135 research outputs found

    Network synchronization: Optimal and Pessimal Scale-Free Topologies

    Full text link
    By employing a recently introduced optimization algorithm we explicitely design optimally synchronizable (unweighted) networks for any given scale-free degree distribution. We explore how the optimization process affects degree-degree correlations and observe a generic tendency towards disassortativity. Still, we show that there is not a one-to-one correspondence between synchronizability and disassortativity. On the other hand, we study the nature of optimally un-synchronizable networks, that is, networks whose topology minimizes the range of stability of the synchronous state. The resulting ``pessimal networks'' turn out to have a highly assortative string-like structure. We also derive a rigorous lower bound for the Laplacian eigenvalue ratio controlling synchronizability, which helps understanding the impact of degree correlations on network synchronizability.Comment: 11 pages, 4 figs, submitted to J. Phys. A (proceedings of Complex Networks 2007

    Entangled networks, synchronization, and optimal network topology

    Full text link
    A new family of graphs, {\it entangled networks}, with optimal properties in many respects, is introduced. By definition, their topology is such that optimizes synchronizability for many dynamical processes. These networks are shown to have an extremely homogeneous structure: degree, node-distance, betweenness, and loop distributions are all very narrow. Also, they are characterized by a very interwoven (entangled) structure with short average distances, large loops, and no well-defined community-structure. This family of nets exhibits an excellent performance with respect to other flow properties such as robustness against errors and attacks, minimal first-passage time of random walks, efficient communication, etc. These remarkable features convert entangled networks in a useful concept, optimal or almost-optimal in many senses, and with plenty of potential applications computer science or neuroscience.Comment: Slightly modified version, as accepted in Phys. Rev. Let

    Bounding network spectra for network design

    Full text link
    The identification of the limiting factors in the dynamical behavior of complex systems is an important interdisciplinary problem which often can be traced to the spectral properties of an underlying network. By deriving a general relation between the eigenvalues of weighted and unweighted networks, here I show that for a wide class of networks the dynamical behavior is tightly bounded by few network parameters. This result provides rigorous conditions for the design of networks with predefined dynamical properties and for the structural control of physical processes in complex systems. The results are illustrated using synchronization phenomena as a model process.Comment: 17 pages, 4 figure

    Enhancing complex-network synchronization

    Full text link
    Heterogeneity in the degree (connectivity) distribution has been shown to suppress synchronization in networks of symmetrically coupled oscillators with uniform coupling strength (unweighted coupling). Here we uncover a condition for enhanced synchronization in directed networks with weighted coupling. We show that, in the optimum regime, synchronizability is solely determined by the average degree and does not depend on the system size and the details of the degree distribution. In scale-free networks, where the average degree may increase with heterogeneity, synchronizability is drastically enhanced and may become positively correlated with heterogeneity, while the overall cost involved in the network coupling is significantly reduced as compared to the case of unweighted coupling.Comment: 4 pages, 3 figure

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com

    Optimal network topologies: Expanders, Cages, Ramanujan graphs, Entangled networks and all that

    Full text link
    We report on some recent developments in the search for optimal network topologies. First we review some basic concepts on spectral graph theory, including adjacency and Laplacian matrices, and paying special attention to the topological implications of having large spectral gaps. We also introduce related concepts as ``expanders'', Ramanujan, and Cage graphs. Afterwards, we discuss two different dynamical feautures of networks: synchronizability and flow of random walkers and so that they are optimized if the corresponding Laplacian matrix have a large spectral gap. From this, we show, by developing a numerical optimization algorithm that maximum synchronizability and fast random walk spreading are obtained for a particular type of extremely homogeneous regular networks, with long loops and poor modular structure, that we call entangled networks. These turn out to be related to Ramanujan and Cage graphs. We argue also that these graphs are very good finite-size approximations to Bethe lattices, and provide almost or almost optimal solutions to many other problems as, for instance, searchability in the presence of congestion or performance of neural networks. Finally, we study how these results are modified when studying dynamical processes controlled by a normalized (weighted and directed) dynamics; much more heterogeneous graphs are optimal in this case. Finally, a critical discussion of the limitations and possible extensions of this work is presented.Comment: 17 pages. 11 figures. Small corrections and a new reference. Accepted for pub. in JSTA

    Data-driven design of complex network structures to promote synchronization

    Full text link
    We consider the problem of optimizing the interconnection graphs of complex networks to promote synchronization. When traditional optimization methods are inapplicable, due to uncertain or unknown node dynamics, we propose a data-driven approach leveraging datasets of relevant examples. We analyze two case studies, with linear and nonlinear node dynamics. First, we show how including node dynamics in the objective function makes the optimal graphs heterogeneous. Then, we compare various design strategies, finding that the best either utilize data samples close to a specific Pareto front or a combination of a neural network and a genetic algorithm, with statistically better performance than the best examples in the datasets
    • …
    corecore