accepting an input and producing a reasonable response determined 

by the internal ANN connection structure makes such a system robust against 

noisy data, features exploited in industrial applications. 

* Mapping of nonlinearities making them suitable for identification in process 

control applications. 

* Parallel processing capability, to allow fast processing for large-scale 

dynamical systems. 

* Applicable to multivariable systems; they naturally process many inputs and 

have many outputs. 
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* Used as a black-box approach (no prior knowledge about a system) and 
implemented on compact processors for space and power constrained 

applications. 

* Several factors have to be considered in order to select a suitable NN 

configuration for the proposed application. The major points of interest 

regarding the NN topology selection are related to network design, training, 

and practical considerations. 

Utilization of NN in the field of diesel engine condition monitoring and fault 

detection covers several areas. Gamo et al., [19991, used a NN to construct a 

model of the exhaust emission of the diesel engine. The proposed multilayer 
feedforward neural networks was mainly based on analysis of the sum of square 

errors on input times delays, orders and number of hidden layer neurons. Sharkey 

et al., [2000a], utilize a NN in fault detection of diesel engine through a multi- 

sensor approach which used acoustic emission, cylinder pressure and vibration 

sensors. 

2.3.1 Training considerations 

Considerations, such as determining the input and output variables, choosing the 

size of the training data set, initializing network weights, choosing training 

parameter values (such as learning rate and momentum rate), and selecting 

training stopping criteria, are important for several network topologies. There is no 

generic formula that can be used to choose the parameter values. After a few trials, 

the network designer should have enough experience to set appropriate criteria 

that suit his specific problem. The initial weights of a NN are considered as 
important parameter in the convergence of the training step. It is a common 

practice to initialize all weights randomly with small absolute values. In linear 

vector quantization and derived techniques it is usually required to renormalize the 

weights at every training epoch. A critical parameter is the speed of convergence, 

which is determined by the learning coefficient. In general, it is desirable to have 

fast learning, but not so fast as to cause instability of learning iterations. Starting 

with a large learning coefficient which reduced as the learning process proceeds, 

results in both fast learning and stable iterations. The momentum coefficients are, 
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usually, set according to a schedule similar to the one for the learning coefficients 
Zurada, [1995]. 

The training data set, number and selection, plays a vital role in the performance 

of a supervised NN and success of training process. If the number of training 

examples is not sufficient, then the network cannot correctly learn the actual 
input-output relation of the system. On the other hand, a large number of training 

examples will need more time to finish. For some applications, such as real-time 

adaptive neural control, training time is a critical variable. For others, such as fault 

detection, the training can be performed off-line and more training data preferred 

to achieve greater network accuracy. Generally, rather than focusing on volume, it 

is better to concentrate on the quality and representational nature of the data set. A 

good training set should contain routine, unusual and boundary condition cases. 

The generally used criteria to stop NN training are small mean-square training 

error and small changes in network weights. Selection of how small it should be 

usually depends on the network designer and is based on the desired accuracy 

level of the NN. If any prior information about the relationship between inputs and 

outputs is available and used correctly, the network structure and training time can 

be reduced and the network accuracy can be significantly improved. 

2.3.2 Network design and practical consideration. 

The general design considerations for a neural network includes determining the 

number of input and output nodes to be used, the number of hidden layers in the 

network and the number of hidden nodes used in each hidden layer. Chow et al., 
[1993], had introduced a full discussion of the design consideration of NN. The 

number of input nodes is typically taken to be the same as the number of state 

variables. The number of output nodes is typically the number that identifies the 

general category of the state of the system. In the past, it was general practice 

direction to increase the number of hidden layers, in order to improve training 

performance. Keeping the number of layers at three and adjusting the number of 

processing elements in the hidden layer, can achieve the same goal. To determine 

the number of hidden layer processing elements, a trial-and-error approach was 

usually adopted, starting with a low number of hidden units and increasing this 

number as learning problems occur. However, there are some guidelines that can 
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be used to select the number of hidden layer neurons. It is a common practice to 

choose a set of training data and a set of testing data that are statistically 

significant and representative of the system under consideration. The training data 

set is used to train the NN, while the testing data is used to test the network 

performance, after the training phase finishes. 

Practical considerations regarding the network accuracy, robustness and 
implementation issues must be addressed, for real-world implementations, for 

example, for induction motor fault detection, network training is stopped when 

either the root mean-square error of the training set or the change in network 

weights is sufficiently small i. e. less than 0.005, Chow et al., [1993]. Since most 
fault detection schemes are for real-time applications, noise considerations and 

minor disturbances become important issues. Noise is known to decrease the 

overall performance fault detectors. Therefore, methods to suppress noise are 

needed to enhance the accuracy of fault detector of neural networks. 

Selection and implementation of the network configuration need to be carefully 

studied since it is desirable to use the smallest possible number of nodes while 

maintaining a suitable level of conciseness. Pruning algorithms try to make NNs 

smaller by trimming unnecessary links or neurons, so the cost of runtime, memory 

and hardware implementation can be minimized and generalization is improved. 

Depending on the application, some system functional characteristics are 

important in deciding which ANN topology should be used. Table 2-1 summarizes 

the most common ANN structures used for pattern recognition, associative 

memory, optimization, function approximation, modelling and control, image 

processing, and classification purposes. 

Table 2-1 Organization of NNs based on their functional characteristics. 

Function Characteristics Structure 
Pattern Recognition MLP, Ho field, Kohonen, PNN 
Associative Memory Ho field, recurrent MLP, Kohonen 

Optimization Ho field, ART 
Function Approximation MLP, CMAC, RBF 

Modeling and Control MLP, recurrent MLP, CMAC, FLN, FPN 
Image Processing CNN, Ho field 

Classification (including Clustering) MLP, Kohonen, RBF, ART, PNN 
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New and better electronic devices have inspired research to build intelligent 

machines operating in a fashion similar to the human nervous system. Fascination 

with this goal started, around the Second World War, when McCulloch and Pitts, 

in 1943, developed their mind-like machine by interconnecting model based on 

behaviour of biological neurons, and when Hebb introduced his learning rules. 

Rosentblatt, [1958], from the Cornell Aeronautical Laboratory put together a 

learning machine, called the "Perceptron" which was the predecessor of current 

NNs. The Perceptron received considerable excitement, when it was first 

introduced, because of its conceptual simplicity. Widrow and Hoff proposed the 

"ADALINE" (ADAptive LINear Element), a variation on the Perceptron, based on 

a supervised learning rule (the "error correction rule") which could learn in a 

faster and more accurate way: synaptic strengths were changed in proportion to the 

error (what the output is and what it should have been) multiplied by the input, 

Meireles et al., [2003]. 

Meireles et al., [2003], summarized the industrial application of NNs up until 

2001, (see Figure 2.9), the main purpose of which was to give an idea of the most 

used ANN topologies and training algorithms and to relate them to common fields 

in the industrial area. For each entry, the type of the application, ANN topology 

used, implemented training algorithm, and the main authors are presented. The 

collected data gives a good picture of what has actually migrated from academic 

research to practical industrial fields and shows some of the authors and groups 

responsible for this migration. 
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2.4 NEURAL NETWORKS CLASSIFICATION 

A common classification of ANNs is based on the way in which their elements are 

interconnected. The following sections try to cover the main types of networks 

that have been used in the field of engine condition monitoring and fault 

diagnosis, particularly for use on diesel engines. 

2.4.1 Multilayer preceptron (MLP) 

In this structure, each neuron output is connected to every neuron in subsequent 

layers in cascade with no connections between neurons in the same layer. A 

typical diagram of this structure is detailed in Figure 2.10. MLP has been reported 

in several applications. Lucking et al., [1994], utilize the MLP neural network for 

the condition monitoring of gearbox using acoustic signals propagated through the 

gearbox body. Crowther et al., [1998], use MLP neural network approach in the 

fault diagnosis of a hydraulic actuator circuit which was trained using a variation 

of the error back-propagation algorithm. The MPL network was trained using both 

experimental and computer simulation data. The major challenge was to obtain 

training data that cover the whole system output vector space for the faults of 

interest. 

In order to improve the dynamic performance of MLP, a new modified version has 

been introduced known as, Dynamic Multi-layer Preceptron (DMLP). Ludwig and 

Ayoubi, [1995], compared the performance of a DMLP neural network with the 

Hammerstein parametric nonlinear dynamic model in diesel engine turbocharger 

fault detection. The Hammerstein is fast but difficult for the identification process 

because of the need for both static and dynamic traning data. In addition, physical 

knowledge of the system is required to construct the transfer function. On the 

other hand the DMLP is more universal and does not need much system 

knowledge, except the input and output signals of the identified system. However, 

the main disadvantage of the DMLP is the high computational resources needed. 

Later, Ayoubi, [1998], used the DMLP network for the nonlinear process 

identification of a turbocharged diesel engine. The results showed that 

identification based on the DMLP needed no a -priori information about the 

process structure, which highlights the flexibility and universality of the model. 

The MLP is indeed the most utilized structure and spread across several 
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disciplines such as, identification and defect detection on woven fabrics shown by 

Sardy et al., [1993]; prediction of paper cure in the papermaking industry 

introduced by P. J. Edwards et al., [19991; controller steering backup truck 

discussed by Nguyen and Widrow, [1990]. 

Figure 2.10 MLP basic topology. 

2.4.2 Recurrent NNs (RNNs) 

Another tool that has been used for temporal classification problems is the 

recurrent neural network (RNN) which is a modification of a conventional neural 

network, as shown in Figure 2.11. In this architecture, the inputs to the neurons 

come from external inputs, as well as from the internal neurons, consisting of both 

feed forward and feedback connections between layers and neurons. Narendra and 
Parthasarathy, [1990], demonstrate that the recurrent neural networks can be used 

effectively for the identification and control of nonlinear dynamical systems. Both 

static and dynamic back propagation was discussed for the learning process to 

adjust the different parameters. 

Gan and Danai, [1999], show the application of using the model-based RNN in the 

fault diagnosis of the IFAC (International Federation of Accountants) Benchmark 

actuator of a speed governor for large diesel engines. As a starting point, the 

model-based RNN was used for fault detection and isolation solutions and it was 

improved via training and adapting them to the system's nonlinearity. The result 

indicates that the model-based recurrent neural network provides better results 

than black box neural networks. The Hopfield network model is the most popular 
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type of RNN. It can be used as associative memory and can also be applied to 

optimization problems. The basic idea of the Hopfield network is that it can store a 

set of exemplar patterns as multiple stable states. Given a new input pattern, which 

may be partial or noisy, the network can converge to one of the exemplar patterns 

nearest to the input pattern. As shown in Figure 2.12, a Hopfield network consists 

of a single layer of neurons. The network is recurrent and fully interconnected 

(every neuron in the network is connected to every other neuron). Each 

input/output takes a discrete bipolar value of either 1 or -1. Szu, [1993], used a 

modified Hopfield structure to determine the imperfection by the degree of 

orthogonality between the automated extracted feature, from the send-through 
image and the class feature of early good samples. The performance measure used 
for such automatic feature extraction is based on a certain mini-max cost function 

useful for image classification. 

Figure 2.11 Typical recurrent network structure. 
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Figure 2.12 Hopfield network structure. 
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2.4.3 Non-recurrent unsupervised Kohonen networks 

The structure of a Kohonen network consists of interconnected processing units 

that compete for the signal. The learning method is unsupervised learning and 

consists of a single layer of computational nodes (and an input layer). This 

network uses lateral feedback, which is a form of feedback, whose magnitude is 

dependent on the lateral distance from the point of application. Figure 2.13 shows 

the architecture with two layers. The first layer is the input layer and the second is 

the output layer, called the Kohonen layer. 

Figure 2.13 Kohonen network structure. 

Every input neuron is connected to every output neuron through its associated 

weight. The network is non-recurrent and input information propagates only from 

left to right. Continuous (rather than binary or bipolar) input values representing 

patterns are presented sequentially in time through the input layer, without 

specifying the desired output. The output neurons can be arranged in one or two 

dimensions. A neighbourhood parameter, or radius, can be defined to indicate the 

neighbourhood of a specific neuron. 

2.4.4 Cerebellar model articulation controller (CMAC) 

The input mapping of the CMAC algorithm can be seen as a set of 

multidimensional interlaced receptive fields, each one with finite and sharp 

borders. Any input vector to the network excites some of these fields, while the 

majority of the receptive fields remain unexcited, not contributing to the 

corresponding output. On the other hand, the weighted average of the excited 
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receptive fields will form the network output. Figure 2.14 shows a schematic 

diagram of this structure, with the nonlinear input mapping by the Albus approach 

and a hashing operation that can be performed to decrease the amount of memory 

needed to implement the receptive fields. Majors et al., [1994], developed a 

methodology to control the air-fuel ratio of automotive fuel injection systems 

using this type of network. The CMAC was selected because of its function- 

approximation abilities and its learning and adaptive capabilities. Experimental 

results showed that the CMAC is very effective in learning the engine 

nonlinearities and in dealing with the significant time delays inherent in engine 

sensors. The CMAC controller performance had been improved over the 

conventional engine control module. Figure 2.15 (a) shows the fluctuation of A/F 

ratio with time for the engine control module while Figure 2.15 (b) shows the 

variation of A/F using a CMAC controller with the linear A/F sensor. 
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2.4.5 Adaptive resonance theory (ART) 

Adaptive Resonance Theory (ART) was developed by Carpenter and Grossberg 

over the period of 1976-86, during their studies of the behaviour of models of 

systems of neurons, Whiteley et al., [1996]. They have published a large number 

of papers, in which they develop the mathematical theory of such models, usually 
in terms of systems of differential equations, and they have applied this to actual 

neural systems. Like Kohonen, they have been particularly interested in systems 

that are capable of organizing themselves. The ART paradigm can be described as 

a type of incremental clustering. It has the ability to learn without supervised 

training and is consistent with cognitive and behavioural models. It is an 

unsupervised paradigm based on competitive learning which is capable of 

automatically finding categories and creating new ones when they are needed. 

The main feature of ART, compared to other similar structures, is its ability to not 
forget after learning. Usually, NNs are not able to learn new information without 
damaging what was previously ascertained. This is caused by the fact that when a 

new pattern is presented to a NN during its learning phase, the network tries 

modifying the weights at node inputs, which only represent what was previously 
learned. The ART network is recurrent and self-organizing. Its structure is shown 

in Figure 2.16. It has two basic layers and no hidden layers. The input layer is also 

called "comparing", while the output layer is called "recognizing. " This network is 

composed of two completely interconnected layers in both directions. Whiteley et 

al., [1996], used the ART architecture successfully for sensor pattern interpretation 

problems. 
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Figure 2.16. Adaptive resonance theory network. 
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2.4.6 Radial basis function (RBF) networks 

Radial-Basis Function Networks used for pattern classification are based on 

Cover's theorem which states that nonlinearly separable patterns can be separated 
linearly if the pattern is cast nonlinearly into a higher dimensional space. 
Therefore we are looking for a network that converts the input to a higher 

dimension after which it can be classified using only one layer of neurons with 

linear activation functions. It contains an input layer, a hidden layer with nonlinear 

activation functions and an output layer with linear activation functions. Figure 

2.17 shows the architecture of a RBF neural network. 

The RBF network is a popular alternative to the MLP which can offer advantages 

over the MLP in applications such as fault diagnosis, as it is faster to train because 

training of the two layers is decoupled. Leonard and Kramer, [1991], utilized the 

RBF neural networks instead of sigmoid threshold units to overcome the 

difficulties of a backpropagation network classifier where, under certain 

conditions, it can produce non-intuitive, non-robust decision surfaces. Results 

show that RBF networks overcome these difficulties by using a non-monotonic 

transfer function based on the Gaussian density function. While producing robust 
decision surface, the RBF also provides an estimate of how close a test case is to 

the original training data, allowing the classifier to signal that a test case 

potentially represents a novel class while still presenting the most plausible 

classification. The adoption of RBF topology was justified by two reasons. 

* In most cases, it presents higher training speed when compared with ANN 

based on back-propagation training methods. 

* It allows an easier optimization of performance, since the only parameter that 

can be used to modify its structure is the number of neurons in the hidden 

layer. 
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Figure 2.17. RBF network structure. 

Leonhardt et al., [1995], introduced a fault detection scheme for monitoring 

combustion quality and proper injection pump operation. Significant features were 

extracted for data reduction purposes. By using a RBF neural network, these 

features were mapped back on the specified (desired) input values by allowing 

comparisons. Result show that if deviations higher than inherent modelling errors 

occur, symptoms such as lower fuel mass or premature fuel injection maybe 

generated. In addition, it was possible to separate fuel mass problems from 

injection angle failures. RBF had been used successfully to build a model which 

reconstructs the cylinder pressure using measurement of the instantaneous angular 

speed of the diesel engine crank shaft. Gu et al., [1996], validated such a model of 

a four stroke DI diesel engine. The results show that the reconstructed waveform is 

consistent with the measures pressure over all stages of the pressure process: 

compression, onset of combustion, peak pressure and the rise and fall of 

combustion. 

Later, Shi et al., [2005], used the RBF neural network for building model of a 

marine diesel engine generator. The model depends on the fact that the RBF is a 

universal approximation neural network which has the ability to approximate 

nonlinear functions. The main advantage of using RBF is that the algorithm is 

simple and fast, and suitable for digital signal processor (DSP) calculation. The 

disadvantage of the method is that the generalization of the system is not so 

satisfactory. Two models are needed for good performance of a RBF neural 

network, one for the normal operation and the other for fault operation. 
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2.4.7 Probabilistic NNs (PNNs) 

The probabilistic Neural Network, introduced by Donald Specht in 1988, is a three 

layer, feed forward, one pass training algorithm used for classification and 

mapping of data, Specht, [1990]. This network provides a general solution to 

pattern classification problems by following an approach developed in statistics, 

called Bayesian classifiers. Bayes theory, developed in the 1950's, takes into 

account the relative likelihood of events and uses a priori information to improve 

prediction. The network paradigm also uses Parzen Estimators which were 

developed to construct the probability density functions required by Bayes theory. 

The probabilistic neural network uses a supervised training set to develop 

distribution functions within a pattern layer. These functions, in the recall mode, 

are used to estimate the likelihood of an input feature vector being part of a 

learned category, or class. The learned patterns can also be combined, or weighted, 

with the a priori probability, also called the relative frequency, of each category to 

determine the most likely class for a given input vector. If the relative frequency 

of the categories is unknown, then all categories can be assumed to be equally 

likely and the determination of category is solely based on the closeness of the 

input feature vector to the distribution function of a class. 

PNNs are somewhat similar in structure to MLPs. The basic differences among 

them are the use of activation by exponential functions and the connection patterns 

between neurons. In fact, the neurons at the internal layers are not fully connected, 

depending on the application in turn. Figure 2.18 depicts this structure, showing 

its basic differences from an ordinary MLP structure. PNN training is normally 

easy and instantaneous, because of the smaller number of connections. Another 

practical advantage over other networks is that it operates completely in parallel 

and the signal flows in a unique direction, without the need for feedback from 

individual neurons to the inputs. 
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Figure 2.18. Probabilistic ANN structure. 

2.4.8 Polynomial networks (PNN) 

The PNN is a self-organizing multi-layered iterative algorithm that automatically 

provides linear and non-linear polynomial regression models. The PNN embodies 

the advantages of Multiple Linear Regression (MLR) and Artificial Neural 

Networks (ANNs) into a single entity. It can model both linear and non-linear 

relationships like ANNs, and it yields a polynomial regression equation as does 

the MLR for easy interpretation. This algorithm provides robust results in the 

presence of correlated and irrelative variables or/and outliers. The results of this 

algorithm can be easily interpreted. 

Figure 2.19 depicts a polynomial network. It has its topology formed during the 

training process. Due to this feature, it is defined as a plastic network. The neuron 

activation function is based on elementary polynomials of arbitrary order. In some 

cases, only some of the inputs are used, due to the automatic input selection 

capability of the training algorithm. Automatic feature selection is very useful in 

control applications when the plant model order is unknown. Each neuron output 

can be expressed by a second-order polynomial function. The polynomial 

coefficients are equivalent to the network weights and the neuron output. The 

Group Method of Data Handling (GMDH) is a statistics-based training method 

largely used in modelling economic, ecological, environmental and medical 

problems. The GMDH training algorithm can be used to adjust the coefficient and 

evaluate the network structure. This algorithm employs only two sets of data. One 

for estimating the network weights and the other for testing which neurons should 

survive during the training process, more details could be found in; Silva et al., 

[1999]. 
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Figure 2.19. Polynomial ANN structure. 

2.4.9 Functional link neural (FLN) networks 

Functional link neural networks expand the original input space into higher 

dimensions in an attempt to reduce the burden on the training phase of the 

networks. This provides the network with a more complete understanding of the 
input. Basically, the function link acts on an element of an input vector or on all 
the elements of the input vectors by generating a set of linearly independent 

functions, and then evaluates these functions with the pattern as the argument. The 

functions enhance the network's understanding of a given problem and transform 

the inputs via higher-order functions such as squares, cubes, or sins. It is from the 

very name of these functions, higher-order or functionally linked mappings, that 

the two names for this same concept were derived. No new information is added, 
but the representation of the inputs is enhanced. Higher-order representation of the 

input data can make the network easier to train. The joint or functional activations 
become directly available to the model. In some cases, a hidden layer is no longer 

needed. However, there are limitations to the network model. Many more input 

nodes must be processed to use the transformations of the original inputs. With 

higher-order systems, the problem is exacerbated. Yet, because of the finite 

processing time of computers, it is important that the inputs are not expanded 

more than is needed to get an accurate solution. 

Teeter and Chow, [1998], presented the application of an FLN for identification 

and control of heating, ventilating, and air conditioning (HVAC) thermal dynamic 

system. The use of NN provided a means of adapting the online controller, in an 

effort to minimize a given cost index. The identification networks demonstrated 
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the capacity to learn changes in the plant dynamics and to accurately predict future 

plant behaviour. Kwan et al., [1998] introduces a robust ANN controller to the 

motion control of rigid-link electrically driven robot using an FLN. The use of the 

FLN has a very important advantage where the robot dynamics was not needed to 

be exactly known. The structure schematic diagram is shown in Figure 2.20. 
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Figure 2.20. Functional link NN structure. 

2.4.10 Functional polynomial network (FPN) 

This structure was implemented to merge both models of a functional link and 

polynomial network resulting in a very powerful ANN model due to the automatic 
input selection capability of the polynomial networks in addition to the fast 

learning of the functional link networks. The FPN presents advantages such as fast 

convergence, no local minima problem, structure automatically defined by the 

training process, and no adjustment of learning parameters. 

2.5 TRAINING METHODS 

There are basically two main groups of training (or learning) algorithms: 

supervised learning (which includes reinforcement learning) and unsupervised 

learning. Once the structure of an NN has been selected, a training algorithm must 

be attached, to minimize the prediction error made by the network (for supervised 

learning) or to compress the information from the inputs (for unsupervised 

learning). In supervised learning, a set of inputs and correct outputs is used to train 

the network. Before the learning algorithms are applied to update the weights, all 

the weights are initialized randomly. The network, using this set of inputs, 
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produces its own outputs. These outputs are compared with the correct outputs and 

the differences are used to modify the weights, as shown in Figure 2.21. A special 

case of supervised learning is reinforcement learning, shown in Figure 2.22, where 

there is no set of inputs and correct outputs. Training is commanded only by 

signals indicating if the produced output is bad or good, according to a defined 

criterion. After training, an ANN is tested by giving it only input values, running 

the ANN and see how close the network comes to outputting the correct target 

values. 

Figure 2.21. Supervised learning scheme. 

Figure 2.22. Reinforcement learning scheme 

Unsupervised learning, also known as self-organized learning, involves no target 

values; it tries to auto-associate information from the inputs with an intrinsic 

reduction of data dimension, similar to extracting principal components in linear 

systems. In other words, by using the correlation of the input vectors, the learning 

rule changes the network weights to group the input vectors into clusters. 
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Therefore, similar input vectors will result in similar network outputs since they 

belong to the same cluster. Figure 2.23 show the principle of the unsupervised 

learning algorithm. 

Figure 2.23. Unsupervised learning scheme 

In learning algorithms, one should be interested in how the algorithm converges, 

its speed of convergence, and computational complexity of the algorithm. The 

error, of a particular configuration of the network, can be determined by running 

all the training cases through the network and comparing the actual output 

generated with the desired outputs or clusters. Many methods have been used for 

the learning algorithm starting from the early supervised learning algorithms such 

as Perceptron Learning and Least Mean Squares (LMS) also known as Widrow- 

Hoff Learning. These algorithms were designed for single layer NNs, therefore, 

they are generally more limited in their applicability. These two algorithms are 

similar in all of the steps except the error calculation principle. In the Preceptron 

Learning the error is calculated by the difference between the desired output and 

the resulting output while in the LMS the error is based on the sum of the inputs to 

the unit. The linear sum of the input is passed through a bipolar sigmoid function, 

which produces the output +1 or -1 depending on the polarity of the sum. The 

LMS algorithm can be used in structures as RBF networks and was successfully 

applied Leonard and Kramer, [1991]. It has also been used to adapt a complex 

robotic system involving multiple feedback sensors and multiple commands using 

CMAC approaches Miller, [1989]. 

Back Propagation (BP) is a generalization of the LMS algorithm. In this algorithm, 

an error function is defined as the mean-square difference between the desired 

output and the actual output of the feedforward network. It is based on steepest 
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descent techniques extended to each of the layers in the network by the chain rule. 

Hence, the algorithm computes the partial derivative of the error function with 

respect to the weights. The error function is defined as half of the square of 

difference between desired output and network output. The objective is to 

minimize the error function by taking the error gradient with respect to the 

parameters or weight vector that is to be adapted. This algorithm is simple to 

implement and computationally less complex than other modified forms. Despite 

some disadvantages, it is popular and there are numerous extensions to improve it. 

Back Propagation with Momentum (BPM) is the basic improvement to the back 

propagation algorithm. In this algorithm a momentum term was introduced in the 

weights equation. This momentum factor is commonly selected between (0 and 1). 

The adding of momentum term improves the convergence speed and helps the 

network from being trapped in a local minimum. 

2.6 SUMMARY 

A survey has been carried out of previously reported research in the field covering 

most of the areas related to condition monitoring and fault diagnosis of diesel 

engines. The main outcome of this review indicates the successful utilization of 

neural networks in CMFD systems for the diesel engine. However, some 

challenges still face the development of a robust and relatively low cost CMFD 

algorithm. The number of required sensors as well as their types that suite the 

diesel engine working environment, increase the implementation cost of proposed 

system. Therefore, by limiting the number of sensors and using a low cost direct 

or indirect transducer to evaluate the engine condition represents a good solution. 

The utilization of high frequency parameters such as cylinder pressure, in the 

CMFD algorithm require large computational resources and add some limitations 

on the possibility of including the constructed algorithm on an embedded 

controller to suit the future integration in the industrial applications, e. g. market 

vehicles. Using alternative physical parameters that are indirectly related to the 

high frequency signals and require less computational resource is a promising 

solution, e. g. using of instantaneous speed to indicate the cylinder pressure 

variations, El-Ghamry et al., [2005] and Moro et al., [2002]. 
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The utilization of engine modelling in CMFD systems had met with approved; 
however, different methods were used to model the engine as a non-linear 

complex system. Each method has its advantages and disadvantages which have 

been discussed. One of the most important criteria used for modelling is the 

number of empirical relations which limit the application range of the model. 

Therefore, the evaluation of a general engine model that utilizes the minimum 

possible number of empirical equations and selects a more general empirical 

relationship that is applicable for a wide range of engines is expected to increase 

the validity range of the engine model as well as the developed CMFD system 
based on this model. Whatever, the application area for utilizing the neural 

networks, the selection of the types of NNs used as well as the training method 

represents the main keys to evaluating a suitable solution. However, it was not 

possible to find a specific theoretical basis for such a selection. A useful tool in 

facing up to this challenge is to utilize previous research as a guide to narrow the 

selection and compare the commonly used neural networks and training methods. 

The idea of using neural networks for fault diagnosis is not a new one. An 

increased number of successful applications of neural networks to problems of 
fault diagnosis and condition monitoring have been reported in the literature. 

There are two main approaches that have been taken in such fault diagnosis and 

condition monitoring applications: (a) training them to recognise certain known 

faults and (b) training them to recognise departures from normal operation, i. e. 

novelty detection. The two approaches are essentially complimentary and in some 

cases have been used in tandem; novelty detection being particularly useful in 

cases where few examples of faulty data are available. However, the approach 

taken in the present study is one of fault diagnosis, since our concern was with the 

early recognition of subtle faults. A novelty detection approach to the same 

problem is suggested to be less successful, since, lacking knowledge about 

possible faults, it would be difficult to set detection levels sensitive enough to 

detect slight departures from normality. Although there are several examples of 

the application of ANNs to problems of fault diagnosis, there are fewer examples 

of their application to fault diagnosis in internal combustion engines. More 

common applications have been to gear boxes, and bearing faults. 
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CHAPTER 3 

DIESEL ENGINE TEST FACILITY 

This chapter provides a full description of the test facility and explains the 

function of each part in the system and the challenges faced with the selection and 
integration of different sensors are also covered. The data acquisition system 

constructed, including the software algorithm, are then discussed in detail. Finally, 

the testing and calibration of the different sensors are explained. 

3.1 TEST SYSTEM LAYOUT 

In order to test the proposed condition monitoring technique, it was decided to 

equip the available engine with extensive instrumentation, including average and 

instantaneous speed sensors, air and exhaust temperature sensors, and a torque 

sensor. The parameters to be directly measured were established as a compromise 

between measured signal importance (with respect to the monitoring objective), 

cost and availability of transducers, and complexity of fitting into the engine. 

Figure 3.1 provides an overview of the sensors fitted to the engine and shows the 

signals measured by the data acquisition system. A signal conditioning circuit was 

designed and implemented according to the data acquisition system specifications. 

As the condition monitoring and fault detection were conducted on-line, all data 

analysis was undertaken using a separate computer on which the proposed CMFD 

algorithm was developed. 

The engine used for the tests is a Ford 70PS 4-stroke 2.5 litre diesel engine. To 

comply with health and safety regulations within the university, the engine was 

located in an acoustically insulated test cell. The test engine was integrated with a 

manually controlled Heenan & Froude DPX3 200hp sluice plate hydraulic 

dynamometer to simulate the external load during the engine test. To improve the 

performance of the hydraulic brake, it was decided to integrate the brake with an 

automatic torque control system. An overview of the design architecture of the 

brake system is shown in Figure 3.1. The proposed modifications provide the 
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engine test system with the variable load capability to increase the flexibility for 

the proposed CMFD algorithm. 

Qair 

U 

I 

ý 
XFIP 

Cyl 

Diesel Engine 

VCam Vlnst 

d 
_-:: 

] 

Peripheral Signal 
Conditioning Card 

ýJý1 
Slow data 

acquisition card 
6210-USB 

Fast data 
acquisition card 

6250-PCI 

ýý ,ý i 

ýý 
in 

VCrank 

Manual 
Driver 

amplifier 

4ý 

Handheld 
encoder 

Torque 
Crank 
Speed 

Hydraulic Brake 

0 

/1" 
Auxiliary 

card 
n 

Automatic 
Driver 

amplifier 

Motion- 
AIM104-1 

n 

Stepper 

motor 

encoder 

F-I 

ý ý 
ý 

a 

Multi I/O 
ADC 

ý 

v 

i, 
-4 

Computer 

User Interface computer 
with Labview software 

PC 104 

Figure 3.1 The architecture of engine and dynamometer system. 

The engine coolant water is circulated by an internal water pump through an 

automotive radiator mounted on the roof of the test cell. The radiator is air cooled 

by two integrated battery driven fans. As the test cell is fully enclosed, the fuel 

tank and accelerator handle are located on the outside wall of the cell. As most of 

the measured signals required signal conditioning, several electronic circuits were 

designed and constructed. Full circuit diagrams for the peripheral signal 

conditioning design are provided in Appendix B. Two data acquisition cards were 

used to collect the engine data, one for rapidly changing signals and the other for 

56 



Chapter 3. Diesel engine test facility 

the slow rate signals. Each card was selected according to the required bandwidth 

for the measured signals. The data acquisition software was designed using 

Labview (National Instruments), version 7.5. 

After implementing and commissioning the whole system, the performance of the 

engine should be fully established to provide a complete record of variation in the 

engine parameters under different operating conditions. This is usually considered 

as the first step in constructing an engine CMFD system during which healthy 

condition data is collected. In addition, to acquire another set of data under 

abnormal operating conditions, synthetic faults should be applied to the engine to 

simulate actual fault situations that may be expected in the normal operation of the 

engine. The whole ranges of data, healthy and faulty, are then used in the training, 

testing and validation of the proposed CMFD system. 

3.2 HYDRAULIC BRAKE 

In order to construct an off-road test facility for an internal combustion engine, a 

unit which simulates the external load should be included. A dynamometer is 

commonly used to produce the required external load to test the engine. There are 

many types of dynamometers, such as electric and hydraulic dynamometers. 

Because of its availability; an existing Heenan and Froude (H&F) DPX3 hydraulic 

dynamometer was integrated into the diesel engine during previous work. The 

brake was originally manually operated; hence, the unit functionality was 

significantly limited where it could only produce static loading with low 

sensitivity. It was recommended that the operating of the dynamometer should be 

automated to improve its performance under both constant and variable engine 

loading. The control system design incorporates two control modes: a 

programmable automatic control mode capable of producing variable load as well 

as a manual mode. A detailed explanation of both modes is given later in this 

chapter. 

3.2.1 Original dynamometer operation 

The hydraulic dynamometer comprises a rotor and two stators. Each stator 

opposing a rotor face contains a series of semi-circular vanes which accelerate and 

decelerate water flowing in a toroidial vortex pattern around the working 
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compartment, as shown in Figure 3.2. The constant momentum exchange of the 

water creates a torque reaction on the stator/casing which is resisted and measured 

via a spring-mass mechanism shown in Figure 3.3. The power absorbed by the 

hydraulic dynamometer is proportional to the rotational speed, the water gap and 

the mass of water circulating in the working compartment. By adjusting the water 

passing gap size and flow rate, the power consumption can be regulated. The gap 

between the stator and the rotor is controlled via a screwed shaft, and the water 

flow rate is adjusted by the outlet valve. 

Tachometer 
to measure RPM 

F 

Engine rotation 

Torque meter 

Rotor 

Water circulation in 
semi-circular vanes 

Figure 3.2 Schematic of hydraulic brake internal view. 

In action, the rotor discharges water at high speed from its periphery into the 

pockets formed in the casing liners where the water speed decays. The water 

returns at diminished speed to the rotor pockets at a point near the shaft. The 

resistance offered by the water against the rotor motion reacts upon the casing, 

which tends to turn on its anti-friction roller supports. This tendency is 

counteracted by means of a lever arm terminating in a loading device or torque 

metering cell that measure the torque. The water flow is maintained at that level 

by continuous refilling and draining, which carries away the heat generated by the 

absorbed energy or horsepower. The heated water is then discharged from the 

dynamometer to the drain. 
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Iv 
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Figure 3.3 Spring mass balancing mechanism 

3.2.2 Redesign of hydraulic brake control 

The main reason for redesigning the brake control system is to improve its 

performance under different operating conditions. The proposed solution was to 

modify the original manual system with an actuator and sensors to electronically 

control and drive the brake. Sensors were used to measure the brake torque and 

speed, as well as ensuring its safe operation, and the system was designed to have 

the ability for both dynamic and steady loading. Two control modes are used. The 

first manual mode (steady mode) shown in Figure 3.4, is open loop and adjusts the 

screwed shaft to a position that corresponds to the required constant brake load. 

This configuration is suitable for testing the engine at constant speed conditions, 

and requires no feedback. The user only needs to monitor the engine speed and 

adjust the screw shaft position accordingly to achieve the desired speed. 

A second control mode was designed to facilitate variable loading which could be 

pre-programmed to simulate different environmental loading conditions for the 

engine. The block diagram of the closed loop torque control system is shown in 

Figure 3.5. To attain reasonable accuracy and rapid response, two control loops 

were established, using an embedded controller to achieve both easy programming 
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and reliable performance. In the following subsections more detail of the two 

control modes are presented, and the control algorithm described. 
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Figure 3.5 Automatic control mode layout. 

3.2.2.1 Control modes 

" Manual (steady) mode 
A stepper motor command signal is generated using a two channel manually 
driven encoder which produces two pulse trains for both rotation angle and 
direction. This information is interpreted within the manual driver circuit of the 

stepper motor to produce the appropriate number of steps for the stepper motor 

movement and direction of rotation, which is detected from the phase difference 

between the two output channels. An electronic controller/driver circuit was 

designed to match the stepper motor specifications, in terms of rated current and 

voltage. The driver utilizes pulse width modulation (PWM) to limit current 

consumption by the stepper motor, to reduce the possibility of the circuit 

components overheating. A high input voltage is applied to the motor to reduce the 

consumed current at the same produced load torque. The PWM protects the motor 

from the problem of excessive voltage using an internal chopper circuit that chops 

the output according to the load current. A full schematic diagram of the manual 

driver circuit is shown in Appendix B. 
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A manual encoder was mounted in a metal box with a digital display to indicate 

engine speed in RPM. The handheld box is equipped with a selector button to 

switch between the different control modes (manual and automatic) using a relay 

switch contained in an auxiliary circuit. Figure 3.6 shows the handheld unit 

illustrating the different components. Small led indicators were included to show 

the control mode selected. The water pressure inside the hydraulic brake is 

monitored using a pressure switch which is connected to a led which comes on 

when the water pressure in the brake case reaches the required level. The pressure 

switch was calibrated against a pressure gauge to switch on at a pressure of I bar. 

Figure 3.6 Hand held control unit. 

" Automatic control mode 
A torque feedback control configuration was adopted to improve the system's 

response to desired load variations, programmed according to the engine 

performance curve or specific operating conditions, such as constant or variable 

loading. The output torque of the brake was selected as the feedback parameter for 

the control loop. A load cell was integrated into the brake and its output compared 

with the desired output torque value to produce the control error signal, as shown 
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in Figure 3.5. An embedded controller drives the stepper motor, via the motor 

controller module, to reduce the error. 

The automatic control system comprises an Arcom PC-104, AIM104-386EX 

embedded controller with extension modules, and is intended for specialized 

embedded computing environments where applications depend on reliable data 

acquisition despite extreme environments. It was selected for its small size, 

reliable performance at high temperature and non-clean environments and ease of 

programming. Two extension modules were integrated to the PC 104: a stepper 

motor driver module (Motion-AIM104-1) and a multi function I/O module 
(AIM 104-Multi I/O) both manufactured by Arcom. Full specifications for both 

modules are shown in Appendix A. 

The Motion-AMI104-1 module has the capability to directly drive a bipolar 

stepper motor with a maximum rated current of IA per phase, which is less than 

the rated current of the stepper motor used (4.6A per phase). Therefore, an 

external driver was designed and constructed in order to use the pulse train signals 

generated from the Motion-AMI104-1 module as driving signals. The external 

card generated a driving signal with a rated current of 5A per phase. Figure 3.7 

shows the electronic circuit of the stepper motor external driver. A detailed 

schematic diagram of the driver circuit is shown in Appendix B. 

The output of all sensors integrated into the hydraulic brake are connected to the 

AIM 104-Multi I/O module which capture and transmit the data to embedded 

controller through the PC-104 data bus. The analogue sensor signals from the load 

cell passed through a signal conditioning circuit where they were filtered and 

amplified/attenuated to match the A/D input range. Two auxiliary signal 

conditioning cards were designed and constructed to fulfil these requirements. The 

first card amplifies the output signal of the load cell to a reasonable level based on 

the multi function I/O module specifications. A low-pass filter was integrated with 

the load cell amplifier circuit to reduce the effect of noise interference on the 

measured signal before the amplification stage. The filtered signal was amplified 

using a high accuracy, high gain and low drift amplifier (Analog Devices, 

AD524). 
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The load cell-amplifier combination was calibrated in order to adjust the amplifier 

gain. Based on the load range of the brake, a gain of 50 was selected for the signal 

amplification in order to achieve a reasonable voltage level according to the 

maximum allowable input analogue voltage (+5V). The calibration of the load cell 

with the amplifier was conducted on an Instron tensile test machine. To ensure the 

repeatability of the load cell, the calibration test was repeated several times and 

the results showed very good repeatability, as illustrated in Figure 3.8. A 

correlation equation was deduced using the test results and used to evaluate the 

measured load using the amplifier output voltage within the data acquisition 

program. A second auxiliary card was designed and constructed to include a two- 

way relay and power supply sockets to switch between the two controller modes of 

manual and automatic. The relay is triggered using the mode selector switch which 

is included in the hand held control and display unit, as shown in Figure 3.6. 

IF 
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df 

Figure 3.7 Stepper motor automatic external driving card. 
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Figure 3.8 Load cell calibration curve. 

3.2.2.2 Sensors and actuators 
A high accuracy S-shape load cell (OMEGA LCCA-200) was used to measure the 
brake reaction force. The load cell replaces the original dead-weight system, 

where it is connected to the spring from one side and to the base frame from the 

other side, as shown in Figure 3.9. An interface circuit was designed and 

implemented to amplify the small output voltage of the load cell that is used as 
feedback for the brake control system. In addition, this signal was also separately 

connected to the main data acquisition system for engine monitoring. The full 

specification for the load cell is given in Appendix A; the amplifier schematic 

circuit is shown in Appendix B. 

To measure the rotational speed of the hydraulic brake an optical proximity switch 

was used because of its reliability, low cost and eases of fitting. The sensor was 

mounted at the end of the brake shaft, as shown in Figure 3.10. A metal disc with 

one slot was fitted to the shaft to generate one pulse per revolution. The speed was 

measured using time interval between two consecutive pulses using a high speed 

timer counter provided on the multi I/O interface card. 

To ensure the water pressure to the brake before applying load; a pressure switch 

was located at the water outlet point, as shown in Figure 3.11. The pressure of 
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water flowing inside the hydraulic brake case should be adjusted to I bar (gauge 

pressure) at which the pressure switch trips to a high logic level indicating that the 

brake is available for use. 

The original hand wheel used for adjusting the dynamometer torque was replaced 

with a stepper motor and belt-gear drive to improve the regulation and control of 

the torque. Figure 3.9 shows the stepper motor with the driving mechanism. The 

full technical data for the stepper motor used is given in Appendix A. A 3-channel 

optical encoder was mounted on the rear end of the motor shaft to provide position 

feedback and is used to confirm motor rotation. 

Figure 3.9 The load cell fitting and stepper motor driving mechanism. 
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Figure 3.10 Hydraulic brake speed sensor. 

Figure 3.11 Water pressure switch 
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The design of the transmission used to adjust the two stators incorporates two 

counter-rotating nuts on a single lead screw. The rotation of the two nuts is 

coupled to the lead screw through a pair of gears, one at each side of the brake. To 

restrict the motion of the lead screw, two optical proximity switches were 

incorporated in the control system to prevent over-travel of the driving 

mechanism. The proximity switch was mounted on a metal plate fitted onto the 

brake loading arm, as shown in Figure 3.12. The top end of the screwed shaft, 

which is connected to the stator, was integrated with a small tip to trigger the 

proximity switch to prevent from over-travel. 

Figure 3.12 Lead screw limit sis itch 

3.2.2.3 Controlling algorithm 

The embedded controller evaluates a suitable output control signal according to 

the programmed control algorithm. The Motion-AIM 104-1 module convert the 

output control signal into the rotation angle and direction signals that are 

transmitted to the external stepper motor driver card. The optical encoder 

measures the position and direction of rotation and feed the actual position back to 

the controller through the Multi-I/O module. Having no display connection and 

limited memory, the code was written in Borland C++ and compiled on a host PC, 
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then uploaded to the controller through the serial connection. Figure 3.13 shows 

the flow chart of the control algorithm code. 

As the present study mainly focuses on the diesel engine condition monitoring 

under steady conditions, only the hardware parts of the automatic control mode 

were validated. All engine tests were performed under steady state working 

conditions, and only the manual control mode of the hydraulic brake was used. 
The development of the automatic control algorithm will be postponed to the 

future work. 

Several tests on the stepper motor control system have been conducted to validate 

the performance which consisted of a sequence of positions programmed and 

uploaded to the controller to be performed. The optical encoder feedback was used 

to ensure the execution of the required positions. These tests show accurate 

matching between the desired positions and the actual achieved positions. 

To develop the complete control algorithm, a load-position relationship between 

the stepper motor position and resulting brake load was required. Such a 

relationship requires further tests on the brake system under different operating 

conditions, speed and load. The optimum controlling technique can then be 

evaluated to suit the different loading conditions of the diesel engine. This task 

was postponed to future development due to lack of time in the present research. 

The diesel engine was tested only under static loading conditions and the manual 

controller system used to control the hydraulic brake via the handheld unit. The 

load cell output was recorded through the main data acquisition system. A more 

detailed description of the engine data acquisition system is provided later. 
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Figure 3.13 The flow chart of the hydraulic brake system controller 
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3.3 DIESEL ENGINE INSTRUMENTATION 

The first step in implementing and testing the condition monitoring and fault 

detection system was to integrate the engine with appropriate sensors to measure 

the engine parameters that influence the engine performance and condition. Diesel 

engine condition monitoring involves many processes and physical parameters 

which could be measured, including the combustion process, wear, mechanical 
drivetrain, and exhaust emission. According to various considerations, this study 

aims to focus attention on the combustion process, and disregard mechanical 
drivetrain issues as well as auxiliary equipment. There are three reasons for this 

decision. Firstly, faults affecting the combustion process are believed to represent 

a major proportion of faults related to performance degradation developing during 

the running of internal combustion engines. Secondly, a number of conditions 

affecting combustion are easily simulated without the need for intrusive 

modifications to the engine parts. Finally, sensors expected to give information 

about the combustion process were found to be available and easily integrated into 

the engine, some of which are available in commercially marketed engines. In 

addition, the reasonable cost of the sensors used is another important factor in the 

system implementation and the possibility of its future application. In the 

following subsections, a brief explanation of the physical parameters selected and 

their importance as well as their relationship to the combustion process are given. 

In addition, full detailed descriptions of the transducers used, fitting method, and 

the signal conditioning processes are also included. 

3.3.1 Signals measured 

There are many physical parameters that have to be measured in order to evaluate 

the condition and quality of the combustion process. A list of these parameters and 

their relation to the combustion process are given as follows: 

* Cylinder pressure is one of the most important signals that reveal the quality 

of the combustion process. The rate of change and peak value of cylinder 

pressure is a key parameter. Any deviation in the cylinder pressure signal 

could be interpreted to identify particular faults. The pressure inside the 

cylinder may be measured directly or indirectly. Sensors that directly 

measure cylinder pressure usually need access holes to the inner space of the 
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cylinder. Any permanent modification in the cylinder head usually causes 

changes to the actual displacement and clearance volume, which directly 

affects engine performance. Also, the harsh environment of high temperature 

and pressure inside the cylinder of the diesel engine requires the use of 

expensive direct measuring sensors. To limit the effect on engine 

performance, specially designed sensors can be integrated with the glue plug 

to avoid any change in combustion chamber volume; however, the cost of 

such sensors is still relatively high. Notwithstanding the relatively high cost 

of special sensors, they are not applicable to the existing Ford engine, which 
does not have glue plugs. On the other hand, the use of indirect methods to 

measure cylinder pressure has to be verified using experimental data 

measured by a direct measuring sensor. A new technique was investigated to 

measure cylinder pressure without introducing changes to the combustion 

chamber so that the engine's original performance conditions are unaffected. 
This challenge was considered as one of the objectives of the present study. 
A novel technique has been introduced to measure cylinder pressure which 

satisfies all the above limitations discussed. More details of the new 

technique are given later in this chapter. 

* As a result of variations in cylinder pressure, torque is produced on the 

crankshaft that drives the different engine parts and the external load at 

certain rotational speeds. The speed varies with time depending on the 

pressure level in the cylinder as well as the contributions of each cylinder in 

a multi-cylinder engine. Instantaneous speed measurement can yield valuable 
information about the contribution of individual cylinders to the final brake 

torque produced. It may also be feasible to identify mechanical problems 
from this signal. In addition, as discussed in the literature review, the 

instantaneous speed signal can also be used as an indirect method for 

measuring cylinder pressure. A sensor was used to record the instantaneous 

speed, which was also able to track the crank angle in real time, and thus aid 
in providing a reference for other events in the engine cycle monitored by 

other sensors. 

* The high exhaust gases temperature at the exit of the cylinder is a direct 

result of the combustion; and can help to detect problems such as fuel 
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starvation, clogged fuel injectors and exhaust valve leaks. However, the 

range of conditions affecting exhaust gas temperature implies that it would 
be very difficult to achieve an accurate diagnosis based only on these signals. 

* The instantaneous load signal may also provide useful information about the 

contribution of an individual cylinder; and could also be used to detect 

combustion problems arising in individual cylinders as well as the drivetrain. 

In fact, the relationship between engine load and cylinder pressure is much 

closer, since the available torque is directly proportional to the engines 

acceleration. The measurement of instantaneous load was thus expected to 

provide a valuable measure for monitoring and diagnosis of problems in the 

combustion process at both individual and overall levels. 

* Measurement of fuel consumption is one of the most important parameters in 

evaluating engine performance as well as indicating some of the faults in the 
fuel injection system. Sensors measuring the flow rate of fuel were found to 
be very expensive; however, measurement of the fuel lever position was 

considered an easy and cheap way of estimating fuel consumption. 

* It was considered important to measure the inlet air, flow rate and 
temperature. These parameters represent the boundary conditions of the 

combustion process. Any change in inlet air condition directly affects the 

quality of the combustion process and may consequently reduce overall 

engine performance. 

* Although coolant water temperature is not directly related to combustion in 

the cylinder, it is nevertheless useful to monitor any changes in this 

temperature, and could also be used as an indication of excessive heat release 

through the combustion process as well as indicating faults in the cooling 

system. 

3.3.2 Measurement technique and sensors used. 

3.3.2.1 Crankshaft speed 
As the instantaneous crank speed signal contains useful information about the 

combustion process, a Hall effect proximity switch (Honeywell 1 GT 101 DC) was 

selected to measure the instantaneous engine speed for its robustness and low cost. 

The flywheel, which has 108 gear teeth, was used to trigger the proximity switch. 
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The flywheel does not need to be magnetised as this switch includes an internal 

permanent magnet. The sensor has an NPN open collector output, acting as a fast 

switch, whose change of state depends on the change in distance between the 

flywheel tooth and the sensor, which has a signal frequency range of 0-100kHz. 

The position of the proximity sensor is shown in Figure 3.14, while Figure 3.15 

shows the actual sensor mounted adjacent to the flywheel. 
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Figure 3.14 Instant speed sensor layout. 
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Figure 3.15 The instant speed sensor mounted to the engine. 

Average crankshaft speed is also considered an important parameter in evaluating 

engine performance, and accordingly an optical proximity switch (Omron EE- 
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SX673) was selected to fulfil this function. Depending on the sensor mounting 
location, its output can identify the position of the crankshaft relative to any one of 

the four pistons. An existing threaded hole on the face of the flywheel was found 

to be in a suitable location relative to cylinder one TDC position. A modified bolt 

was fitted to trigger the sensor and a pin of equivalent mass (without trigger) was 

fitted diametrically opposite to maintain balance. Figure 3.16 shows the average 

speed sensor with the trigger pin passing through it. 
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of rotation 
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Figure 3.16 The crankshaft average speed sensor. 

Given that a 4-stroke internal combustion engine requires two crankshaft 

revolutions to complete a full thermodynamic cycle, it is readily concluded that 

the utilisation of the sensor on the crankshaft will not be sufficient to identify in 

which half of the thermodynamic cycle the cylinder is at, hence, a second Hall 

effect proximity switch, placed axially against the fuel injection pump driving 

pulley, was installed. This pulley rotates at the same speed as the camshaft (which 

rotates at half the crankshaft speed). One of the four bolts fixing the fuel injection 

pump pulley was extended to provide one pulse per two crank revolutions and this 

signal was used to indicate the start of the complete thermodynamic cycle. Figure 

Crankshaft speed 
sensor 
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3.1 7 shows the camshaft position sensor mounted on the rear pulley cover against 

the camshaft. 

Figure 3.17 The camshaft position sensor. 

3.3.2.2 Output Torque 

The average load torque value is an essential parameter required for the evaluation 

of the engine's boundary operating conditions. The load cell integrated with the 

hydraulic brake was considered suitable to use for load measurements. This of 

course assumes that the friction load on the dynamometer is small in comparison 

to the load torque. A parallel connection to the load cell output was established for 

both the hydraulic brake control system and the engine data acquisition system. A 

description of the load cell has been given previously in section 3.2.2.2. 

3.3.2.3 Cylinder pressure 
Researchers, such as El-Ghamry et al., [2005] and Moro et al., [2002], have 

suggested that cylinder pressure is the most important parameter resulting from the 

combustion process and is therefore an important parameter in monitoring the 

efficiency of the combustion process. However, measuring cylinder pressure is not 

easy because of the difficult harsh environmental conditions that exist inside the 
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cylinder. This is especially so in a diesel engine where both pressures and 

temperatures are very high. As previously discussed the direct pressure sensing 

methods require a sensor fitted into the cylinder through a hole which will cause a 

permanent modification to the engine body. On the other hand, indirect methods 

seek a relationship between the cylinder pressure and some other physical 

parameter that can be measured non-intrusively on the engine, such as the 

instantaneous crankshaft speed. However, such methods require further signal 

processing to determine the cylinder pressure. Additional computational power is 

required for indirect measuring methods, which increases data processing time and 

reduces the accuracy of results. In addition, indirect methods need to be calibrated 

against the engine employing a direct measuring sensor. It was decided to 

establish another method that has the advantages of the direct method without 

intrusive modification to the engine in order to prevent any effects on the actual 

combustion process. 

The feasibility of using the fuel injector to measure variations in cylinder pressure 

was explored, as the fuel injector tip is continuously exposed to the internal 

cylinder pressure. This pressure produces an axial force on the injector body 

which is rigidly fitted to the engine body and an axial strain will be induced in the 

body of the injector, and the resulting strain should be a measure of the cylinder 

pressure. However, the fuel injector is already subjected to the fuel pressure, 

delivered by the injection pump. This produces a circumferential (hoop) strain on 

the injector body. Measuring strains in both axial and circumferential directions 

could be a useful way of determining both the cylinder pressure and fuel pressure 

respectively. Figure 3.18 illustrates the engine fuel injector. 

To obtain measurable axial and hoop strains, it was necessary to reduce the 

injector wall thickness, as shown in Figure 3.19. Calculations were undertaken to 

establish the minimum wall thickness, and based on the engine specification, Ford, 

[1998]. It was considered feasible to reduce the injector outer diameter from 

9.5mm to 6.5mm without jeopardizing its integrity. Appendix C details the 

calculations used to determine the factor of safety. The analysis was based on 

maximum shear stress failure for thick wall pipes, Kutz, [1998]. 
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Appropriate high temperature strain gauges were attached to the injector (Micro- 

Measurements WK-06-062AP-350) to form two half-bridges. Two gauges were 

attached axially and two circumferentially, so as to measure axial strain and hoop 

strain, respectively. Additional gauges were added to a steel sleeve to provide 

temperature compensation and configure them as full bridges. 

Figure 3.18 The conventional fuel injector. 

A 
ý 

i 
-16 0--- SEC at AA 

Sleeve for Dummy Gages 

Modified Injector Body 

Figure 3.19 The modified fuel injector. 

Each bridge contains two dummy gauges (D) that are mounted on the sleeve, as 

shown in Figure 3.19, which was wrapped around the injector body. The WK-06- 

062AP-350 strain gauge, with a 35052 resistance, was selected as it can withstand 
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high temperature operating conditions, up to 450C (please refer to Appendix A for 

full specifications). The strain gauge configuration is shown in Figure 3.20. 

A= active 
D= dummy 

Hoop strain '' Axial strain 
bridge output bridge output 

Figure 3.20 Strain gauge configuration 

Because of the limited tip area (5.4mm diameter) of the injector exposed to the 
internal cylinder pressure, the resulting strain in the injector body was expected to 
be very small. A high gain instrumentation amplifier (Analog Device AD524) was 

employed to produce a reasonable voltage level output. The amplifier circuit was 
integrated with a low pass filter to reduce the effect of noise interference. 

Many issues arose to challenge the design and implementation of this new cylinder 
pressure sensor, such as limited space for the gauges and wiring, and the small 
diameter curved surface of the injector body. A prototype instrumented injector 

was manufactured based on the existing laboratory and workshop facilities within 
the School of Mechanical and System Engineering. The prototype sensor was 
tested outside the engine on an external manual injection pump under a high 

injection pressure of up to 400 bar, which corresponds to 150% of the maximum 

rated injection fuel pressure. Thereafter, the prototype sensor was fitted to the 

engine in cylinder one and several tests were conducted under actual running 

conditions to evaluate its response. A digital storage scope was used to capture the 

output signal while using the laboratory linear power supply. The results indicate 

that a gain of 1000 was capable of reproducing the bridge output signal with a 

reasonable voltage level that meets the data acquisition card specifications with 

the minimum noise to signal ratio. 
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Details of the high accuracy precision differential amplifier IC and low pass filter 

circuit, specially designed for the strain gauge, are shown schematically in 

Appendix B. The amplifier unit was located as near as possible to the injector 

location and enclosed in a grounded metal box to provide a shield against noise. 

Further testing was conducted to evaluate the performance of the sensor prototype 

and amplifier circuit in capturing the cylinder pressure under different operating 

conditions. Whilst initial test results were very promising, unfortunately a fault 

developed on one of the bridges, and on inspection it proved very difficult to 

resolve the problem. After some considerable time and effort it was eventually 

decided to have the strain gauge bridge installed by a specialist company (Micro- 

Measurements) to the same specifications. Figure 3.21 illustrate the injector final 

design, currently incorporated in the engine. 

Figure 3.21 The modified injector with the strain gage. 

3.3.2.4 Exhaust temperature 

The temperature of the exhaust gas (at the exit of each cylinder) is a direct result 

of the combustion process, and it can indicate misfires and fuel starvation in the 

individual cylinders. Thermocouples Type-K were thus fitted to the exhaust 

manifold on each cylinder, mounted as close as possible to the outlet of each 

cylinder, as shown in Figure 3.22. A fifth thermocouple was also located in the 

exhaust pipe after the manifold in order to measure the overall exhaust gas 

79 



Chapter 3. Diesel engine test facility 

temperature. This last temperature thermocouple can be used to detect any 

malfunction in the exhaust manifold, such as holes and gasket leakages, which 

could affect the gas temperature. 

Figure 3.22 The exhaust gas thermocouple location. 

Type-K stainless steel shielded thermocouples were selected because of their high 

accuracy within the operating temperature range of exhaust gases (up to 600°C). 

The output of the thermocouple sensor is usually a very low voltage signal (mV); 

so a high accuracy amplifier circuit was used to increase the gain of the signal to 

the data acquisition system with the minimum possible noise to signal ratio. The 

circuit, specially designed and implemented, comprises a precision differential 

amplifier (Analog Devices, AD595) with a low pass filter located before the 

amplifier to minimise noise. The designed circuit includes a separate amplifier for 

each thermocouple in order to increase measurement accuracy and avoid common 
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ground problem. This also overcomes the delay in readings when using a single 
differential amplifier with a multiplexer to switch between the thermocouples. 

During calibration of the shielded thermocouple, a significant time delay was 
identified, of the order of 23 seconds when immersed in boiling water. To improve 

the response time, the covering metal shield at the thermocouple's tip was 

removed to directly exposing the measuring junction to the exhaust gas. The direct 

contact improved the response time of the thermocouple to <0.02 seconds to reach 
100°C from room temperature (20°C). The response time was measured using a 
digital storage scope. This modification was applied to the four exhaust gas 

thermocouple sensors. 

3.3.2.5 Inlet airflow rate and temperature 
The flow rate and temperature of the inlet air are important boundary conditions in 

evaluating engine performance, and any changes in these parameters will directly 

affect the combustion process. To measure the inlet air flow rate, a Bosch 

automotive air flow meter (Bourns 8512) was integrated into the engine intake 

manifold. The sensor has a rotating vane connected to a potentiometer, and any 

change in air flow changes the potentiometer resistance, which is measured as a 

voltage signal via the data acquisition system. Figure 3.23 shows the Bosch sensor 

integrated with the engine inlet manifold. Based on the calibration information 

provided by Bosch, the relation between the air flow rate and the output voltage 

and the air temperature is obtained as follows: 

QQ =12.4x10-3TQ(VolVs) for Vo/Vs <0.35 

or 

Qa =261x10-3TQ(0.49-Vo/VS) for Vo/Vs >0.35 

(3-1) 

(3-2) 

where T. is the inlet air temperature, Vo is the measured output voltage (also 

defined in the sensor circuit diagram provided in Appendix B), and VS is the 

voltage supplied to the potentiometer, which is 5 V. 

The potentiometer signal is passed through a low-pass filter to avoid aliasing in 

the signal conditioning stage. Tests were carried out while the engine was running 
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in a steady state condition to ensure that no fluctuation would occur on the output 
flow rate reading after the filter. The value of the cut-off frequency (2.5 Hz) was 

selected to compromise between minimising the AC components and the response 
time. Another consideration was to limit the value of the series resistance in the 
low pass filter in order to reduce the finite voltage drop across it since the A/D 

converter does not have infinite input impedance. 

Figure 3.23 The inlet air flow rate and temperature sensor 

The Bosch air flow meter also incorporates a thermistor temperature sensor which 

was connected to the data acquisition system; however in the event this was not 

used because the calibration data was unavailable. A specially-made probe using a 

PT 100 RTD element was integrated into the air inlet manifold. A change in the air 

temperature changes the resistance of the RTD element which was then converted 

to a differential voltage, which was amplified in the signal conditioning stage 

using a differential amplifier, prior to capture by the data acquisition system. RTD 

element was selected for its fast response and appropriate measuring range. The 

RTD sensor was mounted in the air passage to the intake manifold just after the air 

flowmeter. Figure 3.24 shows the location of the RTD sensor. The detailed 
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schematic diagram of the designed circuit for inlet air measurements signal 

conditioning stage is shown in Appendix B. 

ý 
.. dir- 

Figure 3.24 The RTD temperature sensor. 

3.3.2.6 Fuel consumption flow rate 

Fuel is normally supplied to the engine from a wall mounted fuel tank as shown in 

Figure 3.25. During steady state operation the tank valve is closed to allow the 

engine to draw the fuel from a 1.0 ml graded glass pipette. By timing a fixed 

volume of fuel consumed, the fuel consumption rate can be calculated. However, 

the fuel consumption can only be recorded manually before being processed for 

the condition monitoring and fault diagnosis algorithm evaluation of the diesel 

engine. 

Alternatively, as the amount of the fuel injected into the engine only depends on 

the fuel injection pump lever position, measuring the fuel lever position can be 

considered as an estimation of the fuel consumption or delivered to the cylinder 

through the injector. An angular potentiometer was integrated on the fuel lever. 

This sensor only provides an approximate measure of the fuel injected where the 

governor automatically meters the amount of fuel depending on the average engine 
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speed at the same fuel lever position. Figure 3.26 shows the angular potentiometer 

mounted on the pump fuel lever mechanism. 

Figure 3.25 Fuel consumption measuring system. 

I 
Figure 3.26 Fuel lever position measuring system. 
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3.4 DATA ACQUISITION SYSTEM 

The data acquisition system, used to capture and record the experimental 

parameters from the engine under different operating conditions, consists both 

hardware and software. The hardware signal conditioning stage was designed and 
implemented to match the sensor outputs, the range of the signals measured and 

the input level of the data acquisition system. Because of its reliability, 
functionality and availability, NI's Labview graphical programming language was 

selected as the environment to construct the data acquisition algorithm. In the 

following subsections a detailed discussion of the hardware and software 
development is presented to show the selection criteria for each. 

3.4.1 Data acquisition hardware 

Due to availability, the Advantech PCL-818HG data acquisition card was used for 

data capture. The technical specification of this card is given in Appendix A. It 

was considered suitable for the engine data collection according to the range of 

signal characteristics such as sampling rate, number of input channels and 

accuracy levels. Unfortunately, the card driver for Labview was not available. To 

overcome this problem, a compatible driver was supplied by the manufacturer to 

be used with Labview. This driver was designed initially for another version of the 

same card series. Hence, it was decided to start a group of primary tests for the 

driver received using a laboratory signal generator which simulated the different 

expected frequencies of the engine output signals. 

Labview was used to capture the input signals and compared with the input to 

verify the accuracy and capability of the card driver. The results showed that the 

driver supplied was only suitable for use with the slow analogue and digital input 

signals, and could not handle the high speed signals, such as cylinder pressure and 

instantaneous speed. The driver was proprietary code and there was no possibility 

of modifying it to deal with the fast signals. In the event, it was decided to select 

another data acquisition card that satisfied the requirements and specifications of 

the signals measured and which had the capability to work in a Labview 

environment. 
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The signals measured were classified into three different groups. The first group 

consisted of fast analoge signals (cylinder pressure and instantaneous load), while 

the second included the slow analoge input signals (exhaust gas temperature, 

coolant water temperature, inlet air flow and fuel lever position). The last group 

contained digital signals frequency measurements used to measure both the 

instantaneous and average speeds of the crankshaft. According to this 

classification, the data acquisition card selected should have a multi-sampling rate 
in order to be able to acquire all of the measured signals. Cards with this facility 

were found to be very expensive; therefore, another solution at reasonable cost 

was needed. Hence, two separate data acquisition cards were used, one for the fast 

signals and the other for the slow signals. The cards needed least two counters in 

order to measure the frequency of the digital signals. The compatibility of the 

cards with Labview was another restriction that had to be taken into account. The 

NI-6250-PCI and NI-6210-USB cards were selected. 

The NI-6250-PCI internal data acquisition card was selected for the fast analogue 

signals. It has a high sampling rate of 1.2 MS/s with a 16 bit A/D converter and 
has two digital counters with a maximum clock speed of 80 MHz at 32 bit 

resolution which is particularly suitable for the high speed data capture. The 

technical specification is given in Appendix A. The card was internally fitted in 

the host desktop computer and connected to the engine through a SHC68-68-EPM 

shielded cable. A CB-68LP-unshielded wiring board was connected to the cable 

which was used to connect the different input signals to the selected channels. The 

card, cable and wiring board are shown in Figure 3.27. 

The A/D converter in the NI-6250-PCI card was used for the measurement of the 

pressure signals coming from the injector; cylinder pressure and fuel pressure, 

which were connected to channels I and 2 respectively. The load cell sensor 

output used to measure the brake load torque was connected to channel 3 while 

channel 4 was used to acquire the signal from the camshaft sensor used to indicate 

the start of the thermodynamic cycle. All four channels were acquired at a rate of 

10 kHz, the continuous reading mode was selected for data acquisition and 1000 

points were captured each time the loop was executed. The sampling rate was 

calculated, based on the assumption that at an engine speed of 4000 RPM, the data 

86 



Chapter 3. Diesel engine test facility 

acquisition system has the ability to capture at least 50 points through the pressure 

pulse time. On the other hand, as the rate of variation in the load cell signal is slow 
in comparison to that of the injector pressure signal, each 10 points of data 

acquired from the load cell were averaged and represented by only one point in the 

recorded output data. The remainder of the signals were acquired without any 

compression in order to get an optimal representation of the signal captured. 

Figure 3.27 The data acquisition card and its accessories. 

As the instantaneous speed signal is very important and holds much embedded 

information, it is very important to capture this signal with the highest possible 

accuracy and resolution. Counters I and 2 were used in series together to increase 

the resolution of the acquired signal. In this configuration, counter 2 was used to 

divide each pulse of counter I by the divisor value which is controlled through 

software. The frequency of any two repeated pulses was measured by measuring 

the time between the consecutive rising edges of the flywheel speed sensor signal. 

One crankshaft revolution is completed after each 108 readings, which 

corresponds to the number of teeth on the flywheel. 

The NI-6210-USB external data acquisition card was used for acquiring the low 

rate analogue signals. This card has a 250 kS/s sampling rate with a 16 bit A/D 
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converter and two digital counters with a maximum clock of 80 MHz of 32 bit 

resolution. The card uses a USB connector to the desktop computer and is 

connected directly to the measured signals after the signal conditioning circuit. 
The analogue input channels from 1 to 6 were connected to the thermocouple 

amplifier outputs to acquire the temperature readings. Channels 1 to 4 measured 

the individual cylinder exhaust gas temperatures, while channel 5 was for the 

overall exhaust gas temperature. Channel 6 acquires the coolant water temperature 

locate after the cooling water circulation valve. 

Channels 7 and 8 were used for the inlet air temperature and flow rate 

respectively. However the air temperature was not determined using this channel 
because of the missing calibration relationship for the thermistor integrated into 

the Bosch sensor. Therefore, channel 9 was used to capture the output of the RTD 

sensor used to measure the inlet air temperature. The fuel lever position was 

acquired using channel 10. All analogue input channels were captured using the 

continuous mode at a rate of 1 kHz with 100 sampling points for each loop 

executed. 

Counter 2 was clocked by an 80 MHz internal clock and was enabled to decrement 

its value when the gate (GAT) port was high. This configuration was used to 

accurately time the frequency of the rising pulse on the GAT port. The crankshaft 

pulse was connected to this port and used to record average engine speed. 

3.4.2 Signal conditioning 

Each of the sensors used required a regulated power supply as well as signal 

conditioning for the output signal before connecting to the data acquisition cards 

to be recorded. The conditioning depends on the dynamic nature and level of the 

signal measured and the input range of the channel used in the acquisition card. 

Some of the signals measured required active filter and amplification or 

attenuation. The signal conditioning stage was divided into three circuit cards; two 

were mounted in a metal enclosure adjacent to the engine cell and the other as near 

as possible to the fuel injector. 

The fuel injector signal conditioning board was designed to accommodate the 

signal amplifier of the fuel injector strain gauge. As this amplifier needed a high 
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gain (1000), the board was mounted on the engine block as near as possible to the 
injector location to reduce the effect of noise interference and signal loss due to 

long wires. The other two signal processing cards handled all of the other signals 

measured. One card supported the air flowmeter, air thermistor, RTD, and fuel 

lever position signals. In this card, a separate low pass filter and amplifier were 

used for all of the signals measured. The second card incorporates a single 

precision differential amplifier for each thermocouple to remove the possibility of 

common ground error that usually occurs when using a multiplexer with only one 

amplifier to amplify all thermocouples outputs. The detailed schematic diagrams 

of these cards are shown in Appendix B. 

The metal enclosure containing the last two signal conditioning cards was used to 

accommodate other peripherals for the engine testing system. Figure 3.28 shows 

the enclosure containing the USB data acquisition card, the wiring board for the 

other card, and the two signal conditioning cards. The door of the enclosure was 

used to mount the control panel for the engine, as shown in Figure 3.29. The panel 

contains main switch isolation, fuel valve control button to open the fuel valve 
before starting the engine, push button to start the engine, and finally a shutdown 
button that disconnects the fuel valve solenoid to close the fuel flow and 

consequently stop the engine. 

In addition, for the purpose of visualization, the panel was integrated with a digital 

display that shows the average speed of the engine. Some indicator lights were 

included in the panel for the safe operation of the engine, such as oil warning, 

cooling fan, and fuel valve indicators. Moreover, the panel contains a manual 

control button to switch on the radiator cooling fan, in case of any malfunction in 

the automatic fan switch. The detailed schematic diagram of the panel circuit is 

included in Appendix B. 
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Figure 3.28 Data acquisition and signal conditioning metal enclosure 

Figure 3.29 The engine control panel 
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3.4.3 Data acquisition code 

Labview software (National Instruments) has the advantage of high functionality 

and ease of use for data acquisition systems. The design of the code passed 

through many iterations to evaluate the most suitable design for the capture of the 

data. The initial code had a single while loop that contained the read order of the 

different signals. The testing of this configuration identified some delay in the 

acquisition of fast signals because the program had to finish all of the different 

reads for the rest of the slow signals before the while loop repeated. The code was 

modified to have a separate loop for each reading task to remove this delay from 

the recording measurements. The Labview code used is shown in detail in 

Appendix B. 

The data acquisition code design was configured to exploit the advantage of the 

parallel execution of the graphical programming environment that Labview 

supports. The code had four independent parallel passes of the data processing, 

where each has its own sampling rate. The first pass acquires the analogue 

channels of the 6250-PCI card while the second acquires the analogue channels of 

the 6210-USB card. The two other passes execute the digital measurements of 

instantaneous speed and average crankshaft speed using the counters of 6250-PCI 

and 6210-USB cards respectively. The flowchart of the code designed for data 

acquisition is shown in Figure 3.30. 

For the benefit of testing throughout this investigation, a user interface for the 

measured signals was developed, as shown in Figure 3.31. This interface was used 

to provide the user detailed information about the values of all signals measured 

and to enable the starting and stopping of data recording of the engine data 

acquired. This is controlled through the data storage buttons, where each button 

corresponds to one of the data groups inside the code (see the detailed code in 

Appendix B). 
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Figure 3.30 Data acquisition code flowchart. 
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Figure 3.31 The Labview interface screen 

3.5 SUMMARY 

This chapter provides the reader with a detailed description of the test facility. The 

context was divided into two sections, firstly, the modifications of the 

conventional manually driven hydraulic brake into an automatic controlled unit 

was covered. All the integrated sensors and the required modifications are 

included. The designed and implemented control system included both automatic 

programmable mode and steady state control mode to extend the facility of the 

control system for both static and dynamic loading. Only the static loading mode 

was used within the present study where the engine was testing under steady state 

operating condition. 

The second section focuses on the diesel engine data acquisition system. The 

sensor integration as well as required electronic signal conditioning circuit were 

discussed in detail showing the different criteria used in the design and 

implementation process. According to the natural of measured physical 

parameters, two data acquisition cards were used to capture the experimental data 

of the diesel engine under both healthy and faulty conditions. 
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A novel technique was used to measure the cylinder pressure in order to overcome 

the challenge of having to use a commercial cylinder pressure sensor. This 

technique utilise the measurement of strain in the injector body resulting from the 

applied cylinder pressure on the injector tip. The results show that the new 

technique successfully detects both fuel and cylinder pressures by measuring the 

tangential and axial strain. The advantage of using this sensor includes relatively 

low cost and easy integration to the engine, with no intrusive work required to 

install the sensor on commercial engines. 

Labview software was utilized to construct the data acquisition code for capture 

and record of experimental data results for both healthy and faulty working 

conditions. Labview is a graphical programming language that is capable of 

parallel programming which is critical point for instantaneous measurements of 

the different physical data in the diesel engine, is very important for the data 

analysis and to indicate any changes in the engine performance accurately. 

94 



Chapter 4. Experimental results 

CHAPTER 4 

EXPERIMENTAL RESULTS 

This chapter presents the results of the diesel engine experimental tests using the 

constructed data acquisition system and test facilities. The different parameters are 
discussed and analysed in detail, evaluating their relation to the engine condition 

as well as the possibility of their use in the CMFD system. The tests were initially 

performed under `healthy' conditions, then several synthetic faults were 
introduced in the engine and the tests repeated at the same operating conditions. 
To evaluate the engine performance a full mapping of the engine physical 

parameters was carried out under different operating conditions. 

Brake output power and fuel lever position were selected as the mapping 

coordinates for the engine performance evaluation. As the engine torque is 

controlled by the hydraulic brake, several different brake torques were selected at 

each test condition. The fuel lever position (FLP) was changed from idle FLP to 

the maximum FLP through eight different positions. The idle FLP was adjusted to 

equal 10% of the maximum FLP; therefore, the engine performance evaluation 

was undertaken at eight fuel lever positions between 10% to 100%. 

Testing was undertaken on the engine under healthy condition to provide the 

nominal base data for the `ideal' engine operating condition. As this study mainly 
focused on establishing faults in the combustion process, fuel and inlet air faults 

were deliberately introduced in the engine. The fuel fault was simulated by 

introducing a needle valve in the fuel pipe between the fuel pump and the injector 

to cylinder 4 of the engine, to reduce the fuel flow in a controllable manner. The 

inlet air fault to all cylinders was simulated by partially closing the inlet intake. 

The results were analysed in comparison to the healthy engine data. 

In the following sections, the results of the measured parameters will be discussed 

with respect to the changes in the engine condition and/or the other engine 

parameters. The understanding of the relationships between the measured 

parameter and engine condition represent the data from which to evaluate the 
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Intelligent Engine Condition Monitoring (IECM) algorithm which will be 

discussed in Chapter 6. 

4.1 HEALTHY ENGINE DATA 

4.1.1 Instant speed 

Instantaneous engine speed provides an excellent indication of the engine 

condition particularly in identifying faults related specifically to the combustion 

process and the contribution of individual cylinders. This signal can also provide 

information about the state of the engine dynamics, cylinder pressure, and fuel 

burning quality. The fluctuation in crankshaft speed was measured by timing the 

interval between each tooth on the flywheel. Figure 4.1 illustrates an example of 

the crank speed variation. The cylinder firing process is clearly indicated by the 

two peaks per crankshaft revolution for a 4-cylinder 4-stroke. The intermediate 

troughs between decelerations are a result of the work done in the other cylinders 

to perform the other strokes i. e. suction of air from intake manifold, fresh air 

compression and scavenging the exhaust gases out of the cylinder to the exhaust 

manifold. 

An increase in the applied load (at the same FLP), causes the average engine speed 

to decrease as expected, while the instantaneous speed fluctuation actually 

increases, as shown in Figure 4.2. This increase in fluctuation can be explained by 

the decreased ratio between the applied load and stored energy of the flywheel that 

is recovered within the "no power" period to smooth the crank speed variation. 

The flywheel inertia is not sufficient to overcome a high brake load and yet 

continue to rotate the engine smoothly. This results in a rapid deceleration after 

the end of the power generation stroke, which continues until the next cylinder 

fires converting more energy to accelerate the engine again. 
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The relationship between the instantaneous crankshaft speed and the applied load 

over a range of different loads has been established. Figure 4.3 shows a sample of 

two results at fuel lever position of 45%, with applied brake load torque of 13 Nm 

to 124 Nm. Additional results covering different conditions are given in Appendix 

D. 

It was observed under some operating conditions that the pattern of fluctuation in 

instantaneous speed was somewhat different as shown in Figure 4.4. At the load 

condition for Figure 4.4 (a) the crest is much flatter than that of Figure 4.4 (b), 

where the load torque is much higher. The interpretation is that the stored energy 
in the flywheel is being dissipated much faster under higher load, thus 

emphasizing the change in engine load during all four engine strokes. 

A comparison with previous experimental measurements, by Leonhardt et al., 
[1995], of instantaneous speed for a four stroke, 4- cylinder diesel engine obtained 

from 120 readings per crank cycle, as shown in Figure 4.5, indicates a similar 

speed fluctuation. The authors suggest that the high speed fluctuation at the peak 

resulting from the high resolution of the incremental optical speed sensor used. 
Misfire detection was the main objective of the study, where it was recommended 

to use the fluctuation in speed between peak and valley as a simple method of 
detection. Another study, by Sood et al., [1983], utilized a 138 teeth flywheel to 

experimentally measure the time interval between the flywheel gear teeth of a 6- 

cylinder in-line 4-stroke diesel engine, which is the inverse of the instantaneous 

speed. The results shown in Figure 4.6 show the fluctuation in the experimental 

measurements at high speed (the minimum time). In this study, the measurement 
fluctuation was found throughout the measuring range. 
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Figure 4.4 Instantaneous Speed variation at high speeds. 
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Figure 4.5 Engine speed fluctuations at 1400 RPM; Leonhardt et al., [19951. 
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Figure 4.6 The time between flywheel teeth at 1000 RPM of 6-cylinder 4-stroke 

diesel engine; Sood et al., [1983]. 

The variation in engine speed under two different load conditions is illustrated in 

Figure 4.7. At idle (FLP 10%), with a brake load of 58.6 Nm, the nominal speed is 

700 RPM, with a fluctuation of 90 RPM. Whereas when the engine is running at a 
higher speed of 2330 RPM (FLP 45%), under a similar load of 58.2 Nm the speed 
fluctuation is only 40 RPM, i. e. 1.6%. again illustrating the importance of the 

flywheel in recovering the engine stored energy, at high speed as well as the 
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validation of possible use of instantaneous speed as a monitoring tool for the load 

and speed relations. 
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Figure 4.7 Speed fluctuation at constant load. 
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4.1.2 Exhaust temperature 

The temperature measured at the exit of each cylinder helps to monitor the exhaust 

gas temperature from each cylinder, and is defined according to the thermocouple 

location shown schematically in Figure 4.8. 

Engine cylinders 

To exhaust pipe 

Figure 4.8 Exhaust system schematic diagram showing thermocouple locations. 

Figure 4.9 presents the exhaust temperature variation of each cylinder at idle and it 

can be seen that the temperatures fluctuate due to the exhaust gas flow from the 

individual cylinders, and are phase shifted due to the cylinder firing order. It can 

also be noticed that the temperature variation between each individual cylinder is 

as a result of the exhaust gas flow through the manifold. For example, the flow out 

of cylinder one will influence temperatures T2 and T3 such that the T1 < T2 < T3, 

and T4 < T3. Temperature T5 is the composite exhaust gas temperature which as 

expected shows less cyclic variation. 

At idle (FLP 10%), under low load, the average exhaust temperature is relatively 

low, as shown in Figure 4.9, and any increase in the applied load will directly 

bring about a significant increase in the cylinder exhaust temperatures, as shown 

in Figure 4.10. The fuel consumption was increased at idle position from 0.1524 to 

0.4434 g/sec as the load was increased from 5 to 118 Nm respectively due to 

governor effect. 
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Figure 4.9 Exhaust temperature variation at idle (FLP 10%) - (load 5 Nm, 

nominal speed 717 RPM). 
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Figure 4.10 Exhaust gas temperature variation at idle (FLP 10%) - (load 118.5 

Nm, nominal speed 600 RPM). 
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The cyclic variation in the temperatures T, and T4 are approximately 2°C at load 

118.5 Nm and speed 600 RPM (as shown in Figure 4.10), whilst at reduced load 

and increased speed, 18.5 Nm and 1360 RPM as shown in Figure 4.11, the 

response of the thermocouples is not fast enough to monitor the change in 

temperature over the engine strokes. The recorded temperature is thus an average 

value for a given operating point, particularly when the engine runs at high speed. 
If the load is further increased to 107 Nm at the same FLP 30%, as shown in 

Figure 4.12. the cyclic variation of temperatures T, and T4 can be recorded again 

where the engine speed reduced to 946 RPM. This confirms the relation between 

the engine speed and cyclic temperature variation recording. 
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Figure 4.11 Exhaust gas temperature variation at FLP 30% - (load 18.5 Nm, 

nominal speed 1360 RPM). 
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Figure 4.12 Exhaust gas temperature variation at FLP 30% - (load 107 Nm, 

nominal speed 946 RPM). 

4.1.3 Cylinder pressure 

Cylinder pressure is the most important parameter from which the efficiency of the 

combustion process can be established, and can reveal a number of the important 

faults that affect the combustion process, such as injector blockage, miss timing, 

and valves and ring leakage. It was thus considered essential to develop pressure 

sensor to monitor cylinder pressure, as described in chapter 3. 

Cylinder pressure has some high frequency components that require a relatively 

high sampling rate. Calculations of the sampling rate at maximum engine speed 

(4000 RPM) indicate that 24 kHz is sufficient to sample at each 1° crankshaft 

rotation, i. e. 125 data points through the combustion period (125° of crankshaft). 

However, using such a high sampling rate in parallel with the other engine 

parameters limited the amount of recorded data; consequently, it was decided to 

capture the cylinder pressure at a lower sample rate of 12 kHz which corresponds 

to one sample per 2 degree of the crankshaft rotation at maximum engine speed of 

4000 RPM. 
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Figure 4.13 presents a sample of the measured cylinder and fuel pressure using the 

injector strain gauge sensor. The fuel pressure remains constant at 8 MPa 

throughout the engine thermodynamic cycle except within the fuel injection 

period. The constant 8 MPa fuel pressure depends on the FLP setting and 

corresponds to the static fuel pressure within the fuel pipe system. At the injection 

point, the fuel distribution valve meters the fuel to the desired cylinder and the 

fuel pressure is increased momentarily to the injection pressure of 12 MPa causing 

the injector needle to open and fuel to flow into the cylinder. The cylinder pressure 

increases as a result of the fuel-air combustion in the cylinder. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 
Crank Cycle Number 

Figure 4.13 Cylinder and fuel pressure at speed 975 RPM and load 8 Nm 

With an increase in the applied load from 8 Nm to 112 Nm (at the same fuel lever 

position FLP 15%), the peak cylinder pressure is increased to 9 MPa as a result of 

the increase in burnt fuel, as shown in Figure 4.14. Although the FLP is fixed, the 

amount of injected fuel is increased by the governor to compensate for the applied 

load change. When the FLP is increased, the fuel valve opens further to allow 

more fuel to be injected into the individual cylinders. This in turn directly 

increases the fuel pressure. This is confirmed by monitoring the measured fuel 
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consumption which increased from 0.1528 g/s to 0.3745 g/s with the load increase. 

This increase in the injected fuel amount can be detected with the peak fuel 

pressure increasing from 12.8 MPa to 13.9 MPa. 
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Figure 4.14 Cylinder and fuel pressure at speed 725 RPM and load 112 Nm. 

Figure 4.15 shows the effect of FLP opening from 15% to 45% on the measured 

fuel pressure. It is clear that both the minimum fuel pressure as well as the peak 

value is increased. Furthermore, the increase in injected fuel raises the cylinder 

pressure, as can be seen in Figure 4.16. There is a corresponding increase in 

average engine speed from 975 to 3210 RPM and the brake load increased from 8 

to 11.3 Nm. 

These results validate the new method used for monitoring the fuel and cylinder 

pressure in real-time by measuring the circumferential and axial strain in the 

injector body. Because of the high sampling rates required to accurately capture 

the sensors output, the measured data will only be used in validating the model 

results and experimental data analysis, but not for the proposed CMFD. 

108 



Chupter 4. Experimental results 

FLP 15% 
FLP45% 

0 

10 -1 

8- 

6ý 

4- 

2- 

-2 III 

0 0.5 1 
Crank Cycle Number 

-V 
1.5 

Figure 4.16 Effect of FLP change on cylinder pressure. 

4.1.4 Brake load torque 
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The brake load is the main output of the engine and was measured using the 

integrated S-type load cell (omega, 200 LBS) to the hydraulic brake. A limited 

fluctuation was recorded in the measured load torque due to the nature of the 

hydraulic brake which uses water momentum interchange, which helps to damp 

out any torque fluctuations. Only small fluctuation (±6% of nominal value) were 

recorded at high load and low speed due to the low stored energy in the flywheel. 
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Figure 4.15 Effect of FLP change on fuel pressure. 
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The load torque variations could not be referred to any event within the 

thermodynamic engine cycle. However, the average load torque is a useful 

parameter with which to evaluate the engine condition and indicate any 

abnormality that could be developed. 

Figure 4.17 illustrates the brake load torque at two different FLP settings. Figure 

4.17 (a) shows the variation in load torque for a range crankshaft speed, at 15% 

FLP. As expected, when the applied brake load is increased the crankshaft average 

speed is reduced. When the injected fuel increased by changing the FLP setting to 

30% a similar trend was achieved at higher crankshaft speed level as indicated by 

Figure 4.17 (b). Figure 4.18 shows the relationship between torque and speed at 

several FLP settings. Notice how the load torque falls off gradually with an 
increase in the speed (proportionally) up until the point at which it falls off 

dramatically (stalls) which coincide with the operating envelope (performance 

curve) for the engine, shown as a dotted line. 

4.1.5 Inlet air conditions 

The amount of burnt fuel depends on the mass of air in the cylinder, and thus, any 
fault that can affect the inlet air flow rate and temperature directly influences the 

efficiency of the combustion process and reduces the generated brake power. A 

Bosch flow meter (Bourns-8512) and RTD (PT-100) temperature sensors are used 

to monitor the inlet air conditions. 

The air inlet temperature does not vary dynamically and the variation in flow rate 
is very slow. The outputs from the RTD temperature sensor and the Bosch flow 

rate meter were sampled at 1 kHz, and a running average filter used to smooth the 

data. Figure 4.19 illustrate the relationship between the flow meter output 

(voltage) as a function of engine speed for three different FLP settings, and as 

expected air flow rate increased with engine speed. The inlet air temperature 

showed no change throughout the test and only depends on atmospheric conditions 

on the day of the test. 
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Figure 4.17 Brake load torque variation at different crankshaft speed. 
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Figure 4.19 Inlet air flow meter signal at different operating conditions. 
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4.1.6 Engine power-torque curve 

In order to evaluate the actual engine condition in comparison to its age, it was 

necessary to evaluate the measured power-torque curve for the engine which could 

then be compared to manufacturers performance curve for the same engine had it 

been available. After an extensive search the power-torque for a similar model of 

the Ford 76PS, 2.5L series diesel engine was obtained, Lechie, [1999]. 

Table 4-1 lists the specifications for the two engines. Mechanically the engines are 

the same, with the 76PS engine having an improved performance rating because of 

modifications to the internal design of the combustion chamber. Figure 4.20 

provides a comparison of the performance curve of the 76PS engine 

(manufacturers data), against the 70PS engine (experimental data). As expected 

the performance curve for the torque and power show very similar trends against 

speed, albeit at reduced magnitude. For the 70PS test engine a maximum torque of 

135 Nm was obtained (at 2500 RPM), and maximum power of 49 kW (at 4000 

RPM), compared with the manufacturers data of 146 Nm and 52 kW, respectively. 

The reduced performance of the engine is largely attributable to its age. 

Table 4-1 The standard value of engine parameters. 

Parameter 70PS NA 76PS NA 

No. of cylinders 4 4 

Eng. configuration Inline Inline 

Cylinder displacement (CC) 624 624 

Total displacement (CC) 2496 2496 

Compression ratio 20.8 20.8 

Bore (mm) 93.7 93.7 

Stroke (mm) 90.5 90.5 

Maximum power (kW) 
4000 RPM 

52 56 

Maximum torque (Nm) 
2500 RPM 146 168 
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Figure 4.20 Power-torque curve of the engine using experimental data. 

4.2 ENGINE DATA UNDER SYNTHETIC FAULTS 

The engine data were collected using the data acquisition system and several 

synthetic faults were introduced to the engine to simulate an actual engine 

malfunction. In the present study, two types of faults were assessed, injected fuel 

starvation and inlet air blockage. Fuel starvation could occur as a result of 
blockage in the piping system between injection pump and injector, blocked 

injector nozzles or injection pump malfunction. To simulate this, a needle valve 

was integrated in the fuel line to cylinder 4 of the diesel engine to regulate the 

amount of fuel injected to that cylinder, as shown in Figure 4.21. Inlet air shortage 

can be caused by a dirty inlet air filter or blockage in the intake manifold. To 

simulate the inlet air blockage, the inlet to the flowmeter, mounted on the intake 

manifold was partially closed as shown in Figure 4.22. 

As the present study focus on the development of CMFD system, there is no need 

to test the engine performance under all of possible fault severity levels where it is 

only required to evaluate the key parameters at which the fault and its level can be 

detected. Through many trials and contacts with the engine manufacturers, it was 

not possible to find out the fault level at which different actions can be 
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recommended to the engine user. Two levels, for each fault type, were proposed 

within the present study and considered as the border severity level at which the 

user action will be evaluated. The air inlet fault was tested at 25% and 50% 

blockage area of the standard inlet flow area based on the assumption that the 

potential faults in this system progress rapidly, such as air filter blockage. The fuel 

fault was assumed to be determent when it reaches higher severity level where the 

fuel injection system components have a longer service life. Therefore, selected 

levels for the fuel blockage testing were set at 50% and 80% of the fuel flow area 

to cylinder 4. 

The above types of faults were selected for their strong influence on the quality of 

combustion process. A detailed analysis of the measured data under each one of 

the two faults was undertaken to evaluate the optimum measuring parameters 

which could then be used as a symptom to identify the fault. 

Figure 4.21 Needle valve to control the flow to cylinder 4. 
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Figure 4.22 Inlet air manifold partially closed. 

4.2.1 Cylinder pressure under fuel fault 

In order to verify the fuel shortage effect on the combustion process and the 

cylinder pressure, a needle valve was installed on the fuel pipe line to the cylinder 

where the fuel and cylinder pressures are measured (cylinder 4). As expected, the 

needle valve reduces the amount of injected fuel and as a result, the boost in the 

cylinder pressure due to combustion reduced. 

Figure 4.23 shows the effect of fuel shortage to cylinder 4 using the integrated 

needle valve. It is evident that the peak cylinder pressure has decreased from about 

8 MPa in the healthy engine to only 2.3 MPa when the fuel pipe line was 50% 

blocked, by closing the needle valve, as shown in Figure 4.23 (a). The fuel 

blockage reduces the injected fuel pressure rise at the injection point to less than 2 

MPa which in turn reduce the amount of injected fuel to the cylinder, ultimately 

producing lower combustion pressure in the cylinder. 
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As the fuel starvation increases to 80%, a further reduction in the cylinder peak 

pressure results (<2 MPa). Figure 4.23 (b) illustrate the results of both fuel and 

cylinder pressures of cylinder 4 under fuel blockage fault of 80% of normal open. 

The fluctuation in the nominal pressure in both fuel and cylinder pressure 
increased with the increase in fuel blockage. Even that the injected fuel to cylinder 

4 was reduced by closing the needle valve, the total fuel consumption increased 

from 0.142 to 0.146 g/s with slightly reduction in the generated torque. This 

increase in the consumption fuel result from the governor reaction to overcome the 

instantaneous deceleration produced after partially missing the contribution of 

cylinder 4. 

4.2.2 Instantaneous speed under fuel fault 

When the injected fuel to cylinder four was throttled using the integrated needle 

valve, the amount of burnt fuel was reduced, thus, the generated energy within this 

cylinder dropped. The instantaneous speed measurement detects the shortage of 

injected fuel to the cylinder, as shown in Figure 4.24 (at idle, FLP 10%). Instead 

of having a uniform speed fluctuation around the mean, the speed accelerates over 

the combustion in 3 cylinders while the fuel shortage in the fourth cylinder results 

a significant deceleration. This pattern is repeated in all testing conditions. 
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Figure 4.24 Instantaneous speed with 50% block of fuel to cylinder 4,27.2 Nm 

and 692 RPM 
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With an increase in the applied load from 27.2 Nm to 91 Nm (at the same FLP 

setting) the crankshaft speed is decreased and the fluctuation in the instantaneous 

speed becomes larger due to the lower energy stored in the flywheel, as shown in 

Figure 4.25. The affect of the reduced performance in one cylinder at higher load 

increased the fluctuation in the instantaneous speed. The measurement of 
instantaneous speed is proved to be very useful tool for detecting a miss-fire or 

shortage of fuel in the individual cylinder. 
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Figure 4.25 The effect of load increase on engine speed at idle FLP (10%). 

To clarify the effect of the fuel starvation, a comparison between the healthy and 

faulty data was utilized at different operating conditions, as shown in Figure 4.26. 

Both tests were undertaken at FLP 30%, and the mean engine speed decreased 

from 1250 to 1230 RPM, as a result of the miss-fire. The fuel consumption was 

also increased from 0.2987 to 0.414 kg/s due to the governor attempting to 

overcome the loss of the fourth cylinder and keep the engine working at the 

desired speed. More results were included in Appendix D. 

4.2.3 Exhaust gases temperature under fuel fault 

The exhaust gas temperature should also help to detect a miss-fire or the fuel 

shortage in individual cylinders. The reduction of the injected fuel, due to any 
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block in the injector or pipe system, reduces the energy release from the 

combustion process, with a corresponding drop in the exhaust gas temperature at 

the affected cylinder. This was verified by observing the exhaust gas temperatures. 

Figure 4.27 shows the exhaust gas temperatures when the fuel to cylinder four is 

throttled to 50%. Temperature T4 is markedly decreased to about 124°C while the 

temperature ranges of the remaining cylinders run at between 212 to 222°C. As a 

result, the total exhaust gas temperature T5 drops to about 190°C. 
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Figure 4.26 Effect of fuel valve open change on instantaneous speed. 
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Figure 4.27 Exhaust gas temperature with 50% fuel block to cylinder four, FLP 

30%, load 84 Nm and speed 1235 RPM. 
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Within the health engine operating mode, as discussed before, due to the exhaust 

manifold configuration the recorded data always shows the T3 > T2 > T1. It could 
be seen that when cylinder 4 is starved of fuel the exhaust gas temperatures of the 

first three cylinders are T3 > Ti > T2. This pattern was confirmed through all 

recorded data. Extensive analyses of such results indicate that this pattern is a 

direct result of the governor effect. When cylinder 4 does not provide a normal 

contribution and begin to open the main fuel valve at the injection pump discharge 

line to compensate for the drop in the speed. This process increases the amount of 

injected fuel into the adjacent cylinder (engine firing order is 1-2-4-3). The engine 

speed accelerates through the cylinder firing sequence and the governor effect is 

reduced at each cylinder. The amount of fuel injected per individual cylinder is 

decreased in the sequence of 3-1-2, and as a result, the exhaust temperatures under 

fuel faulty mode of operation are in the order T3 > Ti > T2 > T4. 

When the load is increased (at the same FLP 30%), the exhaust gas temperatures 

also increased as shown in Figure 4.28, similar to a healthy engine with the 

exception of the faulty cylinder. For example the healthy cylinders 1 temperature 

T1 increased from 213°C to 330°C while in the faulty one (cylinder 4) T4 only 

increased from 124°C to 174°C as a result of load increased from 63 to 111 Nm. 
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Figure 4.28 Exhaust gas temperature with 50% fuel blockage to cylinder 4, FLP 

30%, load 111 Nm, speed 1081 RPM. 
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With the needle valve closing 80% of the flow area, (at 30% FLP setting) and 111 

Nm applied load torque, the exhaust temperatures reduced by about 8°C, as shown 

in Figure 4.29. A further reduction in the cylinder 4 exhaust gas temperature of up 

to 12°C even that the thermocouple used is under the influence of the highest 

exhaust temperature zone within the exhaust manifold which is T1. The analysis of 

the exhaust gas temperature of individual cylinders proves it to be a helpful tool in 

detecting the fuel shortage and combustion faults within individual cylinders. 
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Figure 4.29 Exhaust gas temperature with 80% fuel block to cylinder 4, FLP 

30%, load 111 Nm, speed 1081 RPM. 

4.2.4 Inlet air condition under inlet air fault 

The inlet air flow rate sensor provides a direct way of detecting an inlet air 

blocking fault, by detecting an increased pressure drop across intake manifold. 

The reduction in the air flow rate is directly measured by the Bosch flow rate 

sensor. Figure 4.30 shows the change in the inlet flowmeter sensor output with 

varying air starvation at any speed. 
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Figure 4.30 Inlet air flowmeter sensor output under air block fault. 

No change in the inlet air temperature occurred as a result of the intake manifold 

blockage. Although changes in atmospheric air temperature occurred on different 

testing days, the temperature was still monitored as it represents one of the 

boundary conditions of the engine working environment. The inlet air temperature 

was not included in the developed CMFD system as the changes in its value is not 

related to the combustion process. 

4.2.5 Instantaneous speed under inlet air fault 

As a result of making the engine run under air starvation, the energy generated by 

the engine is expected to decrease, which will bring about a reduction in the 

instantaneous speed of the engine. This reduction can be used, in addition to the 

air flow parameter to evaluate and detect the engine condition under air starvation 

condition. Figure 4.31 shows that at low speed there is no significant change in the 

instantaneous speed due to increase in inlet air manifold blockage from 25% to 

50%, however, there is a noticeable decrease in the resulting brake torque from 45 

to 38 Nm. The drop in the brake torque was a direct result of shortage in available 

air for combustion in the cylinders. 
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Figure 4.31 Instantaneous speed under inlet air fault at low crankshaft speed. 

An increase in the fuel throttle (FLP setting) forces the engine average speed to 

increase by injecting more fuel to the engine. However, the available air in the 

engine cylinder controls the actual burnt mass of fuel. With the air inlet blocked 

the actual mass of fuel burnt is decreased, causing the average engine speed to fall. 

Figure 4.32 illustrate the effect of reducing the air inlet area of different FLP 

settings, under various load and speed conditions. Higher speed and brake load 

generated at lower inlet blocking at any setting of FLP. Similar results were 

obtained throughout the engine operating range, but only these two examples have 

been included. These results indicate a strong relationship between air inlet and 

engine performance, and highlight the use of instantaneous speed parameter to 

detect this type of engine fault. 
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Figure 4.32 Instantaneous speed under inlet air fault at high crankshaft speed. 
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4.2.6 Exhaust gas temperature under inlet air fault 

As a result of restricting the available air inside all cylinders, a reduction in 

combustion quality and therefore, the energy released from the burnt fuel is 

reduced which in turn reduces the exhaust temperature in comparison to the 

healthy engine data. Further blockage of the air inlet brings about further reduction 

in the exhaust gas temperature. 

Figure 4.33 illustrate the change in exhaust gas temperatures brought about by 

varying the air inlet area, which simulate the starvation of air in the engine, whiles 

the engine speed was maintained at 900 RPM. As can be observed there is a 

progressive drop in temperature across all sensors as the intake area is reduced. 

Figure 4.33 (a) shows the exhaust gas temperature at healthy mode where the 

engine output torque was 27 Nm, as a result of air inlet area blocked by 25% , the 

exhaust gas temperature reduced across all sensors as shown in Figure 4.33 (b) and 

the load torque reduced to 25.8 Nm. further restriction in the air inlet area 

blocking to 50% bring the load torque to 24.5 Nm and further reduction in the 

exhaust gas temperature as shown in Figure 4.33 (c). 

150 

, -. 
145 

10-ftwokep IW, 406eýft-4AWMOW 

- 
. º+'ý"+. ý+ý""wwý" 

... wo. ý» 

(b) (c) 

q jVb j.. A Alp &% 'V 

140 

& 
135 

H m. -lI 11 
ýI 

nn 
iý 

-_ 
ý 

iii 1-3u -] 1 1Z 
ý ti 

II T3 
125 ý T4 

T5 

120 
012345601234560123456 

Crank cycle Crank cycle Crank cycle 

Figure 4.33 Exhaust gas temperature variation due to air inlet blockage, FLP 

15% 

(a) 

126 



Chapter 4. Experimental results 

4.3 SUMMARY 

A detailed analysis of the measured experimental data for the diesel engine under 
both healthy and faulty modes of operation has been covered in this chapter. This 

was carried out with the purpose of evaluating the key parameters for faults 

identification within the combustion process which represents the focus interest of 

the present study. Several key parameters including instantaneous crankshaft 

speed, cylinder exhaust temperature, fuel lever position (FLP) and load torque, 

were evaluated, with a view to using them within intelligent CMFD algorithm that 

is addressed in Chapter 6. 

Instantaneous speed measurement is considered a very parameter for use in the 

CMFD system, as it contains significant information about the engine condition 

and combustion process. In particular it is possible to detect a malfunction in an 
individual cylinder. By registering the instantaneous speed with the camshaft, it 

will be easy to detect a fault in a specific cylinder. It can also be used in 

conjunction with the inlet air flow rate reading to detect and evaluate any air inlet 

problems. Being relatively in expensive and easily installed (non-intrusive) the 

sensors used are a cost effective solution. 

Monitoring individual exhaust gas temperature (using conventional 

thermocouples) provides another key parameter to the efficiency of the 

combustion process in the individual engine cylinders. Because of their slow 

response, the fluctuation in exhaust temperature was recorded only at a low engine 

speeds, however, monitoring average temperature at exit to each cylinder gives 

much insight into the combustion process, particularly as the exhaust temperature 

decreased dramatically at the exit of any cylinder starved of fuel. These results 

emphasize the important of usage exhaust gas temperature as diagnostic tool in 

engine CMFD. 

Measuring both cylinder pressure and injected fuel pressure is considered a useful 

indicator of combustion quality and engine condition. A new technique which 

utilizes the measurements of strain in the injector body was designed and 

validated. The new sensor successfully measure both fuel and cylinder pressure. 

The main advantage of this technique is that no intrusive work is required for the 

installation. 
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However, a high sampling rate is required to accurately capture the pressure-time 

variation; a lower sampling rate was used within the present study to enable the 

data acquisition system to capture all engine measured parameters simultaneously. 

The data was used to evaluate the combustion quality in cylinder 4, and helps to 

diagnose cylinder faults. 
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CHAPTER 5 

ENGINE MODELLING 

Modelling of diesel engines for performance simulation and design has received 

much research attention in the recent yeas. In addition, with the recent rapid 

progress of microprocessor technology, it is feasible to use these models for real- 

time applications, such as state estimation, control and fault detection. However, 

there is need for further research in modelling techniques, to improve the 

predictive accuracy of the model to achieve more precise estimation and control. 

Early studies into diesel engine modelling relied on the use of empirical data to 

develop linear dynamic models. These models link steady state experimental data 

representing engine thermodynamics and gas flow with simple dynamic models of 

the mechanical components. The major disadvantage of such quasi-linear models 
is their heavy reliance on experimental data. Furthermore, they poorly represent 

the transient response of the engine. More recently, non-linear engine simulation 

models using the filling and emptying method and the method of characteristics 
have been developed for the purpose of engine design and performance 

predictions, Watson and Janota, [1982]; Heywood, [1988]; Assanis et al., [1997]. 

Many models have been developed for the purpose of engine control and 

parameter estimation. One of these models known as the mean value model, was 

introduced by Jensen et al., [1991]. This model consists of several empirical 

algebraic and first-order differential equations in order to achieve a real-time 
implementation. The main drawback of this type of model is the requirement for 

empirical test data to fit the model equations and evaluate the suitable model 

constant values. Another diesel engine model for electronic control was developed 

by Watson, [1984], where the in-cylinder combustion process was included using 

a single-zone model and filling and emptying modelling technique. Watson, 

[1984], introduces several modifications to this model to cut down the 

computational time; however, it does not predict in-cycle crankshaft angular speed 

variations. Kao and Moskwa, [1995], introduce a hybrid of two engine models 

based on a mean torque production model and a simplified cylinder-by-cylinder 

129 



Chapter 5. Engine modelling 

model. The hybrid model was investigated in order to provide control engineers 

with tools for developing control and diagnostic algorithms. The implementation 

of the mean torque model required empirical test data to fit the model equations; 
however the simplified cylinder-by-cylinder model is not able to predict accurately 

the in-cycle variations of the engine states. 

In this study, a combined dynamic and thermodynamic engine model is developed 

and used to predict the in-cycle variation of the engine states. To enable the study 

of the engine behaviour under loading, a dynamic dynamometer model is also 

included. Engine events for control and performance estimation are generally 

periodic with respect to crank angle rather than time, and hence the engine model 
is totally based on the crank angle domain. The proposed model does not require 

any empirical inputs for engine performance and takes into consideration the 

inertia variations of the crankshaft assembly with piston pin offset. The model 

treats the four stroke cylinder cycle and the manifolds as thermodynamic control 

volumes by using the filling and emptying method, solving energy and mass 

conservation equations with subsystem for combustion and heat transfer. The 

model will be constructed in MATLAB/SIMULINK environment. 

In order to construct the model from the basic governing equations, a single 

cylinder model was initially developed, which represents the main unit in the 

multi-cylinder engine. As the available engine comprises 4-cylinders, the single 

cylinder model was tested and validated using experimental results derived from 

the pressure signal only which is measured within cylinder 4. The single cylinder 

engine model (SCEM) was utilized to construct the four cylinder engine model 

(FCEM) assuming that it consists of four identical cylinders working with a phase 

shift corresponding to the firing order. A modification was required in the SCEM 

to match the optimum performance of the FCEM, such as the crankshaft balancing 

under the forces produced from the different cylinders. 

The SCEM consists of both dynamic and thermodynamic balancing system. The 

dynamic part of the model computed the forces relationship of all moving parts of 

the engine whether rotating or translating. From the resulting equations it was 

possible to predict the engine indicated torque. The inputs of the dynamic 

subsystem are crank angle and cylinder pressure and include constants for mass 
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and inertia. Using the defined engine relationships, the model can predict the 

instantaneous crankshaft speed variation. The dynamic model was integrated with 

a simplified formula to estimate the friction torque as a function of engine speed to 

improve the computed inertia variations of the crankshaft assembly, Rakopoulos 

and Giakoumis, [1998]. 

The thermodynamic model is based on the filling and emptying method. Three 

thermodynamic control volumes are considered: the inlet manifold, the cylinder 

and the exhaust manifold. A schematic diagram of the engine is shown in Figure 

5.1. Equations for the mass and energy conservation, gas property relations and 

perfect gas law are solved in the crank angle domain. A single-zone combustion 

model is used for predicting the theoretical fuel burning rate. The cylinder is 

treated as a single control volume with homogenous temperature and pressure 

through the whole thermodynamic cycle. The thermodynamic sub-model inputs 

are the inlet air conditions, crankshaft speed and applied load on the engine. 

Lubvt. tiuuiitüht : xllalhl iualiifold 

Figure 5.1. Single-cylinder diesel engine. 

5.1 DYNAMIC MODELLING 

Figure 5.2 shows a simplified model of an engine coupled to a dynamometer. The 

time domain model was firstly discussed by Zweiri et al., [1998], then a more 

discussion of the different friction sources were covered in Zweiri et al., [1999]. 

The time domain adds difficulties for the engine simulation where all the 
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movements should be defined in the same domain. Crank angle was found to be a 

more suitable domain for internal engine analysis as most of the simulation 

parameters are related to the crank angle. 

7� 0, 
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Engine Coupling 
----------, 
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Figure 5.2. Engine coupled to a dynamometer; Zweiri et al., [19991. 

To develop an engine dynamic model in the crank angle domain, the crankshaft 

angle B, is selected to be the independent variable. The coordinate transformations 

are as follows, Wang et al., [1997] 

d8, 
6i = dt 

d0 l 

dO, B, = C! )1 
CI O-02(01) 

dw, dw, 9, = dt = w, dB 

(s-i) 

(5-2) 

(5-3) 

(5-4) 

Where t is time, co, is the angular velocity of the engine crankshaft and (o, is the 

angular velocity of the dynamometer shaft. The relationship between the 

dynamometer angular position 6, and the independent variable B, , the crank shaft 

angular position, is given by: 
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CU2(8º)=(Vº(eº)d82 

º 

dO2 = 
ýz, 

uýý. 
d6, 

l 

. ". B2 =f 
2" dB, 
üý 

(5-5) 

Depending on this domain transformation and utilizing the Lagrangian principles, 

the two equations, describing the dynamics of the system in crank angle domain, 

can be derived as follows 

05, =JT, (ei )- ý ýý' ý 
w; _Tr - 

ýT 
f- Ts _T 

, 

wz=J (T�+Ts-TL) 

(5-6) 

(5-7) 

where T. is the indicated torque, Tf is the mechanical friction torque, T, is the 

reciprocating torque, T, is the applied external load torque, Ts and To are the 

stiffness and damping torque for the dynamometer, J is engine inertia, and J, is 

the dynamometer inertia. 

The indicated engine torque T,, is generated by the conversion of the chemical 

energy to thermal energy and then into mechanical energy, via the combustion 

process. The relationship between the indicated torque and the indicated pressure 

P in the cylinder at any crank shaft position 9, is given by the following relation: 

T; = (P 
- Pam)AYrG(O, ) 

where the factor, G, is a function of the piston and cylinder geometry 
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G(01) = 
sin( Bi + ß) 

cos ,6 
(5-9) 

where 8 is the connection rod angle, r is the crank radius (equal to half of the 

stroke), L is the connecting rod length, 8 is the pin offset, which is very 

important to balancing forces acting on the piston, and 0 is the connecting rod 

angle when the piston is at the top dead centre position. Refer to Figure 5.3. 

P; 
TDC 
Y 

Figure 5.3. Piston-cylinder mechanism including forces and dimensions. 

The piston displacement y, is defined as the distance between the piston location 

at any crank angle and the top dead centre. From the piston-crank geometry 

(referring to Figure 5.3) y can be given by the following relationship, as a 

function of the crank angle. 

y=ýýr+Lr -g' -[Lcosß+rcos(B, -0)] 

Where the angles 
0 

and 
ß 

are given by 

= sin-' 
8 

r+L 
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ß= sin-' 
8+ r sin(9, - 

L (5-12) 

The mechanical friction torque Tf represents the reduction in the brake output 

torque due to the mechanical friction in all the moving parts in the engine. Zweiri 

et al., [2000], introduced a detailed model for the instantaneous friction estimation 

in different engine parts. This model contains sophisticated detail of the engine 

lubrication system, bearings, valve train, piston rings, and auxiliaries gears losses. 

Therefore, many constant values will be required that is usually not available for 

the commercial engines. A simple but robust formula for the calculation of the 

friction torque was reported by Rakopoulos and Giakoumis, [1998] where the 

mechanical friction torque was considered a function of the friction mean effective 

pressure (finep) as follows. 

Tf=ýýp"A,, r (5-13) 

where A, is the piston area and r is the crankshaft radius. The friction mean 

effective pressure was correlated as a function of engine speed (RPM) and 

compression ration of the engine. 

finep = 0.123 x CR + 4.774 x 10-4 N (Bar) (5-14) 

This formula was used within the present study for its simplicity and validity with 

the steady state operation mode. 

The reciprocating torque T, , is the torque produced by the motion of the piston 

assembly including the small end of the connecting rod and is given by: 

T, = MrG(B, )y (5-15) 

The second derivative of the piston displacement can be calculated by 

differentiating equation (5-10) with respect to time, then the reciprocating torque 

becomes 
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T, = MrG(B, IG, (91 )9, Z + G2(01011 (5-16) 

where M is mass of the piston assembly including the small end of the connecting 

rod, and G, (0, ) and G2 (B, ) are functions of the engine geometry: 

G, (0, )= r cos(9, -0)" l+ 
(r L) cos(B, -ýý -lte, "sin(9, -o) (5-17) J, 1 (9, y (01) 

Gz (6, )=r sin(9, - 0)+ 1 
T(6 

j' 
" cos(B, -) (5-18) 

, 

where A is a geometric factor which is defined as follows: 

A =1- sinz ß (5-19) 

The torsional stiffness torque Ts , and the damping torque T� , at the coupling 

between the engine and the dynamometer are given by 

TS = S(9, -02) (5-20) 

and 

T� = D(B, - 
6z ) 

(5-21) 

where, S and D are stiffness and damping coefficients respectively of the coupling 
between the engine and the dynamometer. 

5.1.1 Inertia variation 

Reciprocating mechanisms have variable inertia due to the change of geometry 

through a crank revolution. The piston and connecting rod masses change their 

position relative to the crankshaft axis and hence change the effective inertia about 

this axis. The same path is followed by these parts during each revolution of the 

crankshaft and thus the inertia variation is smooth and periodic. The variable 
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inertia, as a function of crankshaft position, is used with respect to the crank shaft 

rotational axis. For a given crank angle, the inertia (with respect to the centre line 

of the crankshaft) is defined by considering the equivalent inertia of piston, 

connecting rod and crankshaft assembly. For more details reader can refer to, Rao, 

[1990]; Hesterman and Stone, [1994]; Drew et al., [1999]; and Li and Stone, 

[1999]. In this model, the piston pin offset is taken into account during the 

analysis of the variable inertia. The crank angle varying inertia of an engine 

crankshaft assembly is derived in detail by Hesterman and Stone, [1994], and can 

be calculated using the following equation. 

J(01) = J(. + m(. (b2r)2 + JR [[i) 
2ý 

8) 
cos2 91 

(1 

+ mr 

°[J 
I ýý )) 

cos 0, +sinB, 
ý1 

rb, 
L ýA (B, 

+ mRr Z(l - b, Y cos' 6, + mXr 2 b, 1 
ý, 

Z(j) 
cos 6, + sin 6, 

and 

w(el )- 

2J R3 
1- A 9, 

COS3 9- r21 
COS 9 

a9, RL A(01 Y'L A(01) ' 
-2mR(1-b, )Zrz cos 0, sin 0, 

+ mRr2 b, 
1 On, 

cosB, -sin 0, 
ýF(ol -) 

1 

cost 9, 

1 

-cos0, +b, 
1 Vie, 

sing, 

l29 '[ý 
, 

+mý, r2 
1-A e' 

cosh, +sin9, 
L (9 

A(91) 1-A on, t_cose, + ý(9 
' sing, 

(5-22) 

(5-23) 
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Where J, is the moment of inertia of the crankshaft, JR is the moment of inertia 

of the connecting rod, m(. is the mass of the crankshaft, mR is the mass of the 

connecting rod, m,, is the mass of the piston, b, is the length ratio of the CB to CA 

and b2 is the length ratio of ED to DC as shown in Figure 5.1. 

5.1.2 Cylinder volume and surface area 

Referring to the piston-crank mechanism, shown in Figure 5.3, and using the 

geometrical relationships between the different parts, their dimensions and relative 

motions, the cylinder volume is calculated at any crankshaft angle using the 
following equation. 

V= 
CV-d1 

+ 
ýZ 

L (r+L)Z 
-8Z -{Lcosß+rcos(B, -O)}1 (5-24) 

In addition, the internal surface area of the cylinder through which the heat 

transfer to the surrounding is determined by 

gdA=a 
4Z +ýrd r+L S Lcos +rcos B- 5-25 ýý-2-{ /j ýý ýý}] ý) [ 

where a>2 for a non-flat piston and cylinder head and a=2 for a flat piston top 

and cylinder head bottom. The variation of the cylinder volume with respect to the 

crankshaft angle can be evaluated by derivation of equation (22) as follows 

V' = 
; qd2 

r sin(9 - 0) + 
cos(91 - 019 +r sin(8, - 0)] 

(5-26) ` 4 LZ -[8+rsin(9, -O)r 

5.2 THERMODYNAMIC MODELLING 

The foundation of the diesel engine simulation is the physically-based, 

thermodynamic, zero-dimensional model introduced by Assanis and Heywood, 

[1986]. In the simulation, the diesel four-stroke cycle was treated as a sequence of 

continuous processes: intake, compression, combustion (including expansion), and 

exhaust. The system of interest is the instantaneous contents of a cylinder. In 
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general, this system was opened to the transfer of mass, enthalpy, and energy in 

the form of work and heat. Throughout the cycle, the cylinder is treated as a 

variable volume plenum, spatially uniform in pressure. Furthermore, the cylinder 

contents are represented as one continuous medium by defining an average 

equivalence ratio and temperature in the cylinder at all times. 

Quasi-steady, adiabatic, one-dimensional flow equations are used to predict mass 
flows past the intake and exhaust valves. The intake manifold and the exhaust port 

are treated as plenums whose pressure and temperature history are specified. The 

compression process is defined so as to include the ignition delay period, i. e. the 

time interval between the start of the injection process and the ignition point. The 

total length of the ignition delay is related to the mean cylinder gas temperature 

and pressure during this delay period. 

Combustion is modelled as a uniformly-distributed heat release process that is 

assumed to be proportional to the rate of fuel burning which is modelled 

empirically. Since the diesel combustion process is comprised of a pre-mixed and 
diffusion-controlled combustion mechanism, the total fuel injected is considered 

to be the sum of two algebraic functions, one for each combustion mechanism. 
The fraction of the total fuel injected that is burnt by either mechanism depends on 

the length of the ignition delay period and the engine load and speed. 

Heat transfer is included in all of the engine processes. Convective heat transfer 

was modelled using an available engine correlation based on turbulent flow in 

pipes. Radiative heat transfer was added during combustion and exhaust. The 

combustion chamber surface temperature of the piston, cylinder head, and liner 

can be either specified or calculated from a specification of the wall structure and 

energy balance around the wall. 

The filling and emptying method was selected to be the basis of the proposed 

model, where three thermodynamic control volumes are considered: the inlet 

manifold, the cylinder and the exhaust manifold. A schematic diagram of the 

engine with the control volume is shown in Figure 5.4. This method ignores the 

effect of pressure waves inside the control volumes and treats the gases as a 

homogeneous mixture of ideal gases which are assumed to have a uniform 
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temperature and pressure at each instant in time. Therefore, the instantaneous state 

of the mixture is only dependent on the temperature, pressure, and equivalence 

ratio. Moreover, the mass flows across the boundary of the combustion chamber, 

during the period when the intake and exhaust valves are closed, are assumed to be 

limited to the fuel injected to the cylinder. In addition, the injected fuel is assumed 

to instantaneously evaporate, Watson and Janota, [1982]; and Watson, [1984]. In 

the following section, a detailed derivation of the governing equation for the 

thermodynamic model will be carried out. 

Intake Manifold �, _ Exhaust Manifold 

-ir m; 

Cylinder 

Figure 5.4. Schematic of the engine control volumes. 

5.2.1 Conservation of mass and energy 

In general, the first law of thermodynamics for open system with respect to time 

can be written as: 

U'=Q'-W'+I: H,,; (5-27) 

Where, U is the internal energy, Q heat transfer through system boundary, W 

work done by the system, H� the total stagnation enthalpy and i subscript donates 

different control volume. This equation could be re-written as 

ýmuý =ýQý-P V'+ (5-28) 

where the subscript j denotes surface with different rate of heat transfer, m mass, P 

pressure, T temperature, h� the specific stagnation enthalpy, u specific internal 

energy. 
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Note: Q includes the heat released by combustion, I m, " ho; represents the 

enthalpy fluxes through the intake and exhaust valves as well as the enthalpy flux 

associated with fuel injection. 

m"u'+u"m'=ZQ, '. -P"V'+Em; "ho; (5-29) 
J 

E Qn,; -P" V' +Im;, ' ho;,, - mau, h+ m'f ' hfo. 
J 

., 

Qhii +1m; 
' hni� -1 m' �, ' hOOU, +mj- hjor -P' 

V'- um' rilü ,_2: (5-30) 

Assuming that the gases involved behave as perfect gases and the ideal gas 

equation of state is applicable, then, PV = mRT , where R is the gas constant 

which depends on the gases composition. Using the gas equation of state, the 

previous equation could be re-written as, 

+ým; ' h0 %� 

_, 
m, 

�� ' h. u, + mf 'h fo, - 
my RT 

V' - um (5-31) mu' Qn,; 
� 

Hence, the specific internal energy variation with time will be: 

U' = 
Qh" + 

IJ II 
+mj "hja, -um' j 

I 
_RTV, 

mv 
(5-32) 

Watson and Janota, [1982] and Watson, [1984], shows that the internal energy 

could be assumed as a function of the temperature T and the equivalence ratio F. 

The effect of pressure will be neglected since the effect of gas dissociation is 

considered very small and will be neglected; therefore, the specific internal energy 

could be expressed as: 

u= u(T, F) (5-33) 

This relationship has been proven empirically in the study introduced by Watson 

and Janota, [ 1982]. Using a curve fitting of combustion product experimental data 

as a continuous function, the results show that the internal energy can be 

calculated using the following empirical equation. 
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u=k, 
(T)-k2(T)' F 

(kJ/kg) 
1+ f, F 

where 

k, (T) =0.692T +39.17*10-6T2 +52.9*10-9T3 

- 228.62 *1 0-"T' + 277.58* 1 0-"TS 
and 

k2(T)=3049.39-5.7*10-2T-9.5*10-5T2 

(5-34) 

(5-35) 

(5-36) 

+ 21.53 * 10-9 T3 - 200.26 * 10-14 T4 
This empirical equation for the internal energy calculation was accepted within the 
following range of temperatures and equivalence ratios: 

250 <T< 2400 K and 0<F<1.6, where F=0 for air and F>0 for combustion 

products. 

Using equations (5-32) and (5-33), then 

au au ZQ%,; +E m;, h0, � -ý mo�, h00�, 
T'+F'= i1 _RTVº äT OF +mj' "hjor - um' mV 

(5-37) 

This equation is re-arranged to obtain the rate of change of temperature for each 

control volume as follows: 

T'= 
1 RT 

, 
au 

" -----V - -F mV äF 
(5-38) 

Knowing that R is the gas constant for the gas mixture of the air and burned fuel 

which could be given by the following equation as function of equivalence fuel to 

air ratio F, and the stoichiometric fuel-air ratio fs, which is given the value 
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0.0676 for the average hydrocarbon composition of diesel fuel (C� Hz� ), Watson, 

[1982]. 

R_0.287+0.02F 
1+f,, F 

F=f 
I; 

where, f is the actual fuel-air ratio. 

(5-39) 

(5-40) 

The equivalence fuel-air ratio is a function of time, where the amount of burning 

fuel changed with time from zero before the start of combustion until its maximum 

value at the end of the combustion process in the cylinder. To evaluate the 

variation of equivalence ratio with respect to time, applying the mass conservation 

law for both air and fuel using the total mass, 

m=mQ+mbf (5-41) 

where m� is the air mass and mbf is the mass of burnt fuel. Solving equations 

(5-40) and (5-41), the mass of the burnt fuel is evaluated as, 

m_ mFf. (5-42) 
1+Ff 

By differentiating this equation with respect to time and rearranging for the rate of 

equivalence ratio change, then 

F, =11')I1' mA 
mbl Fm' 

5.2.2 Ports and valves mass flow rates 

(5-43) 

In order to model the flow process, across the ports and valves through intake and 

exhaust, a one-dimensional model was used. This model used the analogy of an 

143 



Chapter 5. Engine modelling 

orifice having an equivalent area of the valve or port passage. Appling the energy 

equation from upstream to downstream for isentropic steady flow, and assuming 
that the inlet velocity is very small and can be neglected for subsonic flow, where 

P/P� > [2/(y+l) ly-'l, the mass flow rate has the form 

m' = CdA,, Pu 

2/ Y+ 
2y 1 Pd 'Y 

_ 
Pd y 

y -1 RT,, Pu P. V 
(5-44) 

where Cd is the discharge coefficient, y is the specific heat ratio and A, is the 

valve or port area. The discharge coefficient value depends on the curtain area of 
the valve as s function of the valve lift to valve diameter ratio. For more detail 

refer to, Heywood, [ 198 8] 

Under some operating conditions, the flow would be sonic flow, i. e. when the 

pressure ratio become (Pd/Pa <_ [2/(y + 1)r'(r-') ). Under such condition the mass 

flow rate equation would be 

m'=CdAyPull 
2 (r+4(r-0 

Y 
RT,, y+l 

(5-45) 

For cylinder valves, throttles and other control valves where pressure ratios can be 

large, it is essential to use equations (5-44) or (5-45) as compressible effects can 
be significant. In order to use the orifice equations, the area and discharge 

coefficient (or loss factor) must be known for the constricting part of the pipe, in 

this case a cylinder valve. Another example is a control valve, where the orifice 

areas varies with time and losses vary with area. 

For cylinder valves the variation of flow area is determined by the cam profile and 
for a particular engine the variation of area will normally be available from 

measurements in the form of area versus crank angle curves, for inlet and exhaust 

valves, as shown in Figure 5.5. Often the curves give effective area (Av "Cd) as this 

can easily be derived from combining test rig measurements of flow with the use 

of equations (5-44) and (5-45) in reverse. Deriving effective area curves in this 
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way avoids difficult problems of separately determining actual flow area through 

the valve and the discharge coefficient. Some organizations prefer to express valve 

profiles by valve lift versus crank angle, with associated area-lift and Cd -lift 

curves. The data still coming from flow rig measurements. In this case, care has to 

be taken in defining 'flow area' as actual flow area through a valve varies with lift 

in a complex way. Frequently an approximation to flow area is used, the 

associated Cd values then accounting for the approximation. One common 

approach is to use the 'curtain area', which is simply defined as 

Curtain Area = 7tDL (5-46) 

where D is valve head diameter and L the valve lift from flow measurements, Cd 

values can be obtained again using the orifice equations in reverse. However, it is 

important to realize that these Cd values go with the curtain areas of (5-46) and 

must not be used with other definitions of flow area, which will need their own set 

of Cd-lift curves. By using equations (5-44) and (5-45) in a model the effective 

flow area is obtained each time step from look-up tables of either effective flow 

area versus crank angle, or lift versus crank angle with an associated Cd-lift table, 

using linear interpolation. The pressure ratio is determined by the pressures in the 

cylinder and either inlet or exhaust manifold at the time step. For steady state 

operation this is all the data that is often required, but for transient modelling 

additional information will be needed for the valve's response rate as a real valve 

will not respond instantaneously to changing conditions. Such information will 

also be needed for steady state modelling if the valve has a sufficiently fast 

response to respond to in-cycle changes in engine conditions. For this study the 

method of effective valve area was used for its simplicity and suitability for the 

transient modelling. 
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Figure 5.5 Valve effective area profiles, Baranescu, 119991. 

5.2.3 Combustion 

Combustion is considered as the most important operation in the internal 

combustion engine where it is responsible for the generation of the thermal energy 
by burning of the fuel, and then converted to mechanical energy due to engine 

processes. Many models have been discussed in the literature to simulate this 

complicated non-linear process, e. g. Watson and Marzouk, [1978]; Watson and 

Janota, [1982]; Heywood, [1988] and Ramos, [1989]. The single-zone model 

which is proposed by Watson, [1984] was selected in the present study, because it 

has wide acceptance and used to predict both pre-mixed and diffusion modes of 

combustion, as shown in Figure 5.6, to construct the total heat release period due 

to combustion. These two modes are assumed to proceed concurrently from the 

ignition point during the combustion period. Initially, the pre-mixed combustion is 

considered to consume most of the evaporated fuel present in the combustion 

chamber at the end of the ignition delay period until the fuel air mixture that was 

prepared and ready to burn prior to ignition is exhausted. The combustion process 

is then assumed to continue only in the diffusion mode until the end of 

combustion. 

I 
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Figure 5.6 Schematic of the heat release in the direct-injection diesel engine, 
Ramos, 119891 

The ignition delay (ID), which is defined as the time between the start of fuel 

injection into the combustion chamber and fuel ignition, should be considered in 

studying the combustion process (determined from the change in slope on the P-B 

diagram, or from a heat release analysis of the P(O) data). This period is 

considered as a function of the cylinder pressure and temperature and could be 

calculated using the following equation given, by Heywood, [1988]. 

ID=3.45 P 
-I. VLe 

101.3 
2100/T 

(ms) (5-47) 

where P is the cylinder pressure (kPa) and T is the temperature (K). 

The values of the different constants in the previous equations were selected based 

on studies where the fuel was injected into a uniform air environment, where 

pressure and temperature the only variables. In an engine, pressure and 

temperature change during the delay period due to compression resulting from 

piston motion. To account for the effect of changing conditions on the delay the 

following relationship is usually used: 

101.3 
IC 
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where 9,,, j is the angle at injection and Sign is the angle at ignition. 

(5-48) 

Watson, [1984], modelled the combustion process using an empirical relationship 

that has the advantage of using constants that were developed from a huge number 

of tests for different engines over a wide range of operating conditions. This 

approach depended on prediction of the apparent fuel burning rate (the rate at 

which fuel must be burnt given the assumptions regarding equilibrium 

thermodynamic, homogeneity, etc), and required matching of experimentally 

determined cylinder pressure diagrams. The result of calculating and curve fitting 

of a large number of fuel burning rate diagrams over the two burning modes 

showed that the relation between the total fuel burning rate and the burning rate in 

each mode has the following form 

(iI1 + `1-, 
6). 

lmJ /dijj (5-49) 

Where (mf) 
. 

is the normalized total fuel burning rate, (m' )o, is the normalized 

fuel burning rate in the premixed mode and (m, )d, is the normalized fuel burning 

rate in the diffusion mode. The factor ß, was introduced by Watson et al., [1980], 

to quantify the portion of the fuel consumed in the pre-mixed burning mode. This 

factor, called the burning factor, depends on the length of the ignition delay period 

and the overall equivalent ratio prior to the ignition, Fig. The value of ß was 

defined as follows: 

, l3 =ý "e =1-0.926. F. 
g°37 " ID-0.26 

I 
(5-50) 

The normalization process was achieved by dividing the expression by the total 

quantity of fuel injected and the nominal maximum combustion duration (constant 

in terms of crank angle). The normalized pre-mixed burning rate is written as, 
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,K KP, -l 1 KP, Pz -ý 5 -51 
ýmf ýPrP 

= ri 'K PZ ' 
ennrn, 

- 
Bnn. 

m () 

where 
KP, =2+1.25 x 10-g " 

(ID x NY. 4 

and 
KPZ = 5000 

In the above equations ID has units in ms and N is given in RPM. The normalized 
diffusion burning rate is given by 

ýmr)d; 
ý =Kdidz'Bo: m ý'exPý-Ký, 

i'Bo: ml 

uihara 
-dl - /Fo. 6aa 
Kd1=14.1 

Kd2 = 0.79 X Kdý25 

(5-52) 

The term O,, 
, 

is defined as the non-dimensional normalized angle, increasing 

from 0 at the start of combustion to 1 at the end of combustion and is defined 

mathematically as: 

!1-0 -eig" Vnorm 
0 

com 
(5-53) 

where 9,0, 
� 

is the combustion duration angle starting at ignition until the end of 

combustion (usually 125°); Ramos, [1989]. 

The parameters KP1 , KP2, KdI and Kd2 have been evaluated using correlations 

with the fundamental factors that have the strongest influence on the combustion 

rate. The values shown are obtained for a range of direct injection diesel engines 
from the work presented by Watson, [1984], who showed that the actual fuel 

burning rate could be given by, 

mf" mfI 
mý, _ °' 

9 COAI 

149 
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Note that the fuel enthalpy of formation is a very important parameter that 

liberates the chemical energy that results from the combustion process. The value 

of enthalpy of formation mainly depends on the fuel composition. Ramos, [1989], 

provides a correlation for calculating the enthalpy of formation by specifying the 

low heating value (LHV) in kJ/kg of the fuel at 25°C and ibar and the injected 

fuel temperature Tf as follows: 

hf =2.326 [LHV-19183+0.5(Tf 
-537)] (kJ/kg) (5-55) 

5.2.4 Cylinder wall heat transfer 

The heat transfer mechanism in a diesel engine comprises forced convection and 

radiation heat transfer. The forced convection appears between the turbulent flow 

in the cylinder and the combustion chamber walls, whilst radiation heat transfer 

only takes place when a high temperature difference exists, i. e. between the flame 

or burning gases and the combustion chamber walls. The total heat transfer rate 

can thus be expressed as the sum of the two components. 

Qhr 
- 

nhI 
1+ 

Of 
2 (5-56) 

The convective heat transfer Q;,,, at the gas-to-cylinder wall interface will depend 

on the temperature gradient in the boundary layer at the surface; however, due to 

the inherent difficulties in calculating the details of turbulent fluid motion in the 

combustion chamber during the operation cycle of the engine, the convective heat 

transfer rate will be calculated using the usual expression as. 

Vhn = konA(T -Twa,, ) (5-57) 

where h0 is the heat transfer coefficient based on forced convection. Borman and 

Nishiwaki, [1987], conducted an intensive review of the empirical correlations 

used to determine the heat transfer coefficient in the internal combustion engine. 

The first reviewed model was based on the experiments in a spherical bomb and 

referring the data to the actual engines and indicates the heat transfer coefficient in 

the convection heat transfer mode as follows 
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h0 
�=5.41x10 

3(1+1.24"NP)"(PZ "Trl3 (kW/ni -K) (5-58) 

where NP (m/sec) is the mean piston speed, P (MPa) is the cylinder pressure, T 

(K) is the cylinder gas temperature. Originally this heat transfer coefficient was 
intend to predict the time average or steady state flux, but it has often been used 
for the prediction of the instantaneous heat flux, probably because it was 

expressed in terms of instantaneous P and T values. This basic correlation had 

been through many modifications to increase its prediction accuracy. Most of 

these modifications concentrate on the mean-piston-speed term, e. g. 

(3.5+0.185Np) and (3.22+0.864Np) instead of (1+1.24Np). As there is insufficient 

information about the source of experimental data used to obtain these 

correlations, a comparison was undertaken to establish the most appropriate 

correlation to use in the present model. As a result of the comparison, the best 

correlation was as follows: 

kon = 5.41x 1 0-3(3.22+0.864 NP)" (P2 
-T)'/3 (kWA - K) (5-59) 

The mean piston speed is a function of the crank shaft rotational speed, 'N, and the 

piston stroke value, ST. 

N_ 2"N"ST 
P 60 

The primary source of radiative heat transfer in a diesel engine is the high 

temperature burnt gases and the soot particles which are formed as an intermediate 

step in the turbulent diffusion controlled diesel flame. Estimates of the relative 
importance of the radiation mode in cooled diesel engines have varied between a 

few and 50 percent of the total heat transfer. In general, the radiant heat flux 

depends on the location on the combustion chamber surface, crank angle, engine 

load, engine size, and engine design. Following the work of Assanis and 

Heywood, [1986], the instantaneous radiant heat transfer can be expressed as 

Qht2 =ý'ýA'(Tpa-TiaN/ (5-60) 
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Where a is the Stephan-Boltzman constant, c is the apparent grey body 

emissivity, (its value was assumed to vary linearly between its maximum value 0.9 

and zero over the expansion stroke, see Figure 5.7). T,, 
Q� represents the inside wall 

surface temperature of the cylinder head, piston or liner. In general, during the 

intake and compression processes, the radiation heat flux was assumed to be zero 

where the temperature level is not too high. During combustion, radiation heat 

transfer will exist with different values depending on the controlling parameters. 

S 

0.9 

0.0 
VClearence 

* v 
vstroke 

Figure 5.7. The emissivity change with respect to the cylinder volume. 

The apparent (bulk) radiant temperature Trad 
, depends on the adiabatic flame 

temperature, which can be modelled as the temperature of the slightly rich mixture 

of fuel and air (F=1.1) zone. However, as combustion progresses and relatively 
fewer close-to stoichiometeric fuel-air zones are found in the cylinder, this 

adiabatic flame temperature becomes considerably higher than the apparent radiant 

temperature; a better estimation was found to be the mean of the adiabatic flame 

temperature and the average bulk gas temperature, i. e. 

T+TF=,, T, 
qa= 2 

(5-61) 
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The temperature of the combustion products at F=1.1 is computed from a 

correlation of instantaneous gas temperature, T (K), and pressure, P (atm), as 

shown by Assanis and Heywood, [1986]. 

TF=>> =[1+0.0002317(T-950)]x(2726.3+0.906P-0.003233P2) (5-62) 

for 800 K<T< 1200K, and 

T". 
_'. ' = [1 + 0.000249(T - 650)]x 

2497.3+4.7521P 

- 0.11065P2 + 0.000898P3 

for 450 K< T< 800 K 

(5-63) 

The instantaneous gas temperature T, is calculated assuming adiabatic 

compression of the air from the start of compression. Because the cylinder wall 
temperature changes with time throughout the expansion process, the cylinder wall 

temperature should be updated at each step. This was done using the one- 
dimensional heat conduction model and the electrical analogy model, shown in 

Figure 5.7. Based on this, the energy balance can be expressed as follows, 

oý.. +oL, = 
Twau - (5-64) rmý rmt 

RWC + RW 

where Rw(. =1/k., u,,, "A is the thermal resistance from wall to coolant fluid. The 

thermal resistance for conduction through the wall is RW = t/K -A, where t is the 

wall thickness, A is the inner cylinder area through which heat transfer and K is 

the thermal conductivity. In solving equations (5-57), (5-60), and (5-64), a fourth 

order polynomial, (5-65), in TWO,, was obtained and by using an iteration technique, 

the ith solution will give the optimum value for the wall temperature to satisfy this 

equation. The resulting optimum value is used in the following calculations of the 

model. The wall temperature equation is shown below: 
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T- T»uii 
+s"6" A(T, ý - Tw n 

)= Twen - Týa�iu, 
n (5-65) Rgw Rwc + Rw 

T 
-'Vý/ýý 

T 
RgW Tv 
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Rrad 

R wc 

Tcvoranr 

Figure 5.8. Thermal resistance for the cylinder 

Finally the total heat transfer from the cylinder is the sum of the convection and 

radiation heat flux components: 

/Q/ 
hi _- Qh/rl + Qhl2 

Borman and Nishiwaki, [19871, show a simplified method to calculate the heat 

transfer between cylinder gases and wall where there is no explicit term for the 

radiation. The heat transfer has only one term which comprises the convection and 

radiation effects within the same heat transfer coefficient. This correlation had 

been tested against natural-aspirated large two-stroke and four-stroke diesel 

engines. The proposed heat transfer coefficient is shown in the following equation. 

hýo� = 7.67 x 10-3 (NP y3 
" 
(P " T)12 (kW/m2 " K) (5-66) 

On the basis of the above relationship, the total instantaneous heat transfer through 

the cylinder wall was evaluated using the simple heat transfer relation given in 

equation (5-67) 

Qi� =h'A"(T-T,,, ou) 
(kW) (5-67) 
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5.3 ENGINE SIMULATION 

The diesel engine is a complex non-linear system, both algebraic and non-linear 

differential equations have to be solved in order to simulate the engine 

performance. MATLAB/SIMULINK (Mathworks) was used to model the engine 

via the SIMULINK graphical interface and the model equations solved in the time 

domain. The solution to the non-linear differential equations was obtained using 

the ordinary differential equations solver "ode45" available in MATLAB using a 

maximum time step size of 0.0001 sec/step. 

To simplify the modelling, the programme was split into two parts, namely engine 
load dynamics and thermodynamics engine modelling. The dynamic modelling 

part includes the dynamic engine model equations using a lookup table of cylinder 

pressure as a function of crank angle. This part was verified by comparing output 

crank angle with the input simulated signal. The second stage includes the 

integration of the thermodynamic model equation to the engine dynamic 

simulation code using the output crank angle without feedback in the 

thermodynamic part. Some tuning was undertaken to obtain the model constants 

and empirical relationships to optimise the model performance, and the output 

cylinder pressure signal used as feedback to the dynamic part to finalize a single 

cylinder engine simulation. This single cylinder engine model was used as the 

basis for constructing the multi-cylinder engine simulation program. The 

following sections describe the development of the model. 

5.3.1 Single cylinder engine simulation 

Figure 5.9 shows the layout of the single cylinder simulation model which 

comprises three main functional blocks. The geometric parameters and constants 

are initialised, including cylinder volume and piston displacement which is 

calculated as a function of the engine crank angle. Some initial constants are 

assigned values, as listed in Table 5-1. The engine dynamic model deals with the 

force balance and generates the instantaneous crank angle and speed resulting 

from the dynamic balance. This block requires the instantaneous cylinder pressure 

as an input to evaluate the indicated torque resulting from the cylinder pressure 

acting on the piston. The external load torque is also input to the dynamic model. 
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Figure 5.9 Single cylinder engine simulation layout. 

Table 5-1 Initial constants used in the simulation model. 

Parameter Symbol 
Deutz MAG 

Engine 
sin le cylinder) 

Ford 70PS 
Engine 

(four cylinder) 
Bore diameter d 95 mm 93.7 mm 
Stroke length s 95 mm 90.5 mm 
Crank radius r 47.5 mm 45.25 mm 
Connecting rod length L 160 mm 154 mm 
Compression ratio CR 17 20.8 
Mass of piston m 0.98 kg . 97 kg 
Mass of connecting rod mr 0.65 kg 1.312 kg 
Mass of reciprocating parts M 1.18 kg 1.23 kg 
Intake valve open (BTDC) 21 ° 7° 
Intake valve closed (ABTD) 62° 45° 
Exhust valve open (BBDC) 62° 57° 
Exhaust valve close (ATDC) 210 7° 

The thermodynamic relationships include calculations for computing inlet and exit 

gas mass as well as burnt fuel mass. By applying both mass and energy 

conservation laws, the properties of the gases within the cylinder can be evaluated 

instantaneously and cylinder pressure computed and fed into the dynamic sub- 

system. Consequently, the simulation sub-system generates the instantaneous 

crank angle and speed change which is required by the other two simulation 

blocks. 
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The complexity of the above layout was such that it was necessary to develop the 

simulation code through several stages. The first stage, which is used to evaluate 

the geometric parameters, assuming constant engine speed, contains relatively 

simple algebraic equations which were validated by comparing the output 

parameters against manually calculated values at several arbitrary input 

conditions. The dynamic sub-system which includes the force-balance equations 

for the engine were developed as a second step. A lookup table of the cylinder 

pressure as a function of the crank angle was initially used to run the model. 

Figure 5.10 shows the layout of the dynamic sub-system including the interaction 

between different parameters. Friction torque was considered proportional to the 

instantaneous crank speed and compression ratio of the engine. The reciprocating 

parts of the engine modify the inertia of the engine, which was built into the 

model. 
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Figure 5.10 Dynamic sub-system layout 

The thermodynamic model consists of many components that include both mass 

and energy balance on different engine processes, such as mass flow rate through 

the inlet and exhaust valve, burnt fuel mass flow rate in the combustion process, 

heat transfer through the cylinder walls, and energy and mass change within the 

cylinder. In view of the dependency on the timing of events to crank angle, the 

model was triggered with respect to crank angle and not time. 

ý ý 

.H 
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To simplify the development process, the thermodynamic sub-system was 

constructed initially without using any direct feedback. Appropriate simulated 

parameters were generated via lookup tables as a function of crank angle using 

linear interpolation between data points. Validation of the different sub-systems 

was achieved by comparing the model output parameters with those calculated 

from the lookup tables and substituted inputs. The different feedback loops were 

progressively closed and all lookup tables removed. The final thermodynamic 

subsystem, shown in Figure 5.11, was derived using a simulated crank angle 

during the final development and tuning stage of the thermodynamic sub-system. 

Combining both dynamic and thermodynamic subsystems together with the 

geometric parameters sub-system was the final step in the single cylinder engine 

simulation code developments. This code used all the system of equations 
described within the model description section. The used of empirical correlations 

was kept within the minimum possible limitations without using any performance 

empirical equations. The defined engine constants were listed in a data file that 

was loaded before running the code. This adds an important advantage to the 

programme code which permits any size of diesel engine to be modelled without 

major modification. 
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5.3.2 Single cylinder engine simulation validation 

The validation process for the single cylinder simulation code brought about some 

challenges as there was no available experimental data available for single 

cylinder engines. Thus it was decided to validate the simulation in two stages. 

Initially the trend for different parameters relative to the piston displacement was 

compared to data for the medium size engines. Then a comparison was undertaken 

between the simulation model results and published research work on a single 

cylinder diesel engine of similar size of the engine used in the present study. 

Cylinder pressure is the direct result of the combustion process in the cylinder; 

hence, it is very important to validate the simulated pressure value. The results 

published by Zweiri et al., [2001], were used in the validation by applying the 

same engine dimensions and fuel limits to the present model. Consequently, the 

present model successfully reproduces similar results to the work of. An example 

of the comparison is shown in and Figure 5.12. 
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(b) Cylinder pressure variation, Zweiri et al., 120011. 
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(a) Predicted model cylinder pressure. 

Figure 5.12 Comparison of predicted cylinder pressure for a single cylinder 

engine (at 40mm3 fuel per cycle). 
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5.3.3 Four cylinder engine simulation 

A four cylinder engine consists of four in-line single cylinder units that are inter- 

connected through the crankshaft. The four cylinder simulation model was 

constructed using four of the validated single cylinder models running in parallel. 

Figure 5.13 shows the layout of the simulation program. The thermodynamic 

model of the cylinder was utilized to generate the multi cylinder thermodynamic 

sub-system where each one of the four cylinders has a phase shift of 180° 

crankshaft angle with respect to the adjacent cylinder. The individual indicated 

torques of the four cylinders are added to form the total torque applied to the 

crankshaft. A modified dynamic balance was used for the multi-cylinder engine 

model to take into account the changes in applied forces to the crankshaft of the 

single cylinder and multi-cylinder engines. 

The dynamic sub-system was integrated to utilize the total indicated torque and 

inertia and mass constants of the moving engine parts to evaluate the 

instantaneous engine acceleration of the crankshaft. The dynamic balance take 

both engine and dynamometer balance into account. In a multi-cylinder engine, it 

is possible to assume that total inertia relative to the crankshaft is the sum of the 

individual cylinder inertias. The crank is usually designed to minimise the forces 

acting on the engine bearings so as to yield smooth engine rotation, nevertheless, 

the inertia variation still an effective component causing the rotational speed 

variation. 
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Figure 5.13 The multi-cylinder engine simulation layout 
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5.3.4 Validation of four cylinder engine simulation 

In order to validate the four cylinder model, a set of runs for the simulated model 

at different operating conditions were undertaken and the results were compared to 

the experimental data. The cylinder pressure and instantaneous speed were 

selected for the validation process, based on their relative importance to the 

combustion process. A sample of the comparison results will be presented and 

analysed within the following sections. In addition, the power-torque curve for the 

engine from both experimental and model results were produced and compared to 

validate the model results. 

Changes in the instantaneous speed could be helpful to detect some important 

faults related to injected fuel and combustion quality. The simulation model was 

run over different operating conditions of load and fuel consumption rate and the 

corresponding actual measured fuel consumption was input to the model in order 

to limit the calculated burnt fuel rate, resulting from the single zone combustion 

theory. This limitation simulates the fuel injection control valve of the actual 

engine. 

Figure 5.14 represent sample of the comparison results at two different operating 

conditions. At both small brake load and fuel consumption, the model successfully 

predicts the engine speed variation at both crest and trough. However, at an 
increased load of 113 Nm the model correlation is not so good (refer to Figure 

5.15 ), with it being unable to follow the ripple at the crest of the instantaneous 

speed variation which results from the ratio between applied load and energy 

stored in the flywheel. A more detailed discussion about speed variation is given 

in the experimental result analysis section (4.1.1). 
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Figure 5.15 Instantaneous crankshaft speed variation at 113 Nm load (1.043 g/s 

fuel consumption). 

The cylinder pressure was also used for the validation process as it is the main 

driving parameter for the engine and the direct result of the combustion process. 

The model was executed at a set of different operating conditions in line with 

experimental tests conditions, and several comparative results follow. 
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Figure 5.16 illustrate model's predicted cylinder pressure (at crank speed of 1360 

RPM) in comparison with engine experimental data at the same operating 

conditions. The injected fuel in the model was limited using the manual recorded 

data, and it successfully predicts the cylinder pressure variation through the 

complete thermodynamic cycle processes. Some deviation was found at the end of 

fuel injection. The experimental data analysis shows that the measured cylinder 

pressure reduces at the end of fuel injection due to the nature of the measuring 

technique used, when the injected fuel is cut off, the injector needle valve 

fluctuate (open and closed) resulting vibration in the injector body affecting the 

recoded cylinder pressure data. Nevertheless, the model predicts the cylinder 

pressure change successfully throughout the full thermodynamic cycle i. e. two 

crankshaft revolutions. Figure 5.17 shows another example of the model predicted 

cylinder pressure validations at another operating conditions. 
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Crank cycle 

Figure 5.16 Model results validation at 1360 RPM and 21 Nm. 
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Figure 5.17 Model result validation at 2330 RPM and 61 Nm 

In the final stage of the validation process, the four-cylinder engine model was 

executed over the speed range of the engine at the full throttle (fuel controller 

valve fully open). These runs were used to evaluate the power-load curve of the 

engine by comparing it with the corresponding experimentally recorded data. 

Figure 5.18 shows the simulation model results of both brake load and power at 

different engine speeds in comparison to the experimental data. 

It can be observed the model predicts both brake load and power over most of the 

range with reasonable correlations. At the lower speeds the model under predicts 

the torque by about 8%. Analysis of the results indicates that, since friction torque 

is a function of crankshaft speed and compression ratio and as empirical equation 

(5-14) does not specify the engine dimensions used to evaluate its constants it was 

decided to adjust the value of the two constants in equation (5-13) used to evaluate 

friction mean effective pressure. After some trial and error, the best fit for the 

experimental data, through the whole speed range of the engine, were obtained 

using the following equation. 
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fmep = 0.088 x CR + 7.5 x 10-'N (Bar) (5-68) 

The retuned model results were validated, and a new power-load curve from the 

model was produced against the experimental data as shown in Figure 5.19. It is 

clear that modified model results provide a much better match of the experimental 

data, when compared with the friction mean effective pressure equation reported 

by Rakopoulos and Giakoumis, [1998]. Consequently, it was decided to use the 

modified finep equation (5-68) within the final simulation model of the multi- 

cylinder diesel engine. 

70 ý 

60 -ý 

.. 

50 -ý 

40 ý 

ý 
ai a. 

30 

20 ý 

10 -ý 

0 

- 
/�- 

ý A 
A/ 

A, --*' 

A, --, 

ý 11-1 

, ý. 

ý 

/ 
fAA 
0ýý 

A 

ý- 
- 

exp-torq 
exp-power 

model-power 
model-torq 

IIIIII 

r- 210 

F- 180 

ý- 150 

120 z 
... 

rý _ ý 
90 

ý 

- 60 

ý- 30 

0 
500 1000 1500 2000 2500 3000 3500 4000 4500 

Engine Speed (RPM) 
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Figure 5.19 Power-Load curve using the modified friction torque equation. 

5.4 SUMMARY 

The main objective of this chapter was to construct a diesel engine simulation 

model that could predict the engine performance parameters utilizing the basic 

relationships of the diesel engine. The development process of the simulation 

model started from building the mathematical, algebraic and differential, equations 

describing and controlling the different physical parameters within the diesel 

engine. The minimum possible empirical equations were used within the 

development processes. Then, a single cylinder diesel engine simulation model 

was programmed using the MATLAB/SIMULINK software as the first step 

toward the multi-cylinder engine simulation. The single cylinder engine model 

was verified using a literature data where there was no available experimental data 

for a single cylinder diesel engine. 

The validated single cylinder model was utilized to develop the final multi- 

cylinder diesel engine simulation model. Four-cylinder diesel engine model 

consists of four parallel unit of the single cylinder model with phase shaft of 180° 

of the crankshaft revolution. The final four cylinder engine simulation model was 
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validated using the measured experimental data of the Ford 70PS diesel engine. 
The model successfully predicted the different engine parameters related to the 

combustion process in the individual cylinders. The promising results compared to 

experimental measured data would suggest that it will be a useful tool to test the 

CMFD algorithm for future studies. Development and integration of diesel engine 

subsystems models, such as fuel injection system and exhaust system, to be part of 

this model is recommended before its use for CMFD algorithm validation. It was 

not possible to build up such subsystem models to the developed model because of 

the time constraints. 
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CHAPTER 6 

DEVELOPMENT AND VALIDATION OF DIESEL ENGINE NEURO- 
FUZZY DIAGNOSTIC SYSTEM 

The ultimate aim of this research is to develop a system which will be able to 

perform on-line condition monitoring and fault diagnosis of a diesel engine using 

a limited number of sensors. This chapter consolidates all of the work conducted 

during this research and demonstrate how the data is captured and post processed 

to develop, optimise and validate a diesel engine diagnostic scheme based on a 

neuro-fuzzy system. As described in Chapter Two, the studies conducted in the 

recent years have used complex look-up tables, large knowledge base or 

approximate models to perform diagnosis, and in addition, the sensor outputs have 

often required normalisation and sophisticated signal processing before diagnosis 

could be performed. 

This work shows how a combination of a neural network and fuzzification can be 

developed to minimize the need for all of the above and yet offer satisfactory 

performance of CMFD of the diesel engine. The systems discussed in Chapter 

Two required a significant degree of computing hardware and software and the 

need for expensive sensors as well as complicated signal conditioning; another 

restriction for the CMFD system performance. This work shows how relatively 

low cost computing hardware and reliable, low-cost sensors can be used develop 

and run a robust CMFD system. Often neural networks are trained and tested on 

simulated diesel engine data, Nareid and Lightowler, [2004], with limited research 

undertaken using experimental data for the signal capture and processing 

complexity. Nor have they been used to diagnose a wide range of realistic engine 

faults, e. g. fuel injection problems, and less attention has been paid to the 

development of fault-symptom relationships for high speed diesel engines. 

To ascertain the neural network based diagnostic system practical limitations, the 

following criteria are defined. The neural network based CMFD system must: 

* Be able to be trained on real engine data. This allows the neural network to 

be trained simultaneously with endurance, reliability and field trial engine 
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testing which forms part of any engine development programme, as well as 

making the neural network approach more commercially viable than other 

forms of CMFD systems such as expert systems. 

* Be able to perform an accurate diagnosis with reliable, non-intrusive, cheap 

instrumentation. 

Have the ability to perform an accurate diagnosis at torques and speeds other 

than those trained for. If the neural network CMFD algorithm needs to be 

trained on data generated at all operating conditions, it will not be practically 

viable. 

* Be capable of being integrated with data acquisition software to satisfy the 

requirements for future integration with commercial diesel engines. 

Within the present work, a neuro-fuzzy system was developed to evaluate the 

engine condition and detect the fault existence. The neural network uses selected 

key input data to evaluate the engine condition while the fuzzification aims to 

evaluate the level of fault to enable the user to select a suitable course of action. 

Several training algorithms and various network architectures were investigated 

during the development process to evaluate the optimum configuration. The use of 

sensors with different bandwidths is another challenge in the present work, and a 

multi-net technique was utilized in which two parallel neural networks were used 

to accommodate the different data groups and increase the CMFD algorithm 

performance. 

Throughout the development and validation of the neuro-fuzzy system, emphasis 

was put on the practical application of neural networks to diesel engine fault 

diagnosis. The neural network was developed using Matlab to enable different 

training algorithms and network architectures to be evaluated to optimum 

architecture for diesel engine data. 

6.1 SELECTION OF INPUTS FOR NEURAL NETWORK DIAGNOSIS 

SYSTEM. 

The choice of input data is critical to the successful development of a neural 

network. The analysis of the engine test data and fault symptom relationships were 

used to select which sensors were able to detect the presence of a particular fault. 
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It was decided that the neural network CMFD algorithm would use sensors which 

were easy to install, non-intrusive, relatively low cost and reliable. 

Generally, sensors that need high sampling rates to accurately represent the 

measured parameters were not utilized in the developed neural network CMFD 

algorithm as high computational power will be required to measure and process 

the captured data, thus limiting the practical application of the CMFD system. It 

was decided that the neural network would concentrate on using raw sensors 

readings, which was considered beneficial because it allowed the sensor data to be 

passed directly to the networks, thus eliminating the need for pre-processing. 

Although cylinder pressure and injected fuel pressure are both key diagnostic 

parameters in the combustion process, they were not directly utilised because at 

fast engine speed they require high sampling rates and specialist signal processing 

which means high computational resources and limitations for online market 

applications, Moro et al., [2002]. The following parameters were chosen as 

offering suitable inputs for the neural network diagnostic model development. 

* Instantaneous speed. 

* Average crankshaft speed. 

* Average load torque. 

* Average consumption fuel mass flow rate. 

* Fuel lever position. 

* Exhaust gas temperature for individual cylinders. 

* Inlet air volume flow rate. 

The choice of sensors is of critical importance in the development of any 

diagnostic system. Sensors should satisfy the requirements of neural network 

which had been stated above and should give significant and detectable changes in 

the presence of a fault. The inputs to the CMFD system should be readily indicate 

fault-symptom relationships. If this is not possible, the degree of success of the 

artificial intelligence may be compromised. As discussed in Chapter Three, the 

sensors utilized for measuring all of the above parameters satisfy the requirements 

of the neural network CMFD algorithm. 

171 



Chapter 6. Developments and validation of diesel engine diagnostic neural network 

6.2 TRAINING OF NEURAL NETWORK CMFD ALGORITHM 

The engine test data from the selected sensors were divided into three groups. The 

first two groups were used for training and validation of the neural network 

respectively, while the last group was used for testing the developed neural 

network. The training set of data was selected to cover the full operating range of 

the engine under for both healthy and faulty conditions. The validation input data 

comprised randomly selected sets of engines test data. The third group was 

selected to include healthy and faulty data that represent the entire engine 

operating range for testing processes. This testing group was not used for the 

training or validation processes but was used to evaluate the ability of the 

developed CMFD system to successfully detect the faults on data which it was not 

trained on. 

Supervised neural network training requires input and output data for the training, 

validation and testing processes. To compliment the training input data a set of 

neural network outputs were devised to characterize both healthy and faulty modes 

of engine operation. The selection of the output vector configuration is critical 

parameter that affects the possible application of the developed neural network. 

The output vector was added to the recorded data manually for use within the 

development process. The neural network output will set a flag to indicate the 

presence of a fault and/or requirements for any maintenance. 

The output vector was assumed to contain only two outputs, as shown in Table 

6-1, where each one corresponds to a specific fault type. The value of the output 

will depend on the level of fault severity. Utilizing this output vector improve the 

flexibility of the developed neural network to evaluate an intermediate fault level, 

and help to select the critical border of the fault level. However, the training 

process usually needs a large number of training data sets in order to converge and 

reduce the error factor. 

172 



Chapter 6. Developments and validation of diesel engine diagnostic neural network 

Table 6-1 Neural network diagnosis outputs vector. 

Neuron 1 
(Air fault) 

Neuron 2 
(Fuel fault) 

Healthy 0 0 
Air Inlet Blockage 25% 0.25 0 
Air Inlet Blockage 50% 0.5 0 
Fuel Blockage 50% 0 0.5 
Fuel Blockage 80% 0 0.8 

6.3 THE CMFD ALGORITHM 

According to the nature of the selected input parameters, the developed CMFD 

algorithm must accommodate different sampling rates for the measured data. The 

multi-net approach represents a promising solution to this problem. Two parallel 

neural networks were designed to accommodate this, as shown in Figure 6.1. The 

inputs were divided into three groups, the first of which was used in both neural 

networks includes the average signals levels which do not change within the 

measuring period. The second group, which includes the exhaust gas temperature, 

was utilized, in parallel with the first group, as the input to the first neural 

network. Collectively this group of data represents the low bandwidth signals of 

the measured data. The third group of data is utilized in the second neural network 

and comprise the instantaneous speed parameter with which to evaluate the 

individual cylinder contribution along with the averaged parameters (included in 

the first group of data) input to the second neural network to index the change in 

instantaneous speed values. 

The output of the two parallel neural networks was combined in order to generate 

a final evaluation of the engine condition and the fault, type and level, using a 

fuzzy logic structure. The fuzzification aims to improve the overall algorithm 

performance by evaluating the severity level of the error based on the engine 

manufacturer test recommendations and produces the required action by the user. 

More details about the developed fuzzification stage will be included later in this 

chapter. 
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Figure 6.1 The CMFD algorithm layout 

The most appropriate neural network architecture for the engine CMFD is the 

MLP and RBF (see Chapter 2). In the present work, both configurations were 

compared using the selected input data. The results of the training process 

indicated that the RBF was not suitable for the particular input data range, as it 

generates a neuron for each data row in the hidden layer and resulted in extremely 

large neural networks, which in turn required massive memory and computational 

time. 

As shown from previous research, the performance of the MLP neural network is 

improved when using only one hidden layer, regardless of the number of neurons 

used. Accordingly, the MLP neural network was selected for the CMFD system 

where it was successfully applied. There is no rule with which to select the 
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optimum number of neurons in the hidden layer. Increasing the number of neuron 

consequently increases the training time and decrease the response time of the 

developed neural network, whilst reducing the number of hidden layer neurons 

reduces the neural network performance. An optimum number of hidden layer 

neurons can be found by trial and error beyond which an increase in the number of 

hidden layer neurons does not improve performance. 

The training algorithm is another important factor; it is very difficult to know 

which training algorithm will be most appropriate to a given problem as it depends 

on many factors, including the complexity of the problem, the number of data 

points in the training set, the number of weights and biases in the network, the 

error goal, and whether the network is being used for pattern recognition 

(discriminate analysis) or function approximation (regression). The diesel engine 

CMFD is considered to be a pattern recognition problem where a certain data set 

indicates the engine condition and can evaluate the fault type. Nevertheless, it is 

difficult to evaluate the optimum training algorithm. A comparison study 

conducted by Mathworks suggest that Levenberg-Marquardt (trainlm), and BFGS 

Quasi-Newton backpropagation (trainbfg) algorithms are the most suitable in 

pattern recognition problems. Both training algorithm were tested to establish 

which one will provide an optimum output. 

6.3.1 Low bandwidth (averaged) data neural network 

As explained earlier, the averaged neural network inputs comprise of the exhaust 

gas temperature and average value of speed, load, fuel consumption, and FLP. The 

data was measured using a sampling rate of 1 kHz and compressed using a 

window average to an equivalent sampling rate of 0.1 kHz. The measured data was 

normalized using the maximum expected value of each parameter before the 

training process. The parameters values used for normalization are shown in Table 

6-2. 
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Table 6-2 Normalization values for input data. 

Parameter Normalization value 
Exhaust temperature 450°C 
Fuel mass flow rate 1.5 /s 
Average speed 4500 RPM 
Load 125 Nm 
Inlet air flow rate 2.3 V 
Crank cycle 4 cycle 

After several trials, the configuration that produces the minimum performance 

factor consists of one hidden layer with 20 neurons as shown in Figure 6.2. The 

input layer contains 1l neurons which take the value of the normalized input data 

while the output layer has 2 neurons corresponding to the engine condition and the 

fault severity level evaluation. The output layer transfer function was selected to 

be LogSig which is suitable for the output values which vary between 0 and 1. The 

optimum training algorithm was found to be the trainlm which converges to the 

minimum performance factor in the minimum possible time. The trainlm requires 

`massive' memory size as the storage of some matrices can be quite large for 

certain problems; consequently, the training process takes longer. The training 

performance curve, shown in Figure 6.3, indicates the fast convergence of the 

selected training algorithm where the performance factor (which is the mean 

square errors) reduced to 9.8 x 10-' after only 161 epochs. 
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Figure 6.3 The performance factor curve of the training process. 

In order to validate the developed neural network, a set of input data, which was 

not used within the training stage, was given to the neural network. The neural 

network output is then compared with the desired output to validate the neural 

network. The data set contains engine data covers the full operating range for both 

healthy and faulty operation modes. The output from the neural network represents 

the engine condition, if the engine is working under healthy mode the two outputs 

would give a value of 0. Under any type of fault the corresponding output (1 or 2) 

will evaluate the level of fault severity. The evaluated fault level will be used by 

the fuzzification stage to evaluate the recommended maintenance action. The 

training and testing data was measured at specific value of the two faults which 

correspond to the levels at which certain maintenance action is recommended, 

Refer to section 4.2 for more detail about the testing fault setting. 

Figure 6.4 shows the neural network output-1, which evaluates the air inlet 

blockage, in comparison to the desired output of the test data set. The result 

indicates an accurate prediction of the fault existence as well as it level. The 
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output indicates the absence of the air blockage i. e. healthy mode of operation 

when it takes the value of 0, refer to Table 6-1. The error in the prediction of 

healthy operation mode is relatively small (maximum of ±0.024) which can be 

neglected. The maximum error in the air inlet blockage fault is ± 0.048 of the 

desired value, as shown in Figure 6.5. The developed neural network successfully 

detects the change in the engine operation mode as well as the change in the fault 

level. 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 
¢ 0.3 

0.2 

0.1 

0 

Healthy I Fuel fault 
mode I mode 

Air fault Fuel fault Healthy 
mode mode mode 

II 

( Target 
NN-output 

ýn 

0 1000 2000 3000 4000 5000 
Sample number 

Figure 6.4 Air inlet blockage fault detection validation test. 

0.1 -, 

ý 0.05 

°o 

ý 
-0.05 

-0.1 

'- W 

0 1000 2000 3000 4000 5000 
Sample number 

Figure 6.5 Error in the air inlet blockage fault detection. 

178 



Chapter 6. Developments and validation of diesel engine diagnostic neural network 

The second output, corresponding to the fuel fault, was validated using the test 

data set and the validation results are shown in Figure 6.6. It is concluded that the 

neural network detected both the fault existence and severity level successfully. It 

also illustrates that the output value is not affected by the air inlet blocking 

existence in the test data set (in the range 1960 - 3110 sample number). The value 

of the second output neuron only changed under the effect of fuel fault. Figure 6.7 

shows the error in fuel fault output value which has a maximum value of ±0.047. 
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6.3.2 Instantaneous speed neural network 

An analysis of the importance of instantaneous speed signal as a key parameter 

was indicated in Chapter 4. The speed variation throughout the thermodynamic 

cycle of the engine relates directly the combustion processes quality as well as the 

contribution from individual cylinders. This signal was measured using a Hall 

effect proximity sensor which is triggered by the flywheel teeth, thus the rate at 

which data was captured depends on the engine speed, and thence a separate 

neural network was developed to monitor the instantaneous speed measurement 

and some averaged key parameters such as applied load, fuel mass flow rate and 

FLP in order to evaluate the engine condition as well as fault severity. All input 

data was normalized using the maximum parameters value given in Table 6-2. 

The development process of this neural network shows some difficulties through 

the training process where it was not possible to achieve the performance factor 

goal. Extensive analysis indicates that the neural network could not learn the 

change in the instantaneous speed pattern properly using the conventional method 

of data input. A new technique for the data input was developed to improve the 

neural network performance, which aims to include the measured instantaneous 

speed, through the measuring period, and the average input parameters as a single 

input vector for each test condition. This method forces the neural network to 

observe the pattern shape variation of the speed from one testing condition to 

another, as it deals with the input vector as a set of data. Consequently, it is able to 

detect any change in the pattern resulting from an individual cylinder contribution 

or operating condition change. 

After several tests, the final configuration that results in the minimum 

performance factor consist of an input layer containing 76 neuron, a hidden layer 

containing 7 neurons and an output layer that has 2 neurons. Both hidden layer and 

output layer use the LogSig transfer function. The trainlm training algorithm was 

successful in the training process. Figure 6.8 shows the proposed neural network 

architecture layout. The performance factor change during the training process is 

shown in Figure 6.9 where it takes 174 epochs to achieve a final value of 5.8x10'5. 

Through the training process 105 input data sets were used which represents the 
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full engine operating range at different loads and speeds, under both healthy and 
faulty operation modes. 
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In order to verify the reliability of the developed neural network for engine 

CMFD, 30 sets of input data covering the different engine operation range under 

both healthy and faulty mode of operation were applied to the neural network. The 

comparison between the neural network outputs and the desired target outputs 

shows the accurate prediction of the engine operating condition and fault level 

evaluation at different load and speed conditions. 

Figure 6.10 illustrate the first output, which evaluates the air blockage level, 

against the desired output value. The neural network output accurately matches the 

desired output value through the full set of test samples. When the engine is run 

under healthy or under fuel fault mode the value of the air blockage fault (output 

1) yields a value of 0, whereas in case of air starvation this output evaluate the 

ratio of the blockage. A relatively low error value was found in the neural network 

output (maximum of 0.018) as shown in Figure 6.11. 
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Figure 6.10 Air fault prediction validation using instantaneous NN. 
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Figure 6.11 Error in the air blockage fault evaluation. 

The fuel blockage fault, evaluated by the second output, was verified against the 

desired output value of the testing data set, as shown in Figure 6.12. It can be 

concluded that throughout the healthy and air fault input data set the value of the 

second output remains around 0, while it converged to almost the desired 

percentage of blockage as the input data shows fuel fault condition. The maximum 

error in the predicted fuel blockage value is ±0.017 as shown in Figure 6.13. 

These results indicate the accurate evaluation of the engine condition using the 

developed neural network based on the instantaneous speed measured data. The 

network predicts the different level of the two fault types and distinguishes 

between them, i. e. there is no effect of the air fault on the second output and 

correspondingly a fuel fault does not affect the first output value. Under healthy 

operation mode, the two outputs value goes to 0 to indicate that there is no fault on 

the engine. 
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Figure 6.12 Fuel fault validation result using the instantaneous speed NN. 
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Figure 6.13 Error in the fuel blockage fault evaluation. 
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6.3.3 Neural network output fuzzification 

Fuzzy logic was developed from fuzzy set theory to reason with uncertain and 

vague information and to represent knowledge in an operationally powerful form. 

Fuzzy logic was developed to build a conceptual framework for linguistically 

represented knowledge. As shown in Chapter 2, fuzzy logic has been used for 

diesel engine management application, where it utilizes the output of the neural 

network to generate a suitable control signal that can adapt some parameters in the 

engine to achieve an optimum performance condition. 

The fuzzy logic structure consists of three stages, fuzzification, conditional rule, 

and defuzzification. The fuzzification stage converts the input mathematical value 

(between 0 and 1) range to a fuzzy set using membership functions. The 

conditional rule establishes the relationships between the input and output 

membership function using "if-then" statements. Finally, the defuzzification stage 
interprets the output and applies a suitable output control signal level. 

As the aim of the present work is to develop a CMFD system for the diesel engine, 

only the fuzzification stage was used to convert the neural network outputs into a 

recommended action to be taken by the user, such as "maintenance recommended" 

or "urgent maintenance". The fuzzification splits the neural network output range 
into certain regions, each one equivalent to a corresponding action based on the 

severity level of the evaluated fault. 

In order to increase the developed CMFD system performance, the outputs of the 

two developed neural networks were utilized in the final engine condition 

evaluation. The similar output of the two neural networks was summed and 

averaged to represent an evaluation for the fault level based on both networks. 

This average output value was passed to the fuzzification stage to evaluate the 

engine condition as well as the fault severity level, and to produce the 

recommended action. Based on the assumption that the test fault levels represent a 

milestone of the fault severity range, the fuzzification membership function of 

each output of the neural network was evaluated. 

The air inlet blockage fault severity range was divided to three parts. If the 

blockage is below 25% the engine was considered as healthy (and no action should 
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be done). Between 25% and 50%, as the air inlet blockage is developed 

maintenance action is recommended. If it goes over 50%, the engine should be 

stopped and the air inlet checked. The values of 25% and 50% can be changed 

based on the manufacturers recommendation within the practical application of the 

developed CMFD system. 
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Figure 6.14 The graphical representation of air inlet blockage severity. 

Based on these three ranges, the fuzzification memberships of the air inlet 

blockage fault were generated, as shown in Figure 6.14, using a ±5% variation 

around each level. The used membership functions generate five regimes for the 

fault evaluation which can be used to interpret the detected air inlet fault level to 

inform the user of the recommended action. The fuzzy membership function can 

be programmed into the algorithm using different techniques such as a lookup 

table. To simplify the different regimes, it was expressed using "if-then" 

statements as follows: 

If (output-I < 0.2) then "no air inlet blockage" 

If (0.2 <_ output-I < 0.3) then "early air inlet blockage" 

If (0.3: 5 output-I < 0.45) then "developed air inlet blockage" 

If (0.45: 5 output-I < 0.55) then "fully developed air inlet blockage" 

186 



Chapter 6. Developments and validation of diesel engine diagnostic neural network 

If (0.55 < output-1 < 1) then "urgent maintenance required for air inlet" 

These membership functions can be integrated into the developed CMFD 

algorithm and programmed using the appropriate programming language for the 

used microcontroller in the practical application. 

The fuel fault severity was evaluated using the second output (output-2) of the 

neural network, and can be used to estimate the suitable action for the engine user. 

As the fuel starvation level has no specific level at which the different 

maintenance actions are recommended, some arbitrary values were used within the 

present study for evaluating the CMFD algorithm application. More detail about 

the fault testing level selection are found in section 4.2. Using the two testing level 

values (50% and 80%) as a border line between recommended actions with a 

±10% variation around each level; three fuzzy membership functions were 

assumed as shown in Figure 6.15. The developed fuzzy membership functions 

generate five regions for the engine conditions at which the suitable maintenance 

action can be evaluated. As stated before, the fuzzy membership function can be 

converted to a programmable form depending on the used platform for the 

practical applications. 
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Figure 6.15 The graphical representation of the fuel blockage severity. 
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6.3.4 Developed CMFD system 

The developed neural networks and fuzzification were integrated together to form 

the developed CMFD algorithm, which was constructed using the 

MATLAB/SIMULINK platform. A block diagram is included in Appendix B. The 

MATLAB/SIMULINK developed code can also be integrated into the data 

acquisition code, which was developed using Labview platform. C-code can be 

generated using Labview for different applications. Within the present study, the 

code was only generated under the MATLAB/SIMULINK platform and tested 

using a set of measured input data. 

6.4 SUMMARY 

As a result of the measurement data analysis, some key parameters were evaluated 

that were utilized to detect the two types of fault namely, air inlet and fuel 

blockage, and to distinguish between the fault type and severity level. These 

parameters were divided into three groups based on their sampling rate and 

possible utilization in the developed CMFD algorithm. The groups of key 

parameters satisfy the requirements for developing a robust CMFD algorithm 

where the sensors are non-intrusive, cheap, reliable and easy to be integrated on 

the engine. Some of these sensors are already included in the modem diesel 

engines, such as engine average speed and total exhaust gas temperature sensors. 

Two neural networks were developed to utilize the key parameters in order to 

evaluate the engine operating condition and the severity level of the fault in case 

existence. The first neural network evaluates the engine condition based on the 

exhaust gas temperature plus the average value of some key parameters such as 

applied load, average engine speed, and FLP setting. The second neural network 

evaluates the engine condition based on the instantaneous speed and the averaged 

parameters. The two neural networks work in parallel to improve the performance 

of the developed CMFD algorithm. In order to prepare the data for training the 

two neural networks, an output vector was introduced manually into the input data 

sets which consist of two outputs. Each output represents one type of the two test 

faults while the output magnitude represents its severity level. 
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Through the training process of the two neural networks, different training 

algorithm and network architectures were compared. The trainlm training 

algorithm and MLP network architecture successfully represented the input data 

and predicted the engine condition. By applying a set of test data at different 

operating conditions of load and speed, the neural network based on exhaust 

temperature evaluated the inlet air fault with a maximum error of ±0.048 while the 

fuel fault maximum error was ±0.047. The second neural network, (based on 

instantaneous speed), evaluated the air blockage fault and the fuel fault with a 

maximum error of ±0.018 and ±0.017, respectively. 

The output of the two neural networks were combined and averaged to form two 

outputs, each of which represents one fault type. This method increases the 

performance of the developed CMFD algorithm by utilizing the two neural 

networks in parallel. Each of the two averaged outputs was introduced to a 

fuzzification stage to evaluate the engine condition as well as the recommended 

user action in the event of a fault existing. 

The air fault fuzzification utilizes three membership functions that produce five 

ranges for the evaluated fault severity levels, which were interpreted into a 

corresponding message for the user and recommended suitable action. For the 

present study, the testing levels of the air inlet blockage were utilized to build the 

membership functions. Five regions were generated at which a message was 

displayed containing the recommended action and/or the engine condition. 

Another set of three membership functions were utilized for the fuzzification of 

the fuel fault output ranges. Five regions for the fuel fault severity levels were 

generated at which the fuel fault condition or severity levels were displayed for the 

user. The membership functions for both air inlet and fuel blockage faults could be 

programmed into the practical applications of the CMFD algorithm with different 

methods based on the used platform. 

The developed CMFD algorithm verifies the hypothesis of the present work by 

demonstrating the utilization of a limited number of cheap, non-intrusive, reliable 

and easy installation sensors based on the utilization of neural network and 

fuzzification combinations. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

This research has focused on the design, configuration and validation of a system 

capable of on-line condition monitoring and fault diagnosis of a medium size 

commercial diesel engine using a neural network based approach. The overall 

research aim was achieved through the satisfaction of all the research objectives 

identified in Chapter One. Further to this, the research constitutes original work 

which has also satisfied recommendations given in previous research. 

The work conducted in this research can be summarised as follows 

* An available diesel engine was integrated with additional sensors and used as 

a test facility for experimental measurements required for the development 

of the key parameters for engine condition evaluation. A hardware signal 

conditioning and data acquisition program was designed and implemented. 

* Automation of an existing manually controlled hydraulic brake 

dynamometer to improve its loading performance. This includes the 

integration of actuator, sensors and embedded controller to the hydraulic 

brake system. The brake was used to simulate the external load applied to the 

engine through the experimental tests. 

*A simulation model for the diesel engine was developed using the basic 

mathematical relationships that govern the different parameters in the diesel 

engine. The model includes the dynamic and thermodynamic balancing of 

the engine and makes use of well defined empirical correlations to predict 

the engine performance and increase the scope of its utilization. The model 

was validated using the measured signals. 

*A program of experimental tests was undertaken which covers the engine 

operating range. Tests were performed under healthy condition, and also 

with two synthetic faults introduced on the engine to establish their 

individual effect on performances, measured against the healthy state. 
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* Extensive analysis of the experimental data under both healthy and faulty 

mode of operation were undertaken to evaluate the fault-symptom 

relationships. The analysis clarified the key parameters that could be utilized 
in the engine CMFD system to detect different faults. 

* Finally, an intelligent engine CMFD algorithm was developed using a 

combined neural network and fuzzification approach. Through the 

development process of the neural network, a multi-network system was 

utilized to overcome the different sampling rates of the key parameters. 

7.1 CONCLUSIONS 

The following conclusions can be drawn from the present work: 

*A new technique was developed to measure the cylinder and fuel injection 

pressures by measuring the axial and circumferential strains in the injector 

body. The sensor calibration was validated through the experimental 

measurements. The utilization of these signals in the engine CMFD system 

requires high computational resources which restrict practical application; 
however, it could be used to measure the peak pressure of fuel injection and 

cylinder. 

* Shortage of fuel and air to the cylinder can be caused by many faults, and 
directly affects the combustion efficiency and consequently reduces the 

engine performance. 

* Fuel and air faults can be detected on-line by an engine condition monitoring 

and fault detection system using the following measurements: 

1- Average speed. 

2- Fuel lever position. 

3- Average load torque. 

4- Individual cylinder exhaust temperature. 

5- Single exhaust gas temperature at the exhaust pipe. 

6- Inlet air volume flow rate. 

7- Fuel consumption mass flow rate. 
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8- Instantaneous engine speed. 

* Two neural networks were developed and shown capable of detecting the 

designated faults and distinguishing different severity levels. Direct 

measurement sensors were used which do not require sophisticated signal 

conditioning or data processing. Both neural networks are based on sensors 

that are cheap, easy installed, and some of which already available in the 

modern commercial car engines. 

* The utilization of the multi-net technique improves the CMFD system 

performance and provided a reliable tool for fault evaluation in a practical 

application. 

* The fuzzification membership functions transform the different fault level 

ranges into simple messages that can be presented to the user with a 

recommended course of action. 

* The developed data acquisition and CMFD algorithm can be integrated to 

form a standalone system as part of portable or fixed diagnostic system. 

7.2 VALUE OF THIS RESEARCH 

This work has shown that a wide range of diesel engine faults can be successfully 

diagnosed using a limited number of relatively low cost sensors. Much effort has 

been directed towards development of testing facilities and experimental tests to 

select key diagnostic sensors. The developed CMFD system utilizes sensors that 

are easily installed which allow this system to be practically viable. The 

application of such system could give the following practical benefits. 

* Only equipment which requires attention is dismantled for assessment. This 

minimises wastage of labour, replacement consumables such gaskets and 

seals and engine operating time. 

* Effective prediction and planning of maintenance operations. 

* The rate of development of a fault can be monitored and an informed 

decision can be made as to when corrective action should take place. This 

increase reliability, minimises unplanned down-time and allows a fault to 
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develop until maintenance is forced by safety considerations, catastrophic 
failure or long term engine damage. 

* Measurements of the engine parameters from new to the end of the warranty 

period and after overhaul give useful comparative data. 

This work has made a significant contribution to knowledge in the following 

areas. 

* Development of new direct measuring sensor to measure cylinder and 
injection fuel pressures which does not change the combustion chamber 

internal dimensions. 

* The approach of developing and configuring a comprehensive, fully 

automated computer based system to monitor engine condition and detect 

faults using largely ̀ off the shelf' software and hardware. 

*A detailed analysis of high speed engine instrumentation repeatability and 

the effect of data sampling and averaging. 

*A comprehensive study of commonly occurring high speed diesel engine 

faults, reasons for their occurrence and quantification of fault severities 

experienced on in-service engines 

* The training and testing of a neural network diagnostic system on real engine 
data based on low cost easy sensors. 

* An assessment of several neural network training algorithm and architectures 

to give optimum diagnostic performance when applied to a diesel engine. 

* Explicit fault-symptom relationships were developed and key diagnostic 

sensors for high speed engine were identified. 

* The utilization of multi-net technique demonstrates that sensors failure can 

also be detected by comparison of the two neural network outputs. 

* Neural network testing on engine speeds and torques which the network has 

not trained on. 

* Utilization of fuzzification at the multi-net output improves the fault severity 
level detection of the developed engine CMFD system. 
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7.3 RECOMMENDATION 

Finally as a result of this research the following recommendations can be made: 

* This research has shown that a neural network-fuzzy structure condition 

monitoring and fault diagnostic system can successfully be trained to 

diagnose diesel engine faults on real engine test data generated from one 

type of diesel engine. Further validation work is required to test this CMFD 

system on many engines of a similar types and rating engines to establish 

whether the developed system in this work is generic. 

* The variation in environmental condition such as barometric pressure, air 
inlet temperature, cooling water temperature and relative humidity could 

affect the engine performance. These parameters were restricted to ranges 

found in the UK. If this system were to be installed in a practical application 

it could be affected by the climatic condition variation. Further engine test 

work and CMFD algorithm validation are required to establish the diagnostic 

ability of the system under various extremes of climatic conditions. 

* The result of this research shows the possibility to indentify the cylinder 

which suffers from fuel starvation on individual base. However, the tests 

were undertaken with only one cylinder with that fault. Further tests of the 

engine with the other cylinders having the same fault will make the 

experimental data required for training and testing of the CMFD system 

available. The developed CMFD system could then be trained to indentify 

the number of cylinder that suffers from that type of faults. 

* Some of the key sensors used with the developed system are not currently 
installed onto the available market diesel engines such as individual exhaust 

gas temperature sensors; however, the installation of these sensors is easy 

and will not affect the engine design. Also, the need for high engine 

efficiencies and low gases emissions will lead the engine development to 

install more sophisticated instrumentation which will include such type of 

sensors. 
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* This research has concentrated on the diagnosis of limited faults. Further 

work is required to establish the performance of the CMFD system under 

other faults and multiple faults in the same time. 
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APPENDIX A. TECHNICAL DATA OF HARDWARE 

A. 1 LOAD CELL 

Omega high accuracy S-Type load cell model number (LCCA-200) 
Maximum load capacity: 200 lb 
Rated Output: 3mVN f0.0075mVN actual output supplied with each load cell) 
Excitation: 10 Vdc (15 Vdc maximum) 
Accuracy: 0.037% Full Scale 
Linearity: 0.03% FS 
Hysteresis: 0.02% FS 
Repeatability: 0.01% FS 
Zero Balance: I% FS 
Creep in 20 min: 0.03% FS 
Operating Temperature: 0 to 150°F 
Compensated Temperature: 0 to 150°F 
Thermal effects: Zero - 0.0015% FS/°F Span - 0.0008% RDG/°F 
Maximum Load: Safe, 150%; Ultimate, 300% 
Bridge Resistance: 350 Ohms nominal 
Full Scale Deflection: 0.010 in to 0.020 in 
Construction: Nickel Plated Carbon Steel 
Cable: 20 ft 4-conductor shielded 22-gage wire 

A. 2 SPEED SENSOR 

Omron manufacture 
Model number: EE-SX673AXSM 
Supply voltage: 5-24 V(DC) 
Depth: 12.8 mm 
Height: 28.4 mm 
IP rating: IP50 
Output type: L, D/O 
Selectable light/Dark: yes 
Switch current: 100 mA 
Switching mode: Light Off/On 
Slot width: 13.4 mm 
Slot depth: 9 mm 

A. 3 LIMITING SWITCH 

Brand: SUNX 
Manufacture number: PM-L54P (PNP) 
Orientation: Upright 
Detector type: Through Beam 
Supply voltage: 5 to 24V(dc) 
Switching current: 50mA 
Sensing distance: 5mm 
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Output type: PNP 
Switching frequency: 1 kHz 

A. 4 STEPPER MOTOR 

Type: RAPID SYN 
Model: 34D-9209FC. 
Step angle: 1.8° (200 step/cycle). 
Rated voltage: 2.5 VDC. 
Rated current: 4.6 A/phase. 
No. of wires: 8 wire. 

A. 5 MOTOR ENCODER 

Hp quick assembly three channel optical encoder 
Type: HEDS-5540 A06 
Number channel: 3 ch. 
Resolution: 500 counts/revelution 
Supply voltage: -0.5 V to 7V 
High level output voltage: 2.4 V 
Low level output voltage: 0.4 V 
Supply current: 30 (min) to 85 (max) mA 
Output current: -1.0 to 5 mA per channel. 
Velocity: 30000 RPM 
Rise time: 180 ns 
Fall time: 40 ns 
Shaft diameter: 0.25 in 

A. 6 PC-104 

Manufacturer: Arcom 
Model: AIM104-386EX 
Processor: Intel 386EX 33 MHz 
RAM: 1Mb SRAM 
FLASH: 1 Mb (512kb x 2) 
Connections: 3x RS232 serial ports 

1x RS485 port 
Real Time Clock chip with off-board battery back-up 
10 Way header for TTL I/O 
16-bit PC/104 data bus 
5VDC only operation 
Power consumption: 500mA @ +5V 
Power-down mode: 150mA @ +5V 

A. 7 MOTION MODULE 

Manufacturer: Arcom 
Model: AIM 104-MOTION-I 
Operation mode: Full step and Half step. 
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Driver commutator control signals available for external amplification. 
Stepper drive current: 0.7A or less). 
2 or 3 channel rotary incremental encoder should be used. 

AS MULTI I/O MODULE 

DAC 
Two 12-bit analogue outputs: Current sink: 0-25mA AND 

Bipolar voltage: -5v to +5v 
Channel Output impedance: Vout = <l OW 
Voltage overhead at lout pin 7.5V(MIN) 
Channel update time: 320msec/channel 
Calibration accuracy @ 25°C: ±2 LSB (MAX) (REF=5. OV) 
Linearity: Differential Non-linearity = ±0.5LSB (MAX) 

Integral Non-linearity = ±3.5LSB (MAX) 
Offset error ±4mV (-20°C to +70°C typ/0°C to 70°C max) 
Gain error (cal @ 25°) 0.35% (-20°C to +70°C typ/O°C to 70°C max) 

ADC 
Bipolar analogue input range: -5v to +5v 
12-bit analogue inputs configured as: 16 channel single ended OR 

8 channel differential 
Channel Input impedance: 10MW// l OpF typ 
Conversion time: 500msec/channel 
Calibration accuracy @ 25°C: Adjustable 
Relative accuracy @ 25°C: ±2LSB (-5V to +5V) 
Linearity: Differential Non-linearity = ±I LSB (No missing codes) 
Gain error (cal @ 25°) 0.5% (-20°C to +70°C typ/0°C to 70°C max) 

8 channels of isolated digital input. 
Digital input switching voltage range: 10V to 30V 
Maximum digital input frequency: 50Hz 
Debounce filter time constant: l Oms 
All digital inputs include reverse input protection diodes. 
Module access LED (on all decoded addresses) 
8-bit PC/104 (IEEE996) bus interface. 
Operating temperature range, -20°C to +70°C. 
Power consumption from the PC/104 host: Max 480mA @+5v 

A. 9 STRAIN GAUGE 

Micro-Measurements Division 
Type: WK-06-062AP 350 
Resistance: 350 ±0.3% 
Gage factor: 2.04 ±1.0% 
Transverse sensitivity : -1 ±0.2% at 24°C 
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B. 1 THE ENGINE SENSOR LAYOUT 
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B. 2 STEPPER MOTOR MANUAL DRIVER SCHEMATIC DIAGRAM 
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B. 3 STEPPER MOTOR AUTOMATIC DRIVER SCHEMATIC DIAGRAM 
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B. 4 LOAD CELL AMPLIFIER SCHEMATIC CIRCUIT DIAGRAM 
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B. 5 SCHEMATIC DIAGRAM OF CYLINDER PRESSURE SENSOR 
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B. 6 THERMOCOUPLE SIGNAL CONDITIONING CIRCUIT DIAGRAM 
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B. 7 DETAILED SCHEMATIC DIAGRAM OF SIGNAL CONDITIONING 
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B. 8 EXTENSION CARD CONTAINING THE RELAY CIRCUIT 

DIAGRAM 
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B. 9 THE CIRCUIT SCHEMATIC DIAGRAM OF THE ENGINE 

STARTING PANEL 

oil lamb 

215 



Appendix B 

fr'__o 

kazz. 11 
0 

ýý. ý 
0 

a 

0 

a 

KO 

ow 

I. - 

hr. 

," 'V' 
: LK 

n. ý 

- 1. 

n* 

ý 
ý 

,...,.. 
.ý 

Y. 90L] 

C"t77 l 
ho 

01-0 

216 

611M 

Aarl 

k 

ý 

Tr 

ý 

r-I ý 
ýMo%ý 



Appendix B 

B. 10 ENGINE MODEL SIMULINK BLOCK DIAGRAM 
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B. 1I THE SIMULINK CODE OF THE CMFD ALGORITHM 
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APPENDIX C. FUEL INJECTOR CALCULATIONS 

Injector outer diameter calculation: 
Note: this recalculation for the outer diameter of the fuel injector with some modified 
data. 
D; =2.7mm Do=9.5mm t=3.4mm 
i. e. '=0.79 < 25, thick cylinder 
Using the maximum shear stress failure theory 

(Pi - YoPo) 
am _ (Yo - 1) 

Take: P; = 2000 bar = 200 MPa [Diesel Ref. Handbook] 
Po =1 bar = 0.1 MPa (atmospheric pressure) 

(200 - 0.1Yo) 
.. am - (YO- 1) 
(Pi - Po)Yo (200 - 0.1)Yo 

a° _ (Yo - 1) (Yo - 1) 
Known that at the critical bore y=I and using the theory principles. 
The tangential stress is: 

6t=6m+ßv 

The radial stress: 

The axial stress: 
For closed cylinder 

(200 - 0.1yo) 199.9Yo 
(Yo - 1) + (Yo - 1) 

200 - 199.8Yo 
Qt- (Yo-1) 

MPa 

at 
- 199.8yo 

MPa c-- (yo-1) 

ar-6m'ßv 

200 - 0.1yo - 199.9yo 
_ 

-200(yo - 1) 
(Y. -1) (Yo-1) 

(200 - 0.1y0) 
QQ=Q, m= ýý 

From equation (1), (2) and (3) 
amax = 6a 

Qmin = Cr 

Then, the equivalent stress is: 

(1) 

(2) 

(3) 

Qe=0max-amin 

Q_ 
(200 - 0.1y,, ) 

- (-200) = 
199.9y0 

e (Yo - 1) (Yo - 1) 
Let the design stress of the injector body material to be 250 MPa by using safety 
factor of about 2.5 

a, =- 200 MPa 
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ý 
199.9yo 

= 250 
e (Yo-1) 

:" 250 = 50.1y,, 

ý"Yo=4.99 
(Dol2 

butyo=DiI 

Do)min = Di Yo 
D; = 2.7 mm 

Do)min = 2.7 4.99 = 6.03 mm 
Then the minimum outer diameter is 6 mm, i. e. the outer diameter of 
could be reduced by 3.5 mm (1.75 in the reduce) 
Using the maximum shear stress failure (the stress due to fuel) 

a. lf = 

For used strain gage. 

Strain gauge bridge balance 
R= 350 ohm 

AR 
'VO 2R + AR VV 

y-1 
Ur)f = Pf 

6a)f = 
Pf - PatmY 

y-1 
The stress due to cylinder pressure is in axial direction only, therefore, 

Qa)cy=PcY 

£a =E [cTa)total - v{Qr + 001 

& £t =1 [Qt 
- v{Qr + Qa)total}] 

& £r =1 [Qr - V{Qa)total + Ut}l 

Also, 
°R=2.04e 
R 

&Vo=vs( 
AR 1 

2R+OR 
VS =10 Volt & 

the injector 

70Vo (4) 
_ .. OR 

1- 0.1V 
but OR = 714 s (5) 

From equations (4) & (5) 

(Pf - patm)Y 

70V0 
-'- F 714(1- O. iVo) 

Strain in axial direction (E = 210 GN/m2, v=0.3 for steel 

Ea =E [-0.454Pf + Pýy - 83730] 

Strain in tangential direction 

Et =E [0.846Pf - 0.3Pcy - 84900] 

From equation 7 

0 

Pcy =E Ea + 0.454Pf + 83730 
Substitute into equation (8) 

.. EEt = 0.846Pf - 84900 - 0.3[E Ea + 0.454Pf + 83730 

(6) 

(7) 

(8) 

(9) 
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Pf = 1.409[E Et + 0.3E Ea + 110019] 
From equation (9) 

P, y =E Ea + 83730 + 0.6396[E Et + 0.3E Ea + 110019] 
The value of E= 195 GN/m to 210 G /m 
The value of E has a big effect on the results 

(10) 

(11) 

229 



Appendix D 

APPENDIX D. EXPERIMENTAL RESULTS 

D. 1 INSTANTANEOUS SPEED 

1080 
1060 
1040 
1020 
1000 

ý 980 
9 ý 960 

940 
920 
900 
880 

Health condition 
15 % FLP 
7.9 Nm 

820 
800 

Health condition 
15 % FLP 
26.5 Nm 

1 780 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Health condition 
15 % FLP 
42.4 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

900 
880 
860 

880 1 800 

860 ý 
840 

AnAAAnEýeo 
7 820 ýV li IIVvv 740 
I 800 11 720 ý 

Health condition 
l5%FLP 
69.4 Nm 

780 700 
0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 

Crank cycle Crank cycle 

840 760 
820 Health condition 740 Health condition 

15%FLP 15%FLP 
800 112 Nm 720 119 Nm 
780 700 
760 680 
740 660 

v, 720 v, 640 
700 620 
680 600 
660 580 
640 560 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

230 



Appendix D 

1480 
1460 

ý 

1440 
? 1420 ; U. 

05 1400 -1 
ý 1380 
m a 1360 -I vi 

H 1340 ý 
ý 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Health condition 
30 % FLP 
51 Nm 

1 1140 

1280 ] 
1260 
1240 

ý 1220 ý 
L. L. 1200 
ai 1180 ý 

,ý 1160 
4 

VJ 

I 1140 4 

1120 
1100 -ý 
1080 

Health condition 
30 % FLP 
18.5 Nm 

Health condition 
30 % FLP 
73 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1040 
1020 
1000 
980 
960 
940 
920 
900 

Health condition 
30 % FLP 
107 Nm 

1340 
1320 
1300 
1280 
1260 

m 1240 
1220 
1200 
1180 
1160 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1180 -1 
1160 1 

ý1140ý 
ý 
? 1120 ý 
S 1100 - 

1 980 -1 -r- 1 

"1 1080 
d Cl- 1060 

S 
1040 
1020 
1000 

0 0.5 

800 
780 
760 
740 ý 
720 - 

m 700 - 
ý 680 - 

660 - 

sao 640 
860 620 

Health condition 
30%FLP 
109 Nm 

III. IIIII 

1 1.5 2 2.5 3 
Crank cycle 

Health condition 
30 % FLP 
109.4 Nm 

11 

V 

nl 

V L 
840 1 1'1 111 1- 111 600 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 
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3300 
3280 
3260 
3240 
3220 

ý 3200 

(n 3180 
3160 
3140 
3120 
3100 

Health condition 
45 % FLP 
11.3 Nm 

2440 Health condition 
2420 45 % FLP 
2400 53.7 Nm 

eE 2380 4 
ý Oý 2360 ý 

2340 
m 
CIIL 2320 t 

ýc 2300 ý 

d 2280 -ý 
1 2260 ý 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 

2240 

Crank cycle 

1980 
1960 
1940 
1920 

ý 1900 
ý 1880 
(D 
UJF)L 1860 

1840 - 
1820 
1800 
1780 

1080 
1060 
1040 
1020 
1000 

ý 980 
960 
940 
920 
900 
880 

Crank cycle 

1580 1 
AGGn J 

Health condition ' G°" Health condition 
45 %FLP 1540 45 % FLP 
83.6 Nm 1520 107.6 Nm 

1500 ý 

1480 

1 1460 
1440 ý 
1420 
1400 1 

T--r-r-r1 1380 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

Health condition 
45 % FLP 
108.6 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

I 
Health condition 
45 % FLP 
110.9 Nm 

740 
ý 720 
m 700 

680 
660 
640 
620 
600 - 1'1111' I 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

800 
780 
760 
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1000 -1 
980 1 
960 1 
940 
920 
900 
880 

1 860 
840 
820 ý 
800 

Air fault condition 
15%FLP 
50% block 
24.6 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

820 1 

800 1 

Air fault condition 
15 % FLP 
50% block 
46.5 Nm 

780 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

960 1 900 ] 
940 d 

Air fault condition 
880 J 

920 d 15 % FLP 860 - 
900 50% block 2 840 

ý 880 ý^ 62.4 Nm 
^ 

M. 820 ý 

860 800 
Oa oAn J11 1/ \I111I\1 s_i 7Qn 

wtv 1111(\1111 11 11 v) r vv 

820 vUvVvU= 760 
800 V 740 
780 720 
760 700 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

840 
820 
800 
780 
760 

ý 740 
720 
700 
680 
660 
640 I 

Air fault condition 
15 % FLP 
50% block 
112.3 Nm 

I T T I 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

Air fault condition 
15 % FLP 
50% block 
88.7 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

740 
720 
700 
680 
660 

u 640 
620 
600 
580 
560 
540 

1 

Air fault condition 
15 % FLP 
50 % block 
116.8 Nm 

V 

n 

L V 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 
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1120 -1 A: - C-4.., 1040 -1 A11 lQUll VVIIUIIIVII 

1100 - 15 % fuel 1020 - 
1080 - 25% block 1000 - 

ý 1060 ý 31.6 Nm ý 980 ý 

k 1040 7AnAAn /\ 0ý 960 7 

ý10201 J\ J\ J\ 1\ J\J\ 940 N 

0- 1000 ývvvvvv, 920 
980 C 900 
960 ý 880 ý 
940 860 - 
920 1 

'fT-T- T'Tr 1 840 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Air fault condition 
15 % fuel 
25% block 
53.7 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1000 920 

980 1 Air fault condition 
900 

] 
Air fault condition 

ýý.. 1 . __. ,.. eon 1 lJ /0 iuci 4Fi11 1IS% tilvl OOV 7 .... ý 1 ... ......... --- i ýeni L. 1--l- 
1 __.., ... ^ --- 1 LJ70 MUCK 

- Y%Inr4 sum J 

z tKu <ý ,..,.. ... ý ý., ý 96.2 Nm 
920 68.8 Nm ý 840 11 ýýA 

ý; 900 820 
880 d ýý ýfAfýIýII1I 800 

ý 860 1V II \I tIII= 780 4 11 1 V 11 11 

840 -ý ýýv 760 ý 
820 d 740 1 
800 720 

0 0.5 1 1.5 2 2,5 300.5 1 1.5 2 
Crank cycle Crank cycle 

860 
840 
820 

ý 800 
°02 780 

760 
740 
720 
700 
680 
660 

Air fault condition 
15 % fuel 
25% block 
114.5 Nm 

T I 
0 0.5 1 1.5 2 

Crank cycle 

T--Iý --I 

2.5 3 

760 
740 
720 
700 
680 

1 660 
v, 640 

620 
600 
580 
560 

0 0.5 

2.5 3 

Air fault condition 
15 % fuel 
25 % block 
118.9 Nm 

1 1.5 2 2.5 3 
Crank cycle 
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1800 
1780 
1760 

CL 1740 
ý 1720 
m 1700 
Cl- c1680 
c 1660 

1640 
1620 
1600 

Air fault condition 
30% fuel 
50% block 
40.8 Nm 

I 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

Air fault condition 
30 % fuel 
50% block 
97.4 Nm 

,. 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1060 1 
1040 
1020 
1000 
980 

ý 

960 ý 
940 
920 
900 
880 7 
860 

Air fault condition 
30 % fuel 
50% block 
115.8 Nm 

III. IIIII ---I 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1300 
1280 
1260 

Air fault condition 
30 % fuel 
50% block 
113.9 Nm 

1 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

800 
780 
760 

.. 740 
ý 720 

700 
aý ý 680 

660 

640 
620 
600 

r 
III 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Air fault condition 
30% fuel 
50% block 
74 Nm 

.I. III. I ---T---i 

Air fault condition 
30% fuel 
50% block 
117.6 Nm 
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2020 1700 

2000 
Air fault condition 1680 30 /o fuel 

1980 25% block 1660 

L 
1960 49 Nm ä 1640 

C5 1940 ýn 
-A -A -A- A , -.. A ti 

ý 1620 ý 
1920 4v vvV V" ýVVv-Vý 1600 ý 

NaW a4 nnn Ja 'I rRn ti 

800 ý 
780 ý 

760 - 

i ', AJ rn vvv 

1880 1560 
1860 1540 
1840 1520 
1820 1500 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

1500 ý 1360 ý 
1480 Air fault condition 

1340 Air fault condition 
1460 30 % fuel 1320 30 % fuel 

2 1440 25% block 1300 25% block 

1420 1 105.8 Nm 22 1280 1 115.3 Nm 
° lano 1/ý1 M Nlý ý$ 1260 
ä 1380 VVVVVV 1240 
sh 1360 ýv lc6 1220 ý 

_t 1340 1200 
1320 1180 
1300 1160 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

1100 
1080 

1040 
1020 

ýi 1000 
980 
960 
940 
920 

900 

1060 

Air fault condition 
30 % fuel 
25% block 
117.2 Nm 

r-ý--r-Tý 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

r- T -Fý --I 

Air fault condition 
30 % fuel 
25% block 
85.2 Nm 

Air fault condition 
30 % fuel 
25% block 
121 Nm 

CL 
740 

ý 720 
700 

680 
660 
640 
620 

600 
0 0.5 1 1.5 2 2,5 3 

Crank cyde 
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1660 ] Fuel fault condition 1440 ý 
1640 ý 30 % fuel 1420 - 
1620 ý ý., ,ý,,.. . ..., 1 aüo -ý 2d 7 Um 

1600 1380 
agý K 1580 ý 11 1360 ý 
_ --- a_ A. ný, ý -0 -- I\,, n /\ iN i'x . _. 4own J 
G) I aOU vV \/ v \1 vwi rev 

1540 cn 1320 
r 1520 ýc 1300 

1500 1280 

1480 ý 1260 ý 

1460 
1 

-r-r r --T-- ý--T-ý 1240 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

1300 
ý S 1280 ý 
"S 1260 ý 
ý 

1240 

C 1220 

Fuel fault condition 
30 % fuel 
50% block 
83.8 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

900 
880 
860 

a 840 
820 

1 800 
780 
760 

h 

IIIII --r--l 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Fuel fault condition 
30 % fuel 
50% block 
111.5 Nm i1 

0 0.5 

Fuel fault condition 
30 % fuel 
50% block 
62.9 Nm 

r--ý- T- Tý-, 
1 1.5 2 2.5 3 
Crank cycle 

Fuel fault condition 
30 % fuel 
50% block 
111 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 
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1660 -1 
1640 
1620 
1600 

LL 

ý 1580 

ai 1560 
a) 
cn 1540 

1520 
1500 
1480 ý 

1440 
1420 
1400 

ý 1380 
ý 1360 
m 1340 
4) 
vai 1320 

1300 
1280 
1260 

r-T-ý 1240 

I 

I 

Fuel fault condition 
30 % fuel 
80% block 
61.8 Nm 

1460 
0 0.5 1 1.5 2 

Crank cycle 

1360 
1340 
1320 
1300 
1280 
1260 
1240 
1220 
1200 
1180 
1160 

CAA 

2.5 300.5 1 1.5 2 2.5 3 
Crank cycle 

1200 , 
Fuel fault condition 
30 % fuel 
80% block 
83.8 Nm 

Fuel fault condition 
30% fuel 
80% block 
34.8 Nm 

1180 - Fuel fault condition 

1160 
30 % fuel 
R(l0/ hinek ý 7 ýýýw I 

ä 114u 1 111.3Nm 
05 1120 ý 
0 1100 -ý N 

Cn 1080 
1060 
1040 ý 
1020 ý 
1000 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

avv i T, _I a_-I 
ruei raun conunion 

880 \ 30 % fuel 
860 1 80% block 

1% 840 -{ , 1] 1.6 Nm 2 

i2 820 ] V\ niII vn ý d 800 
N 780 

760 
740 
720 
700 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 
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2600 
2580 
2560 

CL 
2540 
2520 

ý 2500 
2480 U) c 2460 
2440 
2420 
2400 

1760 
1740 
1720 

ä 1700 
1680 
1660 

m 1640 
1620 L 

r- I 

Fuel fault condition 
45 % fuel 
50% block 
61.7 Nm 

I T T I- r-I 

2020 -1 
2000 Jý 
1980 ý 

ä 1960 ý 
ý 1940 
v ....,,. 1 
Q WLU 

, 
87 1900 ý 

V/ 

N 1880 ý 
ý 1860 ý 

1840 ý 

Fuel fault condition 
45 % fuel 
50% block 
105.4 Nm 

1820 

0 0.5 1 1.5 2 2.5 300.5 1 1.5 2 2.5 3 
Crank cycle Crank cycle 

Fuel fault condition 
45 % fuel 
50% block 
111.8 Nm 

.. ? 1140 ý 
Y. 

S 1120 ý 

1100 
1080 
1060 

1600 1V 
1040 

1580 ý 1020 4j 

1560 1-Tr-rý- 
ý-r - ý-ý 1000 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

900 1 
880 ý 
860 -1 

7 840 ý 
LL 

c5 820 ý 
1 800 ý 
° 780 ý 

760 
k 740 

720 
700 

Fuel fault condition 
45 % fuel 
50% block 
111.5 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Fuel fault condition 
45 % fuel 
50% block 
112 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 
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2600 -1 
2580 

ý 

2560 ý 
;ý 2540 ý 

2520 
m 2500 

2480 
2460 
2440 
2420 
2400 

Fuel fault condition 
45 % fuel 
80% block 
111.5 Nm 

2140 -1 
2120 1 

ý2100 ý 
W ý 2080 ý 
S 2060 ý 
'D 2040 

2020 
2000 
1980 
1960 
1940 

.. 

1200 
1180 
1160 

ä 1140 
ý 1120 

1100 
m 1080 

1060 
1040 
1020 
1000 

IIIII --r--l 

Fuel fault condition 
45 % fuel 
80% block 
62.2 Nm 

IIIIIIII ----I 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Fuel fault condition 
45 % fuel 
80% block 
111.9 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 

Fuel fault condition 
45 % fuel 
80% block 
107.9 Nm 

I 
0 0.5 1 1.5 2 2.5 3 

Crank cycle 

Fuel fault condition 
45 % fuel 
80% block 
112.6 Nm 

0 0.5 1 1.5 2 2.5 3 
Crank cycle 
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D. 2 EXHAUST TEMPERATURE 

Health condition 
15 % fuel open 
7.9 Nm 

02468 10 
Crank cycle 

02468 10 
Crank cycle 

Ti 

- T2 
T3 
T4 
T5 

180 7 

160 

I lealth condition 
15 % fuel open 
42.4 Nm 

r- 

r 

ý 

140 J 

02468 10 
Crank cycle 

260 
Health condition 
15 % fuel open 
112Nm 

Health condition 
15 % fuel open 
26.5 Nm 

240 

ýýý 

220 J 

02468 10 
Crank cycle 
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ý 
.. aý ý ý ý 
ý 

160 -7 

1 

1- 
140 

u 

Health condition 
30 % fuel open 

LL 18.5 Nm 

120 

0 246 
Crank cycle 

Health condition 
30 % fuel open 
109 Nm 

02 46 
Crank cycle 

8 10 

8 10 

160 -J 

Health condition 
30 % fuel open 
51 Nm 

02468 
Crank cycle 

Ti 
T2 
T3 
T4 
T5 

Health condition 
30 % fuel open 
107 Nm 

02 46 
Crank cycle 

10 

8 10 
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Health condition 
45 % fuel open 
11.3 Nm 

- T1 

- T2 

- T3 

- T4 

-- T5 

8 

Health condition 
45 % fuel open 
53.7 Nm 

X 
: tl 

280 -j 380 --1 
02468 10 

Crank cycle 

Health condition 
45 % fuel open 
107.6 Nm 

02468 10 
Crank cycle 
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Air fault condition 
15 % fuel open 
50 % block 
24.6 Nm 

02468 10 
Crank cycle 

Air fault condition 
15 % fuel open 
50 % block 
46.5 Nm 

0246 
Crank cycle 

T1 
T2 
T3 
T4 
T5 

160 ý 160 -1 

220 

200 

Air tault condition 
15 % fuel open 
50 % block 
88.7 Nm 

280 

Air fault condition 
15 % fuel open 
50 % block 
112.3 Nm 

8 10 

260 ý 

240 ý 

180 

02468 10 
Crank cycle 

220 
02468 10 

Crank cycle 
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02468 10 
Crank cycle 

Air fault condition 
15 % fuel open 
25 % block 
53.7 Nm 

02468 10 
Crank cycle 

Ti 
T2 
T3 
T4 
T5 

300 -1 

= 280 
15 % fuel open 

200 25 % block 
v 96.2 Nm 
t- 
ý 
ý ý ý x 
:ý 

180 ý 

0246 
Crank cycle 

4AA J ýý-: ---ý. - 
IYV IA :_ 1*. 11 

All IUUIL COIIUIUVII 

15 % fuel open 
25 % block 
31.6 Nm 

8 10 

ý ý ý ý 

Air fault condition 
15 % fuel open 
25 % block 
114.5 Nm 

260 
ý s x ý 

240 ' 

02468 10 
Crank cycle 
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160 ' 

Air fault condition 
30 % fuel open 
50 % block 
40.8 Nm 

02468 10 
Crank cycle 

Air fault condition 
30 % fuel open 
50 % block 
'fA wl.., 

/7 IVIII 

02468 10 
Crank cycle 

- Ti 
T2 

- T3 
T4 
T5 

200 J 

U 
0 

Air fault condition 
30 % fuel open 
50 % block 
97.4 Nm 

p 

02468 10 
Crank cycle 

320 -1 Air fault condition 
"I 4- 1 in oz F. oi ,... o., Q1w /0 iuca up"[ 

50 % block 
113.9 Nm 

300 I 
ý1 
ý x ý 

02468 10 
Crank cycle 
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w 

Air fault condition 
30 % fuel open 
25 % block 
49 Nm 

160 -- 
02468 10 

Crank cycle 

260 ý Air fault condition 
30 % fuel open 
25 % block 
115.3 Nm 

468 10 
Crank cycle 

240 ý 
Air fault condition 
30 % fuel open 
25 % block 
85.2 Nm 

220 

200 ' 

ýw..,,,,, .,. ___. 

02468 10 
Crank cycle 

Ti 
T2 
T3 
T4 
T5 

Y 440 ý 
v 
ý 3 

L- d7n ý 
7,1 . -- - 

ý a E Air fault condition ný 

F= 400 H 30 % fuel open 
.. --- .. 1 25 % block 

X 380 117.2 Nm 
ýý 

46 
Crank cycle 

8 10 
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420 

400 
0 

220 7 

Air fault condition 
45 % fuel open 
50 % block 
66.7 Nm 

2468 10 
Crank cycle 

Air fault condition 
45 % fuel open 
50 % block 
113.4 Nm 

200 

02468 10 
Crank cycle 

380 ý 
ý 360 
Q. 
ý 

340 
ý 

320 

=ý 300 

Air fault condition 
45 % fuel open 
50 % block 
102.6 Nm 

280 - 
02468 10 

Crank cycle 

- Ti 

- T2 

- T3 

- T4 

- T5 
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160 -, 

140 

-r_ 
Fuel fault condition 
15 % fuel open 
50 % block 
21.2 Nm 

120 -ý 

ý--_. --. - 

180 --1 

160 -1 

L- 

,. --___ 
140 - Fuel fault condition 

15 % fuel open 
50 % block 

120 

- 

44 Nm 

100 -J 100 -' 
02468 10 02468 10 

Crank cycle Crank cycle 

r 

200 -1 

180 

160 ___, ---___L-- 
Fuel fault condition 

140 15 % fuel open 
50 % block 
55.4 Nm 

120 - --- --- 

100 
02468 10 

Crank cycle 

- TI 

- T2 

- T3 
T4 
T5 

260 1 
240 

220 
Fuel fault condition 

200 15 % fuel open 
50 % block 

180 80.2 Nm 
CO 
w 160 

140 

02468 10 
Crank cycle 
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180 -1 

160 

140 
v ý 
.. ý ý ý s ý ý 

120 ý 

Fuel fault condition 
15 % tuel open 
80 % block 
22.7 Nm i 

I 

100 J 
02468 10 

Crank cycle 

180 -1 

, __. 

160 ý 

140 

120 

100 I 

Fuel fault condition 
15 % fuel open 
80 % block 
43 Nm 

02468 10 
Crank cycle 

Ti 
T2 
T3 
T4 
T5 

200 260 ý 
240 

Uö 
180 220 

ý ý- ý 200 
ý 

160 Fuel fault condition 
180 Fuel fault condition 

15 % fuel open 15 % fuel open 
80 % block 80 % block 

- ý, ý, _ 
160 

140 rv1l1 s 
x1 79.8 Nm 

cý ýý 140 ý---ý 

120 J 120 

02468 10 02468 10 
Crank cycle Crank cycle 
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200 -1 

ý 180 4 

Fuel fault condition 
30 % fuel open 
50 % block 
34.2 Nm 

02468 10 
Crank cycle 

- Ti 
T2 

- T3 

- T4 
T5 

160 

140 

120 

100 

280 

260 

240 

220 

200 

180 

160 

140 

0 

Fuel fault condition 
30 % fuel open 
50 % block 
83.8 Nm 

240 

220 

ý 

200 

180 
Fuel fault condition 

160 30 % fuel open 
50 % block 

140 62.9 Nm 

120 -1 
02468 10 

Crank cycle 

360 
340 
320 
300 
280 
260 
240 
220 
200 
180 
160 

Fuel fault condition 
30 % fuel open 
50 % block 
III Nm 

2468 10 02468 10 
Crank cycle Crank cycle 
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360 
340 
320 
300 
280 
260 
240 
220 
200 
180 
160 

Fuel fault condition 
30 % fuel open 
80 % block 
111.3 Nm 

02468 10 
Crank cycle 

220 1- 
200 

180 

160 

140 

Fuel fault condition 
30 % fuel open 
80 % block 
61.8 Nm 

280 

260 

240 

220 

200 

180 

160 

Fuel fault condition 
30 % fuel open 
80 % block 
83.8 Nm 

120 140 ýL-- 

02468 10 02468 10 
Crank cycle Crank cycle 

T1 
T2 
T3 
T4 
T5 


