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 Suggestions are given to potential researchers based on the discussion. 

 Analysis with experimental results is provided to justify some point of view. 

 

 

 

Abstract 

Vibration behavior of any solid structure reveals certain dynamic characteristics and property parameters 

of that structure. Inverse problems dealing with vibration response utilize the response signals to find out 

input factors and/or certain structural properties. Due to certain drawbacks of traditional solutions to 

inverse problems, ANNs have gained a major popularity in this field. This paper reviews some earlier 

researches where ANNs were applied to solve different vibration-based inverse parametric identification 

problems. The adoption of different ANN algorithms, input-output schemes and required signal 

processing were denoted in considerable detail. In addition, a number of issues have been reported, 

including the factors that affect ANNs’ prediction, as well as the advantage and disadvantage of ANN 

approaches with respect to general inverse methods. Based on the critical analysis, suggestions to 

potential researchers have also been provided for future scopes. 

 

Keywords: Artificial Neural Networks; Inverse Problems; Parametric Identification; Vibration 

 

1. Introduction 

A forward problem expresses an output as a multiplication of input and transfer function. So an inverse 

problem refers to expressing the input as a multiplication of inverted transfer function and the output. 

Input is the ‘cause’, e.g. force and heat that makes an ‘effect’/output to the reference object, e.g. vibration 

response and temperature. Transfer function generally refers to the system properties. Inverse 
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identification refers to calculation of either system properties or input(s) to the system from corresponding 

responses/outputs. Vibration responses acquired from a structure depend directly on the material or 

dynamic properties of that structure such as modulus of elasticity, natural frequency, stiffness, damping 

factor, etc. [1-3]. Therefore, inverse identification of certain structural parameters is achievable by 

analyzing vibration signals which would help in monitoring the physical and dynamic condition of any 

object. On the other hand, Artificial Neural Networks (ANNs) are computational algorithms which 

resemble biological neural network of animal nervous systems. They are very effective in predicting any 

outcome by learning from some preceding data, where the theoretical relation between input/independent 

variables and output/ dependent variables is quite complicated or there is no known theory at all. 

Frank Rosenblatt in 1958, first invented an effective algorithm based on the mechanism of biological 

neurons [4]. He named it ‘Perceptron’ and it was basically a computational program of linear 

mathematical algorithms. Later, during the period of 1959 to 1980, further modifications on perceptron 

were done, which ultimately resulted in the ANNs. Furthermore, due to the consistent evolution of 

powerful computing systems, applications of ANNs started to increase equivalently. At present, ANNs 

are vastly being used in both industries and modern research labs for essential purposes. Some of ANNs’ 

common applications are pattern recognition, chemical compound identification, process control, 

industrial temperature and force prediction, stock market prediction, making video games intelligence, 

voice recognition and so on. Apart from these, ANNs have already been represented as a decent method 

for monitoring and resolving several structural health-related problems; faults in mechanical systems; and 

heat conduction based inverse problems [5-9]. For recent years, ANNs have been introduced popularly in 

solving numerous vibration related problems, e.g. vibration caused damage detection, vibration and noise 

controlling, and some other vibration based parametric identification tasks. This is because vibration 

characteristics of a structure of given input condition deals with intricate mathematical models to describe 

the dynamic condition of a system and thus the output result deviates from the theoretical result in 

presence of noises and minor instrumental faults.  
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In case of inverse problems, effect of noises or uncertainties gets amplified significantly due to the 

inversion of matrix, which gives erroneous outputs. Besides, inverse problems possess a major drawback 

of ill-posedness, which means they provide multiple sets of infeasible solutions instead of specific ones. 

To deal with this, a number of regularization methods are used additionally such as Singular Value 

Decomposition method [10], Tikhonov method [11] and Singular Value Rejection method [12]. 

Nonetheless, the solution is likely to be erroneous, because any slight disturbance at input will cause 

larger deviation at output due to the inversion of matrix. These are some key reasons why ANNs are 

chosen in solving such problems, because they are able to predict outputs using any sort of input series 

such as time-domain, frequency-domain or Frequency Response Function (FRF) data, where output 

estimation is rather difficult or cannot be done in conventional ways. Moreover, ANN predicted results 

are rather practical than the theoretically calculated ones, because they consider ambient noises and real 

life uncertainties. Most significant advantages of using ANNs  are that they are self-adaptive, i.e. they can 

learn from their environment in both supervised and unsupervised ways, and capable of universal 

estimations. Another key feature of ANNs is that they are capable of massive parallel computations 

whereas the conventional digital computers (a.k.a. Von Neumann machines) are to capture and execute 

the instructions sequentially [13]. For these reasons, ANNs have been practiced greatly in solving 

versatile inverse identification problems using vibration responses in order to obtain acceptable outcomes 

avoiding ill-posedness and regularization complexities. Conversely, ANN techniques have some notable 

disadvantages which limit its uses in a wider range. In this paper, some of the earlier ANN approaches 

and their effectiveness to various vibration-based inverse identification tasks have been analyzed 

thoroughly including their ANN utilization schemes. 

 

2. Fundamentals of Artificial Neural Networks 

Artificial neural networks have already been discussed in several published literatures and books. So in 

the following section, an introductory overview on ANNs is given. 
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ANNs follow the working mechanism of biological neurons. Just like biological neurons deal with 

electrochemical signals, ANNs deal with input and output numerical values. Whereas organic neural 

networks learn from its environment and control the animal behaviors accordingly, ANNs learn from a set 

of giving data samples in order to predict the unknown outcomes from future datasets. 

 

Resembling a biological neuron, a single artificial neuron /node, which is the unit or building block of 

ANNs, comprises 4 core elements: input(s), net function, transfer function and one output (Fig. 1). The 

input(s) supplied to a node are multiplied by synaptic weights before getting processed by the transfer 

function. Synaptic or coefficient weights are just random values which define the strength or amplitude of 

individual input connected to the node. The “learning” part of ANN comes through continuous 

adjustment of these weight values. The resultant value of the net function passes through the activation 

function and thereby an ending output value is calculated and delivered by the corresponding node. 

The general expression of net function is as Eq. (1), 

 

𝑢 =  𝑏 + ∑ 𝑤𝑗

𝑁

𝑗=1

𝑥𝑗 (1) 

 

where, u = output of the net function; b = bias weight; N = number of inputs; x = input; and w = weight 

value for corresponding input (wj: 1 ≤ j ≤ N).  

 

In case of activation function, several mathematical formulas are applied depending on different 

circumstances.  Some universally used activation functions have been given in Table 1. 

Although a single artificial neuron is able to perform certain information processing, for complex tasks 

and more powerful computation, especially for linearly non-separable problems, multiple neurons are 
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needed to be connected with one another to make an intricate network. Thus the term “Artificial Neural 

Networks” is used since they consist of interconnected artificial neurons/nodes with the aim of solving a 

wide range of problems such as pattern recognition, pattern generation, function approximation, and 

memory association. 

 

The interconnected neurons of a typical ANN system can be divided into three main layers: input layer, 

hidden layer(s) and output layer (Fig. 2). Input layer neurons intake the input values from the environment 

and output layer neurons deliver the ultimate outputs. Hidden layer neurons stay in between the input and 

output layer. They receive the outputs from other neurons as their inputs (starting from the input neurons) 

and deliver outputs to their successive layer neurons. Abiding by the basic mechanism, neural networks 

have been modified into several kinds which follow different architectures and different input-output 

mapping procedures so that they perform as per necessity in different situations. In Table 2, most 

commonly used neural networks and their specialism in applications have been given. 

 

Implementation of ANNs for any application (Fig. 3) can be divided into 3 main stages: network 

parameter selection, training and testing. Selection of some key parameters such as the number of neurons 

in the input layer and output layer, number of hidden layers, number of neurons in hidden layers, learning 

rate, activation functions and some others belong to the primary step of modeling a neural network. Upon 

setting these parameters, the network is fed with sample datasets for training. Each repetition of the 

network calculations, through which weights are adjusted, i.e. the network learns, is known as epoch. An 

intermediary step called ‘validation’ is usually followed for proper adjustment of network parameters 

using a portion of the testing data. Most frequently used training/learning algorithms for ANNs are 

Levenberg-Marquardt, Quasi-Newton, Conjugate Gradient, Resilient Backpropagation and Orthogonal 

Least Squares algorithm [24-26]. The training method is chosen based on the available dataset and 



8 
 

category of the application. When ANNs are trained with both inputs and respective outputs, it is called 

supervised training. When only input data is provided for training, where synaptic weights are arranged 

according to input pattern, it is then called unsupervised training. After training, the network requires to 

be tested for performance checking which is done by validating the output values feeding the network a 

new package of input data. Prediction accuracy of ANNs will be higher if a great number of sample data 

is available. 

3. Applications of ANNs in vibration-based inverse identification 

A theoretical model of a physical process is developed by correlating the ‘cause’ and ‘effect’ of that 

process. As the process relies as well as represents the system properties, the model can be expressed as 

Fig. 4 and Eq. (2). 

 

 {𝒀} = [𝐊]{𝑿} (2) 

where {Y} = output vector; {X} = input vector; and [𝐊] = transfer function matrix that represents the 

system. 

Inverse problems deal with such process when {Y} is known and [𝐊] or {X} to be determined, where 

either of them is known as well. 

Now, equation of motion of a vibrating system is expressed in Eq. (3). 

 [𝐌]{�̈�(𝑡)} + [𝐂]{�̇�(𝑡)} + [𝐊]{𝑿(𝑡)} = {𝑭(𝑡)} (3) 

where {�̈�(𝑡)}, {�̇�(𝑡)},{𝑿(𝑡)} and {F(t)} = time (t) varying acceleration, velocity, displacement and force 

vectors respectively; [𝐌]= mass matrix; [𝐂]> 0 = damping factor matrix; and [𝐊] = stiffness matrix. 
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Eq. (3) shows that a vibrating system responds to external force(s) in forms of displacement, velocity and 

acceleration where mass, damping factor and stiffness represent the system. Therefore, a vibrating system 

can be described as a process as shown in Fig. 4 and thus it introduces a diversity of vibration based 

inverse problems.  

General inversion methods require regularization process to avoid the ill-posedness characteristic of 

inverse problems. Moreover, vibration response usually contains noises due to numerous ambient 

conditions. Such noises or errors in the input are amplified at output estimation due to the matrix 

inversion. To avoid these issues, ANNs have become much popular in this field in recent years. In this 

regard, ANN-solved inverse vibration problems can be classified into two types: 1) Non-parametric and 

2) Parametric identification. Non-parametric identifications are basically pattern classification by ANNs. 

For example, Samanta [27] and Liu [28] detected damage by putting binary values to ANN outputs, 

where ‘0’ and ‘1’ refer to healthy and damaged condition of the object respectively. Mahfouz [29] 

identified drill wear by sorting the wear conditions into six classes. In contrast, parametric inverse 

vibration problem, which is the focusing area of this review, deals with more specific reasoning, where 

ANNs work as regressors between inputs and outputs. The following part of this paper investigates a 

number of earlier attempts to identify dimensional or non-dimensional parameters via dynamic response 

and ANNs. 

E. Özkaya and H. Öz [30] determined natural frequencies and stability regions of an axially moving 

Euler-Bernoulli simple supported beam from flexural stiffness, mean of axial velocity and velocity 

fluctuation amplitudes using MLBPN. However, the network topology was different for separate 

identification of natural frequencies and stability regions. M. Çevik et al. [31] identified natural 

frequencies of a suspension bridge. They used MLBPN and trained it by placing three natural frequencies 

to the output space and five dimensionless parameters (dependent on cable tension; cables’ cross-

sectional area, virtual length, and modulus of elasticity; length and cross-section of bridge-span) to the 

input space. B. Karlik et al. [32] adopted MLBPN to predict the natural frequencies of a beam-mass 
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system due to linear and nonlinear vibration at different boundary conditions. Here, for the linear part 

investigation, inputs used to train the ANN were two dimensionless quantities α (Eq. 9) and η (Eq. 10), 

and outputs were the first five natural frequencies. For the nonlinear part, inputs to the ANN were still α 

and η, but the output was ‘nonlinear correction coefficient’ in this case.  

 
𝛼 =  

𝑀

𝜌𝐴𝐿
 (4) 

 

𝜂 =  
𝑥𝑠

𝐿
 

(5) 

where M = concentrated mass; 𝑥𝑠 = position of the concentrated mass; ρ = density of the beam; A = cross-

sectional area and L = length of the beam. 

S. Gholizadeh et al. [33] proposed a combined genetic algorithm and neural network based technique to 

evaluate the optimal weights of structures for multiple natural frequency constraints. They engaged two 

neural networks: Radial Basis Function (RBF) network and Wavelet Radial Basis Function (WRBF) 

network, together with Virtual Sub-Population (VSP) and Genetic Algorithm (GA) in order to evaluate 

the natural frequencies of structures and thereafter optimize the structural design. Training of both RBF 

and WRBF network was done by placing the cross sectional areas of the divided structural elements to the 

input space. The specialty of the WRBF network is that the activation functions of its hidden layers are 

substituted with a particular kind of wavelet functions, where the position and dilation of the wavelets 

were fixed all along. The purpose of GA and VSP was to optimize the structural weight-defining 

objective function. J.B. Ali et al. [34] predicted accurate remaining useful life (RUL) of a rolling element 

bearing by means of combined Weibull distribution (WD) and Simplified Fuzzy Adaptive Resonance 

Theory Map (SFAM) neural network. The reason of using WD is to fit measurement and to circumvent 

fluctuation areas in the time-domain during the neural network training process. So, to train the SFAM 

network, they used WD-fitted measurements as inputs whereas the outputs were healthy and six 

ascending degraded conditions, i.e. seven conditions of the bearing. First, the network was trained off-line 
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by run-to-failure history of one full bearing. Then the trained network was employed online to utilize the 

WD-extracted features so as to predict the degradation level of the bearing (Fig. 5). Afterwards, the 

output of the network was fed to a smoothing algorithm to estimate the RUL value.  

L. Roseiro et al. [35] introduced ANN to recognize forces in the suspension system of a racing car. In this 

study, applied forces and the respective dynamic behavior of the suspension system were the network 

inputs and outputs respectively. Two feedforward networks, called Direct Neural Network (DNN) and 

Inverse Neural Network (INN), were employed for individual purposes: DNN for identifying the local 

deformation in every single structural member and INN for estimating the horizontal and vertical forces 

in the suspension triangle using the obtained deformation data. Activation functions of both networks 

have been given in Table 3.  

G. Liu et al. [36] identified the elasticity of anisotropic laminated plates via four-layered MLBPN. First, 

the experimental dataset was prepared by assuming elastic constants and the estimated respective 

displacement responses using hybrid numerical method (HNM) solver. Then the ANN was trained with a 

modified backpropagation algorithm by assigning surface displacement responses to its input space and 

the elastic constants of anisotropic laminated plates to the output space. In this case, progressive 

retraining was given to the network until the output deviations were decreased to a desired level. M. 

Ghajari et al. [37, 38] identified impact locations and magnitudes on a composite panel using MLBPN 

and sensors’ spectral components. The large training data for the network was obtained from nonlinear 

finite element model of a sensorized composite in order to work with the experimental composite plate. 

Time domain based feature extraction was followed in order to build the input patterns for impact 

parameters. 

So, from Refs. [30-38], a common pattern is visible in the ANN approaches to inverse vibration-based 

identifications as shown in Fig. 6. 
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Therefore, pre-processing of raw signal is a crucial part for ANNs to relate vibration response to the 

objective parameters as well as to reduce data redundancy. Although ANNs’ high accuracy has made 

them wide popular, ANNs’ require a large quantity of sample data to be trained appropriately to be that 

accurate. This is why the ratio of training and testing data in early mentioned Refs. [30-33] were 6:1, 

493:15, 79:31 and 250:150 respectively. Apart from this, ANNs’ architectural parameters need to be 

adjusted as well, which can be done by trial and error or adopting different optimization processes. Once 

taken care of these weaknesses, ANNs can offer high precision in inverse identification. 

Now, similar to other inverse problems, ANN based inverse problems of dynamic structures are of two 

categories: 1) Input identification and 2) System identification. 

 

 

 

3.1 Input Identification 

From Eq. (3), it is obvious that externally acted or internal induced force is the only input/cause in any 

inverse vibration problem. Thereby, function of force, e.g. stress and pressure are also considered as the 

input parameters since they act on the system. In addition, other factors which control the force, such as 

input voltage to an MR damper, eccentricity of a rotating machine element, engine power, and rotation 

speed of a shaft, act as inputs as well since they affect or introduce forces to the system. So, previously 

mentioned Refs. [35, 37, 38] are input identification approaches as per definition. Table 4 highlights some 

earlier attempts to find different input factors, by following the process-template of Fig. 5 as well as their 

strategy to obtain proper ANN-approximation by means of size of sample data and optimization scheme 

of network parameters. 
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3.2 System identification 

In inverse vibration problems, system is defined as the structure on which force acts and thus induces 

vibration. Thereby, system identification refers to identification of mass, damping, stiffness, Poisson 

ratio, Young’s modulus and other similar parameters, which define the mechanical or dynamic properties 

of the system and thus affect the vibration response. In this manner, estimation of crack length, tool wear, 

tool life, etc. also exists in the domain of system variables. So, early stated Refs. [30-34, 36] refer to the 

identification of various system parameters. Table 5 scrutinizes (as per Fig. 5) a number of previous 

studies about ANN and vibration based inverse identification of assorted system parameters.   

 

Exploring Tables 4 and 5, the sample size for training was found larger than that of testing for majority of 

the cases as expected accuracy is easily obtainable in this manner. Another reason to take a large training 

sample is that ANNs are greatly erroneous outside the training domain (see Sec. 4.2). Few studies, which 

did not mention their training and testing data ratio, were mostly numerical simulation based experiments 

[41, 68]. This is because simulated models offer users a large working domain as well as provide 

flexibility and variation in data collection. As a result, user can collect as much data as desired to train the 

ANNs robustly. However, such data collection procedure is highly time costly, even with powerful 

computation devices due to exceptionally intricate computation procedure. On the other hand, as to 

network architecture optimization, most of the studies practiced empirical observation, i.e. trial and error 

since identifying network structure to suit best to a particular problem is still unreported to date. Few 

studies integrated additional optimization techniques [39, 49] in order to provide more methodical and 

quicker search method, although they are not proven to have any direct effectiveness on prediction 

accuracy compared to conventional trial and error method. 

Table 6 shows some other studies which are very similar to different studies highlighted in Table 4 and 

Table 5. 
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4. Discussion 

4.1 Network performance factors 

The literature reveals several factors which affect the inverse identification results and intricacy of the 

experimental procedures, such as input scheme, sample data size and network model. 

4.1.1 Input scheme to ANN 

Selection of inputs is the most important part of a neural network approach. Vibration response signal 

from accelerometer or strain gages contains large scale of time varying data; so it is neither reasonable 

nor effective to use all the response data as input to the network. Therefore, an effective input 

methodology must be planned with respect to the type of output. This can be done with or without a pre-

processing of signal such as Fourier transformation, wavelet transformation, time-integration, Hilbert 

transformation, FRF construction and PCA compression. Afterwards, features are extracted from either 

the raw data or the pre-processed data to use them as ANN inputs, because they act as representatives of 

the respective response. Table 7 shows different features that can be extracted from different signal pre-

processing techniques. 

Some studies used data compression technique, e.g. PCA to reduce the dimensionality of the raw or FRF 

data to construct the ANN inputs. Some followed multiple pre-processing techniques at once for 

extraction of assorted features as in Ref. [51]. A common custom of data pre-processing is 

normalization/scaling of either raw or early pre-processed data. It is necessary in order to limit the data 

range, prevent overriding of larger values over smaller ones and to avoid early saturation of hidden 

neurons [108].   

Since different pre-processing extracts different features from the same vibration signal, input should be 

chosen in the way that desired output depends on it consistently and proportionally. For example, to 
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identify crack length of a damaged structure, Fourier transformed features were used as ANN inputs in 

Ref. [65] rather using time-domain features, because any deformity in a structure changes its certain 

physical property which leads a change in its natural frequency. Similarly, different system parameters 

were identified by taking natural frequency and mode shapes in Refs. [55, 56] since these inputs are 

constant for a system. On the other hand, to quantify restoring forces in Ref. [39], displacement and 

velocity based features were selected as the inputs since they are the most proportional factors to restoring 

force. For the same reason, Ref. [45] also used displacement and velocity features to identify magnitude 

of an external force. In a number of cases, specified mathematical models were introduced to construct 

the dependability of the input(s) to the output(s) or vice-versa, e.g. Ref. [63] estimated damage length 

from the  approximation of a designed damage index by ANN, because the input factors they considered 

proved to barely affect the damage parameters. Addition of few extra inputs (such as cutting speed and 

cutting depth in Ref. [64]), which affect the structural vibration as well as designed output parameters, 

may increase the computational time to a negligible extent, but they can improve the result satisfactorily 

since they add more specificity towards input-output mapping.  

Vibration behavior depends on three key conditions which are mechanical properties, dynamic properties 

and acting forces on the system. Variables, which are force-functions or force-inducers, are also the input-

influencer to vibration behavior. It means vibration response does not vary randomly with its ‘cause’ 

factors like random variation cases, e.g. weather changes with time, or pixel color of an image changes 

with position. So, in the field of parametric identification of dynamic systems, ANNs are implemented for 

function approximation indeed, where theoretical input-output functions are very complex, ill-conditioned 

and ambient noise is of considerable presence. Therefore, consistent dependency of the input(s) on 

respective problem’s designed output(s) is the primary concern of making a potent ANN input strategy. 

4.1.2 Selection of ANN model 
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MLBPN had been the most frequently used network in the mentioned studies. The reason is that MLBPN 

works in more straightforward mechanism and can approximate both simple and complex input-output 

relationships with at least two hidden layers [56, 109, 110]. However, few experiments adopted other 

networks such as RBFN, GRNN, RNN and FABPN. Analyzing the studies, reasons of using other ANNs 

over MLBPN (which also depict the limitations of MLBPN) are: 

 To achieve quick learning. For example, the convergence speed of FABPN and GRNN in training 

is higher than that of MLBPN [39, 65].  

 To avoid sticking at local minima instead of global minima at the error surface, which is why 

RBFN and GRNN were used in several studies [45, 48, 65, 67] as these networks use localized 

non-linearities for approximation. 

 To avoid the ‘black-box’ optimization procedure of hidden layer architecture. For example, 

RBFN possess only one hidden layer and unlike MLBPN, its accuracy depends proportionally on 

the number of hidden layer neurons, which make it easier to find optimal network structure. 

 To deal with memory-dependent outputs, e.g. Bouc-Wen neural network for hysteric analysis in 

Ref. [42]. 

 To predict time-series outputs, e.g. RNN in Ref. [44]. 

ANNs cannot be chosen in terms of prediction accuracy, because once they are trained well, they perform 

robustly like the studies mentioned in this literature. So, selection of best ANN model depends on the 

logistics of the inverse problem, expected computation time limit and availability of sample data. For 

function approximation, which is the primary job of ANNs in parametric identification problems, most 

preferred networks are MLBPN, RBFN and GRNN. Hybrid networks such as ANFIS, Fuzzy ANN and 

WNN are also preferable if the methodological strategy needs to find better reasoning and domain 

information. Hybrid networks allow users to take benefits from different computational algorithms at 

once. 



17 
 

4.1.3 Selection of network topology 

Hidden layer architecture of MLBPN affects the network performance randomly, i.e. increasing or 

decreasing its size may or may not improve the prediction accuracy. However, according to Ref. [111], if 

the network architecture is too complex, overfitting may occur and if the architecture is too simple, 

desired approximation capability may not be achieved. Due to this confusion, the hidden layer 

architecture of MLBPN or modified MLBPNs is chosen either arbitrarily, by trial and error, or by 

adopting an extra optimization algorithm, e.g. GA [112-114] (mostly used algorithm for MLBPNs’ 

topology optimization), Particle Swarm Optimization (PSO) [115] and Optimal Brain Surgeon (OBS) 

method [49]. Other networks like RBFN and GRNN do not require additional optimization for hidden 

layer structure since their prediction accuracy is dependent on their hidden units.  Nonetheless, in few 

studies, their parameters (centre, width and hidden layer neurons) were optimized by GA [116, 117] and 

PSO [118] instead of common least squares function [26, 119]. 

Occasionally, two simple formulae as Eq. (6) and Eq. (7) are used to determine the number of hidden 

layer neurons [120, 121] when the MLBPN is of single hidden layer. 

 
𝑁 =

(𝑛 𝜆⁄ ) − 𝑝

𝑚 + 𝑝 + 1
 (6) 

 

𝑁 = 𝜆 + √𝑚 + 𝑝 
(7) 

 

where 𝑁 = no. hidden layer neurons; 𝑛 = no. of training data; 𝑚 = no. of input variables; 𝑝 = no. of output 

variables; and  𝜆 ≥ 1. 

4.1.4 Quantity of training samples 

Size of sample data has a direct effect on network performance. It’s a notable drawback of ANNs that 

they require a good number of trial data to be trained properly. For example, in Ref. [69], the average 
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error of IRBF was 1.128% when trained with 1000 samples, but it reduced considerably to 0.101% when 

trained with extra 500 samples. The basic theme, as stated in Ref. [108], is that training data should cover 

the problem domain in the way that the trend of input-output variation is learned appropriately by the 

network. However, if the input-output proportionality and subsets of training data are moderately 

consistent, fewer sample data would also result in higher accuracy. Therefore, size of training samples can 

be expressed as the following relation: 

Training Data Size  ∝
Dimension of the problem space (input-output range)

(Consistency of input-output trend) × (Consistency between subsets/trials)
 

 

For instance, Refs. [65, 122-124] used 478, 282, 300, and 108 training data respectively due to moderate 

relationship between input and output, whereas Ref. [44] used 2000 sample data for training over a short 

time-span since time-series outcomes vary with time almost randomly. Similarly, in Ref. [69], frequency 

domain method identified a structural damage case with 0.144% ANN prediction error, whereas time 

domain method identified the exact same case with 0.474% error. It is mainly because frequency domain 

data is more closely related to system properties and thus to damage occurrences than time domain data. 

4.1.5 Noise and uncertainties 

Although ANNs have high tolerance to surrounding noise and uncertainties, their predicted result will 

diverge to a negligible or great extent if any unwanted noise appears during the testing phase which was 

not present in the training data. In general sense, less noise reduces the demand of large sample data and 

elevates the network performance. However, there will be always some instrumentation noises occur in 

response signals practically. So signal denoising should be applied if noise is frequent as in Ref. [75] and 

sufficient trial data should be provided proportionally as the noise range/spread with respect to the 

original signal.   
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4.1.6 Error goal 

ANNs carry out their learning until reaching an error goal fixed by the user. It is strongly suggested not to 

set the error goal at absolute zero; rather it should be slightly higher than zero as Refs. [40, 125, 126] 

fixed the error goal at 0.001, 0.01 and 0.005 respectively. This is because vibration response usually 

contains noises to some degrees due to poor sensor calibration, high sensitivity or operational fault of 

sensors, structure’s non-uniformity in material, etc. So, despite having errors in the input data, if the 

network achieves exceedingly higher precision during training, the network will encounter overfitting 

problem [127]. An overfitted network provides flawed result at post-training operation (Fig. 7). 

4.2 Advantages and Disadvantages 

Each of the referred studies in this review gave a higher degree of preciseness where network error was 

mostly below 10%. As mentioned before, ANN approaches avoided ill-posedness of the inverse 

problems, made the methodologies simpler, i.e. establishing a general flow of work as illustrated in Fig. 6 

and performed successful parallel identifications, while withstanding experimental noises and 

uncertainties. Despite these advantages, ANNs bring in some issues which limit their use in wider 

application fields, which is why researchers often practice modified inverse methods instead of ANNs. As 

stated earlier in this review, the most considerable drawback of ANNs is their requirement of large 

sample data, because in order to generate such amount of data, plenty of trial observations are needed to 

be carried out which is inconvenient. The second major drawback is the optimization procedure of hidden 

layer topology which is time consuming and adds complication to the computation process. Another 

crucial drawback is the extrapolation inadequacy, i.e. they are weak or rather unable to predict the outputs 

when given inputs lie beyond the training data space [128]. This is why the input domain should cover the 

extreme points at both right and left ends (Fig. 8). 

4.3 Experimental validation 
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It has already been explained that ANNs are used for basically function approximation in vibrational 

parametric identifications. Regarding this, RBFN and GRNN have some significant advantages over 

MLBPN, although MLBPN was the most used network algorithm. These advantages are: 1) Computation 

is rapid; 2) Hidden layer architecture is simple; 3) Function approximator rather than pattern classifier; 4) 

Powerful interpolation capability. So, it is presumed that RBFN and GRNN are more favorable than 

MLBPN for future inverse parametric identifications. To validate this presumption, an extension work of 

a previous experiment conducted by the authors has been carried out. The original experiment [130] was a 

non-ANN approach to identify impact force locations. Same identification was done with the same 

experimental data by MLBPN, RBFN and GRNN. The implementation plan of ANNs is given in Table 8. 

So, number of network inputs = 4; number of outputs = 2; and total number of sample data = number of 

impact locations × number of trials = 11. 

The plate structure and sensors’ location are given in Fig. 9. The soft computing procedure was conducted 

by MATLAB®. The construction of MLBPN, RBFN and GRNN was based on default ‘feedforwardnet’, 

‘newrb’ and ‘newgrnn’ function of MATLAB® respectively. MLBPN used here consisted of one hidden 

layer and number of hidden neurons was set by Eq. (7). After few trial and errors, MLBPN gave the best 

result for 6 hidden neurons. Fig.10 shows the predicted results from MLBPN, RBFN and GRNN. 

Prediction error was measured by taking the mean of norms between predicted and actual impact 

locations. Table 9 shows the error and training time of individual network. From Fig. 10 and Table 9, it is 

observable that RBFN and GRNN are much better in terms of accuracy and training time for our 

experimentation case. 

4.4 Future Research Scopes 

Analyzing the literatures, some significant related research issues that require further works in future are 

as follow. 
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a) Inclusion of hybrid ANN models such as ANFIS and GA-RBFN would be helpful as they merge 

additional advantages from other machine learning algorithms. Each ANN type has one or more 

particular limitations, which it can be minimized by advantageous features of other ANN types or 

soft computing algorithms. For example, ANFIS includes combined ANN and Fuzzy Inference 

System (FIS), where membership function parameters of FIS are adjusted by the adaptivity of 

ANN. Thus, this hybrid model can make quicker and more precise decision-making than 

conventional ANN alone [131].  

b) Application of novel/modified feature extraction or data compression methods to vibration data 

should be practiced in order to achieve better approximation performance from ANNs for a 

particular application. Since vibration responses possess heavy-sized data, the input vectors 

should be constructed from such data in the way that input is smoothly related to the output (as 

discussed in Sec. 4.1.4). Otherwise, ANNs’ approximation would be erroneous. For example, in 

Ref.  [38], accuracy of approximating impact locations decreased by 43% (for same features) due 

to applying Discrete Wavelet Transform (DWT) to the response signals. Therefore, effective 

methods of signal processing to extract proper input vectors need further studies. 

c) Unsupervised networks, e.g. SOM and ART can be applied for proper quantification of the 

quality different vibrational features, since these networks are popularly used for enhancing the 

representation of input classes. As mentioned previously, selection of proper input method is 

important. For this, unsupervised networks (e.g. SOM) are great tools, because they provide an 

illustration of order and design of input data by converting their multidimensional space into 

random grid shape. For example, Ref. [132] used SOM to observe the variation of wavelet 

coefficients, which were used as input features to identify muscle fatigue. 

d) For function approximation problems, extrapolation is a great limitation of ANNs. Although the 

condition of a system beyond ANN’s training space is unknown, if extrapolation is achievable for 



22 
 

a system of almost non-varying conditions (e.g. a large rectangular plate of composite material), 

size of training data could be reduced considerably for much larger work space. Therefore, 

modification of ANN parameters such as introducing novel network architecture, activation 

function or convergence theory in order to enable ANNs for robust extrapolation is an important 

area of future studies. 

e) In several past studies [45, 48, 65, 67] including the experimental validation of this study, RBFN 

and GRNN have been found to be more accurate for approximation tasks. As described in Sec. 

4.1.2, the reasons are that these networks overcome some notable limitations of conventionally 

used MLBPN such as slow convergence and local minimization. Moreover, whereas MLBPN 

works as a stochastic optimizer, RBFN and GRNN work as a multidimensional curve fitter which 

is crucial in vibrational parametric identification problems. Therefore, the effectiveness of RBFN 

and GRNN compared to MLBPN should be further investigated in new or many of the literatures’ 

applications.  

 

5. Conclusion 

In this review, some previous studies have been emphasized, where ANNs were applied in various 

parametric identification tasks utilizing systems’ dynamic responses. It is seen that most of the studies 

were carried out on system parameters identification, e.g. mass, damping, natural frequency, etc., whereas 

least studies were found on identification of force-inducing inputs, e.g. impact force, pressure, MR 

damper voltage, etc. In terms of accuracy, each of the studies showed high robustness (around 90% 

mostly) in predicted results. Besides, a common flow of process has been noticed in every methodology 

where three most important steps are vibration data reduction, ANN model selection and optimized 

network parameters selection. Although MLBPN was the mostly implemented ANN model, literature 

reveals that two analogous and rival networks- RBFN and GRNN possess some major advantages, which 
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provided better accuracy than MLBPN in several past studies. So, an extension of a previous experiment 

was conducted to verify the hypothesis about the effectiveness of RBFN and GRNN. Experimental 

verification showed that RBFN and GRNN required considerably less sample data and less training time 

than MLBPN, which are the most reported disadvantages of ANNs. Since the mentioned networks were 

compared in one case study, future scopes can be the application of these two networks to some of the 

previously focused parametric problems and study their effectiveness compared to MLBPN. Considering 

the overall perspective, although neural networks possess few disadvantages to work with, but if 

necessary measures are taken such as selection of appropriate network algorithm and signal features, they 

can forecast very precise results in both linear and nonlinear conditions. 
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Fig. 1. A single artificial neuron. 
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Fig. 2.General topology of an ANN [14]. 
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Fig. 3. ANN implementation steps. 
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Fig. 4. Model of an input-output process. 
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Fig. 5. Accurate bearing RUL estimation by J.B. Ali et al. [34]. 
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Fig. 6. Schematic diagram of ANN approaches to vibration-based inverse problems. 
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Fig. 7. Visual interpretation of ANNs overfitting. 
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Fig. 8. Extrapolation inadequacy of ANNs [129]. 
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Fig. 9. Accelerometer positions and design of impacts on the test plate. 
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(c)  

Fig. 10. Impact location detection by (a) MLBPN, (b) RBFN and (c) GRNN. 
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Table 1. Commonly used activation functions. 

Activation Function Formula Graphical Representation 

Sigmoid  

(or log-sigmoid) 
𝑓(𝑢) =  

1

1 + 𝑒−𝑢
 

 

Hyperbolic tangent sigmoid 

(tanh-sig) 𝑓(𝑢) =  
𝑒𝑢 − 𝑒−𝑢

𝑒𝑢 + 𝑒−𝑢
 

 

Gaussian 𝑓(𝑢) = 𝑒
−‖𝑢−𝑐‖2

2𝜎2  

c = function center; σ = standard deviation 
 

Linear 𝑓(𝑢) =  𝑢 

 

Threshold 𝑓(𝑢) =  {
  1          𝑖𝑓 𝑢 > 0
−1          𝑖𝑓 𝑢 < 0
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Table 2. Popular ANNs and their specialism. 

ANN models Specialism Refs. 

Multi-layer Backpropagation Network (MLBPN), 

Probabilistic Neural Network (PNN) 
Pattern classification [15, 16] 

Radial Basis Function Network (RBFN), 

Generalized Regression Neural Network (GRNN) 
Function approximation [17, 18] 

Self-Organizing Map (SOM), ART (Adaptive 

Resonance Theory) 
Clustering [19, 20] 

Recurrent Neural Network (RNN), Wavelet 

Neural Network (WNN) 
Time series prediction [21, 22] 

ANFIS (Adaptive Neuro-Fuzzy Inference System) Controlling [23] 
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Table 3. Network details used for force recognition of a racing car’s suspension system [35]. 

Neural network 

Type of identification 

Local deformation 

(DNN) 

Force magnitudes 

(INN) 

Activation functions 
Hidden layer 

Output layer 

Hyperbolic tangent 

Logistic 

Exponential 

Hyperbolic tangent 
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Table 4. ANN applications in vibration-based inverse input identifications. 

Vibration-inducing force identification 

Author(s) 
Identification 

objective 
ANN model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and testing 

data ratio 

Architecture 

optimization 

scheme 

Y. Liang et 

al. [39] 

Restoring 

forces 

 

Fuzzy adaptive 

back-

propagation 

network 

(FABPN), 

improved 
FABPN, 

MLBPN 

Integration and 

double 

integration of 

time-

acceleration 

response to 

acquire 

velocity and 
displacement 

responses 

respectively 

Measured 

displacement 

and velocity 

factor 

Restoring 

force 
200:1 

Mutation 

operation of 

the genetic 

algorithm 

(GA) 

-- 

F.P. 

Lepore et 

al., [40] 

Excitation 

forces 
MLBPN 

Wavelet 

decomposition 

with Simulated 

Annealing 

optimization 

Wavelet 

parameters 

(frequency, 

exponential 

decay 

coefficient, 
phase angle) 

Locations, 

amplitudes, 

frequencies 

and phase 

angles of the 

excitation 
forces 

60%: 40% 

(of 464 

observations) 

Trial and 

error 
-- 

S. Li and 

Y. Liu [41] 

Load 

parameters 
MLBPN 

Integration of 

time-

acceleration 

response 

Time-

displacement 

response 

Load 

parameters 

(amplitude of 

load, phase 

angle) 

N/A 
Trial and 

error 
-- 

S.L. Xie et 

al. [42] 

Nonlinear 

hysteric 

system 

Bouc-Wen 

model based 

neural network 

-- 

Displacement 

and velocity 

response; five 

specified 
constants 

Nonlinear 

hysteric 

restoring 
force 

6:4 
Trial and 

error 
-- 

Force-involving factors identification 

K.H. 

Groves and 

P. Bonello 

[43] 

Squeeze-film 

damper (SFD) 

forces 

MLBPN -- 

Relative 

displacement 

and velocity 

response 

x and y axis 

component of 

SFD forces  

60%: 20% 

(of total 

473,976 data) 

Trial and 

error 
-- 

R. Le 

Riche et 

al., [44] 

External loads 

Autoregressive 

networks and 

state-space 
networks 

-- 

Accelerations 

at different 

components 

Load 

magnitudes at 

the target 

components 

(conditioned 
by pre-

predicted 

mass values) 

17,152: 

57,848 

Trial and 

error 
-- 

L. Chen et 

al. [45] 

Dynamic 

thrust 
RBFN -- 

Acceleration, 

velocity and 

displacement 

response 

Thrust force N/A 
Trial and 

error 
-- 

K. Worden 

and WJ 

Staszewski 

[46] 

Impact 

identification 
MLBPN -- 

Time-strain 

features 

(peak-to-peak 
and peak 

arrival time) 

Magnitude 

and location 

of impacts 

80: 47 
Trial and 

error 
-- 
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Table 4 (continued)        

Force-involving factors identification 

Author(s) 
Identification 

objective 
ANN model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and testing 

data ratio 

Architecture 

optimization 

scheme 

J. LeClerc 

et al., [47] 

Impact force 

locations 

 

MLBPN 

Normalization, 

mean 

subtraction and 

enveloping 

Extracted low 

dimensional 

features from 

processed 

signal 

x and y 

coordinates of 

the impacts 

251: 317 
Trial and 

error 
-- 

R. 

Johnsson 

[48] 

Cylinder 

pressure 

reconstruction 

RBFN 

Fourier 

transformation 

of engine 
structure 

vibration and 

crankshaft 

speed 

fluctuation 

Specified 

frequency 
components 

from 

frequency 

domain 

Cylinder 

pressure 

parameters 

(current 
pressure, 

maximum 

pressure, 

location of 

maximum 

pressure etc.) 

1170: 780 
Trial and 

error 
-- 

PQ Xia 
[49] 

Control 

voltage for 
MR damper 

MLBPN -- 

Displacement, 

voltage and 
force 

Control 
voltage 

N/A 

Optimal 

Brain 

Surgeon 
(OBS) 

technology 

-- 

M. Nagai 

et al. [50] 

Nonlinear 

dynamics of a 

pneumatic 

suspension 

Dynamic neural 

network 
-- 

Four state 

variables 

(found from 

response from 

railway 

irregularity, 

vehicle body 
and actuator) 

at time step K; 

pressure 

difference 

between 

actuator 

chamber; and 
control input 

to suspension 

valve 

Specified four 

state variables 

at time step 
K+1 which 

define the 

nonlinear 

dynamics of 

the 

suspension 

N/A 
Trial and 

error 
-- 

B. Lin et 

al. [51] 

Status 

identification 

of machining 

process 

Fuzzy ANN 

Time and 

frequency 

domain based 

feature 

extraction at 

different 
working 

condition 

Extracted 

features 

Cutting 

chatter and 

tool wear 

N/A 
Trial and 

error 
-- 

J.M. Fines 

and A. 

Agah [52] 

Positioning 

error 

compensation 

of machine 
tool 

MLBPN -- 

Linear 

position and 

direction-of-

motion of the 

machine; a 

machine 

location 
indicator value 

for one 

rotation of the 

leadscrew 

Positioning 

error 

compensation 
value 

10: 4 
Trial and 

error -- 
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Table 4 (continued) 
 

      

Force-involving factors identification 

Author(s) 
Identification 

objective 
ANN model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and testing 

data ratio 

Architecture 

optimization 

scheme 

J. Porteiro 

et al. [53] 
Engine power MLBPN 

Integration and 

Fourier 
transformation 

of time-

acceleration 

response to 

extract several 

characteristic 

features 

Extracted 

features  

Engine 

generated 

power 

58: 58 
Trial and 

error 
-- 

B. Akbas 

et al. [54] 

Seismic 
demand on 

column 

splices 

MLBPN -- 

Designed 
ground motion 

and structural 

parameters 

Seismic-

induced 
demands on 

frame and 

column 

splices 

192: 48 
Trial and 

error 
-- 

 

 



56 
 

Table 5. ANN applications in vibration-based inverse system identifications. 

Mass, damping and stiffness identification 

Author(s) 
Identification 

objective 

ANN 

model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN 
Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and 

testing 

data ratio 

Architecture 

optimization 

scheme 

R. Le Riche et 

al., [44] 
System mass MLBPN 

Extraction of 

candidate 

features from 

time-

acceleration 

response and 

identification 

of key 
candidate 

features which 

best relate the 

mass system 

Selected features 

 

Mass value 

 
55: 22 

Trial and 

error 
-- 

C.-B. Yun and 

E.Y. Bahng, 

[55] 

Stiffness 

matrix 
MLBPN 

Fourier 

transformation 

and Frequency 

Response 
Function 

formation 

Natural 

frequencies and 

modes of the 

structure (first 
four modal data) 

Submatrix 

scaling factors 

(SSFs) 

1650: 150 
Trial and 

error 

Submatrix 

scaling 

operation of 

the SSFs to 

identify the 
stiffness 

matrix 

Mangal et al. 

[56] 

Percentage of 

mass value 

change 

MLBPN -- 
Natural 

frequencies 

Changes in 

deck mass 
12: 11 

Trial and 

error 
-- 

B. Xu et al. 

[57] 

Stiffness and 
damping 

coefficients 

 

MLBPN 

Integration and 

double 

integration of 

time-

acceleration 

data 

1) Velocity and 

displacement 

feature with 

excitation forces 

at earlier time 
step  

1) Velocity 

and 

displacement 

feature at the 
next time step  

500: 3 

RMS error 

vector 

method 

-- 2) RMS 

difference 

vector 

of ANN 

predicted 

features 

2) Stiffness 

and damping 

coefficients  

 

288: 2 

Natural frequency and modal parameters identification 

L. Facchini et 

al., [58] 

Eigenvalues 
and 

eigenmodes 

MLBPN 

Extraction of 

four 

frequency-

dependent 
indicators 

which define 

the spectral 

tensor behavior 

at certain 

frequency 

Selected four 
frequency 

indices 

Probability of 
the presence 

of natural 

frequency 

N/A 
Trial and 

error 

Identification 

of 

eigenvalues 

and 
eigenmodes 

from final 

probability 

density 

function 

C. Chen [59] 
Flutter 

derivatives 
MLBPN 

Determination 

of horizontal 

and vertical 
components of 

wind velocities 

in time series 

for smooth and 

turbulent flow  

Time varied 

values of wind 
velocities in 

horizontal and 

vertical 

components 

Targeted 

modal 

parameters 
(vertical 

displacements 

and torsional 

angles) 

20:20 
Trial and 

error 

Matrix 

operations of 

predicted 
modal 

parameters to 

obtain the 

flutter 

derivatives 
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Table 5 (continued) 
 

 
      

Author(s) 
Identification 

objective 

ANN 

model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN 
Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and 

testing 

data ratio 

Architecture 

optimization 

scheme 

I. Karimi et al. 

[60] 

Modal 

properties of a 

gravity dam 

system 

MLBPN 

Fourier 

transformation 

to obtain 

frequency 

domain 

Dimensional 

parameters and 

frequency 

domain based 

features (when 

system is in a 

particular 
condition) 

Specified 

modal 

properties of 

the system 

(when system 

is in the 

defined 
condition) 

14:5 
Trial and 

error 
-- 

L. Wang et al. 

[61] 

Vehicle 

motion-modes 
MLBPN -- 

Extracted 

features from 

vehicle 

suspension 

deflections 

Motion-mode 

energy 

method 

calculated 

mode-ratios 

880:4000 
Trial and 

error 
-- 

Damage localization and quantification 

R.B. Walker et 

al. [62] 

Localization 

of rotor 

unbalance 

MLBPN 

Fourier 

transformation 

undergoes 

normalization 

and averaging 

Subsynchronous 

nonlinear 

features 

Fault location 195: 780 
Trial and 

error 
-- 

A. 

Budipriyanto et 

al. [63] 

Damage 

length 

identification 

MLBPN -- 

Simulated 

model’s 

vibration 

response 

Damage index 

function 
N/A N/A 

Damage 
length 

estimation 

using the 

damage 

index 

function  

Y. Quan et al. 
[64] 

Tool wear MLBPN 

Feature 

extraction from 

acoustic 
emission (AE) 

and power 

signal 

Extracted 

features, cutting 

speed, cutting 
depth and feed 

rate 

Tool wear 
value 

N/A 
Trial and 

error 
-- 

M. A. 

Mahmoud and 

M.A.A. Kiefa 

[65] 

Crack 

identification 
GRNN 

Fourier 

transformation 

Several natural 

frequencies 

Crack size 

and crack 

location 

478:87 GA -- 

P. Ramasamy 

and S. 

Sampathkumar 
[66] 

Impact 

damage 

tolerance on a 
composite 

MLBPN -- 

AE parameters 

(signal strength, 

RMS value, 
counts, counts to 

peak) 

Impact 

damage 
tolerance 

18:6 
Trial and 

error 
-- 

V. 

Vallabhaneni 

and D. Maity 

[67] 

Damage 

severity 
RBFN 

Estimation of 

modal 

curvatures of 

healthy and 

damaged 

structure 

Curvature 

damage factor 

Percentage of 

damage 
450:50 

Trial and 

error 
-- 

Z Zhang et al. 
[68] 

Delamination 
in composites 

MLBPN 
Fourier 

transformation 

First seven 

frequency 
changes 

Delamination 

parameter 
(interface, x-

location, size) 

N/A 
Trial and 

error 
-- 
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Table 5 (continued) 

Author(s) 
Identification 

objective 

ANN 

model 

Pre-

processing of 

raw signal 

Training and implementation scheme of ANN 
Post-

processing 

of ANN 

outputs 
Input Output 

Training 

and 

testing 

data ratio 

Architecture 

optimization 

scheme 

R. 

Machavaram 

and K. Shankar 

[69] 

Joint damage 

severity and 

location 

Improved 
Radial 

Basis 

Function 

Network 

(IRBF) 

Estimation of 

normalized 
damaged 

signature index 

(NDSI) from 

frequency 

domain 

features. 

Estimated NDSI 

(frequency 

domain based 

method) 
Change in 
rotational 

stiffness and 

damage 

severity 

1000:2  

(1st stage) 

500:2  

(2nd stage) Trial and 

error 
-- 

Acceleration 

response  

(time domain 

method) 

500:2  

(1st stage) 

100:2  

(2nd stage) 

R.P. Bandara 

[70] 

Damage 

identification 
MLBPN 

FRF 

construction 

and its 

dimensionality 
reduction by 

Principal 

Component 

Analysis 

(PCA). 

Calculated 
damage indices 

from reduced 

FRF data 

Damage 
location and 

severity 

8:18 
Trial and 

error 
-- 

Mechanical properties identification 

Pabisek, E. and 

Z. 

Waszczyszyn 

[71] 

Mechanical 

properties of 

an elastic 

isotropic plate 

MLBPN 

B-scanning and 

2D-Fourier 

transformation 

Specified vector 

of approximate 

dispersion curve 

parameters 

Young’s 

modulus, 

Poisson ratio, 

plate density 

and thickness  

3000: 1772 
Trial and 

error 
-- 

M. A. 
Kewalramani 

and R. Gupta 

[72] 

Concrete 
compressive 

strength 

MLBPN -- 
Ultrasonic pulse 

velocity and 

weight  

Compressive 

strength 
336:303 

Trial and 

error 
-- 

Y.E. Hamzaoui 

[73] 

Useful life of 

turbine blades 

MLBPN 

(usual 

and 

inverse 

model) 

Fourier 

transformation 

Resonance 

stress, frequency 

ratio, dynamic 

stress, Damping, 

fatigue strength, 

mean stress 

Useful life 2000:500 

Nelder Mead 

optimization 

method 

-- 

A Chamekh et 

al. [74] 

Material 

properties 
MLBPN Normalization 

Pressure-
displacement 

central point 

curves 

Anisotropic 

coefficients 
and hardening 

curve 

parameters 

24:3 
Trial and 

error 
-- 

Noise identification 

Y.F. Xing et al. 

[75] 

Sound quality 

of vehicle 

noise 

MLBPN 

Denoising, 

time-frequency 

feature 

extraction, 

defining 

energy based 

matrix 

Estimated sound 

feature vector 

Loudness and 

sharpness of 

vehicle noise 

33:33 

Trial and 

error 

(empirical 

method) 

-- 

R.S. Magalhaes 

et al. [76] 

Machine-

radiated noise 

ARX-

neural 

network 

-- 

Vibration signal 
at noise source 

(pump) and the 

spatial 

coordinate of the 

source 

Sound 

pressure at 

the noise 

source 

350:27 

Dynamic 

cross 

validation 

-- 
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Table 6. ANNs + vibration response aided different parametric identifications. 

Parameter category Identification objective Refs. 

Damage 

Crack length and location [77-83] 

Static displacement [84, 85] 

Tool wear [86-88] 

System properties 

Mass [89] 

Stiffness [90, 91] 

Natural frequency [92] 

Residual life of tools [93] 

Surface roughness [94] 

Noise level and source [95] 

Acting forces or force-involving factors 

Restoring force [96, 97] 

Excitation force [98, 99] 

Impact force [100] 

Damping force [101] 

Pressure [102, 103] 

Additional input factors (force-inducers) 

Wind speed [104] 

Eccentricity of rotor [105] 

Control voltage to MR damper/actuator [106, 107] 
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Table 7. Popular features from different signal pre-processing techniques. 

Signal pre-processing 

techniques 
Features 

Without pre-processing  

(raw signal in time-domain) 

RMS; kurtosis; standard deviation; variance; maxima; minima; crest 

factor; mean; and skewness. 

Time-integration Displacement (peak-to-peak); and velocity (peak). 

Fourier transformation 

(frequency domain) 

Natural frequencies; frequency ratio; damping; frequency changes; and 

energy of peak frequencies. 

Wavelet transformation Wavelet coefficients; kurtosis; and skewness. 

Hilbert transformation Peak/centroid of the envelope; and time of peak/centroid. 
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Table 8. ANN implementation factors. 

No. of 

accelerometers 

Extracted 

feature per 

acceleration 

response 

Output 

scheme 
Error goal No. of trials 

No. of 

impact 

locations 

4 

1 

(peak arrival 

time) 

x-y coordinate 

of impact 
0.6 1 11 
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Table 9. Performance of MLBPN, RBFN and GRNN. 

Network Mean error Training time (seconds) 

MLBPN 4.89 3.8 

RBFN 1.43 2.6 

GRNN 0.06 1.3 

 

 


