1,038 research outputs found

    MACHINE LEARNING FOR ELECTRONIC STRUCTURE PREDICTION

    Get PDF
    Kohn-Sham density functional theory is the work horse of computational material science research. The core of Kohn-Sham density functional theory, the Kohn-Sham equations, output charge density, energy levels and wavefunctions. In principle, the electron density can be used to obtain several other properties of interest including total potential energy of the system, atomic forces, binding energies and electric constants. In this work we present machine learning models designed to bypass the Kohn-Sham equations by directly predicting electron density. Two distinct models were developed: one tailored to predict electron density for quasi one-dimensional materials under strain, while the other is applicable across a wide array of material systems, with a specific emphasis on metallic and alloy compositions. The first model applies to important classes of material systems such as nanotubes, for which, tuning the interplay of mechanical deformations and electronic fields --- i.e., strain engineering --- is an active area of investigation. Using armchair single wall carbon nanotubes as a example, we demonstrate the use of the model to predict ground state electron density and the nuclear pseudocharges, when three parameters --- namely, the radius of the nanotube, its axial stretch, and the twist per unit length --- are specified as inputs. Other electronic properties of interest, including the ground state electronic free energy, can be evaluated from these predicted fields with low-overhead post-processing, typically to chemical accuracy. We anticipate that this framework will find utility in the automated discovery of low--dimensional materials, as well as the multi-scale modeling of such systems. The second model has an emphasis on metallic and alloy systems. One of the fundamental challenge for this model is generation of training data. The computational expense of KS-DFT scales cubically with system size which tends to stymie training data generation, making it difficult to develop quantifiably accurate ML models that are applicable across many scales and system configurations. Here, we address this fundamental challenge by employing transfer learning to leverage the multi-scale nature of the training data, while comprehensively sampling system configurations using thermalization. Our ML models are less reliant on heuristics, and being based on Bayesian neural networks, enable uncertainty quantification. We show that our models incur significantly lower data generation costs while allowing confident --- and when verifiable, accurate --- predictions for a wide variety of bulk systems well beyond training, including systems with defects, different alloy compositions, and at unprecedented, multi-million-atom scales. Moreover, such predictions can be carried out using only modest computational resources

    Evaluation of process-structure-property relationships of carbon nanotube forests using simulation and deep learning

    Get PDF
    This work is aimed to explore process-structure-property relationships of carbon nanotube (CNT) forests. CNTs have superior mechanical, electrical and thermal properties that make them suitable for many applications. Yet, due to lack of manufacturing control, there is a huge performance gap between promising properties of individual CNTs and CNT forest properties that hinders their adoption into potential industrial applications. In this research, computational modelling, in-situ electron microscopy for CNT synthesis, and data-driven and high-throughput deep convolutional neural networks are employed to not only accelerate implementing CNTs in various applications but also to establish a framework to make validated predictive models that can be easily extended to achieve application-tailored synthesis of any materials. A time-resolved and physics-based finite-element simulation tool is modelled in MATLAB to investigate synthesis of CNT forests, specially to study the CNT-CNT interactions and generated mechanical forces and their role in ensemble structure and properties. A companion numerical model with similar construct is then employed to examine forest mechanical properties in compression. In addition, in-situ experiments are carried out inside Environmental Scanning Electron Microscope (ESEM) to nucleate and synthesize CNTs. Findings may primarily be used to expand the forest growth and self-assembly knowledge and to validate the assumptions of simulation package. Also, SEM images can be used as feed database to construct a deep learning model to grow CNTs by design. The chemical vapor deposition parameter space of CNT synthesis is so vast that it is not possible to investigate all conceivable combinations in terms of time and costs. Hence, simulated CNT forest morphology images are used to train machine learning and learning algorithms that are able to predict CNT synthesis conditions based on desired properties. Exceptionally high prediction accuracies of R2 > 0.94 is achieved for buckling load and stiffness, as well as accuracies of > 0.91 for the classification task. This high classification accuracy promotes discovering the CNT forest synthesis-structure relationships so that their promising performance can be adopted in real world applications. We foresee this work as a meaningful step towards creating an unsupervised simulation using machine learning techniques that can seek out the desired CNT forest synthesis parameters to achieve desired property sets for diverse applications.Includes bibliographical reference

    Machine Learning‑Assisted Low‑Dimensional Electrocatalysts Design for Hydrogen Evolution Reaction

    Get PDF
    Efficient electrocatalysts are crucial for hydrogen generation from electrolyzing water. Nevertheless, the conventional trial and error method for producing advanced electrocatalysts is not only cost-ineffective but also time-consuming and labor-intensive. Fortunately, the advancement of machine learning brings new opportunities for electrocatalysts discovery and design. By analyzing experimental and theoretical data, machine learning can effectively predict their hydrogen evolution reaction (HER) performance. This review summarizes recent developments in machine learning for low-dimensional electrocatalysts, including zero-dimension nanoparticles and nanoclusters, one-dimensional nanotubes and nanowires, two-dimensional nanosheets, as well as other electrocatalysts. In particular, the effects of descriptors and algorithms on screening low-dimensional electrocatalysts and investigating their HER performance are highlighted. Finally, the future directions and perspectives for machine learning in electrocatalysis are discussed, emphasizing the potential for machine learning to accelerate electrocatalyst discovery, optimize their performance, and provide new insights into electrocatalytic mechanisms. Overall, this work offers an in-depth understanding of the current state of machine learning in electrocatalysis and its potential for future research

    NanoSolveIT project: driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment

    Get PDF
    Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physicochemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly increasing range of commercial applications; this, however, may come at a cost, if an association to long-term health and environmental risks is discovered or even just perceived. Many nanomaterials (NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time constraints associated with the experimental assessment, frequently involving animals. Here, the available NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte, NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data as well as data for several relevant biological endpoints, assessed in part using harmonized Organisation for Economic Co-operation and Development (OECD) methods and test guidelines. Integration of such extensive NM information sources with the latest nanoinformatics methods will allow NanoSolveIT to model the relationships between NM structure (morphology), properties and their adverse effects and to predict the effects of other NMs for which less data is available. The project specifically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation of computational ‘safe-by-design’ approaches to facilitate NM commercialization

    Evaluation of the availability and applicability of computational approaches in the safety assessment of nanomaterials: Final report of the Nanocomput project

    Get PDF
    This is the final report of the Nanocomput project, the main aims of which were to review the current status of computational methods that are potentially useful for predicting the properties of engineered nanomaterials, and to assess their applicability in order to provide advice on the use of these approaches for the purposes of the REACH regulation. Since computational methods cover a broad range of models and tools, emphasis was placed on Quantitative Structure-Property Relationship (QSPR) and Quantitative Structure-Activity Relationship (QSAR) models, and their potential role in predicting NM properties. In addition, the status of a diverse array of compartment-based mathematical models was assessed. These models comprised toxicokinetic (TK), toxicodynamic (TD), in vitro and in vivo dosimetry, and environmental fate models. Finally, based on systematic reviews of the scientific literature, as well as the outputs of the EU-funded research projects, recommendations for further research and development were also made. The Nanocomput project was carried out by the European Commission’s Joint Research Centre (JRC) for the Directorate-General (DG) for Internal Market, Industry, Entrepreneurship and SMEs (DG GROW) under the terms of an Administrative Arrangement between JRC and DG GROW. The project lasted 39 months, from January 2014 to March 2017, and was supported by a steering group with representatives from DG GROW, DG Environment and the European Chemicals Agency (ECHA).JRC.F.3-Chemicals Safety and Alternative Method

    Accuracy and Transferability in Machine Learned Potentials for Carbon

    Get PDF
    In this thesis, we discuss the approach taken to construct an accurate machine learning (ML) model for atomistic simulations of carbon, constructed using the Gaussian approximation potential (GAP) methodology. We begin by discussing the process for constructing a potential for a single phase, graphene. We then extend this to produce a general-purpose potential, named GAP-20, which describes the properties of the bulk crystalline and amorphous phases, crystal surfaces, and defect structures with a high degree of accuracy. We combine structural databases for amorphous carbon and graphene, which we extend substantially by adding suitable configurations, for example, for defects in graphene and other nanostructures. The final potential is fitted to reference data computed using the optB88-vdW density functional theory (DFT) functional. Dispersion interactions, which are crucial to describe multilayer carbonaceous materials, are therefore implicitly included. We additionally account for long-range dispersion interactions using a semianalytical two-body term and show that an improved model can be obtained through an optimization of the manybody smooth overlap of atomic positions descriptor. We rigorously test the potential on lattice parameters, bond lengths, formation energies, and phonon dispersions of numerous carbon allotropes. We compare the formation energies of an extensive set of defect structures, surfaces, and surface reconstructions to DFT reference calculations. The present work demonstrates the ability to combine, in the same ML model, the previously attained flexibility required for amorphous carbon with the high accuracy necessary for crystalline graphene which we introduce in this thesis, thereby providing an interatomic potential that will be applicable to a wide range of applications concerning diverse forms of bulk and nanostructured carbon

    Optimizing interatomic potentials for phonon properties

    Get PDF
    Molecular dynamics (MD) simulations calculate the trajectory of atoms as a function of time. Material properties that depend on the dynamics of atoms can be predicted in terms of these atomic motions, yielding insight into atomic-level behaviors that ultimately dictate these properties. Such insight is crucial for developing a low-level understanding of material behavior, and MD simulations have been used to successfully predict properties for decades. Thermal transport properties in solids are largely dictated by collective atomic vibrations known as phonons, which can be understood and probed deeply through analysis of MD trajectories. The heart of MD simulations is the mathematical representation of potential energy between atoms, termed the interatomic potential, from which the forces and dynamics are calculated. The use of MD simulations to generally predict and describe thermal transport has not been fully realized due to the lack of accurate interatomic potentials for a variety of systems and obtaining accurate interatomic potentials is not a trivial task. Furthermore, it is not known how to create potentials that are guaranteed to accurately predict phonon properties, and this thesis seeks to answer this question. The goal is to create potentials that accurately predict phonon properties, which are thereby termed phonon optimized potentials (POPs).M.S

    A computational view on nanomaterial intrinsic and extrinsic features for nanosafety and sustainability

    Get PDF
    In recent years, an increasing number of diverse Engineered Nano-Materials (ENMs), such as nanoparticles and nanotubes, have been included in many technological applications and consumer products. The desirable and unique properties of ENMs are accompanied by potential hazards whose impacts are difficult to predict either qualitatively or in a quantitative and predictive manner. Alongside established methods for experimental and computational characterisation, physics-based modelling tools like molecular dynamics are increasingly considered in Safe and Sustainability-by-design (SSbD) strategies that put user health and environmental impact at the centre of the design and development of new products. Hence, the further development of such tools can support safe and sustainable innovation and its regulation. This paper stems from a community effort and presents the outcome of a four-year-long discussion on the benefits, capabilities and limitations of adopting physics-based modelling for computing suitable features of nanomaterials that can be used for toxicity assessment of nanomaterials in combination with data-based models and experimental assessment of toxicity endpoints. We review modern multiscale physics-based models that generate advanced system-dependent (intrinsic) or timeand environment-dependent (extrinsic) descriptors/features of ENMs (primarily, but not limited to nanoparticles, NPs), with the former being related to the bare NPs and the latter to their dynamic fingerprinting upon entering biological media. The focus is on (i) effectively representing all nanoparticle attributes for multicomponent nanomaterials, (ii) generation and inclusion of intrinsic nanoform properties, (iii) inclusion of selected extrinsic properties, (iv) the necessity of considering distributions of structural advanced features rather than only averages. This review enables us to identify and highlight a number of key challenges associated with ENMs’ data generation, curation, representation and use within machine learning or other advanced data-driven models to ultimately enhance toxicity assessment. Finally, the set up of dedicated databases as well as the development of grouping and read-across strategies based on the mode of action of ENMs using omics methods are identified as emerging methodologies for safety assessment and reduction of animal testing
    • …
    corecore