
International Journal of Prognostics and Health Management, ISSN 2153-2648, 2016 008 

PHM-Based Wind Turbine Maintenance Optimization Using Real 

Options 

Xin Lei1, Peter A. Sandborn1 

1CALCE, Department of Mechanical Engineering, College Park, MD, 20742 

xlei@umd.edu 

sandborn@umd.edu 

 
ABSTRACT 

A simulation-based real options analysis (ROA) approach is 

used to determine the optimum predictive maintenance 

opportunity for a wind turbine with a remaining useful life 

(RUL) prediction. When an RUL is predicted for a subsystem 

in a single turbine using PHM, a predictive maintenance 

option is triggered that the decision-maker has the flexibility 

to decide if and when to exercise before the subsystem or 

turbine fails. The predictive maintenance value paths are 

simulated by considering the uncertainties in the RUL 

prediction and wind speed (that govern the turbine’s revenue 

earning potential). By valuating a series of European options 

expiring on all possible predictive maintenance 

opportunities, a series of option values can be obtained, and 

the optimum predictive maintenance opportunity can be 

determined. A case study is presented in which the ROA 

approach is applied to a single turbine. 

1. INTRODUCTION 

1.1. Background 

As a source of renewable energy, wind power is growing 

throughout the world. The annual growth rate of the global 

installed wind energy capacity has been more than 10% for 

17 years, and the global total wind energy capacity in 2014 

was 369,553 MW (Fried, Qiao, Sawyer, and Shukla, 2014).  

As a major contributor to the wind turbine levelized cost of 

energy (LCOE), operations and maintenance (O&M) costs 

accounts for 0.027 to 0.048 US dollars/kWh (10% to 15% of 

the LCOE for onshore wind farms and 25% to 30% for 

offshore wind farms) (Federal Energy Regulation 

Commission, 2015; IRENA Secretariat, 2012; Verbruggen, 

2003). 

Maintenance practices for wind turbines can be generally 

divided into proactive maintenance and corrective 

maintenance. Proactive maintenance is carried out at 

predetermined intervals depending on prescribed criteria to 

prevent the occurrence of a failure. Typical maintenance 

activities include: inspection, lubrication, parts replacement, 

cleaning and adjustments. Proactive maintenance can be 

divided into preventive and predictive maintenance. Despite 

the proactive maintenance, unanticipated failures may still 

occur, resulting in significant downtime, and requiring 

corrective maintenance. 

Preventive maintenance, also known as scheduled 

maintenance, involves the maintenance activities performed 

after a predetermined time interval or a specified percentage 

of system usage, to avoid invalidating the OEM warranty 

and/or to maintain turbines that have known failure patterns. 

The current mainstream maintenance practice for wind 

turbines is preventive maintenance, where the maintenance 

interval depends on the manufacturer’s recommendations, 

weather conditions, accessibility, availability and the 

reliability of wind turbines. 

PHM technologies have been introduced into wind turbines 

to avoid premature failures, reduce secondary (collateral) 

damage to components, reduce maintenance costs, enable 

remote diagnosis, increase generation and optimize future 

design (Hameeda, Honga, Choa, Ahnb, and Songc, 2009). A 

significant body of work on PHM for wind turbine 

subsystems exists. The key subsystems that the majority of 

this work focuses on includes: blades and rotor (Hameeda et 

al., 2009; Hyers, Mcgowan, Sullivan, Manwell, and Syrett, 

2006; Nijssen, 2006; Tchakoua, Wamkeue, Ouhrouche, 

Slaoui-Hasnaoui, Tameghe, and Ekemb, 2014; Tchakoua, 

Wamkeue, Tameghe, and Ekemb, 2013), gearbox and 

bearings (Hameeda et al., 2009; Hussain & Gabbar, 2013; 

Hyers et al., 2006; Niknam, Thomas, Hines, and Sawhney, 

2013; Plumley, Wilson, Kenyon, Andrew, Quail, and Athena, 

2012; Qu, Bechhoefer, He, and Zhu, 2013; Tamilselvan, 

Wang, Sheng, and Twomey, 2013; Tchakoua et al., 2014; 

Tchakoua et al., 2013), generator (Hameeda et al., 2009; 

Hyers et al., 2006; Tchakoua et al., 2014; Tchakoua et al., 
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2013; Yang, Sheng, and Court, 2012) and tower (Adams, 

White, Rumsey, and Farrar, 2011; Chase, Danai, Lackner, 

and Manwell, 2013; Ciang, Lee, and Bang, 2008; Hameeda 

et al., 2009; Hyers et al., 2006; Tchakoua et al., 2014; 

Tchakoua et al., 2013). These works use the data from the 

supervisory control and data acquisition (SCADA) and other 

sensors. Vibration analysis, acoustic emission and other 

methods are applied to monitor the subsystems of wind 

turbines to identify developing faults. In some cases RULs 

are predicted using the prognostics approaches such as 

Mahalanobis distance (Kumar, Chow, and Pecht, 2010) and 

particle filtering. 

Predictive maintenance is enabled by PHM technologies in 

response to the indicated deteriorated condition/performance 

or the remaining useful life (RUL) of a component or system. 

Different from preventive maintenance, predictive 

maintenance is not performed after a fixed time or usage 

interval, but when there is an imminent need. 

Today’s wind turbines emphasize improving the productivity 

and economics of wind energy. Due to the fact that wind may 

cause degradation patterns to vary among turbines and with 

trends toward larger wind farms and the longer distances 

from the O&M centers, wind farm maintenance decision-

makers also want to avoid unnecessary visits to the wind farm 

by detecting and fixing the problems before failure occurs. 

For offshore wind farms, even small failures may lead to long 

downtimes and high O&M costs due to the difficult access 

and repair at the offshore locations. Therefore the benefits of 

PHM based predictive maintenance have been recognized, 

and most modern turbines are equipped with PHM equipment 

(Byon, Pérez, Ding, and Ntaimo, 2011). Since a failure is a 

process rather than an event, the earlier the process is 

detected, the more the flexibility exists for managing the 

process. 

1.2. Review of the Maintenance Modeling Literature 

Numerous Discounted Cash Flow (DCF) based maintenance 

models applicable to wind farms have been developed. These 

models can be differentiated based on are how maintenance 

event timing and reliability are modeled. 

Most wind farm maintenance models are based on “counting” 

the number of failures and maintenance events for a wind 

turbine or farm during a period of time. These approaches 

usually model reliability with a constant failure rate from 

which the average failures in an analysis period (e.g., per 

year) are computed. In these Reliability-Centered 

Maintenance (RCM) motivated approaches, empirical 

models are typically used to formulate analytical expressions 

for the various contributions to the maintenance cost. 

Relevant works that model the preventive and corrective 

maintenance strategies for wind turbines and farms include: 

Joshi, Belgaum, and Jangamshetti (2009); Nordahl (2011); 

Paida (2012); Rademakers, Braam, Obdam, Frohböse, and 

Kruse (2008); and Rademakers, Braam, Zaaijer, and Bussel 

(2003). Predictive maintenance has also been included within 

these models, aiming to estimate and compare the life-cycle 

maintenance costs among different maintenance strategies 

(Andrawus, Watson, Kishk, and Ahaladam, 2006; Gloria, 

2013). 

An alternative treatment of reliability is to use discrete-event 

simulation to simulate the failure and maintenance events by 

sampling from the probability distributions representing the 

reliability of the system, e.g., CONTOFAX from TU Delft 

(Koutoulakos, 2008), O2M (Philips, Morgan, and Jacquemin, 

2006) and the modeling described by Nielsen and Sørensen 

(2011). 

There has been significant research on simulation-based 

predictive maintenance optimization for wind turbines and 

farms. Pazouki, Bahrami, and Choi (2014) propose a PHM-

based predictive maintenance optimization model by 

choosing the failure probability threshold that triggers the 

predictive maintenance and the periodic inspection interval 

as the two decision variables. Byon and Ding (2010) develop 

a season-dependent dynamic model to schedule maintenance 

activities based on the deterioration status, failure modes, 

weather, and maintenance lead time, assuming the wind farm 

operators make maintenance decisions on a weekly basis. 

Tian, Jin, Wu, and Ding (2011) develop an optimal predictive 

maintenance policy for a wind farm consisting of multiple 

wind turbines using PHM information. Besnard and Bertling 

(2010) present a simulation-based predictive maintenance 

optimization approach applied to blades, by assuming that an 

inspection is carried out if blade deterioration is observed by 

online PHM, and a maintenance decision is made at the 

inspection. 

DCF models (whether RCM motivated or simulation based) 

do not account for the managerial flexibility that the decision-

makers have to adapt to future uncertainties; rather they 

presume the future conditions and cash flow scenarios are 

fixed. A real option is the right but not the obligation to 

undertake certain business initiatives, such as deferring, 

abandoning, expanding, staging, or contracting a capital 

investment project (Kodukula & Papudesu, 2006). Real 

options originate from financial options, and real options 

analysis (ROA) refers to the valuation of the real options. 

ROA assumes that a value-maximizing decision will always 

be made at each decision point. 

ROA has been previously applied to the maintenance 

modeling problems. An ROA model for offshore platform 

life-cycle cost-benefit (LCCB) analysis is developed by 

treating maintenance and decommissioning as real options 

(Heredia-Zavoni & Santa-Cruz, 2004; Santa-Cruz & 

Heredia-Zavoni, 2011). Jin, Li, and Ni (2009) present an 

analytical ROA cost model to schedule joint production and 

preventive maintenance under uncertain demands. In the 

study by Koide, Kaito, and Abe (2001), the maintenance and 

management costs of an existing bridge for thirty years is 

analyzed and minimized using ROA. Goossens, Blokland, 
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and Curran (2011) develop a model to assess the differences 

in performance between different aircraft maintenance 

operations. 

For the wind farm maintenance optimization problem, 

Haddad, Sandborn, and Pecht (2014) were the first to apply 

the ROA to estimate the values of maintenance options 

created by the implementation of PHM in wind turbines. 

When an RUL is predicted for a subsystem or turbine, there 

are multiple choices for the decision-maker including: 

performing predictive maintenance at the first maintenance 

opportunity, waiting until closer to the end of the RUL to 

perform maintenance, or doing nothing, i.e., letting the 

turbine run to failure. In order to accommodate these choices, 

predictive maintenance triggered by a PHM prediction can be 

treated as a real option. When the value of the predictive 

maintenance option is determined, a decision-maker has a 

basis upon which to make a decision to perform the predictive 

maintenance or not and if the maintenance is to be done, 

when. Haddad et al. (2014) demonstrate that the fundamental 

tradeoff in predictive maintenance problems with PHM is 

finding the point in time to perform predictive maintenance 

that minimizes the risk of expensive corrective maintenance 

(which increases as the RUL is used up), while maximizing 

the revenue earned during the RUL (which increases as the 

RUL is used up). 

1.3. Shortcomings of the State-of-the-Art Models 

Predictive maintenance has not been considered in most 

existing wind farm maintenance models, and for the models 

that do include a predictive maintenance strategy, the 

predictive maintenance is assumed to happen on a fixed 

schedule. The exact time and sequences of failures and 

maintenance events are not accommodated in simple RCM 

inspired models. Uncertainties from many sources such as the 

RUL predictions and maintenance opportunities have not 

been integrated into the analytical expressions. 

Existing simulation-based wind farm maintenance models 

can capture the uncertainties mentioned above and also the 

nonlinear effects, such as the combined occurrences of 

failures and the accessibility of maintenance crew and 

equipment. However these optimization models are mainly 

based on the PHM technologies indicating deteriorated 

condition/performance rather than giving RUL predictions. 

Therefore they assume the predictive maintenance decisions 

are made on a periodic basis (e.g., weekly or monthly) after 

an online or on-site inspection, and that the predictive 

maintenance will be implemented immediately once a 

decision is made. The decision variables to be optimized are 

the threshold (e.g., the failure probability) to trigger the 

predictive maintenance and the inspection interval applicable 

for the whole life cycle. Whereas given a specific time point 

at which the threshold is exceeded (e.g., an RUL is predicted), 

it is unknown if carrying out the predictive maintenance 

immediately is a better choice than waiting for a longer time 

or even letting the system fail and performing corrective 

maintenance. This type of decision basis for maintenance is 

particularly problematic when the wind farm is operated 

under an outcome-based contract defining performance 

requirements and penalties. 

ROA-based models have been developed for the maintenance 

modeling problem (Heredia-Zavoni et al., 2004; Santa-Cruz 

& Heredia-Zavoni, 2011; Jin et al., 2009; Koide et al., 2001; 

Goossens et al., 2011). However none of these works 

consider PHM technologies and the predictive maintenance, 

rather they model preventive maintenance as real options. 

Haddad et al. (2014) were the first to apply ROA to the wind 

turbine PHM-based predictive maintenance optimization 

problem. However their approach does not answer the 

question “on which day the predictive maintenance should be 

scheduled after the RUL indication”. The wait-to-maintain-

option defined by Haddad et al. (2014) is treated as an 

American option, therefore their model determines the best 

maximum wait-to-maintenance date, and at each 

maintenance opportunity before that date, the decision-maker 

is implicitly expected to compare the predictive maintenance 

option value at that opportunity and the option value of 

waiting. If the former is higher than the latter, the predictive 

maintenance will be implemented at that opportunity; 

otherwise the decision-maker will wait until the next 

opportunity. The Haddad et al. (2014) solution is correct for 

the assumption that an optimal decision will be made on or 

before some maximum waiting duration and the solution 

delivered is the optimum maximum wait to date. 

Unfortunately, in reality maintenance decision-makers for 

wind turbines (especially offshore turbines) face a somewhat 

different problem: given that the maintenance opportunity 

calendar is known (with associated uncertainties) when the 

RUL indication is obtained, on what date should the 

predictive maintenance be done to get the maximum option 

value – this is not the problem solved by Haddad et al. (2014). 

This constraint makes the problem a series of European-style 

options, i.e., options that can only be exercised on a specific 

date rather than American options that can be exercised any 

time before a specific date. 

Haddad et al. (2014) also make the assumption that there are 

no uncertainties in the remaining lifetime consumption and 

the forecasting ability of PHM. However, since the 

environmental conditions, primarily the wind speed, are 

uncertain, the lifetime consumption (the rate at which the 

RUL is actually used up) is subject to significant uncertainties. 

The RUL itself is also uncertain since the forecasting ability 

of PHM is also subject to uncertainties created by the sensor 

data collected, the data reduction methods, the damage 

accumulation models applied and the material parameters 

assumed in the models. In addition, the cumulative revenue 

rather than the revenue loss during RUL is simulated by 

Haddad et al. (2014), while it is the latter that actually reflects 
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value of the part of the RUL thrown away due to predictive 

maintenance (see Section 2.1). 

In this paper, the optimum predictive maintenance 

opportunity is determined for a wind turbine indicating an 

RUL. The time-history cumulative revenue loss and the 

avoided corrective maintenance cost paths are simulated and 

combined to form the predictive maintenance value paths. By 

applying a simulation-based European ROA approach, a 

series of predictive maintenance options are evaluated by 

considering all possible maintenance opportunities. 

The remainder of the paper is structured as following: Section 

2 explains the European ROA approach. Section 3 presents a 

case study applied to a single turbine indicating an RUL. 

Finally, Section 4 concludes the work and discusses future 

research opportunities. 

2. ANALYSIS METHODOLOGY 

2.1. Predictive Maintenance Options 

Predictive maintenance options are created when in situ PHM 

is added to systems. In this case the PHM approach generates 

an RUL estimate that can be used to take predictive action(s) 

prior to the failure of a system. The real option is defined by 

Haddad et al. (2014) as, 

 Buying the option = paying to add PHM to the system 

 Exercising the option = performing predictive 

maintenance prior to system failure after an RUL 

indication 

 Exercise price = predictive maintenance cost 

 Letting the option expire = doing nothing and running 

the system to failure then perform corrective 

maintenance 

The value from exercising the option is the sum of the 

cumulative revenue loss and the avoided corrective 

maintenance cost. 

The cumulative revenue loss is the difference between the 

cumulative revenue that could be earned by waiting until the 

end of the RUL to do corrective maintenance versus 

performing the predictive maintenance earlier than the end of 

the RUL. Restated, this is the portion of the system’s RUL 

thrown away when predictive maintenance is done prior to 

the end of the RUL. The Appendix provides a more detailed 

discussion and construction of the revenue loss portion of the 

predictive maintenance value. 

Avoided corrective maintenance cost includes avoided 

corrective maintenance parts, service and labor cost, avoided 

cumulative downtime revenue loss, and avoided collateral 

damage to the system (if any). 

When the cumulative revenue loss (RL) and the avoided 

corrective maintenance cost (CA) are summed, the predictive 

maintenance value (VPM) is obtained as 

𝑉𝑃𝑀 = 𝑅𝐿 + 𝐶𝐴 (1) 

Figure 1 graphically shows the construction of VPM. Assume 

at some time point (called time 0) a RUL in calendar time is 

predicted for a subsystem (e.g., for the blade, main shaft or 

gearbox), called the RULC. Assume there are no uncertainties 

in the prediction of the RULC, and once the subsystem fails 

the turbine will fail, therefore the RULC is also the calendar 

time when the turbine system fails. The absolute value of the 

RL is largest at time 0, because all of the RUL in the system 

is disposed of if maintenance is performed at time 0. As time 

advances, less remaining useful life is thrown away (and less 

revenue that could be earned is lost) until RULC is reached at 

which point RL is zero. CA is assumed to be constant until the 

RULC at which point it drops to zero. 

The predictive maintenance opportunity that follows the 

remaining useful life prediction can be treated as a real option, 

 

Figure 1. Simple predictive maintenance value 

formulation (RL, CA and VPM have monetary units, e.g., 

dollars) 
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and an ROA can be applied to valuate the predictive 

maintenance option as a “European” style option as 

𝑂𝑃𝑀 = 𝑚𝑎𝑥(𝑉𝑃𝑀 − 𝐶𝑃𝑀 , 0) (2) 

Where OPM is the predictive maintenance option value, and 

CPM is the predictive maintenance cost. If the difference 

between VPM and CPM is larger than 0, the option is said to be 

“in the money” and the predictive maintenance will be 

implemented (the option value is the difference); otherwise 

the predictive maintenance will not be implemented and the 

option will be expired leading to 0 option value. 

2.2. Modeling 

Initially we assume a wind turbine is managed in isolation 

under an “as-delivered” energy purchase contract between 

the wind energy seller and buyer, which simply pays a set 

price for all the energy delivered. After time 0 there are 

multiple predictive maintenance opportunities, and the 

decision-maker must decide whether and when the predictive 

maintenance should be scheduled. If the predictive 

maintenance is not implemented, the turbine will fail at the 

RULC, and after a downtime DT (including the wait-to-

maintenance time and the maintenance time, assumed to be 

constant) a corrective maintenance event will be completed 

to fix and restore it to operation. 

2.2.1. Cumulative Revenue Loss 

We assume that the turbine energy generation capacity will 

not degrade as damage accumulates in the subsystems, and 

the downtime for predictive maintenance is negligible. If the 

predictive maintenance is going to be implemented before the 

end of the RULC, the revenue earned in a unit time period τ-1 

to τ, RPM(τ) is 

𝑅𝑃𝑀(𝜏) = 𝐸𝑃𝑀(𝜏)𝑃𝐶  (3) 

where 0 < τ ≤ RULC+DT, PC is the energy price, which is 

assumed to be constant, and EPM(τ) is the energy generated 

from τ-1 to τ. 

So the cumulative revenue earned from time τ1 to τ2, CRPM(τ1, 

τ2), can be calculated as 

𝐶𝑅𝑃𝑀(𝜏1, 𝜏2) = ∑ 𝑅𝑃𝑀(𝜏)

𝜏2

𝜏=𝜏1+1

 (4) 

where 0 < τ1 < τ2 ≤ RULC+DT. 

Similarly, if the predictive maintenance is not going to be 

implemented, when the turbine fails after the RULC, it will be 

down for a time period DT until the corrective maintenance 

is finished. The energy generated from τ-1 to τ, ECM(τ) can be 

calculated as 

𝐸𝐶𝑀(𝜏) = {
𝐸𝑃𝑀(𝜏), 0 < 𝜏 ≤ 𝑅𝑈𝐿𝐶

0, 𝑅𝑈𝐿𝐶 < 𝜏 ≤ 𝑅𝑈𝐿𝐶 + 𝐷𝑇
 (5) 

The revenue earned from τ-1 to τ, RCM(τ), can be calculated 

as 

𝑅𝐶𝑀(𝜏) = 𝐸𝐶𝑀(𝜏)𝑃𝐶  (6) 

The cumulative revenue earn from time τ1 to τ2, CRCM(τ1, τ2), 

can be calculated as 

𝐶𝑅𝐶𝑀(𝜏1, 𝜏2) = ∑ 𝑅𝐶𝑀(𝜏)

𝜏2

𝜏=𝜏1+1

 (7) 

Assume that the predictive maintenance opportunity is at 

time t, where 0 < t < RULC. The cumulative revenue loss by 

implementing predictive maintenance at time t, RL(t), can be 

calculated as 

𝑅𝐿(𝑡) = 𝐶𝑅𝑃𝑀(0, 𝑡) − 𝐶𝑅𝐶𝑀(0, 𝑅𝑈𝐿𝐶) (8) 

2.2.2. Avoided Corrective Maintenance Cost and 

Predictive Maintenance Value 

The avoided corrective maintenance cost by replacing 

corrective maintenance after the RULC with predictive 

maintenance at t before RULC, can be calculated as, 

𝐶𝐴(𝑡) = 𝐶𝐶𝑀 + 𝐿𝐷𝑇 (9) 

where CCM is the corrective maintenance parts, service and 

labor cost, which is assumed to be constant. The second item 

is the cumulative revenue loss during downtime DT for 

corrective maintenance, which can be calculated as 

𝐿𝐷𝑇 = 𝐶𝑅𝑃𝑀(𝑅𝑈𝐿𝐶 , 𝑅𝑈𝐿𝐶 + 𝐷𝑇) (10) 

The predictive maintenance value VPM(t) at time t, 

representing the extra value obtained by carrying out the 

predictive maintenance at time t rather than waiting for the 

corrective maintenance, is 

𝑉𝑃𝑀(𝑡) = 𝑅𝐿(𝑡) + 𝐶𝐴(𝑡) 

= −𝐶𝑅𝐶𝑀(𝑡, 𝑅𝑈𝐿𝐶) + 𝐶𝐶𝑀 

+𝐶𝑅𝑃𝑀(𝑅𝑈𝐿𝐶 , 𝑅𝑈𝐿𝐶 + 𝐷𝑇) 

(11) 

2.2.3. Uncertainties and Paths Simulation 

All of the modeling discussed so far assumes that there are no 

uncertainties in the predicted RULC. If there were no 

uncertainties, the optimum point in time to perform 

maintenance would be at the peak value point (at the RULC). 

Unfortunately everything is uncertain, which makes the 

problem more challenging. To model the uncertainties, a 

simulation method is used to generate “paths”, where each 

path represents one possible future scenario that could 

happen. The future wind speed paths are simulated first and 

then used to generate the RL, CA and VPM paths. 

  



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT 

6 

Future Wind Speed Paths Simulation 

We assume that wind is the major environmental load causing 

damage to the key subsystems in the turbines (e.g., blade, 

main shaft and gearbox). A probability density function (PDF) 

is used to describe the historical wind speed data. Assume the 

historical wind speed S is recorded at height B, the probability 

function f(·) assuming a Weibull distribution is 

f(𝑆) =
𝛽

𝜂
(
𝑆

𝜂
)
𝛽−1

exp(− (
𝑆

𝜂
)
𝛽

) (12) 

where β is the shape parameter, 1 ≤ β < 10, and η is the scale 

parameter, which can be estimated as (Manwell, McGowan, 

and Rogers, 2009) 

𝛽 = (
𝜎

𝜇
)
−1.086

 (13) 

𝜂 =
𝜇

Γ(1 + 1/𝛽)
 (14) 

where μ is the mean and σ is the standard deviation of 

recorded wind speed data, and Γ(·) is a Gamma function. 

After Weibull distribution parameters are estimated, Monte 

Carlo simulation can be used to simulate a time series of the 

wind speed SB(τ) at height B. The Power Law (Manwell et al., 

2009) is then used to convert to wind speed SH(τ) at the wind 

turbine hub height H 

𝑆𝐻(𝜏)

𝑆𝐵(𝜏)
= (

𝐻

𝐵
)
𝛼

 (15) 

where α is the Power Law exponent. 

Using Monte Carlo simulation and the Power Law, M buoy 

height wind speed profiles (called wind speed paths) can be 

simulated, with each path representing a possible future wind 

profile after time 0. 

Time to Failure Simulation 

Assume a RUL is predicted in cycles caused by fatigue 

(RULF) at time 0,1 a probability distribution can be assumed 

to represent the uncertainties due to PHM sensor data, data 

reduction methods, failure models, damage accumulation 

models and material parameters. For example a normal 

distribution has been used to represent the RUL estimations 

(Rodrigues & Yoneyama, 2013; Sankararaman & Goebel, 

2013; Tian, Zhang, and Cheng, 2011). However, it should be 

noted that the model developed in this paper is generally 

applicable to any type of RUL distribution. RULF is assumed 

to be the mean of the distribution. For each of the M simulated 

wind speed paths, the distribution (assumed to be normal for 

illustration purposes) in Figure 2 is sampled to obtain an 

actual RUL sample (ARULF, measured in cycles) from the 

                                                           
1 The RUL can be represented as a time or any applicable lifetime usage 

measure depending on the particular failure mechanism(s) that are relevant 
and their primary life driver(s). 

distribution. Each combination of the ARULF and the 

corresponding wind speed path represents a possible initial 

RUL and its future wind speeds. 

The next step is to simulate the ARULC (the actual RUL 

sample in calendar time) using the simulated wind speed 

paths. It is assumed that the RUL is consumed by rotor 

rotational cycles caused by the wind. When the wind speed is 

higher than the cut-in speed and lower than the rated speed, 

rotor rotational speed increases linearly with the wind speed 

until the rotor’s nominal rotational speed. In this case the 

rotor rotational speed is constant at the nominal rotational 

speed; if the wind speed is higher than the cut-out speed, rotor 

stops rotating. Figure 3 shows this relationship, in which ω is 

the rotor’s nominal rotational speed, SCI, SRW and SCO are the 

cut-in, rational and cut-out wind speed for the wind turbine 

respectively. 

 

Figure 2. An ARULF obtained from the RUL distribution 
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the wind turbine rotor rotational speed 
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The RUL consumption (measured in cycles) caused to the 

turbine from τ-1 to τ, D(τ) can be calculated as, 

𝐷(𝜏) =

{
 

 
𝑙 ∙ ω ∙ 𝑆𝐻(𝜏)

𝑆𝑅𝑊
, 𝑆𝐶𝐼 ≤ 𝑆𝐻(𝜏) ≤ 𝑆𝑅𝑊

𝑙 ∙ 𝜔, 𝑆𝑅𝑊 < 𝑆𝐻(𝜏) ≤ 𝑆𝐶𝑂
0, 𝑜𝑡ℎ𝑒𝑟𝑠

 (16) 

where l is the unit time period for simulation (e.g., l = 1 hour). 

For each ARULF and the corresponding wind speed path, by 

solving the following equation, an ARULC is obtained as 

below, which represents the actual calendar time to failure 

𝐴𝑅𝑈𝐿𝐹 = ∑ 𝐷(𝜏)

𝐴𝑅𝑈𝐿𝐶

𝜏=1

 (17) 

RL, CA and VPM Paths Simulation 

We can now generate the RL and CA paths, based on which 

the VPM paths can be calculated from Eq. (11).  To calculate 

RL(t) we need to determine the energy generated if predictive 

maintenance is implemented, EPM(τ). This can be calculated 

as 

𝐸𝑃𝑀(𝜏) = {

0, 𝑆𝐻(𝜏) < 𝑆𝐶𝐼 𝑜𝑟𝑆𝐻(𝜏) > 𝑆𝐶𝑂
g(𝑆𝐻(𝜏)), 𝑆𝐶𝐼 ≤ 𝑆𝐻(𝑡) ≤ 𝑆𝑅𝑊

𝐸𝑅 , 𝑆𝑅𝑊 < 𝑆𝐻(𝑡) ≤ 𝑆𝐶𝑂

 (18) 

where g(·) is the power curve function, g(SH(τ)) is the energy 

generated from τ-1 to τ. ER is the energy generated from τ-1 

to τ with the rated power. 

Based on the M future wind speed paths, M RL, CA and VPM 

paths can be simulated by using Eqs. (8), (9), and (11), where 

each of which starts at time 0 and ends at its corresponding 

ARULC. 

2.2.4. European ROA Approach 

We assume that the decision-maker is willing to schedule a 

predictive maintenance only if the predictive maintenance is 

more beneficial than the corrective maintenance, otherwise it 

is better to have the turbine run to failure. Therefore the 

predictive maintenance opportunities that follow an RUL 

prediction can be treated as real options, and on each 

maintenance opportunity, a European ROA can be applied to 

valuate the predictive maintenance option as a “European” 

style option, 

𝑂𝑃𝑀(𝑡) = {
𝑚𝑎𝑥(𝑉𝑃𝑀(𝑡) − 𝐶𝑃𝑀, 0), 0 < 𝑡 < 𝐴𝑅𝑈𝐿𝐶

0, 𝑡 ≥ 𝐴𝑅𝑈𝐿𝐶
 (19) 

where OPM(t) is the predictive maintenance option value at 

time t. Equation (19) does not discount the option value from 

t to 0, implicitly assuming that the time period t and the 

discount rate are small. 

An ROA is used to valuate the option values of all possible 

maintenance opportunities after time 0 as a series of European 

options as shown in Figure 4. In Figure 4 an example VPM 

path and three predictive maintenance opportunities t1, t2 and 

t3 are shown. On the predictive maintenance opportunity 

before the ARULC (t1 or t2), if the predictive maintenance 

value is higher than the predictive maintenance cost, 

maintenance will be implemented (this is the case for t2); 

otherwise, the turbine will be run to failure, and the option 

value is 0 (this is the case for t1). After the ARULC, the option 

expires and the option value is 0 (the case for t3). 

At each predictive maintenance opportunity, the M option 

values (corresponding to the M value paths) are averaged to 

get the expected predictive maintenance option value 

(EOPM(t)). By considering all the maintenance opportunities, 

the optimum predictive maintenance opportunity can be 

selected that generates the maximum expected option present 

value. 

3. CASE STUDY 

In this section, the European ROA approach is applied to a 

single offshore wind turbine. 

Buoy height (5 m above sea level) 10-year (2003 to 2012) 10-

minute average wind speed data are obtained from station 

44009 of the National Data Buoy Center, which is the closest 

buoy to the Maryland Wind Energy Area (National Data 

Buoy Center, 2013). An offshore wind farm in this area with 

Vestas V-112 3.0 MW offshore wind turbines is assumed for 

the study (Vestas, 2013). The rated output power is 3 MW, 

cut-in, rational and cut-out speeds are 3 m/s, 12 m/s and 25 

m/s respectively, nominal rotational speed is 14 RPM, and 

hub height is assumed to be 100 m above sea level. The 

parameter α is determined empirically as 0.11 for the area 

(Manwell et al., 2009). The Weibull distribution parameters 

for buoy height wind speed are η = 7.1470 m/s and β = 

1.9733. 

3.1. Simulation of RL, CA and VPM Paths 

We assume there is a single wind turbine operated under an 

“as-delivered” contract with PC of $20/MWh. A PHM 

 

Figure 4. An example of the ROA valuation 
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indication is triggered and a RULF of 100,000 cycles is 

predicted for a key subsystem (e.g., the main shaft). A normal 

distribution is assumed to represent the RUL uncertainties 

with the mean of 100,000 cycles and the standard deviation 

of 25,000 cycles. Predictive and corrective maintenance costs 

are assumed to be $9,000 and $10,000, respectively. 

Corrective maintenance downtime is assumed to be 100 

hours. Using Monte Carlo simulation, 10,000 ARULF 

samples are obtained. 

By applying Eqs. (3) through (11), 10,000 RL, CA and VPM 

paths are simulated as Figure 5. 

As shown in the left plot in Figure 5, all the RL paths start at 

different points on the vertical axis: the longer the ARULC of 

a path is, the more cumulative revenue will be missed if one 

chooses to do predictive maintenance at the earliest 

opportunity, and therefore the lower the path’s initial value. 

All paths are ascending over time, since the later the 

predictive maintenance is done, the smaller the cumulative 

revenue will be lost. Finally all the paths terminate at 

different time points when the RUL is used up, which 

represents the uncertainties in the predicted RUL and the 

wind speed. As can be seen in the middle plot in Figure 5, 

each CA path is constant over time, while due to the variance 

in the cumulative revenue loss during downtime (see Eq. 

(10)), all paths have different but similar values. The 

combinations of the RL and CA paths according to Eq. (11), 

result in VPM paths that are ascending (see the right plot in 

Figure 5).  

3.2. Results from European ROA Approach 

With the simulated 10,000 VPM paths, using Eq. (19), 

predictive maintenance option values are obtained. At each 

predictive maintenance opportunity, all option values are 

averaged to get the expected predictive maintenance option 

                                                           
2  A stochastic DCF approach was applied to a similar example (Lei, 
Sandborn, Goudarzi, and Bruck, 2015) that assumes that the predictive 

maintenance will always be implemented at some selected opportunity rather 

than treated as an option. Alternatively, the European ROA approach is an 
asymmetric approach that captures the upside value (when predictive 

values as shown in Figure 6, together with the histogram of 

ARULC. The optimum predictive maintenance opportunity 

(indicated by the dash line) is 237 hours for the example case, 

with an expected predictive maintenance option value of 

$2,976.4. As can be seen from the ARULC histogram, the 

ROA approach is not aiming to totally avoid corrective 

maintenance, but rather to maximize the expected predictive 

maintenance option value. According to Figure 7, at the 

optimum predictive maintenance opportunity, 93.9% of the 

paths choose to implement the predictive maintenance. The 

results suggest that waiting for some time to implement the 

predictive maintenance, rather than implementing the 

predictive maintenance immediately after the PHM 

indication or waiting until closer to the end of the RUL, 

which represents the tradeoff to minimize the risk of 

corrective maintenance while minimize the value of the part 

of the RUL thrown away.2  

maintenance is more beneficial) while limiting the downside risk (when 
corrective maintenance is more beneficial). The European ROA approach 

will suggest a more conservative opportunity for predictive maintenance 

with a higher expected option value than the expected net present value 
(NPV) from the stochastic DCF approach. 

 

Figure 5. Left – cumulative revenue loss, middle – avoided corrective maintenance cost, and right – predictive 

maintenance value paths for a single turbine (100 paths are shown) 

 

t [h] t [h]

R
L
(t

) 
[$

]

t [h]

C
A
(t

) 
[$

]

V
P

M
(t

) 
[$

]

 

Figure 6. Expected predictive maintenance option value 

curve (predictive maintenance opportunity is once per 

hour) together with the histogram of ARULC 
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If the predictive maintenance is available every 48 hours 

(instead of every hour), the expected predictive maintenance 

option value curve is shown in Figure 8. The optimum 

predictive maintenance opportunity (indicated by the dash 

line) is 240 hours after time 0, with the expected predictive 

maintenance option value of $2,959.8. Comparing with the 

case in Figure 6 where the predictive maintenance 

opportunity is once per hour, the optimum predictive 

maintenance opportunity is 3 hours later (+1.3%), while the 

expected predictive maintenance option value is $16.6 fewer 

(-%0.6), both are caused by the constraint on the predictive 

maintenance opportunities. Figure 9 is the box plot showing 

the variance of the predictive maintenance option values on 

the maintenance opportunities with non-zero expected 

predictive maintenance option values. 

If the predictive maintenance opportunities are limited to 

once every 72 hours and 96 hours, the optimum predictive 

maintenance opportunities suggested by the European 

approach are plotted in Figure 10 (indicated by the arrows). 

The optimum opportunities shift as expected due to the 

changes in the predictive maintenance schedule. 

4. CONCLUSION 

The objective of the work presented in this paper is to 

determine the optimum predictive maintenance opportunity 

for a single wind turbine indicating an RUL. Uncertainties in 

the wind speed and the RUL prediction are considered, and a 

European ROA approach is applied. This work demonstrates 

the predictive maintenance option’s flexibility to expire if the 

predictive maintenance value is not enough to cover the 

predictive maintenance cost.  Unlike previous real options 

analyse (Haddad et al., 2014), which found the longest 

possible time to wait to perform maintenance and did not 

 

Figure 7. Percentage of the paths implementing 

predictive maintenance (predictive maintenance 

opportunity is once per hour) 
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Figure 9. Box plot for the predictive maintenance option 

values on the predictive maintenance opportunities with 

non-zero expected predictive maintenance option values 

(3rd, 4th, 5th and 6th opportunities in Figure 8) 
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Figure 10. Expected predictive maintenance option value 

curve when the predictive maintenance opportunity is 

once every 48 hours, 72 hours, or 96 hours 
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Figure 8. Expected predictive maintenance option value 

curve (predictive maintenance opportunity is once every 
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include RUL uncertainties, the model presented in this paper 

finds the best maintenance opportunity and includes RUL 

uncertainties due to uncertain wind speed and PHM 

prediction inaccuracies. 

In the future, the current model for a single turbine will be 

extended to a wind farm managed via a power purchase 

agreement (PPA) with multiple turbines indicating RULs 

concurrently. The predictive maintenance value for each 

turbine with an RUL is expected to depend on the operational 

state of the other turbines, the amount of energy delivered and 

to be delivered by the whole wind farm. 

The current model, which only considers a single 

maintenance event, could be extended through the wind 

farm’s life, by assuming that the optimum predictive 

maintenance opportunity will be determined after each RUL 

prediction. On each optimum date, if the wind turbines with 

RULs have not failed yet, and the predictive maintenance 

value is higher than the predictive maintenance cost, the 

predictive maintenance will be implemented; otherwise all 

turbines will be run to failure for corrective maintenance. 

Multiple predictive maintenance, corrective maintenance and 

preventive maintenance events can be simulated by using an 

ROA based discrete-event simulator to develop a life-cycle 

maintenance model to estimate the wind farm life-cycle 

O&M costs and net revenue. The O&M costs from multiple 

maintenance strategies (e.g., the preventive maintenance 

strategy, the corrective maintenance strategy and the 

predictive maintenance strategy implementing the predictive 

maintenance at the earliest opportunity) will be compared to 

quantitatively determine the O&M cost savings of the 

suggested ROA-based predictive maintenance scheduling 

method. 
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APPENDIX – CUMULATIVE REVENUE LOSS 

CONSTRUCTION 

This section provides a detailed discussion and construction 

of the cumulative revenue loss portion of the predictive 

maintenance value based on the following simplified 

scenario with no uncertainties. 

Assume a wind turbine is expected to operate for a total time 

period of T (e.g., 20 years). Only one subsystem may fail, and 

PHM has been introduced to predict that subsystem’s RUL. 

After an RUL indication is given by PHM, there is only one 

predictive maintenance opportunity before the turbine system 

fails (predictive maintenance downtime is ignored). If 

predictive maintenance does not occur, there will be a 

corrective maintenance event when the turbine system fails 

(corrective maintenance downtime is ignored in this 

simplified construction). We assume the wind speed during T 

is always constant, and therefore the rate at which the RUL is 

consumed is constant. Let dRUL be the time from the 

maintenance event to the next RUL indication, dPM be the 

time from the RUL indication to the predictive maintenance 

opportunity, and dCM be the time from the RUL indication to 

the turbine system failure, dRUL, dPM and dCM are all constant, 

and dPM < dCM. 

If the predictive maintenance strategy is always implemented 

during T, the total number of maintenance events, NPM 

(assume for simplicity that T is a multiple of dRUL + dPM, so 

there is no remainder) is, 

𝑁𝑃𝑀 =
𝑇

𝑑𝑅𝑈𝐿 + 𝑑𝑃𝑀
 (20) 

If the corrective maintenance strategy is always implemented 

during T, the total number of maintenance events, NCM 

(assume for simplicity that T is a multiple of dRUL + dCM) is, 

𝑁𝐶𝑀 =
𝑇

𝑑𝑅𝑈𝐿 + 𝑑𝐶𝑀
 (21) 

So we can get the relationship between NPM and NCM (NPM > 

NCM), 

𝑁𝐶𝑀 =
𝑁𝑃𝑀(𝑑𝑅𝑈𝐿 + 𝑑𝑃𝑀)

𝑑𝑅𝑈𝐿 + 𝑑𝐶𝑀
 (22) 

An example of the relationships among dRUL, dPM and dCM is 

shown in Figure 11 (assume that both the last predictive and 

the last corrective maintenance event will still be 

implemented) where each arrow signifies an RUL indication, 

each triangular represents a predictive maintenance event and 

each diamond represents a corrective maintenance event. 

Assume the revenue per unit time is r (the revenue rate), 

according to the definition of cumulative revenue loss, for the 

predictive maintenance strategy we can get the RL for each 

predictive maintenance event as 

 

Figure 11. Same time period (T): top: with a predictive 

maintenance strategy, and bottom: with a corrective 

maintenance strategy (assume NPM = 3 and NCM = 2) 
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𝑅𝐿 = 𝑟(𝑑𝑃𝑀 − 𝑑𝐶𝑀) (23) 

So the total RL during T is 

𝑁𝑃𝑀𝑅𝐿 = 𝑟𝑁𝑃𝑀(𝑑𝑃𝑀 − 𝑑𝐶𝑀) (24) 

Now we can address the question of where the RL happens 

and how. In the corrective maintenance strategy, if there will 

be NPM – NCM more corrective maintenance events after T, the 

turbine system can last longer for a time period of ET 

calculated as 

𝐸𝑇 = (𝑁𝑃𝑀 − 𝑁𝐶𝑀)(𝑑𝑅𝑈𝐿 + 𝑑𝐶𝑀) (25) 

The total revenue earned during ET is, 

𝑟𝐸𝑇 = 𝑟(𝑁𝑃𝑀 − 𝑁𝐶𝑀)(𝑑𝑅𝑈𝐿 + 𝑑𝐶𝑀) (26) 

So by substituting Eq. (22) into (26) 

𝑟𝐸𝑇 = −𝑟𝑁𝑃𝑀(𝑑𝑃𝑀 − 𝑑𝐶𝑀) = −𝑁𝑃𝑀𝑅𝐿 (27) 

Given a fixed number of spare parts, the magnitude of the 

total RL during T (-NPMRL) represents the extra revenue could 

be earned (rET) during extra operating time (ET) by replacing 

the predictive maintenance strategy with the corrective 

maintenance strategy. Figure 12 shows that based on the case 

in Figure 11, there will be one more corrective maintenance 

event during ET. 

In this simple example with no uncertainties, within T both 

the predictive and corrective maintenance strategy will 

generate the same cumulative revenue, while the former will 

require more spare parts. If the wind turbine is supported 

under either a predictive or corrective maintenance 

assumption with an identical number of spare parts, the 

corrective maintenance strategy allows it to operate for an 

extra period of time (because corrective maintenance does 

not throw away any part life). The cumulative revenue loss 

associated with the predictive maintenance strategy 

corresponds to the revenue that would be earned in this extra 

period of time. 

NOMENCLATURE 

ARULC  RUL sample in calendar time 

ARULF  RUL sample in cycles 

B  height of the recorded wind speed data 

CCM  corrective maintenance cost 

CPM  predictive maintenance cost 

CA  avoided corrective maintenance cost  

CA(t) avoided corrective maintenance cost with 

predictive maintenance at time t 

CRCM(τ1, τ2) cumulative revenue earned  from time τ1 to 

τ2 with the turbine running to failure 

CRPM(τ1, τ2) cumulative revenue earned from τ1 to τ2 

with predictive maintenance 

D(τ) RUL consumption in cycles from τ-1 to τ 

dCM time from the RUL indication to the turbine 

system failure 

dPM time from the RUL indication to the 

predictive maintenance event 

dRUL time from the maintenance event to the 

next RUL indication 

DT  downtime for corrective maintenance 

ECM(τ) energy generated from τ-1 to τ with the 

turbine running to failure 

EPM(τ) energy generated from τ-1 to τ with 

predictive maintenance 

ER energy generated by wind turbine from 

time τ-1 to τ with rated power 

EOPM(t) expected predictive maintenance option 

value at time t 

ET extra time period the wind turbine system 

can operate by NPM – NCM spares after T 

f(·) probability distribution function of 

historical wind speed data 

g(·)  power curve function 

H  wind turbine hub height 

l  time step 

LDT revenue loss during downtime for 

corrective maintenance 

M  number of wind speed paths 

NPM total number of predictive maintenance 

events during T 

NCM total number of corrective maintenance 

events during T 

OPM(t) predictive maintenance option value at 

time t 

PC  energy price 

r  revenue during a unit time (revenue rate) 

RCM(τ) revenue earned from τ-1 to τ with the 

turbine running to failure 

RPM(τ) revenue earned from τ-1 to τ with 

predictive maintenance 

RL  cumulative revenue loss 

RL(t) cumulative revenue loss with predictive 

maintenance at time t 

RULC predicted remaining useful life in calendar 

time 

RULF  predicted remaining useful life in cycles 

S  Historical wind speed 

SB(τ) simulated wind speed on height B from τ-1 

to τ 

SCI  cut-in speed of the wind turbine 

 

Figure 12. Same number of spare parts (NPM = NCM = 3): 

top: period T with the predictive maintenance strategy, 

and bottom: T + ET with the corrective maintenance 

strategy 
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SCO  cut-out speed of the wind turbine 

SH(τ) simulated wind speed on height H from τ-

1 to τ 

SRW  rational wind speed of the wind turbine 

t time of the predictive maintenance 

opportunity 

T  total operating time 

VPM  predictive maintenance value 

VPM(t) predictive maintenance value with 

predictive maintenance at time t 

α  Power Law exponent 

β  Weibull distribution shape parameter 

Γ(·)  Gamma function 

η  Weibull distribution scale parameter 

μ  mean of the recorded wind speed data 

σ standard deviation of the recorded wind 

speed data 

τ  time after time 0 with l per step 

ω nominal rotational speed of the wind 

turbine rotor 
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