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Abstract

Wind power has proven to be an important source of renewable energy in the modern electric
power systems. Low pro�t margins due to falling electricity prices and high maintenance
costs, over the past few years, have lead to a focus on research in the area of maintenance
management of wind turbines. The main aim of maintenance management is to �nd the
optimal balance between Preventive Maintenance (PM) and Corrective Maintenance (CM),
such that the overall life cycle cost of the asset is minimized. This thesis proposes a mainte-
nance management framework called Self Evolving Maintenance Scheduler (SEMS), which
provides guidelines for improving reliability and optimizing maintenance of wind turbines,
by focusing on critical components.

The thesis introduces an Arti�cial Intelligence (AI) based condition monitoring method,
which uses Arti�cial Neural Network (ANN) models together with Supervisory Control And
Data Acquisition (SCADA) data for the early detection of failures in wind turbine compo-
nents. The procedure for creating robust and reliable ANN models for condition monitoring
applications is presented. The ANN based Condition Monitoring System (CMS) procedure
focuses on issues like the selection of con�guration of ANN models, the �ltering of SCADA
data for the selection of correct data set for ANN model training, and an approach to over-
come the issue of randomness in the training of ANN models. Furthermore, an anomaly
detection approach, which ensures an accuracy of 99% in the anomaly detection process is
presented. The ANN based condition monitoring method is validated through case studies
using real data from wind turbines of di�erent types and ratings. The results from the case
studies indicate that the ANN based CMS method can detect a failure in the wind turbine
gearbox components as early as three months before the a replacement of the damaged com-
ponent is required. An early information about an impending failure can then be utilized
for optimizing the maintenance schedule in order to avoid expensive unscheduled corrective
maintenance.

The �nal part of the thesis presents a mathematical optimization model, called the Pre-
ventive Maintenance Scheduling Problem with Interval Costs (PMSPIC), for optimal mainte-
nance decision making. The PMSPIC model provides an Age Based Preventive Maintenance
(ABPM) schedule, which gives an initial estimate of the number of replacements, and an
optimal ABPM schedule for the critical components during the life of the wind turbine,
based on the failure rate models created using the historical failure times. Modi�cations in
the PMSPIC model are presented, which enable an update of the maintenance decisions fol-
lowing an indication of deterioration from the CMS, providing a Condition Based Preventive
Maintenance (CBPM) schedule. A hypothetical but realistic case study utilizing the Propor-
tional Hazards Model (PHM) and output from the ANN based CMS method, is presented.
The results from the case study demonstrate the possibility of updating the maintenance
decisions in continuous time considering the changing conditions of the damaged compo-
nents. Unlike the previously published mathematical models for maintenance optimization,
the PMSPIC based scheduler provides an optimal decision considering the e�ect of an early
replacement of the damaged component on the entire lives of all the critical components in
the wind turbine system.

Keywords: Arti�cial neural network (ANN), condition monitoring system (CMS), life
cycle cost, maintenance management, maintenance strategy, maintenance planning, opti-
mization, supervisory control and data acquisition (SCADA), wind energy.
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Chapter 1

Introduction

1.1 Background

Global energy demand is set to grow by 37% by 2040 compared to 2015 ([1]). At the same
time the future of global energy systems is uncertain due to volatile political situation in
the Middle East, which still remains the main source of cheap oil. Electricity is the fastest
growing form of energy. However, the power sector still contributes the most towards a
reduction of fossil fuels in global energy mix. An estimated 7200 GW of new capacity needs
to be installed by the year 2040, in order to keep pace with the growing demand, while
the existing, aging power plants need to be replaced. The strong growth of renewables in
many countries could raise their global share by one third by the year 2040. The share
of renewable generation in the countries which are member of OECD (Organisation for
Economic Co-operation and Development) may increase up to 37%, whereas developing
nations like China, India, Latin American and Africa could see a doubling of the share of
renewables in their energy mix ([1]).

Wind power has been one of the most promising new sources of renewable energy during
the past decade. The industry has seen a steady growth, and it can be expected that the
growth shows similar trend in the future. Thanks to a strong development of technology,
wind turbines have increased in size from a few kW to multiple MW. Furthermore, higher
wind speeds have motivated installing larger wind turbines o�-shore. Consequently, this has
also led to a situation where failures in wind turbine components result in higher revenue
losses and also frequent maintenance becomes impractical and expensive.

In recent times, maintenance management in wind turbines has gained signi�cance and
the focus has been to improve the wind turbine reliability and pro�tability. Traditional
methods like Reliability Centered Maintenance (RCM), which have proven to be successful
in other industrial applications, are being investigated for wind turbines. The RCM method,
motivates focusing the preventive maintenance activities on those components, which might
be the cause of concern for the reliability of the entire system. Preventive maintenance can
be broadly classi�ed into two categories: age based preventive maintenance (ABPM) and
condition based preventive maintenance (CBPM). The CBPM strategy has the advantage of
a better utilization of the life of the components compared to the ABPM strategy, and hence,
can be bene�cial in the long run. However, to achieve an e�ective optimal condition based
maintenance requires an e�cient condition monitoring system and a practical mathematical
optimization model. In this context, a maintenance management framework is presented in
this thesis; it provides guidelines to (i) create a robust condition monitoring system using
the data stored in the SCADA system, and (ii) use the signals from condition monitoring
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1.2. Problem overview Chapter 1. Introduction

systems to achieve optimal condition based maintenance.

1.2 Problem overview

Wind turbines are complex electromechanical systems, which are continuously subjected to
harsh operating conditions. Furthermore, wind turbines are, generally, located at remote
locations to take advantage of higher wind speeds. Hence, major failures in wind turbines,
which are more frequent than desirable, are expensive to repair, cause losses in revenue,
and may also cause long downtimes. Furthermore, as wind power reaches utility scales,
it will be expected to have reliability and availability performances close to conventional
power generation. This situation has lead to an increased focus on developing advanced
asset management methods, which ensure lower maintenance costs and higher availability of
wind turbines.

The development e�orts in the area of wind turbine asset management can be divided
into two main areas, namely

I: the improvement of existing, and development of new, condition monitoring methods,
and

II: the development of mathematical models for optimal maintenance planning.

1.2.1 Wind turbine condition monitoring systems

Visual inspections and vibration analysis have been the most commonly applied condition
monitoring methods to wind turbine systems. Visual inspections are labor intensive and can
identify only limited types of failures ([2]); they also cause downtimes, and hence frequent
inspections are not desirable. Vibration analysis has been successful in condition monitoring
of rotating equipment in industrial applications, however, it requires additional sensors.
Furthermore, a study conducted by the National Renewable Energy Laboratory (NREL)
found that the average detection accuracy of the existing vibration monitoring systems is
only about 50%; see [3] for details. In addition to the development of condition monitoring
tools using vibration signals, new methods using a variety of sensor measurements have
been developed in the past few years; see for example [2,4]. In recent times, condition
monitoring based on measurement data from the wind turbine SCADA system has been in
focus, and a variety of methods have been developed for the same; those in [5�8] are a few
prominent examples in this area. The analysis of SCADA data has become lucrative, as it
presents an opportunity to monitor not only mechanical, but also electrical components in
the wind turbines. Machine learning methods, like arti�cial neural network (ANN), have
proven to be e�ective in extracting information from large SCADA data sets, which has
been demonstrated in [5�8]. However, they have not yet been widely adopted for real world
applications. ANN is a black box modeling method, and hence it does not incorporate any
physical understanding of the system being modeled. Furthermore, there exists an inherent
randomness in the training of ANN models due to the non-convex optimization used while
deciding the synaptic weights ([9]). These issues have seldom been addressed in the context
of wind turbine applications and, consequently, ANN based condition monitoring methods
are still under-utilized.

2
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1.2.2 Mathematical models for maintenance optimization

The mathematical models for maintenance optimization can be divided into two broad cat-
egories, based on the type of statistical failure rate models that they utilize for optimizing
the maintenance decisions; ABPM and CBPM optimization models. The schedules resulting
from the ABPM optimization models stipulate replacements of components based on failure
rate models derived from historical failure times, while the corresponding CBPM schedules
utilize the failure rate models based on information from condition monitoring systems. The
ABPM strategy provides an expected number of replacements for a component over the life
of the system which can be useful for �nancial planning purposes. Furthermore, age based
statistical failure rate models are easier to create, as they need as input only the historical
failure times for the components. However, replacement of components following such a
maintenance schedule might lead to under-utilization of the useful lives of the components.
The CBPM strategy, on the other hand, has the advantage of providing a maintenance sched-
ule based on the health of the component, thereby providing an opportunity for maximizing
the consumption of the component life. However, condition based failure rate models are dif-
�cult to create as they require detailed information from the condition monitoring systems.
Moreover, the CBPM strategy does not provide an estimated number of replacements during
the life of wind turbines. Hence, a hybrid maintenance strategy which can take advantage
of both maintenance strategies is desirable.

1.3 Previous work

In this section a brief literature review is presented, which covers the two main topics of this
thesis: the condition monitoring from SCADA data, and mathematical models for mainte-
nance optimization.

1.3.1 Condition monitoring from SCADA data

The SCADA system is an integral part of all modern wind turbines: it records various me-
chanical quantities like temperature, rotational speed, etc., and electrical quantities, like
current, voltage, power, etc. Relevant data from the SCADA system can be extracted at
any point of time and can be used to estimate the health of selected wind turbine compo-
nents. Researchers have published di�erent methods and approaches for using SCADA data
for condition monitoring; a few examples are found in [5�8,10�18]. Mathematical model-
ing methods like arti�cial neural networks have been frequently utilized for the analysis of
SCADA data, as they have the capability to model highly nonlinear relationships and can
easily be adapted to large-scale applications. The methods presented in [5�8] are the most
prominent examples of application of arti�cial neural networks to wind turbine condition
monitoring using SCADA data.

A software tool named Intelligent System for Predictive Maintenance (SIMAP) was pre-
sented in [5]. The SIMAP tool is divided into six modules responsible for normal behav-
ior modeling, anomaly detection, health condition assessment, failure diagnosis, preventive
maintenance scheduling, and maintenance e�ectiveness assessment. The normal behavior
module utilizes a multiple layer ANN model for predicting a parameter value based on the
selected input parameters. The ANN model output is compared with the measured value in
real time, and a di�erence outside con�dence bands, de�ned by the normal behavior model,
is termed as an anomaly. The diagnosis of a failure is performed with a fuzzy expert system

3
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in the diagnosis module, which holds knowledge about di�erent failure modes for the com-
ponent being monitored. The health assessment module is used to categorize the component
condition as either good, bad or very bad. Furthermore, a preventive maintenance action is
scheduled with the objective to minimize the cost of maintenance. However, the case study
presented in [5] shows that the system is able to detect the failure (approximately) 26 hours
in advance, which might be su�cient to avoid a catastrophic failure, but not for an e�ective
CBPM optimization. Furthermore, the maintenance decisions do not consider the e�ect of
an early replacement of the damaged component, on the life of the wind turbine.

A similar ANN based anomaly detection technique for early fault detection in wind
turbines was presented in [6]. The case study presented showed that the ANN models are
capable of detecting deviations in the component behavior as early as six months before the
eventual failure. The anomaly detection is based on observing an increase in the frequency of
errors between the actual and modeled parameter values. This method of anomaly detection
can become impractical when it is applied to a large number of wind turbines. In order
to make the ANN based CMS method practical and scalable, it is desirable to have an
automated anomaly detection which triggers an alarm when the error between the actual
and modeled parameter values exceeds a prede�ned threshold.

The multilayer feed-forward ANN normal behavior models of various con�gurations with
di�erent number of neurons in the hidden layer and di�erent input con�gurations were
investigated in [7], for condition monitoring application in wind turbine system. The case
study with 10 sec. SCADA data illustrated that the method is able to predict faults about
1.5 hours before the eventual failure. The detection of an anomaly close to the actual failure
does not allow any kind of maintenance planning. Moreover, anomaly detection based on
values of error between the modeled and the actual parameter value might, in some cases,
not be su�cient for an early detection of anomaly in the component.

In [8], condition monitoring using Adaptive Neuro-Fuzzy Interference Systems (ANFIS)
is presented along with a method to de�ne a threshold value for anomaly detection. The
standard deviation of the errors during the training period is used to de�ne the threshold.
However, the ANN models could be skewed, resulting in larger errors at certain operating
points. Such a situation could lead to false alarms if the threshold value is decided based
solely on the distribution of the errors during the training period, and without considering
the correlation between the errors and the operating point.

The ANN based CMS developed in this thesis intends to address each of the above men-
tioned shortcomings. The approach presented in this thesis utilizes the sensor measurement
data stored in the SCADA system as well as the SCADA generated alarms and warnings for
condition monitoring of critical components in the wind turbine.

1.3.2 Mathematical models for maintenance optimization

A thorough understanding of the reliability of wind turbines is highly desirable to formulate
an optimal maintenance management strategy. However, wind power installations, for the
most part, are comparatively new in the �eld of bulk power production. The installations
are yet to reach an end-of-life scenario, which means that de�nitive reliability analysis of
wind turbines is a di�cult task. Di�erent methods for reliability analysis of wind turbines
have been proposed in the literature. A reliability analysis method based on failure statistics
collected from publicly available data has been presented in [19]. The method focuses on
reliability analysis for incomplete data sets. Funded under the European Unions' seventh
framework, the ReliaWind project was formulated with an aim to improve the design, main-
tenance and operation of wind turbines. Within ReliaWind project a reliability analysis
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procedure for wind turbine applications has been outlined in [20], which provides guidelines
for performing reliability evaluation of wind turbines.

The di�culty of assessing wind turbine reliability is also augmented by the fact that wind
turbine failure statistics are not freely available. In the absence of data, which is required for
accurate reliability predictions, the only sources are publications which present data about
failures in wind turbines. In [21], failure statistics for Swedish wind turbines during the
years 1997�2005 were published. This was one of the �rst publications on wind turbine
failure statistics; the industry typically does not publish similar data. Furthermore, in [22]
publicly available databases from Germany and Denmark were presented, with results from
a reliability analysis on a sub-assembly level. A summary of results presenting the failure
rates for various components in the wind turbine was presented in the �nal project report
from ReliaWind project in [23]. In order to achieve a practical maintenance schedule with
mathematical optimization models, it is necessary to accurately estimate the reliability of
various components in the wind turbine.

Considering that the reliability of wind turbine components can be estimated with ac-
ceptable accuracy based on historical failure times, an ABPM strategy can be initiated.
Various mathematical optimization models have been developed for making optimal ABPM
decisions. A mathematical model for ABPM optimization using probabilistic failure rate
of various components was introduced in [24]. This basic ABPM optimization model was
one of the earliest works in maintenance optimization applied to wind turbine applications.
The basic model was developed further in [25] by allowing a preventive replacement when
maintenance opportunities arise; this is often referred to as opportunistic maintenance opti-
mization. Opportunistic maintenance becomes especially attractive for o�shore wind farms,
where access to wind turbines is expensive, and in harsh weather conditions even impossible.
The opportunistic maintenance optimization model, presented in [25], was further developed
in [26] for applications of planning maintenance resources, like number of maintenance per-
sonnel, number of shifts, number of transport vehicles, etc. An ABPM approach similar to
the opportunistic maintenance, and referred to as maintenance grouping, was presented in
[27]. The maintenance grouping approach provides an optimal schedule where components
with similar expected failure times are optimally grouped.

The ABPM optimization allows the planning of preventive maintenance of various wind
turbine components over the expected life of a wind turbine. However, the maintenance
decisions cannot be updated in real time based on the information from the condition moni-
toring system. Today, condition monitoring systems have become mandatory for multi-MW
wind turbines in most countries. The next major step in improving asset management will
be the integration of information from condition monitoring systems with the maintenance
optimization process, and hence leading to the CBPM strategy.

Researchers have developed various mathematical models for CBPM optimization, con-
sidering that a certain type of health information will be available from the CMS in the future.
A number-dependent preventive maintenance strategy was presented in [28], for optimizing
maintenance of blades in o�shore wind turbines; the optimization model was formulated
to �nd the optimal number of observable damages in the turbine blades, which should be
allowed before initiating either a PM or a CM activity. An approach for CBPM applied to
wind turbine blades using CMS information was presented in [29]; di�erent condition moni-
toring strategies were compared from a Life Cycle Cost (LCC) perspective and an optimum
strategy for blade monitoring was suggested; the model assumes that information from the
CMS can be used to specify the state of the blades into one of the four de�ned categories
used in a Markov model. A risk-based maintenance optimization framework using Bayesian
theory was presented in [30]; the framework proposed a theoretical component deterioration
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model, which utilizes information from the condition monitoring system and considers the
stochastic operating conditions for maintenance scheduling. A method to utilize the values
of vibration signals from the CMS system for historical failure and suspensions to predict
the remaining useful life of components was presented in [31]; the maintenance interval is
decided by simulating the maintenance cost per unit time for di�erent maintenance intervals
and di�erent failure probability thresholds. A statistical approach for using the vibration
signals from condition monitoring system with the proportional hazards model (PHM) was
presented in [32]; a control limit policy was developed to optimize the threshold for CBPM;
this model was extended for a multi-component application in [33].

The mathematical models for maintenance optimization presented above, take advantage
of either the ABPM or the CBPM strategy. However, none of them explicitly presents an op-
tion where both maintenance strategies can be utilized. In this thesis a mathematical model
has been developed that provides an initial ABPM schedule, which can be used for �nancial
planning, and provides an optimal CBPM schedule in real time based on information from
the condition monitoring systems about an impending failure in a component. This math-
ematical model for maintenance optimization and the proposed maintenance management
framework can aid in improved asset management over the life of the wind turbines.

1.4 Aim of the thesis

The main aim of the thesis is to develop a framework, which provides guidelines for utilizing
operation and maintenance (O&M) data to achieve an optimal maintenance of wind turbines.
The work has, speci�cally, focused on developing an ANN based method for condition moni-
toring using data stored in the SCADA system. Various issues that limit the applicability of
the ANN based condition monitoring in a real world application are discussed and mitigation
techniques to improve the con�dence in the output of the condition monitoring activity are
developed and presented. Furthermore, a mathematical model is presented, which provides
an optimal ABPM strategy with the possibility to update the maintenance plan based on
information from the condition monitoring system, resulting in an optimal CBPM strategy.

1.5 Main contributions of the thesis

The main contributions from the thesis are listed below.

1. A maintenance management framework referred to as Self Evolving Maintenance Sched-
uler (SEMS) has been proposed in this thesis, which provides guidelines for utilizing
O&M data from various sources towards optimal maintenance of various critical com-
ponents in the wind turbine. The description of the SEMS framework is provided in
Chapter 3.

2. An ANN based condition monitoring method is proposed in this thesis. This method
utilizes sensor data stored in the SCADA system along with SCADA generated alarms
and warnings for monitoring of critical components in the wind turbine. Various issues
related to ANN modeling; like selection and �ltering of training data, post-processing
of the output from ANN model to improve con�dence in the condition monitoring
system, and a procedure to update the models after replacement of the monitored
component are discussed in the thesis. The ANN based condition monitoring system
is presented in detail with various case studies in Chapter 4.
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3. A mathematical model for maintenance optimization is proposed in this thesis. This
mathematical model provides an initial ABPM schedule and provides an optimal
CBPM schedule in real time based on information from the condition monitoring sys-
tems. The mathematical model for maintenance optimization is presented in Chapter
5, along with case studies demonstrating the advantages of the proposed optimization
model.

1.6 Thesis structure

The thesis is organized as an introduction to and summary of the attached papers.

Chapter 2 provides an introduction to the concepts of ANN and provides relevant infor-
mation about the reliability models utilized in the thesis.

Chapter 3 introduces the concept of maintenance management and presents the proposed
maintenance management framework.

Chapter 4 presents the ANN based condition monitoring method with application results
from case studies.

Chapter 5 presents the mathematical optimization model with case studies.

Chapter 6 presents the thesis conclusions and proposes future work.
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Chapter 2

Theoretical background

This chapter provides the theoretical background of the concepts and methods used in the
thesis. The basics about arti�cial neural networks are described. Relevant mathematical
equations used for training the neural networks are discussed. Furthermore, a brief introduc-
tion to reliability theory is presented, with relevant information about the statistical models
used in the thesis.

2.1 Theory of neural networks

The brain functions in ways that let us interact with our immediate surroundings. For
example; vision is one of the functions of the brain, wherein an image input from the retina
of the eye is processed to let us perceive, understand, and interact with the object being
visualized. All this processing takes a matter of milliseconds. The human brain, even in early
stages of growth, has the capability much greater than today's fastest computer in terms
of performing complex information processing. The brain comprises of millions of neurons
connected in a particular manner, the interaction of which in a speci�c sequence produces the
desired results. These connections are established early in life through a learning procedure,
commonly referred to as experience. The Arti�cial Neural Network (ANN) models intend to
mimic the structure of the brain in order to model real world non-linear systems. The main
similarities between the brain and the ANN is the knowledge acquisition through experience
or learning processes and the retention of the knowledge with the inter-neuron connections,
characterized by synaptic weights ([34]).

2.1.1 Model of a neuron

A neuron is the fundamental building block of an ANN. The function of the neuron is to
generate an output based on a given set of input variables. The weighted sums of the inputs
and the bias are passed through an activation function which decides the output of the
neuron, as shown in Figure 2.1.

The input variables u1, u2, . . . , un are multiplied with their respective synaptic weights
w1, w2, . . . , wn and are summed with the bias value b. The bias values are treated in the
same manner as weights. The bias could take a value equal to −1 or 1, which shifts the
activation function either to left or right, respectively. Φ(·) is the activation function, which
decides the �nal output y from the neuron. The mathematical representation of a neuron,
depicted in Figure 2.1, can be described as follows:
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Figure 2.1: Model of a typical neuron

v =
n∑
j=1

wjuj, (2.1a)

y = Φ (v + b) . (2.1b)

2.1.2 Activation function

The output of the neuron is de�ned by the activation function Φ(·). In this section two types
of activation functions, respectively called the threshold activation function and the sigmoid
activation function, are described.

Threshold function

The threshold activation function is de�ned by (2.2) and illustrated in Figure 2.2, below.
The threshold function can have output either 1 or 0, depending on the induced �eld v.
Threshold functions are often used in the output layer of ANN, where binary classi�cation
of the input is required.

Φ(v) =

{
1, if v ≥ 0,

0, if v < 0.
(2.2)

Sigmoid function

The sigmoid function is a non-linear activation function de�ned by (2.3) and illustrated
in Figure 2.3. The sigmoid function is one of the most common activation functions used
in neural networks, when a non-linear classi�cation is required. The slope of the sigmoid
function can be varied by the slope parameter a, and as a→∞ the sigmoid function tends
to the threshold function. In contrast to the threshold function, which can assume a value
of either 0 or 1, the sigmoid function can assume any value between 0 and 1.
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Figure 2.2: The threshold type activation function

Figure 2.3: The sigmoid activation function
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Figure 2.4: Structure of a multilayer feed-forward network

Φ(v) =
1

1 + e−av
(2.3)

2.1.3 Neural network architectures

The input/output relation for a neural network is strictly dependent on the network con�gu-
ration, which consists of the information about the number of neurons in the di�erent layers
and their inter-connections. In this section two main types of network con�gurations, which
are relevant for the speci�c application with wind turbine SCADA data, are discussed.

Multilayer feed-forward network

The multilayer feed-forward ANN con�guration has at least three layers: the input layer, the
hidden layer, and the output layer. A schematic representation of a multilayer con�guration
is shown in Figure 2.4. All the layers between the input and the output layers are referred
to as hidden layers. Generally, the non-linearity in the input/output relationship is directly
related to the number of layers in the network. Theoretically, there is no limit on the number
of hidden layers; however, one hidden layer was found to be su�cient for an accurate modeling
of various parameters in the wind turbine system.

Multilayer recurrent networks

In contrast to the feed-forward neural networks, the recurrent neural networks are character-
ized by at least one feedback loop. Figure 2.5 shows a schematic representation of a recurrent
neural network. The neural network exhibits a feed-forward structure through the hidden
layer of neurons. Furthermore, the delay units make the behavior of the neural network
non-linear. This class of neural networks has shown better performance in terms of accuracy
for di�erent applications, as compared to the traditional feed-forward neural networks, as
reported in [35�37].
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Figure 2.5: Structure of a multilayer recurrent network

2.1.4 Learning methods

For a given neural network the information about the relationship between the inputs and
outputs is stored in the synaptic weights, which decide the output of each individual neuron.
These synaptic weights are realized through a learning process, wherein the neural network is
presented with a data set, called the training data set, and the network learns the relationship
between inputs and outputs in this training data set. The learning methods can be classi�ed
into two categories: supervised and unsupervised learning. A labeled training data set with
an output de�ned for each set of input variables is required for the supervised training, while
an unsupervised training can be performed with unlabeled data. Supervised learning is
applied when labeled data can be obtained; it is useful for modeling the underlying function
of the input/output relation.

Supervised learning

Learning achieved through a pre-de�ned set of inputs and outputs, which are representative
of the environment or system being modeled, is termed supervised learning. Supervised
learning is represented schematically in Figure 2.6. A data set, consisting of samples of
input vectors and their respective desired outputs, is extracted from the environment or
system, which is to be modeled. This pre-de�ned training data set is considered to have
knowledge about the environment or system and acts as a teacher to the ANN. The initial
ANN model includes no information about the environment or system being considered; i.e.,
the values of the free parameters in the model (the synaptic weights w) are undecided. The
intention of the teacher is to transfer the knowledge in the training data set to the ANN
model; i.e., to decide the values of the synaptic weights. During the training process, the
knowledge transfer is achieved through the in�uence of the error signal and the training
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Figure 2.6: The supervised learning method

samples. The error signal is de�ned based on the di�erence between the output of the ANN
model and the desired response, which is stored in the training data set.

The supervised learning of ANN models can be divided into three stages; the training,
the validation, and the testing. Consequently, the pre-de�ned data set which represents the
behavior of the environment or the system to be modeled, is divided into three parts referred
to as training data set, validation data set, and test data set, respectively.

The training data set is utilized for deciding the synaptic weights of the ANN model,
which is an iterative process with an aim to make the ANN model replicate the behavior of
the environment or the system with high accuracy. The training of the model is essentially a
minimization problem, wherein the objective is to minimize the performance measure with
the synaptic weights and biases as variables. Standard minimization algorithms like steepest
descent can be used for the ANN model training. However, more advanced minimization al-
gorithms have been developed for training the ANN models, and one such training algorithm,
called the Levenberg�Marquardt training algorithm, is discussed later in this chapter.

The validation data set contains data that have not been presented to the ANN model
during the training process. Generally, during initial phases of training the error between
the ANN modeled parameter values and the actual values reduces, for both the training and
the validation data sets. However, at some stage the error value continues to reduce for the
training data set but starts increasing for the validation data set, due to over-�tting of the
data by the ANN model ([34]). At this stage the network training is halted and the network
weights and biases, which correspond to the minimum validation data set error are saved as
the �nal ANN model.

Finally, the test data set which the trained model has not seen previously is utilized to
assess the performance of the trained ANN model.

Unsupervised learning

Unsupervised learning is achieved without a pre-de�ned training data set. The fact that
the learning is achieved without any teacher, as opposed to supervised learning, makes
it an unsupervised learning method. This method of learning is used mainly when it is
impossible, or di�cult, to construct a training data set, representing the environment or
the system being modeled. Unsupervised learning is, hence, achieved through unlabeled
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samples of inputs and outputs, which are easily available for any environment or system.
Data clustering applications often use unsupervised learning methods.

2.1.5 Levenberg�Marquardt training algorithm

The synaptic weights w are updated for a given structure of ANN, based on the training al-
gorithm adopted. In this subsection, the Levenberg�Marquardt ([38,39]), training algorithm
(LMA) is presented; it is one of the most common algorithms used for training moderately
sized ANN models. It has the combined advantage of the convergent steepest descent algo-
rithm and Newton's method, which usually is fast near an optimum; further details about
these optimization algorithms can be found in [40,41]. The LMA is more e�cient than the
conjugate gradient algorithm for neural networks with less than 100 neurons ([42]). Hence,
as the number of neurons required for the modeling within this thesis is less than 100, the
LMA has been used for training of ANN models.

The input/output relationship for an ANN model can be represented as

y = F (U ;w), (2.4)

where F is the non-linear approximation function from the ANN model, which emulates the
relationship between the inputs U and the output y. The input vector U consists ofM input
parameters, (u1, . . . , uM), which are used to model one output parameter y.

Consider a training set (U(i), d(i))Ni=1, with N , sample points. F (U(i);w) is emulated by
the ANN model, d(i) is the value of the desired output corresponding to the inputs U(i), and
the matrix w is a K ×M weight matrix, where K is the number of neurons in the hidden
layer. The network training is achieved by minimizing the loss function E de�ned as

E(w) :=
1

N

N∑
i=1

[d(i)− F (U(i);w)]2. (2.5)

According to the LMA the weight vector is updated according to w := w + ∆w, where

∆w = [H + λI]−1 g, (2.6)

H denotes the Hessian matrix approximation de�ned by (2.7) below, and g denotes the
gradient vector de�ned as per (2.8). I denotes an identity matrix with dimensions same as
H and λ is a positive scalar parameter used to interpolate between Newton's method and
the steepest decent method.

H =
1

N

N∑
i=1

[
∂F (U(i), w)

∂w

] [
∂F (U(i), w)

∂w

]T
(2.7)

g =
∂E(w)

∂w
(2.8)

Notice that if the value of λ in (2.6) is 0, then the update in Equation (2.6) corresponds
to Newton's method, while if λ� 1, then the update is similar to the corresponding outcome
of the steepest decent method. Whenever the utilization of the update in (2.6) leads to a
su�cient decrease in the objective value, the value of λ is kept low; otherwise an increase in
the value of λ will ultimately yield a steepest descent-like step.
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2.1.6 Performance and generalization property of the trained model

In order to achieve an e�cient supervised learning, the training data set should be carefully
chosen such that it represents only the normal operating conditions of the component being
modeled. An approach for the selection of the training data set is presented in [43], and
later applied to a case study in Paper I of this thesis. Furthermore, three approaches to
�lter the training data, which enable elimination of data which might reduce the ANN model
performance are presented in Chapter 4. The selected training data set is then randomly
divided into the training, validation, and test data sets.

In order to assess the trained ANN model, the model generalization property, which is
de�ned as the ability of the model to neglect the insigni�cant aspects in the training data
set ([44]), is calculated. A model with poor generalization property will produce large errors
when presented with data which is not present in the training data set, and hence such a
model is not desirable. In order to quantify the generalization property of a network, a
Generalization Factor (GF) is de�ned as follows:

GF = σ(Ptrain, Ptest, Pval), (2.9)

where σ is the standard deviation for a vector containing the values of the performance
parameters from the training (Ptrain), test (Ptest), and validation stages (Pval) of the ANN
model learning process, respectively. In Chapter 4, the application of the generalization
factor for the selection of an appropriate ANN con�guration is demonstrated.

In this thesis the Mean Absolute Error (MAE) is used as the performance parameter.
The MAE parameter is de�ned as

MAE =
1

N

N∑
i=1

|y(i)− d(i)|, (2.10)

where, N is the total number of samples in the data set, y(i) is the ith value of the ANN
model estimated parameter, and d(i) is the corresponding value of the parameter provided
to the model in the training, validation, and test data sets.

2.2 Reliability theory

Reliability can be de�ned as the �Ability of an item to perform a required function, un-
der given environmental and operational conditions and for a stated period of time� ([45]).
Various models can be used to estimate and predict the future reliability of a component.
Reliability models created using historical failure times can be termed as age/time based
reliability models ([45,46]), whereas models created using signals which depict the current
condition of the component can be termed condition based reliability models ([47,48]). The
condition based models can be further divided into data driven models; see for example
[32,49], and physics based models; see for example [50].

2.2.1 Reliability function

The reliability of a component can be understood as the probability that the item does not
fail, or, it survives, in a time interval (0, t], and is de�ned as

R(t) = 1− F (t) = Pr(T > t), for t > 0, (2.11)
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where F (t) denotes the cumulative probability of failure of the component at time t. The
cumulative distribution F (t) is derived from the probability density function f(t), according
to

F (t) =

∫ t

0

f(u)du. (2.12)

A more detailed description of reliability theory can be found in [45,47].

2.2.2 Mean time to failure

The expected life of a component is referred to as the Mean Time To Failure (MTTF); it is
calculated from the probability density function according to

MTTF = E(T ) =

∫ ∞
0

tf(t)dt. (2.13)

The MTTF of a component can be utilized to schedule a preventive replacement, and
one such maintenance optimization model is presented in [51]. Furthermore, MTTF has also
been utilized for opportunistic maintenance optimization; for example, see [52].

2.2.3 Hazard function

The hazard rate equals the probability of a component failing in the time interval ∆t. Con-
sidering that recorded failure times for a large number of components n is available, a small
interval ∆t can be utilized and the hazard rate can then be estimated as

h(t) = lim
∆t→0

Pr(t ≤ T < t+ ∆t)

∆tR(t)
=
f(t)

R(t)
. (2.14)

In this thesis the hazard rate is utilized along with the PHM model, presented later in
this chapter, to estimate the cost of a given maintenance schedule. Further details about the
application can be found in Paper IV and Chapter 5.

2.2.4 Weibull distribution

The Weibull distribution is one of the most common probability distribution functions used
to model the component failure times. A two parameter Weibull distribution with shape
parameter β > 0 and scale parameter α > 0 is characterized by the following:

f(t) =
β

α

(
t

α

)β−1

e(−
t
α)

β

t > 0; (2.15a)

R(t) = e(−
t
α)

β

; (2.15b)

h(t) = β
tβ−1

αβ
; (2.15c)

MTTF = αΓ

(
1

β
+ 1

)
, (2.15d)

where Γ(x) =
∫ +∞
−∞ e−yyx−1dt is the Gamma function ([53]).
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The shape parameter β provides a possibility to represent decreasing (β < 1), constant
(β = 1) or increasing (β > 1) failure rates, which are, generally, related to the di�erent stages
of a component's life. The historical failure times of a component can be used to estimate the
shape and the scale parameter of its Weibull distribution. Methods for parameter estimation
are presented in [22,46]. The ABPM optimization within the maintenance management
framework is demonstrated in Chapter 5 of this thesis, with Weibull distributed failure
times for the wind turbine main bearing, rotor, gearbox and generator.

2.2.5 Gamma distribution

In many cases the stochastic process of degradation, like crack growth, can be represented by
the Gamma process; see for example [48]. The Gamma distribution with shape parameter
β and scale parameter α is characterized by the following:

f(t) =
1

αβΓ(β)
tβ−1e−

t
α t > 0; (2.16a)

R(t) =

β−1∑
x=0

1

x!

(
t

α

)x
e−

t
α ; (2.16b)

h(t) =
f(t)

R(t)
; (2.16c)

MTTF = αβ; (2.16d)

see also [45].
The Gamma distributed failure times are used in Paper IV to demonstrate the application

of the condition based probabilistic failure rate models in the maintenance management
framework.

2.2.6 Proportional hazards model

The Cox PHM has been frequently applied within statistics in the medical sciences to exam-
ine the e�ect of covariates on the hazard rates; see [54]. The hazard rate for a PHM model
can be modeled (as shown in [55]) as

h(t; z(t)) = ho(t)ψ(z(t)), (2.17)

where ho(t) is the baseline hazard rate and ψ(·) is the link function that is used to update the
baseline hazard rate, depending on the value of the covariate z(t). The procedure to create
the PHM model and its application to maintenance optimization has been demonstrated
in [32]. A hypothetical case study with the PHM model applied to CBPM optimization is
presented in Paper IV and Chapter 5. The output from the ANN based CMS is utilized as a
covariate to update the failure probability, based on which the maintenance schedule is then
adjusted.

2.2.7 Estimation of the failure distributions

The approximation of the parameters for the statistical models which represent the failure
rate of a component is a non-trivial task. Di�erent methods can be applied to a given
data set to estimate the type and the parameters of the probability distribution that �t
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the failure data. Probability plotting is a method where special graphs are used to estimate
the parameters for a de�ned distribution for a given data set. More information about
probability plots with examples and explanation can be found in [46,47]. The Maximum
Likelihood Estimation (MLE) method presents an analytical solution for the estimation of
the parameters for a given statistical model. The total likelihood is de�ned as the joint
probability distribution of the data, as

L(p;DATA) =
n∏
i=1

Li(p; datai), (2.18)

where Li(p; datai) is the probability or likelihood of observation i, datai is the data for
observation i, p is the vector of parameters to be estimated, and n is the total number of
observations in the set DATA. The parameters for the statistical model are derived from the
set DATA by maximizing the function L(·) over p ∈ Φ, where Φ is a family of distributions
and p is the vector of parameters for the distribution. In most cases, historical failure data
for wind turbines is available as interval censored data; see for example [20]. In such cases,
the probability of the event is de�ned as

Li(p) =

∫ ti

ti−1

f(t)dt = F (ti)− F (ti−1); (2.19)

where F (·) is the cumulative distribution function de�ned in (2.12), see [47].
For a given data set L(p) can be seen as a function of p. The likelihood of �nding the

probability distribution that �ts the data is maximized by �nding values of p for which the
function L(p) is maximized. The MLE method can also be used together with Bayesian
statistics (discussed in detail in Chapter 13 of [45]), wherein a prior information about the
distribution is utilized and is updated based on the information from the new data.

2.2.8 Renewal process

The renewal process models the replacements (renewals) of a component. It is a counting
process with Independent and Identically Distributed (IID) inter-occurrence times with dis-
tribution function F (t), reliability function R(t) and probability density function f(t) ([45]).
The inter-occurrence times are considered to be independent as it is assumed that the wind
turbines are non-repairable systems and that the condition after maintenance is as good as
new.

Generally, the number of renewals in a certain time interval is estimated using a recursive
procedure, as it is di�cult to obtain a closed form expression of the number of renewals for
complex distribution functions like the Weibull distribution. Consider time being represented
by discrete steps t = 1, . . . , T . In order to estimate the expected number of renewals after
time T , we assume that the value of the renewal function, W (t), is known for all t =
1, . . . , T − 1, and W (0) = 0. The underlying probability distribution, f(t), is known for all
t ≥ 0; for example it is known that the component failure times follow a Weibull distribution.
Then the renewal function W (·) can be estimated as

W (T ) =
T−1∑
t=0

(1 +W (T − t− 1))

∫ t+1

t

f(s)ds; (2.20)

see [46].
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In Paper IV and Chapter 5 the expected cost of maintenance in a given time interval is
estimated utilizing the renewal process, where a large number of failure times are simulated
based on the underlying reliability functions of the components.
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Chapter 3

Maintenance Management Framework

This chapter presents a classi�cation of di�erent types of maintenance strategies and in-
troduces the concept of maintenance management. Furthermore, the proposed maintenance
management framework is presented along with a discussion. The material in this chapter
is most strongly connected to Papers I, II and IV.

3.1 Introduction

Maintenance can be termed as an activity carried out with an aim to restore or maintain
a machine or a system to a state in which it can perform its intended function. Figure 3.1
presents a common classi�cation of maintenance strategies (adapted from [56]).

A CM activity is performed following a failure event and a PM is performed prior to a
failure event. A PM activity can further be classi�ed as an ABPM or a CBPM, depending
on the type of information utilized to make maintenance decisions. A condition monitoring
system, like vibration monitoring or visual inspections, is a pre-requisite for CBPM, whereas
information about component failure probabilities is required for the utilization of an ABPM
strategy. The CM strategy has the advantage of providing a complete utilization of the use-
ful lives of the components, but it is expensive as it may require unscheduled maintenance
activities. The ABPM strategy is comparatively less expensive, on account of the possibility
of providing an optimal schedule of maintenance activities, but it does not completely utilize
the useful lives of components. The CBPM strategy then presents a better option, as it
provides an opportunity to schedule the maintenance, and at the same time ensures a better
utilization of the component lives. However, a successful CBPM strategy requires informa-
tion from condition monitoring systems as well as good probabilistic models for estimation
of remaining useful life of components.

Maintenance management can be understood as the process of building an optimal main-
tenance policy considering the advantages and disadvantages of the di�erent maintenance
strategies. Generally, the maintenance policy is decided with an aim to minimize the Life
Cycle Cost (LCC) of the asset. LCC is the total discounted cost of investment and opera-
tional expenditures over the life for a system. A simpli�ed LCC model for a maintenance
strategy is given by (taken from [57])

LCC = Cinv +
T∑
t=0

[
Ct
CM + Ct

PM + Ct
PL + Ct

ser

]
(1 + δ)−t, (3.1)

where Cinv denotes the initial investment cost for a maintenance strategy, which might include
cost of maintenance crew, equipment, etc. Ct

CM, C
t
PM, and C

t
PL represent the cost of corrective
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Figure 3.1: Classi�cation of maintenance strategies

maintenance, preventive maintenance and production loss, respectively, during the year t,
and Ct

ser is the additional costs, like administration costs, which are not accounted for in
the other cost items. The total expected life of the system is T (years) and δ represents the
discount rate, which is calculated based on a de�ned interest rate. Maintenance management
aims to �nd an optimal balance between the various cost parameters, such that the LCC of
the maintenance strategy is minimized.

3.2 Reliability centered maintenance

The Reliability Centered Maintenance (RCM) methodology was introduced in the 1960s in
the civil aviation industry, with an aim to improve the reliability of the systems using focused
maintenance; see [58] for details about the RCMmethodology. Since then, the RCM has been
successfully adopted in several �elds of application. The RCM stipulates a detailed Failure
Mode E�ect Analysis (FMEA), including an analysis of the cause of each failure mode on
the critical components of the system. In addition, RCM also seeks to answer the question
as to what preventive maintenance activities can be performed to avoid such failures. RCM
provides a systematic approach to establish minimum maintenance limits. However, RCM is
a qualitative approach, and hence does not provide a quantitative output; it was extended to
include a quantitative analysis in [59]. The application of the extended methodology, referred
to as Reliability Centered Asset Maintenance (RCAM), to wind turbines is demonstrated in
[60]. In principle, the RCM and RCAM methodologies can point towards bottlenecks in the
system with respect to the reliability of the system.

As both the RCM and RCAM methodologies suggest, the maintenance management of
the asset should be initiated with an e�ort to understand its reliability. Preliminary informa-
tion about the system reliability can be collected using historical failure times, which might
be available through the maintenance reports. In this thesis, information from maintenance
reports for a population of 28 wind turbines located in di�erent areas of South and Central
Sweden is utilized. The data corresponds to 73 wind turbine years, and an analysis to esti-
mate the downtime caused by each subsystem of the wind turbine is performed. A total of
728 maintenance work orders are analyzed, and the failures are grouped into categories based
on the subsystem responsible for the failure. The average downtime for each subsystem per
year per wind turbine is estimated as
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Figure 3.2: The average number of failures and downtime per failure for di�erent subsystems
for the wind turbine population under consideration

Dj :=

∑T
t=1 djt∑T
t=1 ntIt

, j ∈ {1, 2, . . . , N}; (3.2)

here, Dj is the downtime for subsystem j per wind turbine per year, djt is the downtime
caused by subsystem j in the time interval t, nt is the total number of wind turbines operating
in the time interval t, It is the length of the time interval t, andN is the number of subsystems
in the wind turbine. The result of the analysis is presented in Figure 3.2.

The analysis of the failure data lead to a realization that the communication system is
a cause of concern, su�ering from frequent failures. The communication system could be
improved, however, there is not much that can be achieved with PM other than ensuring
that the �rmware in each wind turbine is up to date. The electrical system and the gearbox
are responsible for the most downtime, next to the communication system. These results
are in agreement with previously published surveys of wind turbine reliability in [20�22].
This information can be used to improve the maintenance for the electrical and the gearbox
systems by applying CMSs and opting for either age based or condition based preventive
replacements.

3.3 Data collection

A systematic collection of data is of utmost importance for applying methods such as RCM
and RCAM. However, at present, standardized procedures for data collection and reliability
analysis are not available for wind turbines. Manufacturers follow their own standards, and
consequently the type and extent of data available depend largely on the make of the wind
turbines. The IEC 61400 standards have been issued for wind turbine design requirements,
but do not explicitly discuss the issues of maintenance and reliability data. There are a
few national and international initiatives which have focused on the aspect of wind turbine
reliability. Wind turbine reliability analysis methods have been outlined in [23], which was
an output from the ReliaWind project within the European Union's Seventh framework pro-
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gram. The ReliaWind project also issued one of the �rst taxonomies, speci�cally applicable
for wind turbines. A study, undertaken by Elforsk, has demonstrated the data requirements
for various levels of reliability analysis for wind turbines ([61]). The report is produced
based on experiences from other electricity generation systems like hydro and nuclear. The
IEA-Wind Task-33 is working on formulating recommended practices for reliability data col-
lection and analysis for wind power O&M planning, and will issue a resulting report in 2016.
The IEA-Wind recommended practices document will cover the most important aspects of
data collection in wind turbines.

3.4 Self-Evolving Maintenance Scheduler framework

The aim of the proposed framework is to provide an approach for the utilization of infor-
mation from di�erent sources of data, such as SCADA, maintenance and inspection reports,
CMS, etc., for optimal maintenance planning. The outline of the proposed SEMS framework
is provided in Figure 3.3. A summary of the framework is presented as follows:

1. Following an analysis, such as RCM, the information about critical components and
the applied condition monitoring methods is generated. The critical components will
be included in the SEMS framework for continuous maintenance management.

2. An ABPM schedule is produced from the SEMS framework for the critical components,
based on reliability models created using historical failure times.

3. The CMSs, including the SCADA data based CMS proposed in this thesis, provide in-
formation about any deterioration in the components being monitored. Consequently,
the signals from the various CMSs are combined in order to improve the e�ectiveness
of the condition monitoring activities.

4. Following an indication of a deterioration from any of the CMSs, an inspection is
initiated, which determines the correctness of the diagnosis from the CMS.

5. The results of the inspection may initiate a maintenance planning to decide the best
course of action given the probabilistic failure model of the damaged component. A
CBPM optimization is performed considering the e�ect of an early replacement of
the damaged component on all the critical components in the wind turbine over the
entire lifetime of the system. Furthermore, the maintenance opportunities arising due
to condition based preventive replacement of one component are optimally utilized to
perform age based preventive replacement of other critical components.

6. As a general procedure each maintenance activity generates a maintenance report.
The information from this report will be utilized to update the SCADA data based
condition monitoring models, as the replacement of monitored components necessitates
an update in the ANN model, as described in Paper I. Furthermore, the signals from
the CMS of the component a�ected are stored in order to improve the probabilistic
failure models.
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Chapter 4

ANN based condition monitoring

This chapter brie�y describes di�erent features of the SCADA system. The approach for
condition monitoring using data stored in the SCADA system is presented. Various issues
with the ANN models are discussed and suitable mitigation measures are presented. Case
studies are performed to validate the condition monitoring method. The material in this
chapter is most strongly connected to Papers I, II, and III.

4.1 The wind turbine SCADA system

The SCADA system is an integral part of all modern wind turbines. The aim of SCADA
is to make it possible to remotely control and monitor wind turbines. A general structure
of SCADA is shown in Figure 4.1. The SCADA system provides the user with two levels of
access:

1. Control Access: through this access the user can start/stop as well as manipulate the
operating parameters in the wind turbine.

2. Monitoring Access: through this access the user can get an instantaneous status up-
date on the operating conditions of the wind turbine as well as access to historical
measurement data.

The SCADA system records parameters like wind speed, wind direction, ambient and
nacelle temperatures, lubrication oil temperature and pressure, and di�erent bearing tem-

Internet

Wind Turbines with various

sensor measurements

Local server

Ethernet hub

User

Communication

Channel

Figure 4.1: A schematic representation of a typical SCADA system for wind turbines
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peratures for wind turbines. In addition to these measurements, electric quantities like
voltage, current, frequency, and power factor are also measured and recorded. These mea-
surements are stored as a 10-min average value1 on the SCADA server. Furthermore, the
SCADA system generates alarms and warnings based on pre-set threshold values, which
indicate out-of-normal operation in the wind turbine. Each SCADA alarm is mapped to a
status which assigns the responsibility of the downtime to an entity. The wind turbine sta-
tus information is utilized for an availability calculation at the end of each month. In most
modern wind turbines, the availability is calculated internally and reported as an output
from the SCADA system. Hence, it becomes important to have a good understanding of the
SCADA alarms and warnings.

The main function of an alarm is to make it possible to avoid the operation of com-
ponents under highly stressed conditions, which otherwise may reduce the operating life of
components. An alarm results in a shutdown of the wind turbine and an acknowledgment of
the alarm is required for a restart. The alarms can be acknowledged in three di�erent ways
as described below.

• Auto-acknowledge: The wind turbine controller automatically acknowledges the alarm,
and restarts the wind turbine when the condition causing the alarm no longer exists.
There is a maximum number of auto-acknowledge occasions, after which the alarm has
to be acknowledged remotely.

• Remote-acknowledge: The alarm has to be manually acknowledged at a remote location
(for example, the control center), in order to restart the wind turbine. The main
function is to inform the operator that a component might require an inspection.

• Local-acknowledge: The alarm has to be acknowledged manually at the wind turbine.
These alarms are mainly related to the safety of operations, for example, the alarm
generated in the �re safety system.

The main function of warnings is to inform the operator that an attention is needed to
a particular component. A warning is generated in a situation when there is no immediate
danger of damage to the component, but the rate of reduction in the life of the component
could be higher than normal. The warning could be, for example, a low oil level indication,
which may not be critical but needs some attention. A warning could result in an alarm if
no attention is given, which will lead to a shutdown of the wind turbine. A typical SCADA
system could have upwards of 500 possible alarms and warning signals. At present, there
is no standard available which stipulates a certain terminology to be used for the SCADA
warnings and alarms. Hence, it is di�cult to associate alarms and warnings to a certain
assembly or sub-assembly of a wind turbine. A simple approach for associating the SCADA
alarms and warnings to a wind turbine assembly or sub-assembly is presented in Paper
II. The intention of the activity is to improve ANN based CMS by analyzing the alarms
and warnings together with the output from the CMS while monitoring the wind turbine
components.

4.2 ANN based condition monitoring method

An intelligent analysis of the recorded SCADA data can indicate certain types of failures
in critical components in advance. A method utilizing ANN for creating normal behavior

1In addition to the 10-min average values, some wind turbine SCADA systems also provide 10-min

minimum, maximum, and standard deviation values.
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Figure 4.2: A schematic representation of an ANN based condition monitoring method

models for critical components in wind turbines is proposed in this thesis. The schematic
representation of the method is shown in Figure 4.2. The condition monitoring method using
SCADA data can be divided into two blocks. The block on the left in Figure 4.2 presents
a one-time process, during which the ANN model is trained to emulate normal operating
conditions in the monitored component. The block on the right presents the continuous
application process of anomaly detection and condition monitoring.

The training of the ANN model is performed using the data from a period during which
there have been no recorded failures in the wind turbine. In the application stage, the trained
ANN model is used to estimate the modeled parameter values, which are compared to the
actual measured values recorded in the SCADA system, and the errors are calculated. The
calculated error values are compared to the threshold values and any error values higher
than their thresholds are considered anomalies.

The process of building ANN based normal behavior models can be divided into the three
sub-tasks

1. speci�cation of an ANN con�guration,

2. input/output parameter selection, and

3. data pre- and post-processing.

Together they represent an iterative development process, each step of the which is discussed
in detail in the following sections.

4.3 Con�guration of ANN models

An arti�cial neural network typically consists of an input layer, a number of hidden layers,
and an output layer. The con�guration of the ANN carries the information about the
number of nodes in the input layer, the number of hidden layers, the number of neurons in
each hidden layer, and �nally the number of neurons in the output layer. The performance
of the ANN model, for a given application, depends largely on the con�guration. However,
there are no known methods to optimize the con�guration of an ANN model. Furthermore,
several con�gurations could be applied to the same application ([34]). The con�guration
of the ANN model should be determined based on the knowledge about the data and the
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Figure 4.3: A schematic representation of the NARX ANN model con�guration

source, and as suggested in [9], it is an experimental process where di�erent con�gurations
should be tested in order to realize the most suitable one.

The application of auto-regressive multilayer feed-forward neural networks in [5] and [6]
has shown the suitability of this con�guration for wind turbine applications. The Non-linear
Auto-Regressive ANN with an eXogenous input (NARX) con�guration is a variation of the
auto-regressive ANN model, and the di�erence between these two con�gurations can be
found in the manner the delayed output values are used in the model. In the auto-regressive
ANN con�guration presented in [5] and [6], the delayed output parameter value y(t − 1) is
extracted from the SCADA system and is combined with the input vector u(t), while in the
NARX model the regressive input value is the value estimated by the model itself as shown in
Figure 4.3. Unlike the auto-regressive ANN con�guration, the NARX con�guration provides
a possibility to isolate the in�uence of an anomaly in the component being monitored on
the output of the ANN model. Furthermore, an analysis performed in [62], where three
con�gurations - the feed-forward ANN with one hidden layer, the feed-forward ANN with
two hidden layers, and the NARX model with one hidden layer - were tested with application
to data from di�erent wind turbines, also showed that the NARX ANN con�guration is the
best among the investigated options. These results are also in line with the observations
made in [36] and [37].

In order to demonstrate the process of investigation of di�erent ANN con�gurations,
two types of neural networks are considered here: a multilayer feed-forward network with
one hidden layer, shown in Figure 2.4, and the NARX model with one hidden layer shown
in Figure 2.5. A sample model to predict the power produced from the wind turbine is
utilized to investigate the e�ectiveness of the two neural network con�gurations. The 10-
min average values of wind speed, ambient temperature, pitch angle and the wind speed
standard deviation are used as the inputs, and the power produced by the wind turbine
is the output. A feedback delay of one time unit is utilized in the NARX network, which
means that the output parameter value at time instant t − 1 is utilized while estimating
the parameter value at time instant t. In total 50 ANN model instances are trained for
each con�guration of neurons, and the average performance and generalization factor (GF),
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de�ned in (2.9), is recorded for each con�guration. Figure 4.4 and 4.5, respectively, show the
average performance measure, which is the mean absolute error (MAE), de�ned in Equation
(2.10), and the average generalization factor for NARX and feed-forward ANN with up to
50 neurons in the hidden layer.

It can be observed that the performance improvement is not signi�cant with more than
20 neurons in the hidden layer. The generalization factor, which is de�ned as the standard
deviation of performance during the training, testing, and validation stages, has a higher
value for all con�gurations of the feed-forward neural network as compared to the NARX
neural network. A higher generalization factor of the feed-forward network indicates that
the ANN model is prone to over-�tting the data, which is not desirable. Hence, from this
brief analysis it can be concluded that for the given application, the NARX network with 20
neurons in the hidden layer is an acceptable option.
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4.4 Parameter selection

The selection of the correct input and output parameters plays an important role in the
success of ANN based condition monitoring. The normal behavior ANN models should be
accurate in estimating the output parameters as well as be able to correctly recognize failures
and prevent false alarms when applied as a condition monitoring system. Since the ANN
modeling is a data driven approach, which lacks any physical understanding of the system,
the selection of model parameters has to be done carefully based on domain knowledge.

The output parameter of the model should be chosen such that most of the common
failure modes of the monitored component directly impact the modeled parameter. For ex-
ample, condition monitoring of the gearbox bearings can be achieved by creating normal
behavior models for bearing temperatures. Furthermore, the modeling of the gearbox lubri-
cation oil temperature, or pressure measurements, can aid detecting gearbox faults that do
not originate in the bearings. The output parameter selection is followed by the selection
of suitable input parameters. An approach based on data mining methods was presented in
[7], which resulted in 18 input parameters being selected to model one output parameter.
In [63] input parameter selection was achieved by analyzing the e�ect of each parameter on
the performance of the ANN model, where 19 input parameters were selected to model one
output parameter. However, a large number of inputs increases the risk of over-�tting by the
ANN models; such models can lead to sub-par performance during anomaly detection ([64]).
Hence, as demonstrated in [5] and [6], the domain knowledge and physical understanding of
the parameter being modeled can be bene�cial in selection of the correct input parameters.

The case studies presented in Section 4.8, discuss the application of the proposed ANN
based CMS method for monitoring of wind turbine gearboxes. Hence, the discussion pre-
sented here is limited to the selection of input parameters for ANN models which are used
for gearbox monitoring.

The gearbox bearing and lubrication oil temperatures values measured by the SCADA
system are important from a condition monitoring perspective, as the most common failure
modes in the gearbox will, potentially, manifest themselves into a deviation from the normal
operating values. Hence, normal behavior models for the gearbox bearing and lubrication
oil temperatures are utilized to achieve condition monitoring of the gearbox.

The gearbox bearing and lubrication oil temperatures are directly connected to the nacelle
and ambient temperature values, and there exists a state of thermal equilibrium between
these temperatures under normal operating conditions. The ANN normal behavior model
can be used to emulate this thermal equilibrium condition, and any disturbance in the
equilibrium may then indicate an anomalous operation in the gearbox. Consequently, the
ambient and nacelle temperature measurements are utilized as input for the ANN normal
behavior models. Furthermore, the temperatures inside the nacelle are directly related to
the power being produced by the wind turbine, as the electrical and mechanical losses are
proportional to the power produced; this concept was also exploited in [18] for the monitoring
of wind turbine gearboxes. Hence, power produced from the wind turbine will also be
included as an input to the ANN normal behavior models. The wind turbines utilized for
case studies in this thesis have a mechanical pump, mounted on the low speed side of the
gearbox, for the lubrication oil system. Hence, the �ow of lubrication oil will depend on the
rotational speed of the main shaft and, consequently, the rotational speed is also included as
an input for the ANN normal behavior models. However, it should be noted that utilizing
a parameter which is highly correlated with the output parameter could lead to a situation
where the ANN normal behavior model correctly predicts the abnormal operating condition;
one such case is demonstrated in Paper III. Furthermore, in order to analyze the e�ect of
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Figure 4.6: Performance of ANN models with di�erent input con�gurations

di�erent inputs on the model performance, various models were trained and tested with
application to a case study with data from a wind turbine which had experienced a failure in
the gearbox. The results of the study for a selection of few models are shown in Figure 4.6.

The analysis revealed that the best performing models are not necessarily the most well
suited for anomaly detection purposes. In this situation, it is important that di�erent input
con�gurations are investigated and validations be carried out to ensure that the model is
able to catch an anomalous operation as well as prevent false alarms.

A list of ANN models that can be created for condition monitoring of various wind turbine
components, based on extent of data available from a typical wind turbine SCADA system
is presented in Appendix B.

4.5 Data �lters

The ANN models learn the input/output mapping based, solely, on the data provided during
the learning stage. Hence, for the success of ANN based condition monitoring, it is important
that the training data is free from errors. In the real world, however, there seldom exists
a perfect data set, and often SCADA data is found to be discontinuous and to contain
inconsistencies. These inconsistencies lead to inaccuracies in the ANN models and hence
need to be dealt with in an appropriate manner. Three types of �lters are presented here
which can be applied to remove data points which might reduce the performance of the ANN
models.

4.5.1 General �lter

Malfunctions in the SCADA communication system, sensors or signal processing errors, and
standstill during maintenance and repair actions lead to missing or faulty data points. The
following three simple rules are suggested for �ltering the missing and garbage data:
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1. Filter out all data vectors where one or more of the considered input or output param-
eter values are missing.

2. Filter out all data vectors which correspond to a situation when the wind turbine is
not producing any power.

3. Filter out all data vectors where one or more parameters have a value higher than a
prede�ned threshold. In this thesis, the threshold values are decided based on manu-
facturer speci�cations. (For example, all measurements with a gearbox bearing tem-
perature higher than 90◦C were �ltered out).

4.5.2 Cluster �lter

Wind turbines are subjected to highly variable operating conditions, and have a non-linear
operating characteristic, and hence it is di�cult to detect outliers by setting simple threshold
values. Moreover, during power curtailment conditions the wind turbine operation cannot
be considered as normal as it is producing less than normal power; however, curtailment
cannot be classi�ed as a fault condition. The cluster �lter is used to remove data outliers
and data corresponding to curtailment conditions from the training data set.

The clustering method belongs to the unsupervised machine learning category, wherein
an unlabeled set of data is divided into di�erent clusters based on the selected criteria.
Clustering presents a suitable solution to the problem of the classi�cation of wind turbine
SCADA data, and has been demonstrated to be successful in [65]. The approach presented
in [65] illustrated the advantage of clustering applied to the wind power curve for detection
of faults. This approach has been extended here and the clustering method is applied to
a multidimensional data set which consists of all the input parameters of the ANN model.
The algorithm for cluster �lter is described in Algorithm 1.

Algorithm 1 The algorithm for cluster �lter
1: Decide the maximum number N of clusters
2: Use the clustering method to assign a cluster number n ∈ {1, . . . , N} to each input data

vector Di, i ∈ {1, . . . , length(Dataset)}, in the training data set
3: Find the centroid Cn, n ∈ {1, . . . , N}, for each cluster
4: Calculate the Mahalanobis distance MHDi, i ∈ {1, . . . , length(Dataset)}, of each data

vector Dn
i from its cluster center Cn

5: Estimate the probability distribution for the Mahalanobis distances in the vector MHD
6: Eliminate those data vectors, whose probability of occurrence is lower than a threshold

value

The training data set is divided into N clusters utilizing Ward's minimum variance al-
gorithm, described in [66]. According to Ward's minimum variance algorithm the clusters
are decided to minimize the inner square distance, calculated over Euclidean space, between
cluster centers. The number of clusters N is decided based on a the understanding of the be-
havior of the wind turbine, such that each cluster represents a di�erent operating condition.
The criterion utilized for deciding the number of clusters is presented in Table 4.1, based on
which the training data set is divided into 12 clusters.

In the next step, the Mahalanobis distance (MHD), discussed in Section 4.6, is calcu-
lated for each data vector in the training data set from its cluster center. The case study
presented in Paper III demonstrated that the MHD values of the training data set can be
well represented by the log-logistic distribution.
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Table 4.1: The criteria for deciding the number of clusters
Operating parameter Interval 1 Interval 2 Interval 3 Interval 4
Wind speed [m/s] 0→ 5 5→ 8 8→ 11 11→ 25
Ambient temperature [◦C] −30→ −3 −3→ 5 5→ 30 �

The main aim of cluster �ltering is to remove the data corresponding to abnormal op-
erating conditions, and power curtailment conditions that might exist in the training data
set. Consequently, a probability threshold of 2.5% is chosen, and data vectors with a lower
probability of occurrence are �ltered out. The probability threshold is selected based on the
knowledge that power curtailment, even though possible, is not a common practice for the
wind turbines considered for case studies, and hence a low threshold value is acceptable since
only a small amount of training data might be a�ected due to power curtailment. It should
be noted that during the application of ANN normal behavior models for condition mon-
itoring, power curtailment might lead to false alarms. The modern wind turbine SCADA
systems include signals which indicate if a power curtailment has been initiated. Hence,
it is suggested to include the SCADA signals with information about power curtailment
along with ANN based CMS method. Such an integration would allow the operator to make
better decisions about the alarms from the CMS system which could occur during power
curtailment in the wind turbines.

4.5.3 Missing data �lter

The NARX ANN con�guration is characterized by at least one feedback loop between the
output and the input. In the ANN models used in this thesis, the feedback loop is adjusted
such that the ANN model considers the value of the output at time instant t− 1 to estimate
the output at time instant t. Hence, it is important that continuous data is available during
the training and application stage when using NARX models. However, due to communica-
tion issues, on occasion continuous data might not be available and such discontinuous data
can cause false alarms during the condition monitoring stage. One such case is presented
in Paper III. In order to rectify the problem, a missing data �lter is implemented, which is
designed to ensure that at least three hours of continuous data is available for a parameter
vector to be considered during the training and application stages. The data vectors which
do not ful�ll this criterion are eliminated from the training and application data sets. In
addition to the �ltering of the missing data, it is important to inform the ANN model that a
data vector has been removed and that there is a break in continuity of information. In order
to transfer this information to the ANN model, a missing data input parameter is utilized,
which is de�ned as

MDi =

{
1, if Timestampi − Timestampi−1 > 10 min,

0, otherwise,
(4.1)

where MDi, i ∈ {2, . . . , N} (N is the total number of samples in the data set) is a new
input parameter which transfers the information of continuity of data to the ANN model.
The e�ect of including the missing data parameter value on the output of the ANN normal
behavior model is presented with a case study in Paper III.

The implementation of each of the above mentioned �lters removes certain data points
from the training and application data sets. Based on applications to various case studies,
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Figure 4.7: A pictorial representation of data removed from the training data set due to
�ltering

Table 4.2: The performance measures for generator bearing temperature model
Filtering method Average %

loss of data
Applied to train-
ing data set

Applied to application
data set

General �lter 15�25 Yes Yes
Cluster �lter 2.5 Yes No
Missing data �lter 1�5 Yes Yes

presented in the Appendix and the appended papers, it was found that the �lters eliminate
about 20�30% data depending on the quality of the data sets. Figure 4.7 shows the layout of
the �ltered data, and Table 4.2 presents the amount of data removed due to each �lter. The
e�ect of �ltering on the performance of the ANN normal behavior models is presented in
Paper III along with a comparison of the performance of the NARX model with previously
published methods.

4.6 Data post-processing

The purpose of creating ANN normal behavior models is to be able to detect anomalies in
the operation of the components being modeled. Various methods have been suggested by
di�erent researchers for anomaly detection using ANN models. In [5] a con�dence band is
de�ned, and an error value outside the con�dence band is then termed an anomaly. The
probability distribution of errors during the ANN model training is, in [8], used to create
threshold values for anomaly detection. In [6] an increase in the frequency of errors between
the predicted and measured parameter values is used as an indication of anomaly. In Paper II
it is shown that, for certain type of failures, it will take longer to detect an anomaly with
the method using the Root Mean Squared Error (RMSE), derived from the ANN model
estimated and measured parameter values. Furthermore, setting a threshold based on the
distribution of errors during the ANN model's training might not be su�cient, as the model
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Figure 4.8: A pictorial representation of modeling errors from the training stage

might be skewed and prone to be inaccurate at some operating points, as shown in Figure
4.8, where a higher error can be seen for target parameter values around 40 and 60. Hence,
in order to consider the dependance of the operating condition on the ANN model output,
an approach using the Mahalanobis distance measure is used in this thesis.

The Mahalanobis distance is a unit-less distance measurement, which has the ability to
capture correlations of variables in a process or a system, and is de�ned as

MHDi =

√
(Xi − µ)C−1 (Xi − µ)T , i = {1, . . . ,m}, (4.2)

where MHDi is the Mahalanobis distance measure for the ith observation vector Xi =
[Xi1, . . . , Xim], where m is the total number of parameters. The vector µ = [µ1, . . . , µm]
is the vector of mean values and C is the covariance matrix. The Mahalanobis distance has
been applied successfully to capture outliers in di�erent �elds of application; see for example
[67,68].

A conceptual representation of the Mahalanobis distance is presented in Figure 4.9, where
the points with coordinates (1,−1) and (−1, 1), represented by yellow dots, show a higher
distance measure compared to the points with coordinates (−1,−1) and (1, 1), represented by
bold blue dots. The Mahalanobis distance is e�ective when the data is distributed in elliptical
space, which is the case for the distribution of errors relative to the target parameter, as
shown in Figure 4.8. Hence, a methodology using Mahalanobis distance which considers the
distribution of errors in relation to the target values during training period was developed
and is presented in Paper II.

In addition to the Mahalanobis distance approach for anomaly detection, it is important
to consider the inherent randomness in the ANN model training process. The training
of a ANN models is, in general, a non-convex optimization problem ([9]). The training
might stop at a local optimum, when the performance parameter is minimized; however,
the generalization capability of the model might not be good. During the application of the
ANN based CMS method to case studies, it was realized that the ANN models trained with
the same data behave di�erently when there is an indication of an anomaly in the monitored
component, as can be seen in Figure 4.10, where the di�erence in the anomaly measure from
derived from the output of the ANN model varies widely among the �ve models.

A sensitive model, like Model 1 in Figure 4.10, will be prone to false alarms and an insen-
sitive model, like Model 4, might not detect the anomaly; both situations are undesirable.
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Figure 4.11: Seasonal average gearbox bearing temperatures for �ve wind turbines in a wind
farm

In order to avoid the e�ect of this randomness in the modeling process, and to increase the
con�dence in the �nal output, several ANN models are trained using randomly initialized
weights for each training instance. Out of all the models a small subset of the best perform-
ing models is selected, and the �nal output is averaged over these. The training of a large
number of ANN models is a computationally expensive process, which might take upwards of
one hour depending on the amount of training data and the speci�cations of the computer.
However, their application for condition monitoring is fast.

4.7 The selection of training data

The ANN model needs to be trained with the help of data that is representative of the
environment or system being modeled. Conventionally, the training data is selected man-
ually to represent the behavior of a system; see for example, [6]. However, with a large
number of wind turbines, a manual selection of training data might become a time con-
suming task. Moreover, as shown in Figure 4.11, the behavior of wind turbines subjected
to similar operating conditions di�er considerably, which necessitates that the ANN models
are trained with data from each individual wind turbine. In order to overcome these issues,
an �Automated training data selection approach� was proposed in [43], and later extended
for updating the training data after a component replacement in Paper I. The approach is
outlined in Figure 4.12.

The process of training the ANN models begins by deciding the initial time period in
which there have been no recorded failures in the wind turbines. This could, for example,
be the �rst year of the wind turbine operation. The relevant data for the ANN model is
extracted from the SCADA system and the general �lter, presented in Section 4.5, is applied
to the data set in order to remove the out-of-range measurement values. Following the initial
�ltering a behavior pro�le for the wind turbine is created, which is used for the �nal training
data selection.

The automated training data selection approach is centered around understanding the
operating characteristic (behavior pro�le) of the wind turbine. The behavior pro�le of a wind
turbine can be understood as the seasonal variations in the parameter being monitored. This
season speci�c behavior of the wind turbine, presented in Figure 4.11, is used for the �nal
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Figure 4.12: Outline of the automated training data selection procedure

selection of the training data set. The training data set can be considered to be su�cient
when it contains all the normal operating conditions for the wind turbine. In order to
ensure that maximum normal operating conditions are included in the training data set, the
diversity measure

DM := arg max
i,j∈{1,2,...,n}

|τavi − τavj | (4.3)

is utilized. The diversity measure indicates which two seasons should be considered for the
selection of the training data set, n is the number of seasons, and τavi is the average value
of the operating parameter that is intended to be modeled using ANN for season i. For
example, referring to Turbine A1 in Figure 4.11, the value of DM will be maximum when
the Winter-2011 and Summer-2011 months are compared. Hence, the training data set will
be picked up from these two months. The next step in the selection of the training data
set is the addition of more operating points with an aim to include the maximum range of
operating points that the wind turbine has been subjected to. The addition of these extra
data points is performed using the control parameter ε according to[

M∑
i=1

(Amax
i −Bmax

i ) +
M∑
i=1

(Bmin
i − Amin

i )

]
+N ≤ ε, (4.4)

where Amax is anM- vector of maximum values of input parameters in data set containing
data from one year, andM is the total number of input parameters. Analogously, Bmax is
the vector of maximum values of input parameters in the training data set. Amin and Bmin

are analogously de�ned. The value N is the number of sample points in the training data
set, and ε is a control parameter, which limits the number of sample points to a maximum
value. The value of ε > 0 can be selected to be in range of 8500 to 9000 in order to ensure
that the training data set contains 10-min average SCADA data from at least two months.

A training data set with redundant sample points does not have any bene�t in improving
the performance of the ANN model using batch training ([34]). Moreover, with too many
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Table 4.3: Input and output parameters
Output parameters Input parameters

Gearbox bearing temperature [◦C]
Power production [kW]
Rotor RPM

Gearbox lubrication oil temperature [◦C]
Nacelle temperature [◦C]
Ambient temperature [◦C]
Missing data input [-]

sample points in the training data set, the training of the ANN model might take longer, and
there is a risk of over-�tting the model. Hence, it can be bene�cial to reduce the number of
training points, as long as all the operating points for the wind turbine are covered so that
the accuracy of ANN model is not compromised. Furthermore, the approach can be used to
re-train the ANN models, automatically, after the component being monitored is replaced
following a maintenance action. This approach to update the ANN model is presented
together with a case study in Paper I.

4.8 Case studies

In order to validate the proposed ANN based CMS, the method was applied to data from
wind turbines with a component failure. Application results for two wind turbines, referred
to as Turbine-A and Turbine-B are presented in this section; more case studies can be found
in Appendix A. Both turbines are 2 MW onshore wind turbines located in the central part
of Sweden. The input and output parameters for the ANN model were selected based on the
approach for parameter selection presented in Section 4.4. The NARX ANN model with 20
neurons in the hidden layer, with a delay of one ten-minute time unit, was selected as the
ANN con�guration for the modeling. The parameters selected for the modeling are listed in
Table 4.3. The training of the ANN models has been carried out with data from one year
of operations during which time there were no recorded failures in the wind turbines. The
output from the anomaly detection stage, i.e, the Mahalanobis distance (MHD) value, has
been averaged over the 100 best ANN models selected from a total of 300 trained models.

The 10-min average SCADA data is used for monitoring purposes. Hence, in 24 hours
there are a maximum of 144 measurements. The results for the anomaly detection are
presented as an average of 12-hour periods, resulting in two MHD values per day. In order to
increase the con�dence in the prediction and in line with the missing data �ltering approach,
it is ensured that at least 3 hours of data is available for an output from the anomaly
detection to be considered. In cases where su�cient data is not available, the previous valid
output is copied and an indication of missing data is presented in the output.

4.8.1 Case study for Turbine-A

The ANN models for Turbine-A were trained on data from the year 2011 and applied for
anomaly detection during the year 2012. The output from the application to anomaly detec-
tion is presented in Figure 4.13. The output is presented for both the gearbox bearing and
the gearbox lubrication oil models. The �rst alarm was seen from the gearbox bearing model
on December 6, 2012, while there were no alarms from the gearbox lubrication oil model.
From the maintenance records it was realized that the gearbox was replaced in February
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Figure 4.13: Anomaly detection output for Turbine-A

2013. Furthermore, the vibration monitoring system reported an alarm on November 23,
2012, and an inspection was carried out on November 28, which revealed a damage in the
monitored bearing. The output of the anomaly detection also shows a steep rise in the MHD
value after the inspection date. It can be concluded that the ANN based CMS system is
almost at par with the vibration based CMS in this case. However, the frequent interruptions
in the availability of the SCADA data in the month of November, 2012, resulted in a delay
in the alarm.

The ANN models lack a physical understanding of the system being modeled, and hence
it is necessary to ensure that the anomaly detected by the ANN model is not a result of
incorrect inputs to the model. The four inputs to the ANN models for the gearbox bearing
temperature and the gearbox lubrication oil temperature are presented in Figure 4.14 for
the month of December 2012, when the anomaly was detected. The SCADA recorded value
for the output parameters for the same period are presented in Figure 4.15. The upper
limit and the lower limit for the data in Figure 4.15 and Figure 4.14 correspond to the
maximum and minimum values of the data used in the training set, which are decided after
application of the data �lters presented in Section 4.5. It can be observed that the input
and output parameters for the month of December have been within the limits of the data
provided to the ANN model during the training process. Hence, it can be concluded that the
anomaly detected using the models is, in fact, a result of the component having an abnormal
operation.

4.8.2 Case study for Turbine-B

The ANN models for Turbine-B were trained on data from the year 2010 and applied for
anomaly detection during the year 2011. The output from the application to anomaly de-
tection is presented in Figure 4.16. The �rst alarm was seen in the gearbox lubrication oil
model on September 13, 2011, and in the gearbox bearing model on October 7, 2011. Unlike
the case for Turbine-A, in this case, there was no alarm from the vibration based CMS. The
gearbox was replaced on November 19, 2011 after it got stuck and the wind turbine could
not be restarted.

The input and the output parameters to the ANN models were found to be within the
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Figure 4.14: Inputs to the ANN model for Turbine-A

12/02 12/09 12/16 12/23 12/30

[D
eg

 C
]

0

10

20

30

40

Gearbox Bearing Temperature

12/02 12/09 12/16 12/23 12/30

[D
eg

 C
]

0

20

40

60
Gearbox Lubrication Oil Temperature

Measured Data Upper Limit Lower Limit

Figure 4.15: Output parameters recorded in SCADA for Turbine-A
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Figure 4.16: Anomaly detection output for Turbine-B

limit of the training data. The input and output parameters for the months of September
and October 2011 are presented in Figures 4.17 and 4.18, respectively. It can be observed
that the ANN based CMS method is capable of detecting faults even when there is no visible
change in the behavior of neither the gearbox bearing nor the lubrication oil temperatures.
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Figure 4.17: Inputs to the ANN model
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Figure 4.18: Output parameters recorded in SCADA

4.9 Limitation of ANN based CMS

The success of the ANN based CMS is largely dependent on the range of measurements
available in the SCADA system. In order for the method to be able to detect abnormal
operating conditions in the monitored component, the failure mode in the component should
manifest itself such that the monitored parameter is a�ected. In the case studies presented
above, the temperatures in the bearing and the lubrication oil were a�ected as a result of a
deterioration in the gearbox, which was picked up by the ANN based CMS method. However,
failures in intermediate shaft gears might not have a signi�cant a�ect on the low speed and
high speed bearing temperatures. In such cases the ANN based CMS might fail to raise an
alarm. This has been demonstrated through a case study in Paper III. The proposed ANN
based CMS method is intended to be complementary to other installed monitoring systems,
like the vibration based CMS, and consequently it will aid in improving the overall e�ciency
of condition monitoring in the wind turbines.
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Chapter 5

Maintenance optimization

This chapter presents a mathematical model for maintenance optimization. Furthermore,
case studies are presented to demonstrate the applicability of the model within the SEMS
framework. The material in this chapter is most strongly connected to Paper IV.

5.1 The mathematical optimization model

A mathematical optimization model, called Preventive Maintenance Scheduling Problem
with Interval Costs (PMSPIC), was introduced in [69], and its application for ABPM schedul-
ing for wind farms applications was demonstrated. In this thesis, the PMSPIC model has
been developed further to enable CBPM scheduling.

Consider a wind farm withM wind turbines, each turbine having a setN := {1, . . . , n} of
de�ned components that can be maintained at discrete time steps T := {1, . . . , T}, where T
denotes the planning horizon. A preventive maintenance activity includes the replacement
of a component, and it is considered that all the components have obtained PM at time
instance 1 and will get PM at time T + 1. As time instance 1 is the beginning of the
planning period, it can be safely assumed that the component is in an as good as new
condition, and at T + 1 the component life has been consumed and the component is being
decommissioned. In the PMSPIC model, if PM of component i ∈ N is scheduled at the
times s ∈ T ∪{1} and t ∈ {s+1, . . . , T +1}, but not during the time steps {s+1, . . . , t−1},
then the maintenance interval denoted by (s, t), generates the interval cost Ci

st. The decision
variables are de�ned over the set I := {(s, t) | s ∈ T ∪ {1}, t ∈ {s + 1, . . . , T + 1}}, and the
mathematical maintenance optimization model is shown in Model (5.1), below:

47



5.1. Optimization model Chapter 5. Maintenance optimization

minimize
∑
t∈T

∑
m∈M

dzmt +
∑
m∈M

∑
i∈N

∑
(s,t)∈I

Ci
stx

mi
st , (5.1a)

subject to
t−1∑
s=1

xmist ≤ zmt , i ∈ N , m ∈M, t ∈ T , (5.1b)

t−1∑
s=1

xmist =
T+1∑
s=t+1

xmits , i ∈ N , m ∈M, t ∈ T , (5.1c)

T+1∑
s=1

xmi1s = 1, i ∈ N , m ∈M, (5.1d)

xmist ∈ {0, 1} , i ∈ N , m ∈M, (s, t) ∈ I, (5.1e)

zmt ∈ {0, 1} , m ∈M, t ∈ T . (5.1f)

The objective (5.1a) is to minimize the sum of all set-up and interval costs, where the
variable xmist , i ∈ N , m ∈ M, (s, t) ∈ I, is the decision variable which takes the value
1 only if a maintenance is scheduled in component i ∈ N of turbine m ∈ M at times s
and t. The variable zmt , m ∈ M, t ∈ T , is the variable which takes the value 1 only if
a maintenance is scheduled in the wind turbine m ∈ M at time t ∈ T . The parameter d
represents the set up cost incurred each time a wind turbine is visited for a maintenance
activity.

Constraint (5.1b) ensures that if a maintenance interval for component i in wind turbine
m ends at time t, then maintenance occurs at time t. For each wind turbinem and component
i, the constraints (5.1c) ensure that the same number of maintenance intervals end and start
at time t. The constraints (5.1d) ensure that a maintenance interval of component i starts
at time t = 1. The set of constraints (5.1e) and (5.1f), ensure that the decision variables
xmist and zmt are binary. Finally, the interval cost Ci

st is de�ned as the sum of the preventive
maintenance cost CPM

i and the deterioration cost Mi(t− s) in the time interval (s, t), as

Ci
st := CPM

i +Mi(t− s), i ∈ N , (s, t) ∈ I. (5.2)

The deterioration cost can be calculated as the risk of having to do a corrective mainte-
nance after failure in the component. However, in practical situations, if the failure occurs
close to a scheduled preventive maintenance activity, some cost savings can be achieved by
moving the preventive maintenance to an earlier date and performing a corrective mainte-
nance at that date. The deterioration cost is modeled considering this rescheduling cost,
as

Mi(t) := E

[
K∑
j=1

I(Fj≤t)G(Fj, t)

]
Rni(t), i ∈ N , t ∈ T , (5.3)

where K � 10000 is a large number used for simulation of survival times for component
i. (The indicator function I takes the value 1 when the survival time Fj is less than or
equal to t, otherwise the value is zero.) The survival time Fj for component i is a random
variable derived from the probability distribution function for failures of component i. The
value Rni(t) denotes the number of renewals for component i in time interval (1, t) and is
calculated based on the renewal function, which is estimated using the recursive procedure
shown in Section 2.2.8. The cost function is de�ned for all s, as
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G(s, t) =
(
CCM
i + d

)
−
(s
t

)λ (
CPM
i + d

)
, i ∈ N , (s, t) ∈ I. (5.4)

The cost function is formulated in a manner that allows consideration of a re-scheduling
cost when the failure occurs close to a scheduled maintenance activity. The parameter λ,
which is used to decide the e�ect of this re-scheduling on the cost is considered to have a
�xed value of 3, based on the suggestion in [69].

5.2 Modi�cations for CBPM

The function of a CMS is to provide an indication of a deterioration in the component
being monitored. However, to achieve an e�ective CBPM schedule, a condition-based failure
rate model is necessary. To this e�ect, researchers have developed models which provide
failure probabilities for components based on condition monitoring signals; for example see
[31,32,49,70�72]. In line with the SEMS framework, an indication of a possible failure in
the monitored component from the condition monitoring system will initiate an inspection,
which will be followed by an update in the maintenance schedule, if necessary. The PMSPIC
model has been modi�ed to consider the possibility of CBPM scheduling. In order to account
for a di�erent failure rate after an indication from the CMS, the failure rate model for the
e�ected component is updated according to

f(t) :=

{
Condition based failure rate model, if TCMS ≤ t ≤ TRepl,

Age based failure rate model, if TRepl < t ≤ T,
(5.5)

where TCMS is the time instant when information about a deterioration is received from the
CMS, and TRepl is the time instant for the next scheduled replacement for the component
based on the age-based preventive maintenance schedule. In order to update the maintenance
decision based on the new information, the constraints (5.1d) are replaced by constraints
(5.6), which ensure that exactly one replacement of the damaged component is scheduled
in the time interval [TCMS, TRepl], and no replacements are scheduled in the time interval
[1, TCMS]:

T+1∑
t=1

xmi1t = 1, i ∈ N \ {DC}, m ∈M, (5.6a)

TRepl∑
t=TCMS+1

xmiTCMS ,t
= 1, i ∈ {DC}, m ∈ {FWT}, (5.6b)

TCMS−1∑
t=1

xmit,TCMS
= 0, i ∈ {DC}, m ∈ {FWT}, (5.6c)

where FWT ⊂ M is the set of wind turbines with one or more damaged components, and
DC ⊂ N is the set of damaged components in the wind turbines m ∈ FWT.

5.3 ABPM scheduling with PMSPIC

The ABPM schedule provides the expected number of replacements during the life for the
components, based on historical failure times recorded. The ABPM schedule can be bene�-
cial, as it provides an opportunity to make �nancial plans for the entire life of the component.
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Table 5.1: Input Data

Component

Failure Re-
placement
Cost
[1000 $]

Preventive
Replace-
ment Cost
[1000 $]

Weibull
Shape
Parameter
β

Weibull
Scale Pa-
rameter α
[Months]

Rotor 162 36.75 3 100
Main Bearing 110 23.75 2 125
Gearbox 202 46.75 3 80
Generator 150 33.75 2 110
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Figure 5.1: An optimal ABPM schedule from the PMSPIC model

In this section the PMSPIC model is applied with the data presented in Table 5.1 to pro-
vide an ABPM schedule. The wind turbine is considered to have four critical components,
which are intended to be included in the preventive maintenance regime. The components
are considered to have Weibull distributed failure times with the shape and scale parameter
values presented in Table 5.1 (taken from [49]).

The life of the wind turbine is considered to be T = 240 months (20 years) and the
ABPM schedule from the PMSPIC model is presented in Figure 5.1. The deterioration cost
Mi(t) is simulated based on the Weibull failure rate models with data from Table 5.1. The
ABPM schedule from the PMSPIC model has been compared to a schedule obtained from
a frequently applied constant interval maintenance optimization model in Paper IV. The
results show that the PMSPIC model provides an economically better schedule even with
one replacement less in the generator and the main bearing during the wind turbine life.
Furthermore, the modi�cations to the PMSPIC model allow a CBPM optimization, which
is demonstrated in Section 5.4.
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5.4 CBPM scheduling with PMSPIC

The application of PMSPIC for CBPM scheduling, with Gamma distributed failure times
for a hypothetical case of gearbox failure, is presented in Paper IV. In this section, the
application of the proportional hazards model (PHM) presented in Section 2.2 is described.
The application of PHM for condition based maintenance has been presented in [32,33,46].
In [32] the CBPM scheduling has been achieved through a control limit policy, where the
threshold value of the CMS signal for initiating a PM is optimized. This approach however
requires that the signals from CMS are recorded continuously, which might be di�cult with
a large population of wind turbines. Furthermore, the control limit policy does not provide
an expected number of replacements during the life of the turbine, and hence does not allow
for an initial �nancial plan. These shortcomings can be overcome by the use of the extended
PMSPIC model, de�ned by (5.1), (5.5), (5.6), and applied with the SEMS maintenance
management framework.

The application of PHM for CBPM planning with the PMSPIC model is non-trivial.
Hence, the procedure to apply PHM is demonstrated with a hypothetical case study. Con-
sider that the condition based failure rate can be modeled by a Weibull baseline hazard rate
with an exponential link function, similar to the ones suggested in [32]. The PHM model, h,
is shown in (5.7), where β is the shape parameter, α is the scale parameter of the baseline
Weibull hazard rate, and e(γ·z(t)) is the link function with a vector of constants γ and a vector
of time dependent covariates z(t):

h(t; z(t)) :=
β

α

(
t

α

)β−1

e(γ·z(t)). (5.7)

The historical failure times along with the historical measured covariate data is utilized to
establish the relationship between the hazard rate h(·) and the behavior of the covariate z(·).
Traditional methods like the maximum likelihood estimation (MLE), described in Section
2.2.7, can be applied to estimate the coe�cient γ, which establishes the relationship between
the hazard rate at time t and the measured covariate quantity at time t. Furthermore, in
order to predict the future hazard rate of component given its relationship with a certain
measured covariate quantity, it is also necessary to model the expected future behavior of
the covariate z(t). The procedure to predict the behavior of a covariate is presented in the
appendix of [73], where a range of covariates were investigated for industrial pumps.

In order to utilize the PHM with the PMSPIC model (5.1), the survival times need to be
simulated from the the PHM model. The survival times for a PHM with constant covariate
value and Weibull baseline hazard can be generated using (5.8), as shown in [55], where U
represents a uniform distribution between [0, 1], and T is the total time horizon for planning
(240 months):

S[t; z(t)] :=

(
− log(U)

αβeγz(t)

) 1
β

T. (5.8)

A method to estimate the residual life of components from the output of the ANN normal
behavior model, and its application to maintenance scheduling was presented in [74], in
which the risk indicators were calculated as the accumulated error between the ANN model
estimated and measured parameter values. This approach can be applied with the ANN
based CMS method, presented in this thesis, to create a covariate, which can be applied
with the PHM model for updating the maintenance schedule for the damaged component.
However, recorded covariate behavior data from similar failure modes of the component under
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consideration is required to create a robust estimate of the covariate as well as to estimate
the value of coe�cient γ in the PHM model. Such recorded historical covariate behavior
data and failure statistics were not available in this project. Hence, in order to demonstrate
the application of PHM with the modi�ed PMSPIC model, a hypothetical but realistic case
is considered with data from one wind turbine, and the cumulative MHD measure is utilized
as a covariate.

The MHD method of anomaly detection provides a possibility to quantify the deviations
in the current operating conditions from the normal operation conditions represented by the
training data set utilized to train the ANN model. Hence, the cumulative MHD measure
can, potentially, provide the extent of damage in the monitored component and can be used
to track the deterioration in the component being monitored. The cumulative Mahalanobis
distance measure is calculated as

Zto =

∫ to

1

(MHD(t)− Threshold) I(MHD(t)>Threshold) dt, (5.9)

where MHD(t) is the MHD value at time instant t, and Threshold is the normal operation
limit value decided based on the method presented in Section 4.6. The indicator function
I(MHD(t)>Threshold) takes a value 1 when the MHD is greater than the threshold value, otherwise
it is 0. Following the indication from the ANN based CMS, the cumulative MHD signal can
be constructed based on the output from the monitoring system, as shown in Figure 5.2.

The output presented in Figure 5.2, which is derived using (5.9), has been divided into
three sections, showing normal operation, behavior just after an indication of anomaly, and
a higher deterioration condition. The case studies presented in [73] show, that in some cases,
the covariate behavior can be represented by a time dependent a�ne function. Hence, in
line with the observations in [73], the covariate z(t) is modeled as a time dependent a�ne
quantity with a coe�cient A and with an o�set value Zto , which is de�ned as

z(t) = At+ Zto , (5.10)

where the value of the o�set Zto , is calculated at discrete time instances to using the Equation
(5.9). In this case, the discrete time instance to is considered as one month and the value of
the o�set is updated every month after the ANN based CMS has provided the �rst alarm.
Consequently, the maintenance decisions will be updated every month based on the latest
information about the condition of the component.

The survival times for the PHM model are simulated for each discrete time instant t using
(5.8), considering that the covariate z(t) has a �nite and constant value at t, calculated using
(5.10) and (5.9). The survival times are used to calculate the interval costs using (5.2) and
(5.3). The complete PHM model can be represented as

h(t) :=
β

α

(
t

α

)(β−1)

eγ(At+Zto ). (5.11)

Consider that at time instant t = 20 months (the 13th of September), the ANN based
CMS method gives an alarm. At this point the historical covariate behavior data is used to
create a model to represent its expected future behavior. Consequently, the expected future
behavior of the covariate is utilized with the PHM model to predict the hazard rate for the
damaged component. The parameters in (5.10) are calculated based on data from segment 1,
in Figure 5.2, at time instance to = 20 months. Consequently, the model is updated at time
instances to = 21 and to = 22 months, to account for a change in the rate of deterioration,
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Figure 5.2: The cumulative frequency of threshold violation from ANN model over the period
of one year for Turbine-B presented in Section 4.8.2

Table 5.2: Parameters for the proportional hazards model presented in Equation (5.11)
Scenario Segment Coe�cient [γ] Coe�cient [A] O�set [Zto ]
Low deterioration Segment 1 1 0.2 0.1
Medium deterioration Segment 2 1 0.6 0.5
High deterioration Segment 3 1 1 1

represented by segments 2 and 3 respectively. Table 5.2 presents the hypothetical values of
the constants used to model the covariate behavior for the three segments.

The maintenance schedule computed using the age-based failure rate models is updated
with failure rates based on the PHM at time instances t = 20 months, with a normal
operation model, at t = 21 months with a medium deterioration model, and at t = 22
months with a high deterioration model. The maintenance schedule at each time step is
updated and is presented in Figure 5.3.

The CBPM schedule presented in Figure 5.3 can then be utilized to determine the next
immediate decision about preventive replacement activities. It can be noticed that the opti-
mal decision of the next replacement is provided considering the e�ect of an early replacement
of the damaged component, in this case the gearbox, on all the critical components in the
wind turbine system over the life of the wind turbine. However, the updated preventive re-
placement schedule of the undamaged components is indicative and will be updated, in the
same manner as demonstrated for the gearbox, based on an indication of deterioration from
their respective condition monitoring systems, in line with the SEMS framework. Moreover,
the indicative schedule of all the components over the life of the wind turbine provides an
outline of the e�ect of following a certain maintenance schedule, given the assumption that
all future replacements after the early replacement of the damaged component will follow
the ABPM maintenance schedule utilizing the failure rate models presented in Table 5.1.

The modi�ed PMSPIC model also accounts for the possibility of opportunistic mainte-
nance scheduling. A case study to demonstrate the e�ect of such an opportunistic mainte-
nance schedule, when the indication of an impending failure from the CMS is obtained close
to the scheduled preventive maintenance activity, is illustrated in Paper IV.

53



5.5. Discussion Chapter 5. Maintenance optimization

0 50 100 150 200 250

R
o

to
r

0 50 100 150 200 250

M
ai

n
 B

ea
ri

n
g

0 50 100 150 200 250

G
ea

rb
o

x

Replacement Month
0 50 100 150 200 250

G
en

er
at

o
r

Month 22

Month 21

Month 20

25
27

24

58

56 112 179

121 183

81 82 111 170 241

Figure 5.3: Maintenance schedule updated with PHM at three di�erent instances in time,
the colors used represent the three segments presented in Figure 5.2. The color blue repre-
sents the maintenance decisions corresponding to deterioration rate model Segment 1, red
corresponds to Segment 2, and black corresponds to Segment 3. The circles represent the
suggested month of replacement.

5.5 Discussion

The hypothetical case studies presented above shows the possibility of utilizing the ANN
based CMS method for condition based preventive maintenance applications. However, due
to lack of data it was not possible to create a PHM model with real values. Data from
more than one wind turbine failures is desirable to create statistically relevant failure rate
models. Furthermore, the modi�ed PMSPIC model can be further improved to provide more
realistic short term decisions by including weather constraints, constraints on requirement
of lead time for procurement, etc. However, the results from the case studies illustrate the
possibility to update the maintenance decisions in real time as and when a new information
about component deterioration is available from the CMS. Consequently, it can be inferred
that a systematic application of the presented mathematical model with guidelines provided
in the SEMS framework will aid in improvement of the wind turbine asset management.
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Chapter 6

Closure

This chapter summarizes the main results from the thesis and discusses future work.

6.1 Conclusions

A maintenance management framework called Self Evolving Maintenance Scheduler (SEMS)
was presented in this thesis. The SEMS framework provides guidelines for the use of the
O&M data from various sources to improve the maintenance activities in critical wind turbine
components. The two main parts of the SEMS framework are summarized below.

6.1.1 Condition monitoring

The ANN based CMS presented in this thesis is capable of monitoring not only the mechani-
cal but also the electrical components in the wind turbine, given that suitable measurements
are available from the SCADA system. Various drawbacks and issues with the application
of ANN models to condition monitoring applications were discussed, and suitable mitigation
techniques to overcome these drawbacks and improve the con�dence in the ANN based CMS
process were presented. In addition to this, an algorithm for selecting the training data set
was presented, which can be used to update the ANN models after the monitored component
has been replaced. Three approaches for �ltering of training data were presented with a dis-
cussion about their e�ect on the performance of ANN models. Finally, an anomaly detection
method utilizing the Mahalanobis distance measurement was presented, which enables an
early detection of anomalies even with small deviations in the operating characteristics of
the damaged components.

The case study results presented in the thesis demonstrate that the proposed ANN based
CMS method can detect failures in the gearbox components about three months before the
eventual replacement is required, providing ample opportunity for condition based preventive
maintenance (CBPM) planning.

6.1.2 Mathematical model for maintenance optimization

A mathematical model for maintenance optimization referred to as Preventive Maintenance
Scheduling Problem with Interval Costs (PMSPIC), was discussed in the thesis, and was
compared to a frequently used simple mathematical model for maintenance optimization
and shown to provide better results. The PMSPIC model was modi�ed for application with
the SEMS framework. The modi�ed PMSPIC model is capable of providing an optimal
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age based preventive maintenance schedule (ABPM), which is then upgraded to an optimal
condition based preventive maintenance (CBPM) schedule when any new information about
the deterioration in a component is available. The application of the mathematical model
with the SEMS framework was presented, for a hypothetical but realistic scenario.

The main advantages of the CBPM schedule from the modi�ed PMSPIC model are the
following:

• the maintenance schedule for the damaged component is optimized considering the
e�ect of its replacements on the entire life of the wind turbine, and

• the maintenance schedule also considers opportunistic replacements of other critical
components in the wind turbine and the e�ect of such replacements on the wind turbine
life.

6.2 Future work

The future development of the concepts presented in this thesis can be divided into two areas
of application: the condition monitoring and the maintenance optimization. A few ideas for
future work in each area are presented in the following sections.

6.2.1 Condition monitoring

The ANN based CMS presented in the thesis has been developed in an academic environ-
ment and is suitable when the number of wind turbines is not very large. However, to
make the proposed method applicable for larger systems, it has to be developed within a
computationally e�cient platform such as C#, Python, etc., and a data interface has to be
developed which is capable of extracting data directly from the SCADA servers with min-
imum disruptions in communication. Furthermore, the method presented uses data from
only one wind turbine for the purpose of condition monitoring. The con�dence in the �nal
output can be improved by considering the output from neighboring wind turbines during
the condition monitoring process. In addition to this, the system uses 10-min average data,
which is available in normal SCADA systems. However, using data with higher frequency�
like 1-min average data� might improve the condition monitoring. An investigation into
the e�ect of increasing the frequency of recorded SCADA data on the condition monitoring
output could be a useful future work.

It was shown in the thesis that the output from the ANN based CMS can be used to create
signals, which can track the failure in the component. However, due to lack of data of similar
failures in the components, further investigation was not possible. With the availability of
data from more wind turbines, and particularly, with more failure data, a robust Residual
Life Estimation (RLE) model can be created using, for example, a Bayesian approach ([47]).
Such RLE models can be very useful for CBPM scheduling.

6.2.2 Mathematical optimization model

The cost data used in the PMSPIC model, presented in this thesis, has been extracted from
available literature. An interesting future work could focus on creating accurate cost models
for maintenance activities as well as models for risk of failures. Such models will require
data from past experiences as well as information about the cost of spare parts, cost of loss
of revenue, among other things. Furthermore, the short-term decisions from the PMSPIC
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model can be improved by including weather constraints, and seasonal constraints in the
model. As maintenance activities cannot be carried out on wind turbines under certain
weather conditions, such constraints may play an important role in the �nal decisions. Such
an extension to the model will be particularly important for o�shore applications.
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Appendix A

Case studies

In addition to the various case studies presented in the thesis and the appended publica-
tions, the ANN based CMS was validated with applications to wind turbines with di�erent
ratings and technologies. The purpose of the validation was to realize the advantages and
disadvantages of the proposed method. The Appendix presents the case study results of the
application of ANN based CMS method to the wind turbines listed in Table A.1.

A.1 Direct Drive Wind Turbine

The process of creating ANN based condition monitoring starts with an analysis of the extent
of data available in the wind turbine SCADA system. The direct drive wind turbine recorded
measurements from various components in the wind turbine systems, as shown in Figure A.1.
The approach presented in Section 4.4 to decide the input and output parameters for the
ANN based CMS was applied to the wind turbine. It was realized that the best solution,
given the measurements available from the SCADA system, for detecting failures in the
generator bearing and turbine blade failure, would be to use an ANN model which predicts
the generated power from the wind turbine. Table A.2 presents the inputs parameters
selected for predicting the average power produced from the wind turbines.

The turbulence measure is not directly available from the SCADA system, but is calcu-
lated as the di�erence between the 10-min maximum wind speed and 10-min minimum wind
speed. The results of application of the ANN based CMS to the data available from the
direct drive wind turbines are presented in the following subsections.

Table A.1: Details of wind turbines

Turbine ID
Turbine Rating
[kW]

Technology Damaged Component

Turbine 1 1500 Direct Drive Generator bearing
Turbine 2 1500 Direct Drive Generator bearing
Turbine 3 1500 Direct Drive Turbine blade
Turbine 4 1500 Direct Drive Turbine blade

Turbine 5 1500 Indirect Drive
Gearbox bearing in sec-
ondary planet wheel

Turbine 6 1500 Indirect Drive Gearbox �rst stage ring gear
Turbine 7 1500 Indirect Drive Gearbox planet bearing
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Figure A.1: Schematic representation of data from Direct Drive wind turbine.

Table A.2: Input and output parameters
Output Parameter Input Parameters

Average Power Production [kW]

Average Wind Speed [m/s]
Turbulence Measure [m/s]
Nacelle Position
Ambient Temperature [◦C]

66



Appendix A. Case studies A.1. Direct Drive Wind Turbine

Date
Aug/13 Sep Oct Nov Dec Jan/14 Feb Mar Apr

M
ah

al
an

o
b

is
 D

is
ta

n
ce

0

2

4

6

8

10

12

14
Wind Turbine Power Model

Average Mahalanobis Distance Normal Operation Limit Data Missing

First Alarm 23 Jan.

Figure A.2: Application of ANN based CMS to Turbine 1

A.1.1 Turbine 1

The best parameter to model for detecting a generator bearing failure would be the generator
bearing temperature. However, the generator bearing temperature was not available in the
wind turbine SCADA system, and hence an indirect monitoring approach using the wind
power production as the modeled parameter had to be applied. The recorded SCADA
measurement was available from January 1, 2013, and a failure in the generator bearing was
detected during routine visual inspection on February 11, 2014. The bearing was replaced
on March 22, 2014. The ANN models have been trained with data from January 1, 2013
to June 30, 2013. The results of the ANN based CMS is presented in Figure A.2. The �rst
alarm from the ANN based CMS system was seen on January 23, 2014, which is two months
before the �nal replacement and 19 days before the failure was detected by visual inspection.

A.1.2 Turbine 2

The recorded SCADA measurement was available from January 1, 2013. A failure in the
generator bearing was detected on February 12, 2014. The bearing was replaced on March
15, 2014. The ANN models have been trained with data from January 1, 2013, to June 30,
2013. The results of the ANN based CMS is presented in Figure A.3. The �rst alarm from
the ANN based CMS system was seen on January 22, 2014, which is two months before the
�nal replacement and 21 days before the failure was detected by visual inspection.

The case study results for Turbine 1 and Turbine 2 show that there is a possibility to
detect a deterioration in the generator bearing using the model for wind power production,
if the generator bearing temperature is not available. However, as the power production in
the wind turbine could be a�ected by issues in several components in the wind turbine, it
would be di�cult to pinpoint the problem based only on the output from ANN based CMS.

A.1.3 Turbine 3

A blade failure was observed in Turbine 3 on January 19, 2014, and the replacement was
made on February 20, 2014. The wind power production model has been utilized for ANN
based CMS, as no other signals, which could directly represent a deterioration in the blade,
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Figure A.3: Application of ANN based CMS to Turbine 2
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Figure A.4: Application of ANN based CMS to Turbine 3

were available. The ANN model has been trained for a period from November 18, 2012,
to May 31, 2013, and the output from the condition monitoring system is presented in
Figure A.4.

An alarm from the ANN based CMS system was seen on October 5, 2013. In order to
establish the reason for the alarm from the condition monitoring method, a detailed analysis
of the data was performed. The plot of power produced by the wind turbine for the month
of September, 2013 and the period between 4�6 October, 2013 is presented in Figure A.5. It
can be observed that the reason for the alarm from the system is a clear under production
from the wind turbine.

The under production could typically be a result of a curtailment in the wind turbine.
However, following a consultation with the owner it was realized that during the period
under consideration there was no curtailment in the wind turbine. It can be ensured that
the wind turbine was under normal operation by creating a model to estimate the generator
Rotations Per Minute (RPM). The generator RPM model was created using the same inputs
as presented in Table A.2. The result of application of the ANN based condition monitoring
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Figure A.5: Power production from the wind turbine

to the generator RPM is presented in Figure A.6. It can be observed that there are no alarms
from the generator RPM model, suggesting that there was no curtailment of power during
the period when there was an alarm in the wind turbine power model.

It cannot be concluded that this particular alarm from the ANN based CMS is due to a
deterioration in the wind turbine blades, as the alarm did not persist for a longer duration.
However, this case study illustrates the possibility of application of the ANN based normal
behavior models for wind turbine performance monitoring, which can also be supported with
the applications to several case studies presented in [62].

A.1.4 Turbine 4

A blade failure in Turbine 4 was observed on May 27, 2014, and the replacement was made
on June 5, 2014. The ANN model for wind power production was trained with data from
November 18, 2012, to October 31, 2013, and the output is presented in Figure A.7. The
ANN based CMS for wind turbine power production is not able to detect the failure in the
blades for Turbine 4. This could be due to small e�ect of the blade failure on the wind
turbine power production. However, in this particular case the extent of data available was
limited to only seven months. Hence, the issue of non-detection of failure could be related
to the short comings in the ANN model due to lack of training data.

A.2 In-direct Drive Wind Turbines

The extent of SCADA data available for the in-direct drive wind turbines is presented in
Figure A.8. The ANN based CMS for gearbox in wind Turbines 5, 6, and 7 have been
achieved using the ANN models with input and output parameters as presented in Table
4.3. The case study results for the three turbines are presented in the following subsections.

A.2.1 Turbine 5

The gearbox failure in Turbine 5 originated in the bearing of the secondary planet wheel
and the replacement was carried out on May 6, 2014 and the failure was detected only a
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Figure A.6: Application of ANN based CMS to Turbine 3 (Generator RPM model)
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Figure A.7: Application of ANN based CMS to Turbine 4
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Figure A.8: Schematic representation of data from In-direct Drive wind turbine
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Figure A.9: Application of ANN based CMS to Turbine 5

week before the replacement was made. The ANN models were trained with data from
February 16, 2014, to March 31, 2014. The short training period was necessitated due to
the unavailability of data from an earlier date. The output from the ANN based CMS is
presented in Figure A.9

The �rst alarm from the gearbox bearing model can be seen on April 1, 2014, which
is almost 40 days before the failure was detected. Furthermore, in the later part of April
there are a few more alarms, which might indicate a higher level of deterioration. Moreover,
the gearbox lubrication oil temperature model does not show any alarms, which indicates
towards a failure originating in the gearbox bearings. In addition to the 10-min. average
data available from SCADA, 10-sec. average data was also available for this wind turbine for
a period of one week before the failure date. The ANN models trained on 10-min. average
data were applied to the 10-sec. average data and the results for the application are shown
in Figure A.10.

The output showed a constant alarm state from the ANN based CMS for both the gearbox
bearing and lubrication oil temperature models. In order to understand the reason behind
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Figure A.10: Application of ANN based CMS to data with 10-sec. average values for Tur-
bine 5

this behavior, the 10-sec. average values recorded in the SCADA system were compared
to 10-min. average values, and the probability distribution of these data sets is presented
in Figure A.11. The comparison showed that both the gearbox bearing and lubrication oil
temperatures showed higher measurement values close to the replacement date. The ANN
based CMS indicated an anomaly based on the higher than expected values of the bearing
temperatures. The result is interesting, as it shows that a higher frequency of the data could
lead to better condition monitoring.

A.2.2 Turbine 6

The SCADA data for Turbine 6 was available for a short duration, like the case was for
Turbine 5. A replacement in the �rst stage gear of the gearbox was carried out on April 28,
2015 following a detection of failure through inspection a week before the replacement. The
ANN models for the condition monitoring were trained with data from January 28, 2015,
to March 9, 2015, and the result of the condition monitoring with 10-min. average data is
presented in Figure A.12.

The �rst alarm was observed on March 11, in both the gearbox bearing and lubrication
oil temperature models, which is in line with expectations, as the fault originated in the
gears of the gearbox. Similar to Turbine 5, 10-sec. data for a week before replacement
was available for Turbine 6 and the application of ANN based CMS on the 10-sec. data is
presented in Figure A.13. A comparison of the 10-min. and 10-sec. average data is presented
in Figure A.14.

The comparison of the temperature values from the 10-sec. and 10-min. data set revealed
that the gearbox bearing and lubrication oil temperatures were, in fact, lower than normal
during the period close to the failure. It is di�cult to pinpoint the reason for such a behavior
without further analysis, but referring to Figure A.14, it can be said with certainty that all
temperature values seen in the 10-sec. data set for Turbine 6 are within the range of the
data that the ANN model was trained with. Hence, the anomaly detected by the ANN based
CMS is not due to incorrect input values.
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Figure A.11: Comparison of 10-min. and 10-sec. average data for Turbine 5
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Figure A.12: Application of ANN based CMS to Turbine 6
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Figure A.13: Application of ANN based CMS to data with 10-sec. average values for Tur-
bine 6
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Figure A.14: Comparison of 10-min. and 10-sec. average data for Turbine 6
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Figure A.15: Application of ANN based CMS to Turbine 7

A.2.3 Turbine 7

The failure in the gearbox of Turbine 7 originated in the planet bearing, and the gearbox
replacement was done on November 15, 2015, however information about the actual detection
date was not available for this wind turbine. The ANN models were trained with data from
August 15, 2015, to September 30, 2015, and the result of the application is shown in
Figure A.15.

The �rst alarm in the gearbox bearing temperature model was seen on November 2,
which is very close to the replacement date. The reason for detection of failure so close to
the actual replacement date, could be the small amount of training samples available, or
the fact that the fault itself did not have any signi�cant e�ect on the gearbox bearing or
lubrication oil temperatures. The ANN models were applied to the 10-sec. average data, for
a period of one week before the replacement. The result is presented in Figure A.16, and
the comparison of the 10-min. and 10-sec. average values is presented in Figure A.17.
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Figure A.16: Application of ANN based CMS to data with 10-sec. average values for Tur-
bine 7
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Figure A.17: Comparison of 10-min and 10-sec. average data for Turbine 7

The results of the application to 10-sec. average data are similar to those for Turbine 5,
where the ANN based CMS was in a constant state of alarm. Furthermore, it can be seen
that the 10-sec. data set displays much higher temperatures compared to the 10-min average
values. This points to a fact that there is a loss of information in the 10-min. average data
due to the averaging.

A.3 Discussion

The ANN based condition monitoring method was successful in detecting a fault in the
generator bearing of the direct drive wind turbine, as well as in the gearbox bearings of
the in-direct drive wind turbines. The application of the ANN model predicting the power
production for fault detection shows the possibility of using the method for wind turbine
performance analysis also. It can be concluded that the ANN based CMS method can be
applied to di�erent types and ratings of wind turbines, given that su�cient SCADA data is
available.

The proposed condition monitoring method was unsuccessful in detecting faults in the
wind turbine blades in the two case studies presented. Furthermore, it was not possible to
detect a failure in the gearbox planetary bearing in su�cient time before replacement. These
case studies represent the shortcomings of the proposed ANN based CMS. The method is
capable of detecting only those failure modes, which have a direct e�ect on the modeled
parameter. It could be interesting for the owner/operator of the wind turbine to decide on
the extent of SCADA measurement that will be available from the SCADA system during
the contract stage. Conscious e�orts by the stakeholders in the wind industry could lead to a
standardization of the SCADA signals, which can play a signi�cant role in the improvement
of wind turbine condition monitoring in the future.

In addition to the e�ect of extent of SCADA data on the CMS method, the case studies
presented with 10-sec. average data show that there is a considerable amount of information
missing in the 10-min. average data. This leads to a question, whether higher frequency
measurement data from SCADA will lead to better condition monitoring. However, higher
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frequency of data will require more storage, leading to higher costs and hence this question
needs to be investigated further.
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Input/Output con�guration for ANN
models

The approach for selection of ANN model input and output parameters utilizing the do-
main knowledge was discussed in Section 4.4. This approach can be applied to decide the
input/output con�guration of ANN models which can then be applied for condition moni-
toring of various wind turbine components. In order to decide the extent of ANN models
that can be created, it is necessary to carefully analyze the list of signals available in the
wind turbine SCADA system. Based on one such analysis for a typical indirect drive onshore
wind turbine, rated 2 MW, an indicative list of ANN models that can be created is presented
in Table B.1. The input parameters are divided into sets and the list of corresponding input
parameters for each set is presented in Table B.2.

The actual list of ANN models that can be created, and consequently the components that
can be monitored with the ANN based CMS will depend on the extent of measurement signals
available in the SCADA system. Currently, the list of measurement signals available from
the SCADA system depends on the wind turbine manufacturer, and hence, it is suggested
this list be decided at the contractual stage to take full advantage of the ANN based CMS.
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Table B.1: List of ANN models for a typical in-direct drive wind turbine
Input parameter set Output parameter

Set 1

Gearbox high speed bearing A temperature [◦C]
Gearbox high speed bearing B temperature [◦C]
Gearbox high speed bearing C temperature [◦C]
Gearbox planet bearing non-drive end temperature [◦C]
Gearbox planet bearing drive end temperature [◦C]
Gearbox lubrication oil temperature [◦C]
Spinner temperature [◦C]

Set 2

Generator front end bearing temperature [◦C]
Generator rear end bearing [◦C]
Generator slip ring temperature [◦C]
Rotor inverter temperature [◦C]
Generator phase temperatures [◦C]

Set 3
Grid inverter average temperature [◦C]
Transformer phase temperature [◦C]

Set 4 Hydraulic oil temperature [◦C]

Table B.2: List of input parameter sets with corresponding input parameters
Input parameter set Input parameter

Set 1

Power production [kW]
Rotor RPM
Nacelle temperature [◦C]
Ambient temperature [◦C]
Missing data input [-]

Set 2

Power production [kW]
Generator RPM
Nacelle pemperature [◦C]
Ambient pemperature [◦C]
Missing data Input [-]

Set 3

Reactive power [kvar]
Frequency [Hertz]
Nacelle temperature [◦C]
Ambient temperature [◦C]
Missing data input [-]

Set 4

Hydraulic oil pressure [bar]
Power production [kW]
Nacelle temperature [◦C]
Ambient temperature [◦C]
Missing data input [-]
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