17,454 research outputs found

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    ARIANA: Adaptive Robust and Integrative Analysis for finding Novel Associations

    Get PDF
    The effective mining of biological literature can provide a range of services such as hypothesis-generation, semantic-sensitive information retrieval, and knowledge discovery, which can be important to understand the confluence of different diseases, genes, and risk factors. Furthermore, integration of different tools at specific levels could be valuable. The main focus of the dissertation is developing and integrating tools in finding network of semantically related entities. The key contribution is the design and implementation of an Adaptive Robust and Integrative Analysis for finding Novel Associations. ARIANA is a software architecture and a web-based system for efficient and scalable knowledge discovery. It integrates semantic-sensitive analysis of text-data through ontology-mapping with database search technology to ensure the required specificity. ARIANA was prototyped using the Medical Subject Headings ontology and PubMed database and has demonstrated great success as a dynamic-data-driven system. ARIANA has five main components: (i) Data Stratification, (ii) Ontology-Mapping, (iii) Parameter Optimized Latent Semantic Analysis, (iv) Relevance Model and (v) Interface and Visualization. The other contribution is integration of ARIANA with Online Mendelian Inheritance in Man database, and Medical Subject Headings ontology to provide gene-disease associations. Empirical studies produced some exciting knowledge discovery instances. Among them was the connection between the hexamethonium and pulmonary inflammation and fibrosis. In 2001, a research study at John Hopkins used the drug hexamethonium on a healthy volunteer that ended in a tragic death due to pulmonary inflammation and fibrosis. This accident might have been prevented if the researcher knew of published case report. Since the original case report in 1955, there has not been any publications regarding that association. ARIANA extracted this knowledge even though its database contains publications from 1960 to 2012. Out of 2,545 concepts, ARIANA ranked “Scleroderma, Systemic”, “Neoplasms, Fibrous Tissue”, “Pneumonia”, “Fibroma”, and “Pulmonary Fibrosis” as the 13th, 16th, 38th, 174th and 257th ranked concept respectively. The researcher had access to such knowledge this drug would likely not have been used on healthy subjects.In today\u27s world where data and knowledge are moving away from each other, semantic-sensitive tools such as ARIANA can bridge that gap and advance dissemination of knowledge
    • …
    corecore