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Nanotechnology has enabled the discovery of a multitude of novel materials exhibiting unique physico-
chemical (PChem) properties compared to their bulk analogues. These properties have led to a rapidly
increasing range of commercial applications; this, however, may come at a cost, if an association to
long-term health and environmental risks is discovered or even just perceived. Many nanomaterials
(NMs) have not yet had their potential adverse biological effects fully assessed, due to costs and time con-
straints associated with the experimental assessment, frequently involving animals. Here, the available
NM libraries are analyzed for their suitability for integration with novel nanoinformatics approaches
and for the development of NM specific Integrated Approaches to Testing and Assessment (IATA) for
human and environmental risk assessment, all within the NanoSolveIT cloud-platform. These established
and well-characterized NM libraries (e.g. NanoMILE, NanoSolutions, NANoREG, NanoFASE, caLIBRAte,
NanoTEST and the Nanomaterial Registry (>2000 NMs)) contain physicochemical characterization data
as well as data for several relevant biological endpoints, assessed in part using harmonized
Organisation for Economic Co-operation and Development (OECD) methods and test guidelines.
Integration of such extensive NM information sources with the latest nanoinformatics methods will allow
NanoSolveIT to model the relationships between NM structure (morphology), properties and their
adverse effects and to predict the effects of other NMs for which less data is available. The project specif-
ically addresses the needs of regulatory agencies and industry to effectively and rapidly evaluate the
exposure, NM hazard and risk from nanomaterials and nano-enabled products, enabling implementation
of computational ‘safe-by-design’ approaches to facilitate NM commercialization.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

Nanotechnology has increased accessibility to novel, diverse
materials with dimensions of ~1–100 nm, the size range within
which novel physicochemical (PChem) properties appear and
transport processes occur in living systems; such materials are
being used in a multitude of industrial and consumer-goods appli-
cations. The advantages of engineered nanomaterials (NMs) over
similar materials in bulk are well defined; however, in most of
the cases, risk assessment (RA) of the potential hazards arising
from these new materials properties is incomplete or lacking. Cur-
rently, evaluation of possible NM-related risks is an expensive,
slow and complicated task, usually achieved by combinations of
in vitro and in vivo experiments that estimate human and environ-
mental hazards. Clear conclusions regarding the hazards posed by
NMs are often very difficult because the interpretation of experi-
mental results is influenced by the type of procedures and proto-
cols applied, and studies are usually limited to just a few NMs,
doses and timepoints. At this stage, it is clear that proper use of
existing high-efficacy occupational technical- and personal protec-
tion equipment can be used to sufficiently reduce exposure to NMs,
[41,68,175] and that the effects from acute exposure to NMs at
realistic doses mirror those from anthropogenic particle exposure.
However, the challenges now involve assessing long-term low-
level chronic exposures, and biological and ecological impacts from
multi-component NMs where for example, the different compo-
nents may degrade at different rates. A validated, predictive in sil-
ico approach that takes into account the complexity of NMs and the
diverse environments in which they are deployed is essential for
timely RA and continued progress in nanosafety research.

Despite the great success of computational methods to model
and predict properties of conventional chemicals over many years,
development of analogous quantitative models relating engineered
NMs structure (morphology) to PChem properties and to toxic
effects is still underdeveloped, due to:

� The relative paucity of reliable experimental data on the biolog-
ical properties of NMs;

� Intrinsic complexity of NMs in particle size distribution, shape
and degree of agglomeration compared to small organic
molecules;

� A limited number of systematic studies on the dynamic interac-
tion of NMs with available macromolecules when placed in a
biological environment (such as serum, plasma and environ-
mental compartments) to potentially form coronas which then
become the ‘‘biologically relevant entity” seen by cells and
organisms, and the role thereof.

� Systematic studies conducted to date are limited only to a few
nanostructure descriptors and/or physicochemical properties
namely, size, shape and surface properties [14,115].

Despite these limitations, significant progress has been made in
recent years towards understanding the drivers of NMs toxicity
and ecotoxicity [188,189]. Size has long been the defining feature
of nanoscale materials along with surface area, but is not in itself
sufficient as a predictor of toxicity [24]. Surface charge has also
been found in many studies to drive toxicity, with cationic NMs
being more toxic than negatively charged materials of similar com-
position, likely a result of strong electrostatic interactions between
cationic NMs and negatively charged membranes [42,77]. Indeed,
there are several models linking zeta potential and NMs toxicity
in the literature [59,99,165]. The presence of crystalline order in
materials is another key driver of toxicity, known since the earliest
studies with quartz silica and asbestos and applies to NMs such as
TiO2 and SiO2, where amorphous forms have low toxicity while
some ordered structures are especially toxic [4,122]. Band-gap is
another common NM property linked with toxicity, as overlap of
NM and cellular conductance bands facilitates transfer of electrons
and oxidative stress [190]. Surface bond strain arising from high
curvature and high temperature synthesis is another feature
strongly correlated with toxicity, which explains differences
between materials of similar composition produced by different
synthesis methods (e.g. with and without high temperatures)
[154,189]. A less investigated parameter that may be important
for carbon-based NMs such as CNTs and graphene-like materials
is chirality [38]. Many of the properties of NMs are influenced by
their surroundings, so-called extrinsic properties, such as dissolu-
tion and formation of a biomolecule corona [12,89]. Binding of
specific proteins that facilitate receptor mediated uptake is also a
much-investigated feature of NMs, as this drives much of the sub-
sequent signalling [74,180]. In the environment, transformations
such as sulfidation, oxidation and interaction with phosphate,
can change NM stability and toxicity [135,139]. Thus, it is increas-
ingly clear that a wide range of NMs structure descriptors and
properties, many of which are interlinked, are correlated with their
toxicity. Modelling can elucidate the main drivers of NM toxicity
via quantum mechanical and atomistic parameters that provide
important insights into reactivity and mechanisms.

Evaluating the hazards of NMs requires the integration and
assessment of currently quite disparate NMs characterization and
toxicity data, categorization and grouping of NMs, as well as the
derivation of exposure routes, forms and concentrations, and haz-
ard threshold levels for human health and the environment.
Assessing the hazards of NMs solely based on laboratory tests is
time-consuming, resource intensive and constrained by ethical
considerations [154]. Consequently, over the past couple of dec-
ades, computational approaches for modelling the relationships
between NM structure, properties and their biological effects have
become a key priority. This field has been reviewed by Winkler
et al. [182], but has since advanced further. The most successful
computational models, capable of predicting biological properties
of NMs in diverse and complex environments, are based on the
quantitative structure–activity relationship (QSAR) method. This,
and related methods, use statistical and machine learning (ML)
algorithms to model relationships between a materials’ structure,
molecular properties, provenance and other parameters, and their
biological effects. The application of these methods to diverse
materials and NMs has been comprehensively reviewed by a num-
ber of authors [15,73,183], providing some very useful tools.
Although data driven, these computational methods are still cap-
able of modelling relatively small data sets [36]. Clearly, larger
integrated data sets, and future as yet to be produced data, form
the basis for more comprehensive models that will increase
automation of experimental data analysis and interpretation.
These computational approaches can rapidly fill data gaps, exploit
‘read across’ prediction of biological effects of similar materials,
and classify the hazards of NMs to individual species. They are also
valuable adjuncts to experimental data on the biological properties
of new materials, which remains the bottleneck for reliable risk
predictions [1,55,97,172]. Indeed, in silico models of this type are
used extensively by scientists in academia and industry to reliably
calculate PChem properties, and to evaluate effects on human and
environmental health, ecotoxicological behaviour and fate of a
broad range of chemical substances including complex materials.
More importantly, integrating these data resources across disci-
plines, such as chemoinformatics, systems biology and ‘omics
approaches etc., including with non-nanotechnology resources,
will support multiple objectives including the reuse of existing
information [60]. In addition, this deeper analysis may lead to
new discoveries fuelling the innovation pipeline.
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2. Materials and methods

Below we summarize the latest advances in five important
fields of the nanoinformatics sector and how they can be further
explored, expanded and incorporated in future generations of
NM computational modelling tools and infrastructure. These
include: i) dataset curation, quality assessment and knowledge
infrastructures, ii) toxicogenomics modelling, iii) multi-scale mod-
elling (physics-based and data driven), iv) predictive modelling
(data driven) and v) NMs human and environmental RA. Despite
the continuous advances in each sector, researchers face important
challenges that need to be solved urgently. These advances are
exploited within the European Commission Horizon2020 funded

project NanoSolveIT to create the relevant nanoinformatics e-
platform to facilitate in silico NMs exposure, hazard and risk assess-
ment. To this end, each sub-chapter includes a short analysis and
review of the state-of-the-art and recent bibliography, as well as
a concise presentation of how the main challenges of each field
are being tackled by the authors.
2.1. NMs datasets and knowledge infrastructures

Development of nanotoxicity prediction models is becoming
increasingly important in risk assessment (RA) of engineered
NMs but is dependent on the availability of good datasets with
high data quality, completeness [92], and quantity (in terms of
numbers of different NMs, but also incorporating a range of doses,
timepoints, cell or organism types and end-points). While industry
is responsible for the provision of data for their specific NMs for
regulatory evaluation, research is required to develop the predic-
tive models to enable reduction of the experimental data needed
for regulatory RA. However, computational researchers face signif-
icant challenges in acquiring this data needed for the development
of robust models. These have included the wide heterogeneity of
published literature data in terms of NMs characterization, expo-
sure and hazard data reported, the availability of the underpinning
datasets in a form useful for modelling, and in regards to the vari-
able degrees of completeness and quality of available datasets
[92,157]. Therefore, in the field of nanoinformatics, there has been
special emphasis on the curation and quality assessment of nano-
safety data. A small number of recent projects have thus prioritized
the curation of literature data and datasets generated in past pro-
jects that ended before the current (evolving) standards for data
quality emerged (e.g. NanoReg2 and caLIBRAte projects curating
NaNoReg data), NanoSolveIT partners curating literature publica-
tions on NMs transcriptomics etc.).

Diversity of experimental approaches in the literature data has
led to many missing values (data gaps) and differing data quality
(numbers of replicates, signal to noise ratio, relevance of end-
points, different experimental conditions etc.), such that assess-
ment of the quality and completeness of the collected data is a
critical issue for modellers and regulators [92]. Previously, Klim-
isch et al. [65] proposed criteria to assess the reliability of toxico-
logical and eco-toxicological data based on the source of the
toxicity data (i.e. whether the data were produced using interna-
tional standard operating procedures (SOPs) such as the aforemen-
tioned OECD test guidelines). Thereafter, Lubinski et al. [83]
expanded on these criteria to include PChem properties of NMs
such as size, shape, and surface charge. Recently, Ha et al. [45]
and Trinh et al. [168] further extended criteria for evaluation of
the quality and completeness of NM’s PChem data. The quality
and completeness of these data were determined using a set of
rules which specifically assigned a PChem score for each attribute
reported (i.e. core size, hydrodynamic size, surface charge and
specific surface area). The score for each attribute was composed
of two sub-scores; one for the reliability of the data source (score
range: 0–3) and another for the reliability of the measurement
method (score range: 0–2). To evaluate the quality and complete-
ness of a dataset, the average values and standard deviation of
scores of all data rows in a dataset are used [168].

2.1.1. Data generation and curation activities
To support the development of better prediction models, there

has been several data generation and data curation and quality
assessment activities reported. For instance, Hendren et al. [50]
introduced the NMs Data Curation Initiative almost 10 years ago,
and explored the critical aspect of data curation within the devel-
opment of informatics approaches to understand the behaviour of
NMs, while Powers et al. [130] proposed a workflow for nanosafety
data curation and Robinson et al. [92] discussed various issues in
the evaluation of curated NM data, such as considering its com-
pleteness and quality, where the requirements for each will
depend on the purpose for which the data was generated and/or
will be re-used. Examples of experimentally generated and litera-
ture mined datasets suitable for modelling have also recently
emerged. For example, Puzyn et al. [131] performed an experiment
to determine toxicity of 17 different types of metal oxide NMs
towards E. coli and proposed a simple equation for prediction of
the effective concentration at which 50% of the organisms were
killed (EC50) using the enthalpy of formation of a gaseous cation.
Walkey et al. [177] published experimental data and a model uti-
lizing protein corona fingerprints to predict NMs cellular attach-
ment, consisting of 105 surface modified gold NMs, although it
turns out that the corona isolation method utilized here inadver-
tently removed albumin which is usually a major constituent of
NM protein coronas [76,177]. Furthermore, Oh et al. [118] con-
ducted a meta-analysis of more than 300 published articles report-
ing the toxicity of quantum dots and found that only a few
parameters - surface properties, diameter, assay type, and expo-
sure time, contributed significantly to their toxicity. Gernand
et al. [40] collected and analyzed literature data on the rodent pul-
monary toxicity of uncoated, unfunctionalized carbon nanotubes
(CNTs) and proposed that the main factors driving pulmonary tox-
icity of CNTs were metallic impurities, CNT length, CNT diameter,
and aggregate size. Melagraki et. al. [97] used in silico methods to
investigate published datasets, constructing and validating a pre-
dictive model using an organized dataset on NMs cellular uptake
of 109 NPs tested in pancreatic cancer cells (PaCa2). Recently, Ha
et al. [45] extracted and compiled a dataset for 26 metal oxide
NMs from 216 literature articles related to the toxicity of metal
oxide NMs. Trinh et al. [168] on the other hand, collected cytotox-
icity data of metallic NMs, which includes PChem properties, their
measurement methods (PChem attributes), in vitro cytotoxicity
assay conditions and resultant cell viability data (Tox attributes).
Each of these datasets has been, and continues to be, re-used in
the development of predictive models for NM toxicity prediction.

Importantly, a number of large EC and internationally funded
projects were recently completed (e.g. [29]), describing large
libraries of well characterized NMs and their accompanying hazard
and/or exposure datasets. Table 1 lists these datasets, which are in
various stages of curation and ontological annotation for semantic
mapping and database integration, by project: eNanoMapper,
NanoMILE, NanoSolutions, NANoREG, NanoReg2, caLIBRAte,
NanoTEST, NanoFASE, the Nanomaterials Registry, the 2 NSF-
funded centers for environmental implications of NMs (CEINT
and CEIN) and South Korea’s S2Nano, for which several relevant
PChem and biological endpoints have been assessed mostly using
OECD methods.

Based predominantly on OECD documents from 2005 to 2017,
Steinhauser and Sayre reviewed and summarized the key PChem
properties, their preferred measurement metrics, as well as



Table 1
Datasets from various sources contributed by NanoSolveIT partners which are currently being curated and ontologically annotated by NanoSolveIT for use in modelling and
federation into a knowledge commons.

Projects Materials Information included Numbers

NanoMILE Diverse NMs (i.e. ZnO, CuO, Au, Ag, CoO, SiO2, BaTiO3, AlOOH, Si,
CeO2, CuO, hydroxyapatite) with nanoinformatics and in vitro
toxicity data

Size dependent nanodescriptors >3000
datapoints

NanoSolutions A panel of 30 industrial NMs each with variants of surface –
uncoated, positive, negative and PEG coated. Also CNTs,
Nanocellulose and more.

Omics and intrinsic properties on NM in vitro / in vivo
effects
in vitro high throughput screening

>100 NMs
31

SmartNanoTox TiO2, SiO2, Au, carbon nanotubes etc. (binding free energies and
potentials of mean force for interactions for all)

Interactions of amino acids and components of lipids and
sugars with NMs (computational and experimental data)

>5 NMs

NanoFASE TiO2, CeO2, Ag, Ag2S Transformations of NMs in the environment (air, water,
sediment, soil, waste treatment and biota) and release
models

Nanomaterial Registry Diverse NMs NanoMaterials Registry Database >2000
datapoints

NanoTEST TiO2, two fluorescent SiO2, Iron oxide coated and uncoated,
PLGA

Genotoxicity, cytotoxicity, uptake, oxidative stress >5000
datapoints

S2NANO Various engineered NMs (e.g., Oxide NM, Metallic NMs, and
Carbonaceous NMs) 28–30 Curated from literature and
experimental studies.

PChem properties / characterization; cytotoxicity assay
conditions.

16 NMs
datasets

CEINT NIKC Ag/Ag2S, CuO, Graphene oxide, CNTs, CeO2, nZVI, cellulose
nanocrystals, TiO2, gold etc. – literature curated datasets /
mesocosm datasets.

NM intrinsic, extrinsic (system dependent), social (e.g. use
scenarios, matrix, concentration in products) properties;
System characteristics; Exposure / Hazard data; Meta-data
(protocol, temporal and spatial descriptors etc.)

20 NMs
datasets

UC-CEIN NanoDatabank Pristine MOx NM, quantum dots, CNTs/graphene 300
toxicological assessments, 150 investigations (curated data
from over 500 publications)

PChem properties / characterization; toxicological
assessments; NM fate, transport and material
characterization.

->1000 NMs

Modern metal oxide NPs of 12 sizes between 5 and 60 nm 35 full particle nano-descriptors 24 NMs
10,080
datapoint

NanoTOES Ag NMs: 3 different sizes same surface properties, Ag NMs
20 nm with 6 different surface properties

PChem properties / characterization; cytotoxicity and
genotoxicity endpoints;

9 NMs,
>1000
datapoints

eNanoMapper Publicly available datasets included PChem properties / characterization; Hazard data 636 NMs,
~1750
datapoints
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strengths/weaknesses of intrinsic and extrinsic properties (where
they go, i.e. persistence, or, what they do, i.e. reactivity) in terms
of predicting NMs behaviour [151]. The major intrinsic properties
that they focused on included particle size distribution (number
average), particle shape (e.g. aspect ratio), surface area, redox
potential/band gap, crystalline phase(s), hydrophobicity, chemical
composition (impurities, surface chemistry), and, rigidity. The
extrinsic properties related to persistence included biodurability,
zeta potential, density, dustiness (depends on moisture), dissolu-
tion rate (in environment, acellular), agglomeration/hydrodynamic
diameter (dispersion stability) and surface affinity. Those related to
reactivity only included reactive oxygen species (ROS) production
and photoreactivity. A key factor in determining the extrinsic prop-
erties is the need to characterize the NMs in the relevant exposure
medium and across the relevant exposure times [87,89].
2.1.2. Computational approaches for data gap filling and interpolation
Technological advances including high content and high

throughput screening and omics approaches have transformed
nanosafety research into a data rich field. Concurrently, nanoinfor-
matics and ML-based in silico modelling applied to nanosafety
require even larger data sets. For NM property models to be robust,
predictive, and broadly applicable, large amounts of high-quality
and complete experimental data are needed, that are organized
and accessible. A current bottleneck is the fragmentation and inac-
cessibility of much of the data generated to date. To overcome this
data fragmentation and facilitate model development, new pro-
cesses need to be developed and implemented that will allow the
capturing of both the NM data and the associated metadata making
the produced datasets findable, accessible, interoperable and re-
usable (FAIR) [54,181]. This two-fold process aims at extending
existing nanosafety and nanoinformatics databases with interfaces
that allow curation, ontological annotation and semantic mapping
of the data schema, and extraction of data and knowledge about
NMs, as well as implementation of very focused set of experiments,
designed to fill gaps identified in the existing large datasets. The
combination of these activities will support the development of
computational predictive toxicology methods, enable in silicomod-
els to perform at optimum levels, and increase the predictive
power of the overall Integrated Approaches to Testing and Assess-
ment (IATA) for human and environmental RA that is envisioned
within NanoSolveIT. A strong focus is given to the production of
curated, reliable NMs safety data under the FAIR principles [181].

Among the approaches available to overcome data fragmenta-
tion and data inaccessibility is data mining from literature and sub-
sequent meta-analysis of the curated data [5,71], although this can
be extremely time consuming if done manually. Text mining algo-
rithms are under development [44,78] and their suitability for NMs
is being evaluated within other ongoing nanosafety data projects

such as NanoCommons. One issue arising from these literature
mining approaches is the degree of data quality and completeness
[83,92], as well as the comparability of datasets generated by dif-
ferent groups using different batches of NMs [102] or characteriza-
tion protocols. More specifically, data quality concerns originate
from the different methods/protocols and experimental conditions
used for the data production (e.g. lack of characterization in the
exposure media) and the lack of sufficient metadata to describe
the data and ensure interoperability. Data completeness concerns
are linked with the amount of PChem characterization of NMs per-
formed prior to and during the experimental procedure in the rel-
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evant exposure medium, and the respective endpoints (toxicologi-
cal, omics etc.) measured. The impact of these factors on modelling
can be increased data variance and unreliability and decreased
model robustness and predictivity. This is especially true in the
development of nano-QSAR/nano-QSPR (quantitative structure–
property relationship) models, where the variability observed in
the PChem properties of NM might be higher than it is in reality
[83].

To overcome these issues several approaches have been pro-
posed [36,37,45,90,168]. For example, Ha et al. [45], demonstrated
the benefits of data gap filling during the meta-analysis of the cyto-
toxicity of metal oxide NM using data mined from 216 publica-
tions, which resulted in 6,842 data rows and 14 attributes of
nanostructure descriptors, PChem, toxicological and quantum–me-
chanical (QM) (computational) properties. Gap-filling was
achieved using information from manufacturers’ specifications,
references utilizing the same NM or with estimation from other
PChem properties. Data quality was assessed using a scoring sys-
tem based on the presence and origin of data. Gajewicz et al.
[36], on the other hand, proposed the use of read-across algorithms
to predict the missing values and improve the predictive outcome
of predictive models. In all cases, data gap-filling and increased
data quality resulted in increased accuracy of the nano-
structure–activity relationships models.

For such methods to be successful, detailed workflows for the
experimental and literature data curation are needed [130]. Simi-
larly, standardized experimental workflows, and complete report-
ing of experimental procedures including computational and
database mining, need to be established to ensure data repro-
ducibility at a wider scale [17,76,137]. NanoSolveIT aims to
develop the gap-filling approaches and curation workflows
through the gathering of existing datasets originating from
recently completed EU funded projects (e.g. NanoMILE, NanoFASE,
caLIBRAte, NanoTEST and others reported in Table 1 above), per-
forming the necessary evaluation of the existing data and metadata
and designing detailed experiments to fill the identified gaps in the
NM PChem characterization and toxicity endpoints, thus increas-
ing their quality. The resulting larger datasets will then be used
by the modelling partners for the development of more robust in
silico approaches with wider domains of applicability and
enhanced predictive capability, while the developed standardized
workflows will be made available for experimentalists to guide
them in the production of the necessary scale and completeness
of data for use in modelling approaches.

2.1.3. Dedicated NMs databases organized for modelling and
informatics

The NanoSolveIT knowledge base will extend the NanoCom-
mons / eNanoMapper databases with innovative, ontology-based
application programming interfaces (APIs) to allow semi-
automated curation and extraction of data and knowledge about
NMs to support development of computational predictive toxicol-
ogy methods. It will cover a wide range of data that researchers are
looking for: omics data, nanodescriptors and relevant literature, as
well as PChem properties and biological effects. There are two key
aspects of the knowledge base. Firstly, NMs-specific datasets will
be federated with other databases that are optimized for endpoints
from proteomics, transcriptomics etc. for which well-established
data management and deposition solutions already exist. The
NanoSolveIT knowledge base will communicate via APIs and inte-
grate the data via semantic mapping of their data schemas. Sec-
ondly, the knowledge base will be enriched by integration of
data from protein structures, known signalling pathways, crystal
structure information, for example. These data will be used by
physics-based modelling approaches (see Section 2.3) to computa-
tionally design NMs and their biomolecule fingerprints. Other
types of data that can be enriched in the knowledge base include
environmental data such as river pH, ionic strength, dissolved
organic matter etc. which can support development of enhanced
models for prediction of NM’s environmental transformation and
consequent ecotoxicity.

Furthermore, the NanoSolveIT knowledge base will adopt Open
Science approaches to trigger open innovation with related pro-
jects and future users and collaborators. This will result in the
NanoSolveIT Knowledge Infrastructure containing curated, reliable
NMs safety data, accessible and reusable within the project, by the
nanoinformatics community and by all stakeholders. The NanoSol-
veIT knowledge base will be helpful for those researchers inter-
ested, not just in the structural characteristics (descriptors) and
PChem properties, but also in the known biological effects of par-
ticular NMs. Researchers can use the interface to navigate through
the available data or retrieve data for further exploitation.
2.2. Toxicogenomics modelling (predictive models using omics data)

Toxicogenomics modelling is a subdiscipline of pharmacology
that deals with information about gene and protein activity within
a particular cell or tissue of an organism in response to exposure to
toxic substances. It can be used to link the safety of NMs to the
underlying biological mechanisms of their toxicity. Gene expres-
sion data can be combined with biological pathway information
to identify possible adverse outcomes [43,67,110]. In order to make
sense of the large volume of data generated by bioinformatics anal-
yses, SOPs for the interpretation of the results in the correct biolog-
ical context need to be established [46]. Adverse Outcome
Pathways (AOPs), which describe in mechanistic detail the
sequences of events that are necessary for an exposure at cellular
and subcellular levels to lead to an adverse event or outcome at
the organ or organism level, are a useful tool for organizing bioin-
formatics and other types of results into a predictive framework
[111].

During the last decade, multiple efforts have aimed at charac-
terizing the mechanism (mode) of action (MOA) of toxic chemical
exposures using transcriptomics profiling of the exposed biological
systems. This generated large reference data sets such as connec-

tivity map [152], TG-GATEs [51], DrugBank [184] and LINCS

L1000 [66]. These have been extensively used for drug reposition-
ing (e.g. [53,106]) and toxicity prediction (e.g. [67]). The general
concept of this approach is that toxicogenomic experiments iden-
tify the primary molecular changes in cells and tissues as a direct
consequence of toxin exposure, and hence directly inform the tox-
icity pathways of tested compounds [43]. As an example, Predic-
tive Toxicogenomics Space (PTGS) components, which were
developed based on connectivity map data to predict organ toxic-
ity, are likely useful as descriptors of AOP-linked MOAs and key
events (KEs) in the affected signalling pathways [67].

Furthermore, when multiple time points are screened, toxicoge-
nomics data can give a robust insight into the toxicokinetics and
can further assist the drafting of an AOP [35,111,185]. Toxicokinet-
ics describes the absorption, distribution, metabolism and storage/
excretion of chemical toxicants, while, toxicodynamics describes
the adverse (biological) effects that a toxicant has on an organism,
e.g. altered structure/function and disease. Both processes are
determined by the structure (morphology) and PChem properties
of NMs, e.g. size, shape and surface reactivity [95]. Toxicogenomics
data can also be exploited to infer similarities between different
types of exposure and between exposure and human diseases
[145]. Finally, new opportunities are emerging for integrating
‘omics data with intrinsic NMs exposure properties to allow hybrid
quantitative structure and MOA activity relationships to be devel-
oped [146].
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More recently, toxicogenomics approaches have been employed
to describe the MOA of NMs in various exposure scenarios in vitro
(e.g. [63,101,144]) and in vivo (e.g. [47,52,64,70,107,132,141]).
When multiple doses of toxin are screened by ‘omics technologies,
dose-dependent events can be extrapolated in order to further dis-
sect specific mechanisms of toxicity [133,158]. In fact, dose metrics
are a basic requirement for any in vitro screening to assess poten-
tial health risks of NMs. Genomic dose responses can be used to
define the biological potency of a material as well as points-of-
departure concentrations denoting adverse levels of exposure to
the organism or cell. Typically point-of-departure concentrations
are set using concentration response modelling or the lowest
observable effect level approach [158]. Although transcriptomic
response itself is often triggered as a response to an adverse reac-
tion to the environment, a pathway-level concentration is typically
used, as this value is more robust than a gene-level response and is
directly connected to a known biological response. Further mod-
elling methods, such as the PTGS, can be helpful to differentiate
between adverse, adaptive and benign (or even beneficial) biolog-
ical responses to chemicals. Mechanisms or pathways connected to
key event responses in known AOPs are also applied for selecting
adverse responses among bioinformatics analysis results [111].
When cell culture data is utilized, there is also the need to extrap-
olate the cell culture concentration to a biological exposure sce-
nario which in the case of NMs is typically inhalation-based
[111]. However, focusing on mechanistic aspects, the pathway-
level benchmark concentrations can be used to rank NMs based
on biological potency. Taking the concentration response into
account is also helpful for biological grouping, e.g., for selecting
optimal treatments for connectivity mapping-based biological sim-
ilarity analyses. As the cost of toxicogenomics is steadily being
reduced, its use in safety assessment and mechanistic analyses will
only grow in importance.

NanoSolveIT is collecting existing toxicogenomics data, then
transforming, analyzing and modelling it. The project has multiple
aims, including deriving signatures of NM MOAs to support AOP
Fig. 1. Schematic overview of the workflow for toxicogenomics modelling and how th
Outcome; ENM – Engineered Nanomaterial; KE – Key Event; MIE – Molecular Initiating
development; generating useful predictive models of the biological
effects of NMs; and developing computational methods and soft-
ware to be included into a robust computational platform for in sil-
ico nanosafety analysis (as seen in Fig. 1).
2.2.1. Deriving signatures of NM MOA to support AOP development
Toxicogenomics has provided unprecedented opportunities to

clarify the MOA of many chemical exposures. The essential idea
is to identify a set of genes that are significantly altered in a given
biological system of interest due to exposure to a toxic agent.
While conventionally, ‘omics data analysis resulted in lists of dif-
ferentially expressed genes, these are not per se informative of
more complex patterns of regulation that underlie broader biolog-
ical functions. To elucidate these functions, systems biology
approaches, such as gene network reconstruction and inference,
have been used to identify complex patterns of molecular regula-
tion and co-regulation [64,192]. Moreover, the systematic annota-
tion of molecular changes into known biological pathways has
helped define toxicity and other AOPs [70,111,144]. To date, the
transcriptome has been the primary molecular focus of such stud-
ies, followed by proteomics and metabolomics. Multi-omics
approaches have already been used extensively to generate more
thorough landscapes of molecular changes in human diseases

(e.g. The Cancer Genome Atlas) and are beginning to be used to
build more general models of NM MOA [144]; [143]. Omics-
derived biosignatures are valuable for comparing the effects of dif-
ferent types of exposure, such as NMs and small molecules that
would otherwise be difficult or impossible to detect by other
means. For example, omics-derived NM biosignatures have been
systematically compared to those from small molecules, drugs
and human diseases in search of direct exposure-disease associa-
tions [145]. These analyses have identified biomarkers useful for
biochemical assays in the zebrafish model, enabling the drafting
of an AOP for metal and metal oxide NMs impacts on the central
nervous system [75].
ese models feed into the subsequent materials modelling and IATA. AO – Adverse
Event.
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2.2.2. Deriving signatures of NM MOA that define robust predictive
models based on NM bioactivity

Toxicogenomics data has more recently been used to generate
predictive models of toxicological and pharmacological interest.
Multiple strategies have been employed: identification of specific
biomarkers [145], or discovery of broader gene sets with strong
predictive ability (PTGS, zebrafish-based toxicogenomic space,
etc.). Typically, ‘omics data analyses use univariate statistical test-
ing, where each molecular feature is tested for significant differ-
ences between exposed and unexposed sets in replicate samples.
However, these approaches allow derivation of only very limited
individual or linear or concatenated biomarkers. The output from
these analyses, importantly, does not guarantee biomarker speci-
ficity, although they are often referred to as such in the literature.
Thus, more sophisticated feature selection strategies are needed,
that allow non-linear combinations of molecules, or sets of
biomarkers that are more specific. To this end, a number of algo-
rithms have been proposed including GALGO [138] DIABLO [149],
MANGA [145], MLREM [138,167,9,34,6,147].

2.2.3. Developing computational methods for inclusion into a robust
computational platform

Despite the great value of toxicogenomics approaches in identi-
fying important (NM) toxicity mechanisms in an unbiased manner,
these approaches have thus far struggled to be implemented in the
mainstream regulatory framework for chemical safety assessment.
One reason for this is that toxicogenomics data are usually difficult
to interpret without strong skills in bioinformatics and biostatis-
tics. Importantly, the scientific community has been successful in
developing improved analytical methods but has not yet agreed
on formalized standard analytical SOPs. Clearly, omics data analy-
sis is used extensively in other biomedical research fields, so many
of these standard methods should be transferrable to NM toxicoge-
nomics problems. The NM toxicogenomics community needs to
ensure that this existing expertise is converted into standardized
pipelines and software for nanosafety applications. Examples of
useful methods are the eUTOPIA software for omics data prepro-
cessing [94] and INfORM for gene network inference [93]. Similar
efforts are being undertaken, within NanoSolveIT and several other
EU projects, to further resolve dose dependent patterns of molecu-
lar change and to benchmark the resulting toxicogenomics and
AOP models to increase their utility and acceptance by the
community.

2.3. Multi-scale modelling framework for NMs property prediction

Adverse human health effects can be triggered and modulated
by molecular-level interactions at the bionano interface, i.e. a
nanoscale layer where biological entities meet foreign materials.
These interactions are often non-specific and unintended. The cur-
rently poor understanding of the bionano interface means that RA
for NMs and biomaterials broadly is largely based on empirical evi-
dence and not on the mechanistic action of the adverse effects. In
general, NM properties primary responsible for adverse effects are
largely unknown, or are not the same as the PChem properties that
can be routinely measured [89,136]. Understanding these interac-
tions and the bionano-interface structure will assist with develop-
ing safety regulations and reducing the associated health risks but
also with achieving improved control over the surface activity in
nanotech-based applications.

Steinhauser and Sayre [151], reviewed the OECD guidance doc-
uments for NMs risk assessment, which provided recommenda-
tions regarding the measurement and assessment of occupational
exposure, consumer exposure, environmental fate, ecological
effects and biokinetics, as well as considerations for in vitro testing
of NMs, for increased reliability and relevance. However, of partic-
ular interest for NanoSolveIT were the guidance documents for
exposure modelling and QSAR modelling. While QSAR models usu-
ally employ two-dimensional (2D) structural information from
molecules, they can employ three-dimensional (3D) information
also, making them suitable for predictions of NMs properties and
behaviour. The benefit of 2D is that it provides a good visualization
of the structure, where one can easily identify the connectivity of
atoms, the presence of specific functional groups and predict reac-
tivity. However, 3D focuses on the molecular level and includes
additional information related to bond distances or angles, as well
as connectivity or binding to ligands in relation to surface topogra-
phy and can account for extrinsic properties such as formation of a
protein (biomolecule) corona, for example.
2.3.1. Computational NMs descriptors
In addition to direct correlations between the NM structure (ex-

pressed in term of nanostructure descriptors), properties and tox-
icity, as described above, interactions at the bionano interface can
initiate AOPs via sequestering or unfolding of proteins central to
molecular initiating events (MIEs) and KEs of the corresponding
pathways [21,32,86,88]. Although they may not be completely
independent of the basic features of the NM (as expressed either
directly by nanostructure descriptors or by their intrinsic proper-
ties), a systematic evaluation of these types of properties that
express protein affinity, protein unfolding and potential formation
of cryptic epitopes that can induce new signalling pathways [86],
may make predictive models more compact and robust.

Simply stated, a descriptor is the final result of a logic/mathe-
matical process that transforms chemical-based information (en-
coded within a symbolic representation of a chemical structure)
and, in the case of NMs, also physical-based information (i.e. mor-
phology) into a useful number that can be exploited by a predictive
model. Thus, descriptors provide unique information required to
draw (or build a molecular model of) a NM. Whereas property
(e.g. solubility) should be considered as a consequence of the
NM’s structure; it is impossible to deduce back the structure from
such properties only. The properties can be either measured exper-
imentally or computed with use of first-principles-based methods
(e.g. ab initio, Density Functional Theory, molecular dynamics). The
correct distinction between descriptors and properties is important,
since only the structure (descriptors) can be directly controlled by
a designer in the safe-by-design process.

There are various levels for chemical structure representations
(descriptors) ranging from one-dimensional (1D) descriptors (e.g.
basic molecular formulas), to 2D descriptors (e.g. connectivity
index), as well as 3D that are conformation dependent (e.g. dihe-
dral angles, radius, shape).

Examples of computational properties based on NMs interac-
tions that can be related to MIE, KE or AOPs include: composition
of the NM protein corona; adsorption enthalpy of amino acids, lipid
molecules, or proteins onto the NM surface; adsorbed protein or
NM hydrophobicity; production of ROS, dissolution of NMs leading
to release of ions, all of which must be determined in realistic envi-
ronments [20]. Calculation of properties based on a full-particle
molecular model, using ab initio quantum chemical (QC) or even
semi-empirical methods remains unfeasible in the near future
due to the large size of NMs and thus the associated enormous
computational time needed. Therefore, a significant effort was
invested by the community to develop different approximations
and simplified molecular models of NMs to derive NMs properties.

One of the first approaches for calculation of nanodescriptors
was the design of optimal molecular descriptors by Toropov et al.
[162,164,166]. These descriptors are calculated from SMILES struc-
tures and consider the chemical composition of NMs. Information
about experimental conditions of NMs synthesis can be included
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in the descriptor calculation. This type of descriptor has been suc-
cessfully used to model the toxicity of NMs [162,166].

QC calculations based on small clusters of atoms can be used to
obtain such properties as HOMO-LUMO gap (band-gap between
conductance and valence electrons) and enthalpy of formation,
which is currently not possible for full-sized NMs. QC properties
can be directly used to model toxicities of NMs without taking into
account the size dependency of the properties [131] or can be
extrapolated to obtain properties values for specific size of NMs
[56]. To take into account the effect of size on the properties of
NMs, the calculations based on so-called full-particle molecular
model should be performed. Such type of calculations for metal
oxide NMs have been performed by [157,155,91,11]. Full-particle
properties were derived from molecular mechanics calculation of
NMs and describe the energetics (potential energies), coordination
numbers and other attributes of the NMs. Full-particle descriptors
and properties have been successfully used to model the toxicity of
metal oxide NMs [156].

Surface modifications, such as change in coating materials,
influence the properties of NMs and should also be included in
the modelling process. Xia et al. [186]) proposed a biological sur-
face adsorption index to describe competitive adsorption of pro-
teins onto the surface of NMs [187]. The adsorption coefficient is
expressed as a logarithmic function of five descriptors: excess
molar refraction (representing molecular force of lone-pair elec-
trons); the polarity/polarizability parameter; hydrogen-bond acid-
ity and basicity; and the McGowan characteristic volume
describing hydrophobic interactions [186]. Experimentally
obtained log K values can be used to derive five descriptors for sur-
face forces related to adsorption. Combining all of these
approaches would allow the characterization and modelling of
NMs in biological systems accounting for all important aspects
(electronic effects, size dependency and surface modifications)
and would greatly improve the quality of nanoQSAR models.

2.3.2. Modelling (predicting) NM corona composition
The structure of the bionano interface can be simulated using

first principles physics-based methods. Such simulations are often
computationally intractable or use model systems that do not cap-
ture the complexity of real biological environments [72]. The rele-
vant system sizes are too large for direct atomistic simulation, so
the properties of interest can only be accessed using a coarse-
grained (CG) representation, where sub-nanometer interactions
have been integrated out. Molecular details of the NM are pre-
served when the CG model is constructed using a multistep
approach, where each layer is parameterized from simulations at
finer resolution [129]. Atomistic simulations also have challenges
as they rely on accurate and validated force fields. Where such
force fields are available, all-atomMolecular Dynamics (MD) meth-
ods can be used to construct a united atom representation of the
NM and associated biomolecules. Computational study of new
materials requires development or optimization of new atomistic
force fields based on QC calculations or experimental data [8].

Coarser scale simulations also have challenges due to the nature
of biological samples: the number of relevant biomolecules inter-
acting with the NM can be enormous; for example, human plasma
contains over 3,700 proteins and even larger numbers of metabo-
lites [16]. The corona composition (lists of proteins and metabo-
lites (lipids and other small molecules) known to interact with a
specific NM) may therefore be an impractical property to be used
for predictions, althoughmeta-analysis of over 63 NMs plasma cor-
ona studies suggested that about 125 proteins form the interac-
tome of NMs [176]. Each NM immersed in plasma typically has
its own unique corona that may involve hundreds of different pro-
teins [13,23]. Proteins in the corona reflect the functionalities on
the NM that bind specific types of biomolecule [85]. This changes
over time, as the most abundant proteins bind first, and are subse-
quently replaced by less abundant but more tightly bound pro-
teins, and the corona also evolves as the NMs are internalized
into cells for example [84], and the cells respond to the presence
of the NMs [2]. Capturing this complexity in descriptors used in
ML models is very challenging, and often statistical properties of
descriptors for the proteins are used.

Early examples of corona-based predictive schemes exist in the
literature. An extensive gold NMs protein corona dataset generated
and analyzed by Walkey et al. [177], was re-analyzed in order to
identify and quantify the relationships between NM-cell associa-
tion and protein corona fingerprints in addition to NM PChem
properties [1,80]. QSAR models were developed based on both lin-
ear and non-linear support vector regression models making use of
a sequential forward selection of predictors. For example, an initial
pool of 148 predictors was used, with the analyses eventually iden-
tifying 10 corona proteins and 3 PChem characteristics (NM size
and zeta potential in cell culture medium) as the most significant
factors correlating with NM cell association [1]. As more data
emerges, including on the small molecule or metabolite corona
and how these interact with proteins to form the complete corona
[16], refined models and more detailed predictions of the composi-
tion and impact of the NM corona will emerge.

NanoSolveIT recently proposed a multiscale modelling scheme
that enables modelling of large molecular assemblies in both
length and time domains, which is not achievable by traditional
atomistic simulations. This allows information on NM and biomo-
lecule specificity to be preserved [82,81,129] whilst also enabling
calculations in reasonable times. The NanoSolveIT method (shown
schematically in Fig. 2) uses a systematic CG method that includes:

� parameterization of the atomistic force-field for the NM;
� calculation of interactions of the biomolecule building blocks
(amino acids, lipid segments, DNA bases) with the surface of
the NM and interaction between the building blocks at the ato-
mistic level under specified conditions;

� parameterization of the CG force field for biomolecule building
blocks and construction of a NM of arbitrary size and shape;

� CG modelling of interaction of entire biomolecules with the
NMs’ surface and calculation of preferred orientation and the
mean adsorption energies for the bound biomolecules;

� further coarse graining for lipids and proteins to make united
amino acid blocks and study competitive adsorption and
bionano-interface structure.

The multiscale modelling framework proposed by NanoSolveIT
enables calculation of descriptors and properties of the bionano
interface for a large number of biomolecules in a short time. The
new properties include those for proteins (principal moments of
inertia, charge, dipole moment, hydrophobicity indices, and the
solvent accessible area) and those for interaction with NM
(Hamaker constants for residues, their mean adsorption energies,
and the overall adsorption energy for the protein globule or lipid
molecule) [82]. These properties will be used to produce interac-
tion fingerprints for arbitrary NMs with respect to specified biolog-
ical activities and will thus provide key information for
toxicologically relevant predictive modelling, e.g., for predicting
NM ability to induce an AOP via MIE or KE.

Several models describing how binding to NM surfaces affects
protein conformations and subsequent recognition behaviour have
appeared in the literature. These will be very useful for connecting
corona composition to molecular initiating and other key events in
AOPs. Multiscale MD simulations of a single NM with the protein
ubiquitin demonstrated that ubiquitin competed with citrates for
the NN surface. At a high protein/NM stoichiometry, ubiquitins
formed a multi-layer corona on the particle surface, with the pro-



Fig. 2. Schematic illustration of the NanoSolveIT approach to multi-scale modelling of NM interactions with biomolecules to form the biomolecule corona which provides the
biological identify to the NM and determines its subsequent uptake and impacts in cells and organisms.
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teins exhibiting conformational changes that included destabiliza-
tion of a-helices and increased b-sheet content of the proteins [22].
A significant challenge with this approach is that it is unknown
whether this protein binds under competitive conditions (e.g. in
plasma), and whether these conformational changes occur in real
systems. However, the correlation between unfolding of a specific
protein and receptor activation has also been demonstrated exper-
imentally and modelled using MD. Ding et al. showed that specific
sizes of negatively charged poly(acrylic acid)-conjugated gold NPs
bound to, and induced unfolding of, fibrinogen (Fg). This promoted
interaction with the integrin receptor, Mac-1, leading to increased
NF-jB signalling and release of inflammatory cytokines [21]. Build-
ing on this work, Kharazian et al. used MD simulation to investi-
gate how poly(acrylic acid) coats a gold NM surface. The root-
mean-square deviation (RMSD), radius of gyration (Rg) and solvent
accessible surface area (SASA) properties from the calculations
showed that the gold surface can induce Fg conformational
changes favouring an inflammation response [62]. They suggest
that the integrity of coatings on ultra-small gold NMs are compro-
mised by the large surface curvature, and that surface coatings may
be degraded by physiological activity. Other modelling studies
have also assessed biomolecule conformation in NM coronas and,
where relevant, these approaches will be integrated into the Nano-
SolveIT toolbox.
2.3.3. Connecting NM-coronas to biological impacts/AOPs
Data exchange and reuse puts significant limits on how we rep-

resent the biology and chemistry of NMs. For example, to compare
the risk of two NMs, it is necessary to know whether they are
chemically similar and if they are behaving biologically in the same
way (e.g. via read across studies). To ensure data reuse is possible,
the NM data representations must be interoperable, i.e. both
humans and machines must be able to make such chemical and
biological comparisons. The bioinformatics and cheminformatics
communities have developed extensive methods to perform such
tasks. To be reusable, data must meet community standards
around data quality [92], be interoperable (i.e. be able to interact
with other databases), be machine accessible (i.e. be annotated to
allow computers to understand the individual datapoints), not be
hidden behind firewalls and be findable by search engines and
models. Recently, these ideas were summarized in the FAIR princi-
ples [181] and the need for interoperability and data linking was
recently outlined in a position paper [60]. A key step for FAIRness
was the development of a common NMs ontology to facilitate data
interoperability [48,100].

Several recent studies focused on developing models of NM-
related properties and biological effects [10,123,142,159,
160,161,163]. For example, a set of 18 NMs were studied by Wang
et al. [178] and showed that factors such as metal content, surface
charge, and particle morphology induce high toxicity. Melagraki
et al. developed, a predictive classification model based on OECD
principles, for the toxicological assessment of iron oxide NMs with
different cores, coatings and surface modifications based on a
number of different properties including size, relaxivities, zeta
potential and type of coating [97]. More recently a predictive
nanoinformatics model, validated according to the OECD princi-
ples, has been developed for the prediction of the protein binding
and the cytotoxicity of functionalized multi-walled carbon nan-
otubes [172].

Numerous other as yet-unexplored features may also be impor-
tant for generating adverse effects from NMs. For instance, there is
evidence to suggest that NMs, especially in the lower nm range,
penetrate biological membranes and are able to reach organs that
are otherwise inaccessible for larger substances [14]. Exposure to
specific NMs has also been demonstrated to cause adverse biolog-
ical effects by increased production of ROS, such as oxyradicals
[79,103,112]. However, some NMs may be less harmful than their
corresponding bulk forms in some instances [61] and even two
NMs from the same source, with similar sizes and chemical com-
positions may exhibit diverse effects [121]. Clearly, factors other
than size, shape and surface area are also important in controlling
the interactions and effects of NMs in biological systems. For
example, Zhang et al. proposed that the higher toxicity of fumed
silica relative to Stöber silica stems from the formers’ intrinsic pop-
ulation of strained three-membered rings along with its chainlike
aggregation and hydroxyl content [189].

Surface coatings are crucial for control of both useful and
adverse effects of NMs. They provide a great opportunity to
improve materials through rational design, by enhancing a useful
property and reducing adverse effects. This approach has been
demonstrated for multi-walled carbon nanotubes (MWCNT) and
asbestos fibers, where structural similarities suggested potentially
harmful effects according to the so-called ‘fiber paradigm’. The
similarities in the two structures guided a pilot study, which
showed that when long MWCNTs are injected into the abdominal
cavity of mice, asbestos-like pathogenic effects can be induced
[125]. However, less rigid forms of CNTs had lower toxicity [105],
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suggesting rigidity as a potential design parameter. A larger pul-
monary toxicological study of 10 MWCNT demonstrated increased
inflammation and lower genotoxicity with increased surface area
(decreasing CNT diameter) and some reduction in inflammation
with –OH and –COOH surface functionalization [126]. Toxicoge-
nomic markers of MWCNT-induced fibrosis [128] and acute phase
response as a predictor of cardiovascular disease [127] have also
been identified. Thus, future experimental and modelling studies
will explore the correlations between a wider range of NMs param-
eters, functionalizations, corona compositions, cellular associations
and AOPs.
2.4. Predictive nanoinformatics modelling (using artificial intelligence
methodologies)

Increasing use of NMs has escalated concern about their poten-
tial risk to the environment and human health. The RA of NMs has
traditionally been based on a variety of in vitro and in vivo assays,
which are typically expensive, labour-intensive and time-
consuming. In vivo animal testing has been constrained by ethical
considerations to follow the 3Rs rule aiming to replace, reduce, and
refine the use of animals for scientific purposes [140], and from
2013, the use of animals is banned for safety assessment of cos-
metic products [28]. Due to the multitude and variety of NMs
increasingly exploited in our daily life, it is impossible to assess
in vitro or in vivo potential risk of all NMs on a case-by-case basis
[33]. In addition, application of the full REACH information require-
ments for every single variant of a given NM regarding particle
size, shape, or surface properties, which accelerate the toxic nature,
would lead to an insurmountable amount of testing [30].

To complement existing toxicity tests, computational
approaches (in silicomodels) have been proposed as useful alterna-
tives to predict in silico the potential hazard of NMs, to reduce time
and cost of nanosafety assessments and provide input for design of
safe and functional NMs. QSARs, as in silico models, have been
developed to predict biological activities, including the toxicity of
various substances [134], mainly based on molecular structure
[96], SMILES [179], and international chemical identifiers (InChI)
[49]. However, such classic QSAR approaches have shown many
limitations in predicting the toxicity of NMs due to the lack of stan-
dardized databases on their structures together with PChem
parameters/descriptors and various toxicity endpoints [119]. In
addition, as the toxic effects of NMs vary according to their PChem
properties and the same type of NMs exhibit diverse toxic effects
under different biochemical conditions (e.g., cell line, cell species,
etc.) [39,124,191], making classic QSAR modelling difficult.

To overcome these challenges and establish relationships
between nano-descriptors, which express the novel and size-
dependent properties of NMs, and toxicological adverse effects
triggered by NMs, various modelling approaches based on statistics
and machine learning (ML) have been proposed to predict qualita-
tively or quantitatively in silico endpoints. Generally, developing
predictive models includes the following major steps [114]:

(1) data collection that contains associations between NMs and
endpoints;

(2) data preprocessing to transform the raw data into a useful
and efficient format and to improve the quality of the raw
data and reduce batch effects between experiments;

(3) selection of nano-descriptors (fingerprint) predictively
linked to functionality and hazard of NMs;

(4) predictive model development and validation;
(5) mechanism interpretation;
(6) and definition of the applicability domain of the model.
Early ML models for predicting NMs properties, such as protein
corona (PC), have begun to appear in the literature For example, a
random forest classification approach has been shown to model PC
populations for an array of NMs properties and reaction conditions,
while providing insight into feature importance to define which
aspects of protein, NM, and solvent chemistry are the most impor-
tant to defining the PC population [31]. The model has the poten-
tial for prediction of NM PC fingerprints across a wide range of
NMs, protein populations, and reaction conditions. Varsou et al.
presented a novel read-across ML methodology based on a mathe-
matical optimization approach for the prediction of NMs toxic
effects [170]. This is an area of intensive research currently and
numerous advances are expected in the near future.
2.4.1. Calculated toxicity predictors for ML models
Effective prediction of NMs health and environmental risks

requires utilization of existing or newly generated data to develop
in silico hazard assessment models based on refined hazard-
correlated endpoints. Achieving this requires establishment of a
unified methodology for predicting the risks related to use of
NMs, building on a sustainable multi-scale nanoinformatics frame-
work, which links existing and emerging data and integrates, facil-
itates and advances the current state-of-the-art in silico modelling
and predictive toxicology approaches.

A major objective of nanoinformatics is thus the development of
in silico methods for predicting biological activities of NMs. These
models will be trained on NM structural information (encoded by
nanostructure descriptors) and PChem features (properties).
Therefore, one of the most important and difficult challenges is
to devise nano-specific descriptors that encode these features.
When dealing with large numbers of NMs, it is important to use
calculated descriptors, as those that require experimental mea-
surement will become less useful and more expensive to generate
as the data set sizes grow. Initial strategies for nano-specific
descriptors include those derived from SMILES strings, the periodic
table, simplex representations of molecular structure, liquid drop
model descriptors and those derived from NanoJava applets
[27,58,69,150,155]). Additional potentially valuable information
about morphological features of NMs will be extracted frommicro-
scopy images, e.g. size, area, circularity, and aspect ratio, surface
topography [113] and the use of modern automatic image analysis

software tools such as NanoImage and NanoXtract developed

specifically for NMs. For instance, utilizing NanoXtract [171], a

NM Image Analysis tool powered by the Enalos Cloud Platform,
users can analyze TEM microscopy images and extract useful
descriptors that can be used in a future step as inputs to predictive
models. Within a simple and user-friendly interface, the user can
upload a single TEM image of a specific NM and with just a few
clicks to obtain a set of NM image descriptors displayed on the
screen or downloaded as a .csv file. These image descriptors can
be explored by developing nanoQSAR models, either within the
Enalos Cloud platform or using in-house models, to identify those
descriptors most predictive of NM behaviour and /or biological
effects.
2.4.2. Meta models to integrate across scales
An optimum set of nano-specific descriptors will enable gener-

ation of models describing the relationships between them and
experimental and computed NM properties (intrinsic and extrin-
sic) and a wide variety of biological endpoints. In classic nano-
QSAR modelling, both structural information and properties are
treated as independent variables. However, NanoSolveIT will also
use meta-models, where a property (e.g. hydrophobicity, NM-
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biomolecule interactions, surface activity, adsorption properties) is
first derived from descriptors, e.g.:
property ¼ f descriptors of NMsð Þ:
This meta model ML approach will also allow rapid estimation

of properties of many NMs that would normally be obtained from
computationally demanding QC calculations and/or molecular
dynamics simulations. Furthermore, meta models will be used to
provide deeper insight into the toxic effect induced by NMs, from
the mapping between NM properties (obtained from simulation),
uptake, internalization and Physiologically Based Pharmacokinet-
ics (PBPK) considerations, and the observed toxic effects, as shown
in Fig. 3. This will be achieved by analyzing which structural,
PChem, or meta model-derived property has the largest impact
on adverse biological outcomes induced by NMs. This approach
also allows implementation of the safe-by-design concept, where
ML models of commercially valuable properties and adverse bio-
logical effects are used to rationally design NMs with optimum
performance and greatest safety. These methods are also valuable
for research groups and institutions that focus more on NM synthe-
sis rather than RA.

Thus, NanoSolveIT proposes a new, broader view of nanoinfor-
matics. All ML models developed in the project will be trained on
heterogeneous data from multiple sources (experimental charac-
terization, image analysis, computational simulation, omics data)
that have, until now, been treated individually. These integrated
NM ‘‘fingerprints” will contain maximal information required to
build statistically robust and optimally predictive models of bio-
logical activity. Optimal predictivity will be ensured by the use of
sparse feature selection (MLREM, LASSO), Bayesian regularization
to control model complexity (LTU, Biomodeller), and automated
processes included in the RRegrs R package [169]. The RRegrs pack-
age automatically selects the next algorithm for each case from 10
different statistical and ML methodologies (e.g. multiple regres-
sion, lasso, support vector machines, and artificial neural net-
works). Computational efficiency will be achieved by the use of

Graphical Processing Unit (GPU) algorithms through the Enalos +
toolkit [173]. This improves big data handling and accelerates com-
putation. All models will be built according to OECD guidelines,
where feasible. All models will be validated using test sets, cross-
validation, bootstrapping and Y-scrambling as appropriate [3].
Domains of applicability for models will be calculated by estab-
lished methods, such as the leverage method and the Euclidean
distance to the training set.
Fig. 3. NanoSolveIT
2.5. NM human and environmental RA

The ultimate goal of multi-scale nanoinformatics modelling is
the generation of a computational platform that integrates in silico
approaches to NMs safety testing and assessment into an overall
risk framework or IATA. The IATA will provide a systematic frame-
work for the integration of the data and models used and/or pro-
duced during the project’s lifetime. The IATA will be configured
to ensure correct mapping of the sequence with which the devel-
oped and integrated tools are run thereby ensuring that the inputs
and outputs from the various tools are harmonized and interoper-
able. This will ensure proper tool function and optimization of the
initial data input based on the desired outcomes in order to answer
specific stakeholder needs (safe-by-design, exposure, hazard and
RA) and make predictions regarding the safety, mode of action,
and likelihood of a NM triggering a specific AOP. NanoSolveIT is
building on previous efforts to map and evaluate a range of NMs-
specific risk assessment tools or so-called ‘‘new approach method-
ologies” in terms of their ability to provide ‘‘added value” and ‘‘de-
cision support” as well as their status in terms of whether they are
ready for implementation or require further exploration and devel-
opment [109].

One of the key functions of the IATA will be the development of
NM fingerprints - predictive and informative PChem, biological and
computational descriptors that describe a set functionality, i.e. the
minimum set of descriptors required as input to predict specific
NM functionalities. The IATA will focus on those parameters that
are easy to measure/calculate on a regular basis during every day
experimental and computational practice. Classification
approaches of relevant descriptors as intrinsic (do not change irre-
spective of the exposure route, release pathway) or extrinsic
(context-dependent) and the stability of potential transformations
will be also incorporated into the IATA [89]. This will reduce the
experimental/computational workload to derive specific descrip-
tors and subsequently the amount of information needed to create
robust predictions, especially in terms of safe-by-design. In the
case where a NM is classified as hazardous, the generation of addi-
tional parameters will be proposed to refine the ultimate hazard
and RA. As a result, a certain set of exposure and toxicokinetics
models will be integrated and linked within the IATA. These mod-
els will act in a synergistic way to fulfil the requirements of the
NanoSolveIT framework.

In every case, NanoSolveIT will look to deliver informative and
validated predictive models with clear definitions of their domains
of applicability. For the NanoSolveIT IATA to be successful, these
meta models.
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models need to act synergistically. This will require standardized
modelling approaches and workflows that take into account the
OECD validation principles [114] and recommendations from the
European Materials Modelling Council [26].

To achieve the required synergism, a clearly defined workflow
has been established, which includes the following steps:

1. Selection of modelling tools for the NanoSolveIT IATA, appropri-
ate to the needs of stakeholders.

2. Evaluation of model parameterization needs to identify the
required parameters for each tool to support the NM fingerprint
and the IATA.

3. Generation of plausible and useful exposure and environmental
release scenarios covering the entire lifecycle assessment of
NMs. These will be based on data from recent, ongoing and
future studies covering NMs’ release points during production,
use and disposal.

4. Technical solutions for incorporation of the various modelling
tools into the NanoSolveIT IATA and e-Platform.

To achieve these ambitious goals and demonstrate the utility of
the IATA to the research, industrial and regulatory communities,
NanoSolveIT is building on recent advances from e-infrastructure
projects OpenRiskNet and NanoCommons. For example, a key chal-
lenge is integration and alignment of different sources of informa-
tion to allow use of weight of evidence approaches and evaluation
of uncertainties in the information. Here approaches already
implemented in NanoCommons will be leveraged. For example,
NanoCommons has already integrated the similarity scoring and
data quality modules of the GUIDEnano platform for RA and risk
management of NMs, which are essential for weight of evidence
analysis. Similarly, NanoCommons has supported the OECDWPMN
project on NanoAOPs [117], including updating and expanding the
database for the KEs identified for the tissue injury adverse out-
come. It is building on that experience to develop KE-specific data
capture templates for electronic notebooks, harmonizing data cap-
ture and data curation approaches, and text mining tools to speed
up compilation of literature datasets. Integration of tools for
searching the NanoWiki and identifying KEs is also currently
underway in NanoCommons, and will be incorporated into Nano-
SolveIT. NanoCommons has already demonstrated approaches for
integration of datasets, their curation and quality assurance, using
its two main modelling platforms, namely Enalos tools via KNIME
and Jaqpot via Jupyter notebooks. Currently these NanoCommons
deliverables are under review by the European Commission but

will be made publicly available via the NanoCommons website as
soon as possible, to allow wider community adoption of the
approaches, as per all the public deliverables. Datasets can be
pulled from a range of existing databases such as PubChem, Uni-
Chem, UniProt etc. via dedicated Enalos APIs (through KNIME
nodes) and Python and R-scripts for Jaqpot.

A final demonstration of the utility of the NanoSolveIT IATA will
be via case studies that showcase the various components and the
overall approach. These will include existing OECD IATA case stud-
ies and assessment of their applicability to NMs, as well as a case
study on developing NanoAOPs for genotoxicity and potentially
for accelerated ageing in Daphnia magna based on the existing
extensive datasets available within the NanoSolveIT consortium.

The three OECD IATA case studies identified for NanoSolveIT
are: –

1. Prioritization of chemicals using IATA-based Ecological Risk
Classification (Prioritization of chemicals / Ecotoxicity) – NanoSol-
veIT will adapt for NMs;

2. Case study on grouping & read-across for NMs genotoxicity of
nano-TiO2 (Grouping / Genotoxicity) – NanoSolveIT will assess the
ability of our models / IATA to reproduce (improve on) the
findings;

3. A Case Study on Use of IATA for Sub-Chronic Repeated-Dose
Toxicity of Simple Aryl Alcohol Alkyl Carboxylic Esters: Read-
Across (Grouping (Read-across) / Repeated dose toxicity) – Nano-
SolveIT will adapt this for NMs.

It is also worth noting that expert judgement is an essential part
of the IATA process. Both main computational platforms being
used to underpin the NanoSolveIT IATA, namely Enalos tools via
KNIME and Jaqpot via Jupyter notebooks, are fully configurable
as nodes. This allows the establishment of pre-configured work-
flows that need minimal input from the user, but that allow expert
intervention and decisions where required. For example, work-
flows can include opportunities to download the raw and trans-
formed datasets for quality assurance purposes, analysis of data
quality reports, and other checks prior to proceeding to the next
step. Additionally, Bayesian belief network are being integrated
into the IATA to automatically manage expert judgement and mod-
elling reliability. This allows analysis of the accuracy of the exper-
tise and ensures that the expert opinion does not bias model
expectations [19,148]. Bayesian networks are excellent quantita-
tive and tractable RA tools that can handle and augment datasets
with missing values by incorporating expert knowledge and judg-
ment. They have been used successfully for developing IATAs for
simple chemicals, and recently applications to NM RA have been
reported [104].
2.6. NM cloud platform

A major outcome of the NanoSolveIT project is the e-platform
that will be made available to the community as a cloud applica-
tion accessible via the web or which can be installed as a stan-
dalone platform on local servers of interested stakeholders (see
Fig. 4). This platform provides all the computational modelling
tools and functionalities developed during the project under a
common framework and with an optimized workflow for input
of data and generation of predictions in response to specific stake-
holder queries. These individual models and tools will also be
available as separate components for specific applications and
needs, but the ultimate goal is to integrate the tools as much as
possible, to allow the implementation of complete computational
IATA workflows.

The system architecture of the e-platform will be efficient, user-
friendly, extensible, easy to maintain and open to the community
for integration with other tools and databases. Our vision is to
develop a central and easily extensible web-based platform of
secured sustainability that will be customizable to specific user
requirements and will address both current and future research
and regulatory questions and needs.

To achieve all these objectives, state-of-the art tools and best
practices in developing web applications and platforms will be
leveraged. An open microservice architecture relying on the Open-
API specifications for constructing and testing the APIs, and the
REST (Representational State Transfer) architectural style for
designing distributed systems will be utilized. This will consider
relevant operational aspects of the platform such as extensibility,
scalability, and elasticity.

The development of the NanoSolveIT e-platform will build on,
incorporate and extend two of the most comprehensive platforms

available in the nanosafety community, namely Jaqpot [18] and

Enalos (NovaMechanics [109,171]). These are already used for
developing, hosting, sharing and exchanging predictive models.
Additionally, it will leverage exposure and fate models developed
in recent H2020 projects, such as the NANOFASE model for envi-
ronmental fate and effects, a multi-box aerosol-dynamic model



Fig. 4. NanoSolveIT platform integrating all of the various omics, materials and machine learning and meta models into an harmonized platform for NMs properties,
exposure, hazard and risk prediction, safe-by-design and in silico NMs toxicology. All available data from the contributing projects and literature, including acute and chronic
toxicity data, and a strong focus on regulatory-relevant endpoints, will be incorporated into the database.
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[57] that with further development and testing will be used to cal-
culate the size-resolved NM inhalation exposure and dose, and the
GUIDEnano tool for exposure, hazard and RA which has already
been integrated into the NanoCommons research infrastructure.

For simulation of the biokinetics of NMs, i.e. the administration,
distribution, metabolism and excretion of NMs when they enter an
organism, the NanoSolveIT platform will integrate and extend
functionalities that have been developed in the Jaqpot modelling
environment. Detailed PBPK / Toxicokinetics models will be pro-
vided as web applications, ready to simulate various NM external
exposure scenarios (e.g. single dose, multiple doses, repeated dose
etc.) and the physiological parameters of the individual or the
group of people who are exposed. The concentration–time
responses in the various organs and tissues of the organism will
be automatically generated as interpretable and visual tables and
graphs. By connecting the exposure and the biokinetics models,
NanoSolveIT will develop integrated workflows that model how
an external exposure scenario affects the internal exposure, i.e.
the NM concentration in specific tissues of interest. By further inte-
grating and interlinking these tools with models that can predict
hazard at the AOP level, the NanoSolveIT platform will be able to
predict whether an exposure scenario can initiate a specific AOP
in a specific individual.

Hazard assessment services will be part of the NanoSolveIT
platform, by providing ready-to-use web implementations of nano
QSAR models and the read-across approaches that are being devel-
oped in the project. By integrating ML libraries, practically all
state-of-the-art statistical and ML methodologies will be available
for model building. Custom-made solutions, such as implementa-
tion of read-across methods or specific ML algorithms will also
be possible if they are compatible with the architecture and the
design principles of the platform. Hazards and RA tools developed
in previous projects (e.g., NanoCommons & NanoMILE tools hosted
on the Enalos Cloud Platform) are already available as user-friendly
applications and will be further expanded. Several of the above
mentioned predictive nanoinformatics models [1,97,98,172] are
already hosted in the Enalos Cloud Platform and are publicly avail-
able. The Enalos Cloud Platform [174], is based on web semantic
cheminformatics and nanoinformatics application, with the ability
to host any predictive model as a web service with a user friendly
user interface (NovaMechanics [108]). Web applications are
invaluable for computer-aided design of NMs since they can be
used to predict the activity of new NMs prior to synthesis and
the biological evaluation. Furthermore, ‘safe-by-design’ paradigms
can be easily constructed for a systematic study of the effects of
NM structural modifications and properties on several relevant
biological responses and crucial properties.

Deep Neural Networks and deep learning algorithms have
received much attention in the ML community and increasingly
many other scientific, technological, business, and medical spheres
over the last few years. These methods are closely related to or
incorporated into big data analysis, especially for large volumes
of high-resolution images. Applications of deep learning in the
nanosafety discipline are so far quite rare. The NanoSolveIT project
will fill this technology gap by developing infrastructure for imple-
mentation of deep learning models as web services. Specific
demonstrator applications will be provided to showcase the capa-
bilities of these technologies, for example use of only image data to
predict whether an organism is affected or damaged by the pres-
ence of an NM. These AI capabilities of the platform will be sup-
ported by graphics processing units (GPUs).

The NanoSolveIT e-platform will be seamlessly integrated with
the project knowledge base (Section 2.1.3) that will provide the
necessary information for developing, testing and finally using
the models for predictive purposes. All modelling components
and the complete platform will comply with the ontological anno-
tations used throughout the project and particularly in the devel-
opment of the knowledge base. Model predictions will be used to
fill gaps in the NanoSolveIT knowledge base, due to lack of exper-
imental data. Thus, the system is designed in a manner that allows
continuous improvement as new data emerges, and integrates
seamlessly experimental and computational data, thereby con-
stantly enriching the underpinning knowledge base.
2.7. Knowledge transfer and communication with stakeholders and RA
bodies

Due to the current lack of in vitro and in vivo data risk assessors
seek reliable in silico approaches, derived from validated or
scientifically-valid in silico models, grouping and read-across, PBPK
and toxicokinetic modelling [7], and for support scientifically
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based regulatory nano-risk governance. The current state-of-the-
art on alternative testing strategies in RA of engineered NMs was
published by the OECD [116]. A tiered approach based on non-
testing and in vitro methods has been suggested for the prediction
of realistic biological outcomes when used in a weight of evidence
(WoE) approach. Several frameworks and in silico approaches been
proposed but even so risk assessors still consider in silicomodelling
tools to be at an elementary stage for NMs [7,25,116] stressing the
need to develop and provide a set of standard predictive models
with defined parameters that can accurately and efficiently predict
human and ecological toxicity of NM with minimal biological
experimentation.

The NanoSolveIT advanced nanoinformatics approach addresses
these needs by developing integrated models within a bench-
marked IATA for nanosafety assessment. The innovative modelling
techniques and tools will be integrated within NanoSolveIT IATA
and then incorporated into a sustainable interoperable product,
the NanoSolveIT e-platform. NanoSolveIT will deliver an innovative
alternative testing strategy that is less reliant on animal testing for
NMs RA using predominantly in silico derived NM descriptors to
generate validated predictive models for NMs properties and
adverse effects.

To accelerate implementation of the advances in nanoinformat-
ics, engagement with regulators and policy makers is needed, to
create dialog and transfer NanoSolveIT knowledge. Within Nano-
SolveIT a strong communication, dissemination and exploitation
strategy for spreading and circulating information, managing effec-
tive communication and delivery of information, and up-skilling of
relevant stakeholders enabling them to make use of and benefit
from the created knowledge and resources, is implemented in par-
allel with the technological advances. This will ensure long-term
exploitation of the NanoSolveIT IATA and outcomes, across the full
range of regulatory bodies (e.g., ECHA, EFSA, SCCS, OECD, etc.). By
direct communication with regulatory bodies, including risk asses-
sors as members of the Advisory board, and using advanced com-
munication tools to engage all relevant stakeholders NanoSolveIT
aims to create common ground for exchange of information
between scientists, industry, risk assessors, regulators, and policy
makers. For example, several stakeholder workshops have been
planned, aligning with similar nanoinformatics activities and par-
allel risk governance projects, to ensure that tools developed
within NanoSolveIT will become utilized as an essential element
for supporting industrial and regulatory nano-risk governance.

NanoSolveIT also offers the opportunity for alignment and har-
monization of international activities into the ongoing and emerg-
ing activities in Europe. This will be achieved through the
participation of international partners who will participate in the
benchmarking of the various tools and models and the assessment
of their suitability for addressing different safe-by-design, group-
ing and categorization, and predictive (eco)toxicity questions via
the Round Robin testing. This activity also relies on meaningful
engagement with international activities such as the OECD, includ-
ing via the Malta Initiative, on the revision of test guidelines and
development of predictive modelling approaches.
3. Summary and outlook

Significant advances have been made during the last decade in
the field of nanoinformatics, which have resulted in the develop-
ment of various modelling frameworks, data platforms and knowl-
edge infrastructures, and in silico tools for generating meaningful
hazard and RA predictions for NMs. A short analysis of the recent
advances in the distinctive nanoinformatics fields has been pro-
vided here, identifying the state-of-the-art, the current gaps in
research and potential challenges to be solved by the development
of innovative techniques and methods.

First, the issues of data quality, reliability and accessibility have
to be addressed in a harmonized manner by ensuring that all NMs
data platforms are connected and follow the same standards in
order to allow easy access to curated, relevant data, under the FAIR
principles. Quality and reliability assessment of data for NMs
remains an important challenge and should be performed as early
as possible in the data generation process, preferably at the point
of data generation as promoted by the NanoCommons nanosafety
research infrastructure [120].

Secondly, scientific tools for nanoinformatics have been, and
continue to be, developed. The effort to collect and link the avail-
able tools under state-of-the-art platforms is the next step, closely
related to the efforts to perform holistic risk governance processes
for NMs. This would increase the accessibility of the tools and
would allow possible validation of the available tools via bench-
marking and comparison of predictions. This would provide high
interoperability and facilitate reuse of data.

Addressing these challenges, NanoSolveIT is developing a broad
spectrum of diverse but interlinked advanced physics–based,
omics-based and data-driven (AI, deep learning) models that work
synergistically exchanging inputs and outputs and which together
constitute a multi-scale in silico IATA for evaluation of the environ-
mental health and safety of NMs. This will be achieved through the
development and use of an extraordinary breadth of integrated
models ranging from NM-biomolecule and cell interactions, mod-
els for ‘omics analysis and AOP generation, release and exposure
models, toxicokinetics and PBPK models, and ecotoxicity predic-
tion, all delivered within a benchmarked IATA for nanosafety
assessment, to enable safe-by-design NM development and NMs
Risk Governance. The NanoSolveIT IATA will be implemented as a
decision support system packaged both as a standalone software
and a Cloud platform.

Key impacts of the NanoSolveIT models and in silico IATA will be
a direct reduction in the need for animal testing and a concurrent
increase in regulatory, industry and consumer confidence in the
predictive capacity of the nanoinformatics nanosafety models.
The in silico IATA will support the implementation of ‘‘safe-built-
by-design” approaches in industry by applying cost-effective test-
ing platforms for exposure, hazard and RA.

Acknowledging the complexity of the challenge, complete
achievement of this vision is likely to require 10 years of research
and investment, however, NanoSolveIT anticipates having a first
version of the concept implemented by early 2023, utilizing open
access approaches where possible to allow further community
development and continuous enrichment of the knowledgebase
underpinning the models. Exciting times are ahead for the nanosaf-
ety Nanoinformatics community.
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