297 research outputs found

    Maintenance Optimization and Inspection Planning of Wind Energy Assets: Models, Methods and Strategies

    Get PDF
    Designing cost-effective inspection and maintenance programmes for wind energy farms is a complex task involving a high degree of uncertainty due to diversity of assets and their corresponding damage mechanisms and failure modes, weather-dependent transport conditions, unpredictable spare parts demand, insufficient space or poor accessibility for maintenance and repair, limited availability of resources in terms of equipment and skilled manpower, etc. In recent years, maintenance optimization has attracted the attention of many researchers and practitioners from various sectors of the wind energy industry, including manufacturers, component suppliers, maintenance contractors and others. In this paper, we propose a conceptual classification framework for the available literature on maintenance policy optimization and inspection planning of wind energy systems and structures (turbines, foundations, power cables and electrical substations). The developed framework addresses a wide range of theoretical and practical issues, including the models, methods, and the strategies employed to optimise maintenance decisions and inspection procedures in wind farms. The literature published to date on the subject of this article is critically reviewed and several research gaps are identified. Moreover, the available studies are systematically classified using different criteria and some research directions of potential interest to operational researchers are highlighted

    Asset management strategies for power electronic converters in transmission networks: Application to HVdc and FACTS devices

    Get PDF
    The urgency for an increased capacity boost bounded by enhanced reliability and sustainability through operating cost reduction has become the major objective of electric utilities worldwide. Power electronics have contributed to this goal for decades by providing additional flexibility and controllability to the power systems. Among power electronic based assets, high-voltage dc (HVdc) transmission systems and flexible ac transmission systems (FACTS) controllers have played a substantial role on sustainable grid infrastructure. Recent advancements in power semiconductor devices, in particular in voltage source converter based technology, have facilitated the widespread application of HVdc systems and FACTS devices in transmission networks. Converters with larger power ratings and higher number of switches have been increasingly deployed for bulk power transfer and large scale renewable integration—increasing the need of managing power converter assets optimally and in an efficient way. To this end, this paper reviews the state-of-the-art of asset management strategies in the power industry and indicates the research challenges associated with the management of high power converter assets. Emphasis is made on the following aspects: condition monitoring, maintenance policies, and ageing and failure mechanisms. Within this context, the use of a physics-of-failure based assessment for the life-cycle management of power converter assets is introduced and discussed

    Load and risk based maintenance management of wind turbines

    Get PDF
    <p> Wind power has proven to be an important source of renewable energy in the modern electric power systems. Low profit margins due to falling electricity prices and high maintenance costs, over the past few years, have led to a focus on research in the area of maintenance management of wind turbines. The main aim of maintenance management is to find the optimal balance between Preventive Maintenance (PM) and Corrective Maintenance (CM), such that the overall life cycle cost of the asset is minimized. This thesis proposes a maintenance management framework called Self Evolving Maintenance Scheduler (SEMS), which provides guidelines for improving reliability and optimizing maintenance of wind turbines, by focusing on critical components. <p> The thesis introduces an Artificial Intelligence (AI) based condition monitoring method, which uses Artificial Neural Network (ANN) models together with Supervisory Control And Data Acquisition (SCADA) data for the early detection of failures in wind turbine components. The procedure for creating robust and reliable ANN models for condition monitoring applications is presented. The ANN based Condition Monitoring System (CMS) procedure focuses on issues like the selection of configuration of ANN models, the filtering of SCADA data for the selection of correct data set for ANN model training, and an approach to overcome the issue of randomness in the training of ANN models. Furthermore, an anomaly detection approach, which ensures an accuracy of 99% in the anomaly detection process is presented. The ANN based condition monitoring method is validated through case studies using real data from wind turbines of different types and ratings. The results from the case studies indicate that the ANN based CMS method can detect a failure in the wind turbine gearbox components as early as three months before the replacement of the damaged component is required. An early information about an impending failure can then be utilized for optimizing the maintenance schedule in order to avoid expensive unscheduled corrective maintenance. <p> The final part of the thesis presents a mathematical optimization model, called the Preventive Maintenance Scheduling Problem with Interval Costs (PMSPIC), for optimal maintenance decision making. The PMSPIC model provides an Age Based Preventive Maintenance (ABPM) schedule, which gives an initial estimate of the number of replacements, and an optimal ABPM schedule for the critical components during the life of the wind turbine, based on the failure rate models created using the historical failure times. Modifications in the PMSPIC model are presented, which enable an update of the maintenance decisions following an indication of deterioration from the CMS, providing a Condition Based Preventive Maintenance (CBPM) schedule. A hypothetical but realistic case study utilizing the Proportional Hazards Model (PHM) and output from the ANN based CMS method, is presented. The results from the case study demonstrate the possibility of updating the maintenance decisions in continuous time considering the changing conditions of the damaged components. Unlike the previously published mathematical models for maintenance optimization, the PMSPIC based scheduler provides an optimal decision considering the effect of an early replacement of the damaged component on the entire lives of all the critical components in the wind turbine system

    Fault detection of a wind turbine generator bearing using interpretable machine learning

    Get PDF
    A wind turbine is subjected to a number of degradation mechanisms during its operational lifetime. If left unattended, the degradation of components will result in poor performance and potential failure. Hence, to mitigate the risk of failures, it is imperative that the wind turbines are regularly monitored, inspected, and optimally maintained. Offshore wind turbines are normally inspected and maintained at fixed intervals (generally six-month intervals) and the maintenance program (list of tasks) is prepared using experience or risk-based reliability analysis, like risk-based inspection (RBI) and reliability-centered maintenance (RCM). This time-based maintenance program can be improved by incorporating results from condition monitoring (CM) involving data acquisition using sensors and fault detection using data analytics. It is important to ensure quality and quantity of data and to use correct procedures for data interpretation for fault detection to properly carry out condition assessment. This thesis contains the work carried out to develop a machine learning (ML) based methodology for detecting faults in a wind turbine generator bearing. The methodology includes application of ML using supervisory control and data acquisition (SCADA) data for predicting the operating temperature of a healthy bearing, and then comparing the predicted bearing temperature with the actual bearing temperature. Consistent abnormal differences between predicted and actual temperatures may be attributed to the degradation and presence of a fault in the bearing. This fault detection can then be used for rescheduling the maintenance tasks. The methodology is discussed in detail using a case study. In this thesis, interpretable ML tools are used to identify faults in a wind turbine generator bearing. Furthermore, variables affecting the generator bearing temperature are investigated. The analysis used two years of operational data from a 2 MW offshore wind turbine located in the Gulf of Guinea off the west coast of Africa. Out of the four ML models that were evaluated, the XGBoost model was determined to be the most effective performer. After utilizing the Shapley additive explanations (SHAP) to analyze the XGBoost model, it was determined that the temperature in the generator phase windings had the most significant effect on the model's predictions. Finally, based upon the deviation between the actual and the predicted temperatures, an anomaly in the generator bearing was successfully identified two months prior to a generator failure occurring.Masteroppgave i havteknologiHTEK3995MAMN-HTEKMAMN-HTE

    Prognostics and health management for maintenance practitioners - Review, implementation and tools evaluation.

    Get PDF
    In literature, prognostics and health management (PHM) systems have been studied by many researchers from many different engineering fields to increase system reliability, availability, safety and to reduce the maintenance cost of engineering assets. Many works conducted in PHM research concentrate on designing robust and accurate models to assess the health state of components for particular applications to support decision making. Models which involve mathematical interpretations, assumptions and approximations make PHM hard to understand and implement in real world applications, especially by maintenance practitioners in industry. Prior knowledge to implement PHM in complex systems is crucial to building highly reliable systems. To fill this gap and motivate industry practitioners, this paper attempts to provide a comprehensive review on PHM domain and discusses important issues on uncertainty quantification, implementation aspects next to prognostics feature and tool evaluation. In this paper, PHM implementation steps consists of; (1) critical component analysis, (2) appropriate sensor selection for condition monitoring (CM), (3) prognostics feature evaluation under data analysis and (4) prognostics methodology and tool evaluation matrices derived from PHM literature. Besides PHM implementation aspects, this paper also reviews previous and on-going research in high-speed train bogies to highlight problems faced in train industry and emphasize the significance of PHM for further investigations

    International Journal of Prognostics and Health Management, ISSN 2153-2648, 2016 008 PHM-Based Wind Turbine Maintenance Optimization Using Real Options

    Get PDF
    A simulation-based real options analysis (ROA) approach is used to determine the optimum predictive maintenance opportunity for a wind turbine with a remaining useful life (RUL) prediction. When an RUL is predicted for a subsystem in a single turbine using PHM, a predictive maintenance option is triggered that the decision-maker has the flexibility to decide if and when to exercise before the subsystem or turbine fails. The predictive maintenance value paths are simulated by considering the uncertainties in the RUL prediction and wind speed (that govern the turbine’s revenue earning potential). By valuating a series of European options expiring on all possible predictive maintenance opportunities, a series of option values can be obtained, and the optimum predictive maintenance opportunity can be determined. A case study is presented in which the ROA approach is applied to a single turbine

    Degrader Analysis for Diagnostic and Predictive Capabilities: A Demonstration of Progress in DoD CBM+ Initiatives

    Get PDF
    This paper presents a modified reliability centered maintenance (RCM) methodology developed by The Applied Research Laboratory at The Pennsylvania State University (ARL Penn State) to meet challenges in decreasing life cycle sustainment costs for critical Naval assets. The focus of this paper is on the requirements for the development of the on-board Prognostics and Health Management (PHM) system with a discussion on the implementation progress for two systems: the high pressure air compressor (HPAC), and the advanced carbon dioxide removal unit (ACRU). Recent Department of Defense (DoD) guidance calls for implementing Condition Based Maintenance (CBM) as an alternative to traditional reactive and preventative maintenance strategies that rely on regular and active participation from subject matter experts to evaluate the health condition of critical systems. The RCM based degrader analysis utilizes data from multiple sources to provide a path for selecting systems and components most likely to benefit from the implementation of diagnostic and predictive capabilities for monitoring and managing failure modes by determining various options of possible CBM system designs that provide the highest potential ROI. Sensor data collected by the PHM system can be used with machine learning applications to develop failure mode predictive algorithms with greatest benefit in terms of performance, sustainment costs, and increasing platform operational availability. The approach supports traditional maintenance strategy development by assessing the financial benefit of the PHM technology implementation with promising potential for many industrial and military complex adaptive system applications

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Asset management of energy company based on risk-oriented strategy

    Full text link
    Repairs and maintenance of energy assets can be carried out in a variety of ways, which are usually based on indicators of reliability and efficiency. Due to the transition to a digital energy paradigm and implementation of intelligent diagnostic tools for technical condition of the equipment, it is advisable to carry out asset management with additional tools to consider operational and economic risks, as well as to predict the integrated efficiency of energy objects. This paper presents an overview of progressive strategies for energy asset management currently used in global practice. The analysis of approaches to asset management developed by one of the largest Russian generating and grid utilities is carried out. The authors developed several methodological recommendations for the identification of priority objects for technical maintenance and repair, ranked based on the type of equipment, risk of failure, predictiveness of defects, the undersupply of energy in emergency situations, types and cost of remediation and reputation losses of the energy business. Proposals for energy companies to implement a risk-based assets management strategy in units operating energy facilities are formulated. © 2020 WIT Press.The work was supported by Act 211 of Government of the Russian Federation, contract No. 02.A03.21.0006
    corecore