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Abstract 
 

Abedi, Vida. Ph.D. The University of Memphis. 12/2012. ARIANA: Adaptive Robust 

and Integrative Analysis for finding Novel Associations. Major Professor: Dr. 

Mohammed Yeasin. 

The effective mining of biological literature can provide a range of services such as 

hypothesis-generation, semantic-sensitive information retrieval, and knowledge 

discovery, which can be important to understand the confluence of different diseases, 

genes, and risk factors. Furthermore, integration of different tools at specific levels could 

be valuable. The main focus of the dissertation is developing and integrating tools in 

finding network of semantically related entities.  

The key contribution is the design and implementation of an Adaptive Robust and 

Integrative Analysis for finding Novel Associations. ARIANA is a software architecture 

and a web-based system for efficient and scalable knowledge discovery. It integrates 

semantic-sensitive analysis of text-data through ontology-mapping with database search 

technology to ensure the required specificity. ARIANA was prototyped using the Medical 

Subject Headings ontology and PubMed database and has demonstrated great success as 

a dynamic-data-driven system. ARIANA has five main components: (i) Data 

Stratification, (ii) Ontology-Mapping, (iii) Parameter Optimized Latent Semantic 

Analysis, (iv) Relevance Model and (v) Interface and Visualization. The other 

contribution is integration of ARIANA with Online Mendelian Inheritance in Man 

database, and Medical Subject Headings ontology to provide gene-disease associations.  

Empirical studies produced some exciting knowledge discovery instances. Among them 

was the connection between the hexamethonium and pulmonary inflammation and 

fibrosis. In 2001, a research study at John Hopkins used the drug hexamethonium on a 
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healthy volunteer that ended in a tragic death due to pulmonary inflammation and 

fibrosis. This accident might have been prevented if the researcher knew of published 

case report. Since the original case report in 1955, there has not been any publications 

regarding that association. ARIANA extracted this knowledge even though its database 

contains publications from 1960 to 2012. Out of 2,545 concepts, ARIANA ranked 

“Scleroderma, Systemic”, “Neoplasms, Fibrous Tissue”, “Pneumonia”, “Fibroma”, and 

“Pulmonary Fibrosis” as the 13
th

, 16
th

, 38
th

, 174
th

 and 257
th

 ranked concept respectively. 

The researcher had access to such knowledge this drug would likely not have been used 

on healthy subjects. 

In today's world where data and knowledge are moving away from each other, semantic-

sensitive tools such as ARIANA can bridge that gap and advance dissemination of 

knowledge. 
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Chapter 1: Introduction to Computing Semantically Related Networks of 

Entities and Novel Associations  

Introduction 

The effective mining of biological literature can provide a range of services such as 

hypothesis generation or semantic sensitive retrieval of information. This service helps to 

understand the potential confluence of various diseases, genes, risk factors as well as 

biological processes. In the sense of usability and scalability, the utility of semantic-

sensitive knowledge discovery tools is the tremendous increases in scientific publications 

and the diversity of the concepts that can be brought to the attention of the practitioner or 

researcher.  

Exploratory studies and hypothesis generation often begin with searches and study of 

existing literature to identify a set of factors and their association with diseases, 

phenotypes, or biological processes. Many scientists are overwhelmed by the sheer 

volume of literature for a disease as they plan to generate a new hypothesis or study a 

biological phenomenon. The situation is even worse for junior investigators who often 

find it difficult to formulate new hypotheses or, more importantly, corroborate whether 

their hypothesis is consistent with existing literature. It is a daunting task to be abreast 

with so much being published and also remember or formulate all combinations of direct 

and indirect associations. Fortunately there is a growing trend of using literature mining 

and knowledge discovery tools in biomedical research. However, there is still a large gap 

between the huge amount of effort and resources invested in disease research and the 
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little effort and return in harvesting the published knowledge. To bridge this gap it is 

imperative to design and implement efficient, robust, scalable, usable and domain 

specific knowledge discovery tools as well as integration of tools in finding network of 

semantically related entities. The concept of ontology mapping, semantic analysis and 

relevance model can be used to design and implement an adaptive robust and integrative 

analysis in providing a range of services in biomedicine. 

In biomedicine, generating disease-models based on literature data is a very natural and 

efficient way to better understand and summarize the current knowledge about different 

high-level systems. Identifying connecting elements between diseases can provide a 

systematic approach to identify missing links and potential associations. Connecting 

seemingly unrelated entities could also present new opportunities for collaborations and 

interdisciplinary research. A connection between two diseases can be formalized as a risk 

factor, symptom, treatment option, side-effect of a drug, any other diseases, or genes. 

These concepts are intuitive and provide a context to the researcher to perform 

specialized searches within the networks of associations.  However, identification of 

these concepts is key in providing a precise domain and accurate information extraction 

tool. Web tools and online databases can be used to extract these concepts through an 

ontology mapping process. The key idea is not to implement everything in house from 

scratch, but to use and map the available resources in a meaningful and efficient way in 

order to provide a knowledge discovery and information retrieval system that is as best as 

it can be with the current technology. 

In order to construct disease interaction networks, it is essential to identify factors (or 

concepts) associated with each disease independently. If only genetic concepts are to be 
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taken into account, then genomic data could be used; however, if concepts are considered 

to cover a wider range then other types of data, such as text data, could be used. In 

essence, to build a high level view of the disease interaction network, it is essential to 

utilize factors (or concepts) at a higher level of granularity.  For instance, instead of 

carefully analyzing the chemical structure of interacting compounds, it would be more 

appropriate to use groups of compounds such as “inorganic compounds”, or “heterocyclic 

compounds”. However, the system should be flexible enough to incorporate new 

concepts when a significant amount of information becomes available; additionally, it 

should allow information from Online Mendelian Inheritance in Man (OMIM) database 

and similar databases to be integrated for further refinement of the system.  

A plethora of the state-of-the-art Web applications on improving information retrieval 

and users' experience was reported in contemporary literatures and was succinctly 

reviewed in a recent survey by [1].  A total of 28 tools, targeted to specific needs of a 

scientific community, were assessed to compare functionality and performance. The 

common underlying goal of them all was to improve the relevance of search results, to 

provide a better quality of service as well as to enhance the user experience with the 

PubMed database. Though these applications were developed to minimize “information 

overload”, the question of scalability and improving knowledge discovery requires 

further research. Among the reported applications, the EBIMed [2], is the closest to our 

work in the sense of finding relationships between concepts.  

In particular, among the 28 tools, five used clustering to group the search results into 

topics; another five systems used different techniques to summarize the results and 

present a semantic overview of the retrieved documents. The following items are a subset 
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illustrating the scope and potential of these Web tools.  One of the systems, Anne O’Tate, 

[3] uses post processing to group the results into predefined categories such as MeSH 

topics, author names, year of publication. Even though this tool can be very helpful in 

presenting the results to the user, it does not provide the additional steps needed to extract 

semantic relationships and a network of associations. The McSyBi [4], clusters the results 

to provide an overview of the search and to show relationship among the retrieved 

documents. It is reported that LSA is also used in the backbone of that system; in addition 

to that feature, the top 10,000 publications are only analyzed. However, a fully integrated 

system is not available to run any queries from the Web tool. The program XploreMed 

[5] allows the users to further explore the subjects and keywords of interest. MedEvi [6] 

provides ten concept variables as semantic queries. XploreMed puts a significant limit 

(>500) on the number of abstracts to analyze. CiteXplore 

(http://www.ebi.ac.uk/citexplore/ date last accessed: 19 October 2012) combines 

literature search and data mining, it also provides information from other sources such as 

patent records. MEDIE [7] provides utilities for semantic search based on deep-parsing 

and, returns text fragments to the user. EBIMED [2] extracts proteins, Gene Ontology, 

drugs and species, and identifies relationships between these concepts based on co-

occurrence analysis.  

The STRING - a Search Tool for the Retrieval of Interacting Genes/Proteins [8] and 

iHOP - [9] were not among the 28 tools reviewed by [1]. Both applications translate 

unstructured textual information into more computable forms and cross-link them with 

relevant databases. However, the underlying techniques cannot capture the semantic 

relationship among entities. According to Altman et al., [10] existing techniques still lack 

http://www.ebi.ac.uk/citexplore/
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the ability to effectively present biological data in easy to use form and thereby further 

knowledge discovery by integrating heterogeneous sources of data.  

To reduce information overload and complement traditional means of knowledge 

dissemination, it is imperative to develop robust, scalable and highly precise Web-service 

applications that are versatile enough to meet the “specific” needs of a diverse 

community. The utility of such a system would be greatly enhanced with the added 

capability of finding semantically similar concepts related to various risk factors, side-

effects, symptoms and diseases. There are a number of challenges in developing such a 

robust, yet versatile Web-based tool. One of the main challenges is to create a fully 

integrated and a functional system that is specific to a targeted audience, yet flexible 

enough to be creatively used by a diverse range of users. To be effective, it is necessary 

to have a data stratification process that is global and complete. It is also important to 

map the range of concepts using a set of criteria to a “dictionary” that is specific to the 

community through an ontology mapping process. Second, it is essential to ensure that 

the knowledge-discovery process that is: i) scalable with the growing size of input data, 

ii) effective in capturing the semantic relationships and networks of concepts, and iii) 

capable of displaying an embedded multi-layer network of those concepts. Third, it is 

essential to present to the user a data-driven threshold that can be used to classify the 

extracted concepts at distinct levels of associations. Finally, an easy-to-use interface with 

proper visualization is critical to the success of such a tool in meeting the needs of 

consumers with diverse needs and desires. 
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Key Contributions 

The main focus of the dissertation is developing of efficient, robust, scalable, usable and 

domain-specific knowledge-discovery tools as well as integration of tools in finding 

networks of semantically related entities. The concepts of ontology mapping, semantic 

analysis and relevance model were introduced to design and implement an adaptive 

robust and integrative analysis. The key contributions are: 

I. A pilot study to implement Hypotheses Generation Framework (HGF)  

II. Design and implement the Adaptive Robust and Integrative Analysis for finding 

Novel Associations (ARIANA). ARIANA was built on top of the HGF using 

different layers of Ontology Mapping more suitable for integrative analysis. 

III. Integration of ARIANA with the OMIM database was performed to include 

genetic data. 

IV. Case studies to showcase the utility of the HGF and ARIANA 

V. A fully integrated Web service and visualization to enhance utility and user 

experience for ARIANA. 

The HGF implemented as pilot study shares similar end goals to SWAN [11] but is more 

holistic in nature and was designed and implemented using scalable and efficient 

computational models of disease-disease interaction. The integration of mapping 

ontologies with latent semantic analysis (LSA) is critical in capturing domain specific 

direct and indirect “crisp” associations, and making assertions about entities (such as: 

disease X is associated with a set of factors Z). Pilot studies were performed using two 

diseases. A comparative analysis of the computed “associations” and “assertions” with 

curated expert knowledge was performed to validate the results. The encouraging results 
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from the HGF framework and its ability to capture “crisp” direct and indirect 

associations, and provide knowledge discovery on demand planted the seed for 

developing fully integrated system for integrative analysis.  

One of the key contributions is the design and implementation of an Adaptive Robust and 

Integrative Analysis for finding Novel Associations.  ARIANA is a software architecture 

and a web-based system for efficient and scalable knowledge discovery. It integrates 

semantic-sensitive analysis of text data through ontology mapping with database search 

technology to ensure the  specificity required to create a robust model in finding relevant 

results to a query on an ocean of data. 

 The ARIANA was prototyped using the MeSH (Medical Subject Headings) ontology 

and PubMed database for biomedical applications and has demonstrated great success as 

a dynamic data-driven system that has the capability to improve the quality of 

information retrieval, knowledge discovery and networks of semantically related 

concepts or entities. ARIANA has five main components: (i) Data Stratification, (ii) 

Ontology Mapping, (iii) Parameter Optimized Latent Semantic Analysis (POLSA), (iv) 

Relevance Model and (v) Interface and Visualization.  

Based on the domain knowledge and the expert choice of the concepts and entities a very 

large and broad database is created using a fully automated process. Ontology mapping 

was performed on the large database to generate a context-specific dictionary for the 

domain of an application. A Parameter Optimized Latent Semantic Analysis (POLSA) 

was used to create a model based on the statistical co-occurrences and to rank list the 

entities that capture the association between the query and the entities/concepts in the 
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database. A relevance model, based on a user query was introduced to translate the 

ranked list into three categories of connections, namely, strongly related, related and not 

related.  The relevance model is a trimodal distribution, whose parameters are estimated 

and the cut points are determined dynamically for every query given to the system. The 

interface and visualization module receives one or more keywords from the user and the 

output is a multi-layered network that is collapsible /expandable to a level of detail that is 

user selectable. These features make the Web tool easy to interact with and provide 

flexibility needed to serve a diverse range of users.  

Another key contribution is the integration of ARIANA with Online Mendelian 

Inheritance in Man (OMIM) database, a flat list of human curated Gene-disease, and with 

MeSH (hierarchical database) to provide gene-disease associations.  

Empirical studies using of ARIANA resulted some exciting knowledge discovery and 

network of semantically related entities. Among the observations, the connection between 

drug Hexamethonium and Pulmonary inflammation and Fibrosis deserves special 

mention. In a research study (2001) at John Hopkins used this drug that ended in tragic 

death of Ellen Roche, a healthy volunteer, who died only after few days of inhaling this 

drug. Following her death, she was diagnosed with pulmonary inflammation and fibrosis 

based on chest imaging and autopsy report. However, this accident might have been 

prevented if the researcher knew of a case report published in 1955. Furthermore, since 

the original case report there has not been any new publications regarding the association 

of Hexamethonium and pulmonary fibrosis. ARIANA was able to extract this 

information from an ocean of publication even though the 1955 case report was not in the 

database. Out of 2,545 concepts in the system, ARIANA ranked " Scleroderma, 
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Systemic" as the 13
th

 ranked concept, Neoplasms, Fibrous Tissue" as the 16
th

 ranked 

concept, "Pneumonia" as the 38
th

 ranked concept, "Neoplasms, Connective and Soft 

Tissue>Neoplasms, Connective Tissue>Neoplasms, Fibrous>Fibroma " as the 174
th

 

ranked concept, and finally the "Pulmonary Fibrosis" as the 257
th

 ranked concept.  If the 

researcher had access to such knowledge, it was clear that this medication would not have 

been used on healthy subjects without further investigating its safety.  

In today's world where large amounts of information are generated each day and these 

quantities must be reviewed to obtain useful knowledge, semantic-sensitive tools such as 

ARIANA and integration of complementary computational tools can bridge this gap and 

advance dissemination of the resulting knowledge. 

Key features that distinguish this work from other state-of-the-art solutions are:  i) 

domain specificity and context dependent model, ii) scalability, iii) broad coverage of 

literature, iv) extraction of direct as well as indirect associations based on higher order 

co-occurrence analysis among biological entities, v) different layers of integrative 

analysis at tool level and at data level, and vi) flexible and easy to use interface design 

and prototype.  

Domain specificity is achieved through usage of customized data-driven dictionary using 

the ontology mapping. The goal of modular, efficient and scalable design was achieved 

through the integration of a parameter optimized latent semantic analysis (POLSA) based 

technique with data stratification based on expert knowledge. The broad coverage is 

achieved by judiciously extracting and stratifying 50 years of literatures to create the core 

data set.  The limitation of the LSA model on single query was addressed using multi-
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gram-context-specific dictionary. This also enabled the system to capture direct as well as 

indirect association that is based on higher order statistical co-occurrence. The integration 

of ARIANA with OMIM has captured the concept of integration of tools to extract 

indirect gene-disease association. MeSH and PubMed are integrated through the 

ARIANA’s framework in order to extract association among different biological and 

medical entities or concepts at a data level. Finally, the design and prototype of the 

interface guarantee a level of flexibility and ease of use to a wide range of users. The 

main features of the interface are the graphical representation and the collapsibility 

features in addition to the option of exporting the complete set of results for further 

analysis.  

The remaining chapters are organized as follows: Chapter 2 provides research context 

and broad ideas of concepts and tools that are involved developing the tools for 

integrative analysis. Following this in Chapter 3, a detailed description of HGF 

framework is presented with empirical studies to showcase the utility of the pilot study. 

Encouraged by the success of HGF a fully integrated system called ARIANA was 

developed; this effort is discussed in details in Chapter 4. Empirical studies using domain 

expert were also presented to corroborate the findings obtained from the system. To 

further advance the cause of integrative analysis, the ARIANA was integrated with 

OMIM database to capture gene-disease association; that work is described in the 

Chapter 5 along with case study to showcase the novel associations. Chapter 6 concludes 

the dissertation with few remarks on key findings, lessons learned, and suggestions for 

future directions. 
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Chapter 2: Research Context 

In the post-genomic era and with the advances in high-throughput technologies, new 

doors have been opened to study and map genetic networks such as human diseases [12, 

13, 14].  The majority of new research directions have focused on the genetic causes of 

diseases by looking at one or few diseases at once. It was only in 2007 that Goh et al. 

[14] took a conceptually different approach; they proposed an interaction between two 

diseases when both diseases were associated with a common gene. This idea led to 

construction of diseasome, disease-disease interaction network [14]. This higher level of 

abstraction, moving from one disease and many genes, or gene byproducts, to many 

diseases and their respective genes or gene byproducts, provided a new outlook to view 

genetic networks within bioinformatics community. However, the disease-disease 

interaction network proposed by Goh et al., [14] relied only on gene-disease interaction 

data. It was only recently that a combination of disease-gene information and protein-

protein information [15] was used to enhance the quality of such network. These types of 

high level analysis provide insights into topological features and functional properties of 

the disease interaction network. However, diseases can also be connected through non-

genetic features such as risk factors, side-effects of drugs and treatments, or signs and 

symptoms. Therefore constructing a disease network based on genetic and non-genetic 

factors can be a valuable reference for clinicians and medical researchers.  

A network in biology is comprised of a set of nodes representing biochemical or chemical 

entities and a set of edges representing interaction between those entities. For instance, in 

a protein-protein interaction network, nodes represent proteins, and edges could be 
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evidence for physical interaction between proteins. Similarly, in a disease-disease 

interaction network nodes represent diseases and edges could be common genes between 

diseases. Network analysis of disease-disease interaction network (where edges 

represented common genes) showed that the vast majority of genes associated with 

diseases are non-essential and do not tend to encode hub proteins; in addition to that, 

genes contributing to a common disorder i) have tendency for their by-products to 

interact with each other through protein-protein interactions, ii) have tendency to be co-

expressed, and iii) tend to share Gene Ontology terms [14] .  Hence, the results from 

studying these complex networks furthered our knowledge to a different level of 

understanding. As a result, scientists no longer attempt to study one gene or one gene 

byproduct at a time; rather they plan to study a family of genes or even group of genes 

(using microarrays) that respond to a given perturbation at one time.  

In the Human Disease Network (HDN) nodes represent diseases and edges are common 

genes between diseases [14]; hence if two diseases share at least on common gene, then 

there will be an edge between the two diseases. The HDN [14] is constructed based on 

genetic information, is a major step in providing a higher level of abstraction; yet 

information content is based only on the genetic information from the Online Mendelian 

Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim).  OMIM is a 

collection of human genes and genetic phenotypes; the database contains information for 

over 12,000 genes and is updated on a daily basis. Even though OMIM provides the level 

of association between the genes and phenotypes, including how the association was 

found, the HDN does not incorporate this additional information into the network.  

http://www.ncbi.nlm.nih.gov/omim
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A disease network provides a higher level of abstraction when compared to gene 

regulatory networks, or protein-protein interactomes. This higher level of abstraction 

facilitates translational research and is instrumental in clinical studies. This type of 

analysis can provide a valuable reference for clinicians and medical researchers. 

However, a disease network could also be constructed based on literature data to 

incorporate a wider range of factors such as side effects and risk factors.   

In fact, generating disease-models based on literature data is a very natural and efficient 

way to better understand and summarize the current knowledge about different high-level 

systems. Identifying connecting elements between diseases can provide a systematic 

approach to identify missing links and potential associations, while presenting new 

opportunities for collaborations and interdisciplinary research. As compared to only 

common disease-genes a connection between two diseases can be formalized as a risk 

factor, symptom, treatment option, side-effect of a drug, or any other disease. These 

concepts are intuitive and provide a context to the researcher to perform specialized 

searches within the networks of associations.  However, identification of these concepts 

is key in providing a precise domain and accurate information extraction tool. Web tools 

and online databases can be used to extract these concepts through an ontology mapping 

process. A key idea is not to implement everything in house, but to use and map the 

available out of house resources in a meaningful and efficient way in order to provide a 

knowledge discovery and information retrieval system that is as best as it can be with the 

current technology. 

In order to construct disease interaction networks, it is essential to identify factors (or 

concepts) associated with each disease independently. If only genetic factors are taken 
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into account, then genomic data could be used; however, if factors are considered to 

cover a wider range then other types of data, such as text data, could be used. In essence, 

to build a high level view of the disease interaction network, it is essential to utilize 

factors (or concepts) at a higher level of granularity.  For instance, instead of carefully 

analyzing the chemical structure of interacting compounds, it would be more appropriate 

to use groups of compounds such as “inorganic compounds”, or “heterocyclic 

compounds”. However, the system should be flexible enough to incorporate new 

concepts when a significant amount of information becomes available; additionally, it 

should allow information from OMIM database or similar type of databases to be 

integrated to this network for further refinement of the system.  

The availability of huge textual resources provides the scientists with the chance to 

search for correlations or associations such as protein-protein interactions [16, 17], and 

gene-disease associations [18, 19]. However, biology and medicine are rich in 

terminology; for instance, in pathology reports and medical records, 12,000 medical 

abbreviations have been identified [20].  In addition, this large vocabulary is also 

dynamic and new terms emerge rapidly. For instance, the same object may have several 

names, or distinct objects can be identified with the same name; when in the former case 

the names are synonyms while in the latter case the objects are homonyms [20].  

Consequently, literature-mining of biological and medical text becomes a very 

challenging task and the terms that suffer the most are gene and protein names [21, 22]. 

Alternatively, to design and implement a more accurate system, it is important to 

understand and tackle these challenges at their root level. However, even more 
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challenging is the implementation of the information extraction, also known as deep 

parsing. 

Deep parsing is built on formal mathematical models, attempting to describe how text is 

generated in the human mind (i.e. formal grammar) [20]. Deterministic or probabilistic 

context-free grammars are probably the most popular formal grammars [22]. Grammar-

based information extraction techniques are computationally expensive as they require 

the evaluation of alternative ways to generate the same sentence. Grammar-based 

information could therefore be more precise but at the cost of reduced processing speed 

[20]. An alternative to the grammar-based methods are vector-based methods such as 

Latent Semantic Analysis (LSA) method. These alternative methods rely on bag-of-

words concept, and have therefore reduced computational complexity. In addition to that, 

LSA technique has the added advantage of extracting direct and indirect associations 

between entities.  

In essence, since the traditional information retrieval framework, which relies on 

keyword-based approaches, cannot cope with the huge amount of information that is 

being produced on a daily basis, scientists have focused on more sophisticated techniques 

such as text-mining [22] coupled with data-mining approaches. This shift has proven to 

be valuable in many instances. For example, titles from MEDLINE were used to make 

connections between disconnected arguments: 1) the connection between migraine and 

magnesium deficiency [23] which has been verified experimentally; 2) between 

indomethacin and Alzheimer’s disease [23]; and finally 3) between Curcuma longa and 

retinal diseases [24]. Hypothesis generation in literature-mining relies on the fact that 

‘chance’ connections can emerge to be meaningful [22]. Use of vector based models such 
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as LSA in hypothesis generation could be very effective due to the reduction of 

computational complexity. However such a system should be designed with special care 

and consideration to be as context specific and precise as possible.  

Latent Semantic Analysis 

Latent Semantic Analysis (LSA) is a well known information retrieval technique which 

has been applied to many areas in bioinformatics. In LSA framework [25], a word-

document matrix (also known as tf-idf matrix) is commonly used to represent a collection 

of text (corpus). LSA extracts relations based on second order co-occurrence from a 

corpus, and maps them onto K-dimensional vector space. The discrete indexed words are 

projected into an eigen space by applying singular value decomposition (SVD).  

Arguably, LSA captures some semantic relations between various concepts based on their 

distance in the eigen space [26]. The most common similarity measure used to rank the 

vectors is the linear cosine similarity measure [26] . The three main steps of the LSA are 

outlined here and can be found in [25]: 

I. Creation of Term-Document matrix: The text documents are represented 

using a bag-of-words model. This representation creates a term-document 

matrix in which the rows are the words (dictionary), the columns are the 

documents, and the individual cell contains the frequency of the term 

appearance in the particular document. Term Frequency (TF) and Inverse 

Document Frequency (IDF) are used to create the TF-IDF matrix.  

II. Singular Value Decomposition (SVD): SVD or SparseSVD (approximation 

of SVD) is performed on the TF-IDF matrix and the k largest eigenvectors are 

retained. This k-dimensional matrix (encoding matrix) captures the 



17 
 

relationship among words based on first and second order statistical co-

occurrences.  

III. Information Retrieval: Information related to a query can be retrieved by 

first folding-in the query into the LSA space and then performing a similarity 

measure between the documents and the query. A Cosine similarity measure is 

usually used to rank and retrieve the documents. 

Parameter Optimized Latent Semantic Analysis 

Even though LSA has been applied to many areas in bioinformatics, the LSA models 

have been based on adhoc principles. In a recent work, the parameters affecting the 

performance of LSA were studied to develop a Parameter Optimized Latent Semantic 

Analysis (POLSA) [27]. The various parameters examined were corpus content, text 

preprocessing, sparseness of data vectors, feature selection, influence of the1
st
 Eigen 

vector, and ranking of the encoding matrix. The optimized parameters should be chosen 

whenever possible. 

Improving the Semantic Meaning of POLSA Framework 

Methods such as LSA have been successful in finding direct and indirect associations 

between various entities. However, these methods still use bag-of-words concept; 

therefore, they do not take into account the order of words and hence the meaning of such 

words are often lost. Using multi-keyword words would alleviate some of the problems 

of the bag-of-words model. In a multi-keyword dictionary, the word “vascular accident” 

(which is a synonym of “stroke”) would be differentiated from “accident” which could 

also mean car accident in a different context.  
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However, it is challenging to generate such a dictionary. If all combinatorial words in the 

English dictionary are chosen, then the size of such dictionary would be considerably 

larger even if one considers up-to three-gram words. An implication of the larger 

dictionary is an increased sparsity in the TF-IDF matrix. A possible solution is to 

construct the dictionary based on combinations of words that are biologically relevant for 

the case of biological text-mining. Identification of biologically relevant word 

combinations can be derived from biological ontology such as Gene Ontology 

(www.geneontology.org) or Medical Subject Headings 

(http://www.ncbi.nlm.nih.gov/mesh). Using a multi-keyword dictionary could in 

principle improve the accuracy of the vector-based frameworks, such as the LSA, that 

rely only on bag-of-words models. Use of multi-gram dictionary provides also a mean of 

extracting associations based on higher order co-occurrences. 

 

Knowledge-Based Systems 

To build a system or tool, it is important to utilize the most appropriate source of data. In 

biology and medicine, PubMed (http://www.ncbi.nlm.nih.gov/pubmed/) is the main 

source of text data. PubMed is a public database developed and maintained by the 

National Center for Biotechnology Information (http://www.ncbi.nlm.nih.gov/), and 

updated on a daily basis. Currently this database contains more than 22 million citations 

for biomedical literature. Whenever an article has an abstract, that abstract is published 

through PubMed. One of the features of retrieving articles through PubMed is the fact 

that all entries are tagged using the Medical Subject Headings controlled vocabulary. 

MeSH vocabularies are used to describe the subject of each journal article. MeSH 

http://www.geneontology.org/
http://www.ncbi.nlm.nih.gov/mesh
http://www.ncbi.nlm.nih.gov/pubmed/
http://www.ncbi.nlm.nih.gov/
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contains approximately 26,000 terms and is updated annually to reflect changes in the 

medical field. MeSH terms are arranged hierarchically by subject categories and PubMed 

allows one to view this hierarchy and search the literature using the controlled 

vocabularies.  

Constructing the core database that is based both on PubMed and MeSH through an 

ontology mapping process is critical for a system that is robust. Because the MeSH 

vocabulary ensures that articles are uniformly indexed by subject, whatever the author's 

words, its integration of the MeSH database is extremely important. 

Web Services 

Building an integrated disease network would be ineffective unless researchers can 

interact with the system and obtain valuable information directly. Hence, for a system to 

be used by clinicians and researchers it is imperative to have a robust and practical 

application tool. Providing a simple web page to display the results or developing a java 

applet are conventional frameworks with limited potentials. Instead of providing a web 

page, it is also possible to provide a web service (WS) to the end users. A WS is a 

software module, available via network (typically internet) which completes a task and 

returns the results to the user. WS technology is built on the concept of software-as-a-

service (SaaS) [28]. In SaaS, software and data are hosted on a central machine, which is 

usually connected to the internet, and clients query the system through a web browser 

over the internet. In a Web service environment, all computation and implementations 

details are hidden from the user (client); hence, client and server interact only through a 

well defined interface [28]. 
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There are four key advantages in using a Web service framework as compared to a web-

based application [28]: 1) Web service can act as client or server and can respond to a 

request from an automated application without any human intervention. This feature 

provides a great level of flexibility and adaptability; 2) Web services are modular and 

self-descriptive: the required inputs and the expected output are well defined in advance; 

3) Web services are manageable in a more standard approach. Even when a Web service 

is hosted in a remote location, accessible only through the network, and is written in an 

unfamiliar language, it is still possible to monitor and manage it by using external 

application management and workflow systems; 4) a Web service can be used by other 

applications when similar tasks need to be executed. This is particularly important as 

more tools are being developed and soon integrated in order to provide improved 

services.    

Furthermore, one of the main characteristics of a Web service is that it provides a 

framework that operates reliably and delivers a consistent service at a variety of levels. In 

addition, each service may offer various choices of quality of service (QoS) based on 

technical requirements, focusing on both functional and non-functional properties of 

services. Examples of such QoS are availability, accessibility, integrity, conformance to 

standards, reliability, scalability, performance and security [28, 29] . Hence, in a WS 

context, QoS provides assurance on a set of quantitative characteristics. Finally, web 

services are the next generation of web-based technology and applications. They provide 

a new and improved way for applications to communicate and integrate with one another 

[28]. The implications of this transition are profound, especially with the growing body 

of data and the available bioinformatics tools.  
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Chapter 3: Hypotheses Generation Framework 

Introduction 

Summary of the Study 

In bio-medicine, exploratory studies and hypothesis generation often begin by searching 

existing literature to identify a set of factors and their association with diseases, 

phenotypes, or biological processes. Many scientists are overwhelmed by the sheer 

volume of literature on a disease when they plan to generate a new hypothesis or study a 

biological phenomenon. Fortunately there is a growing trend of using literature mining 

and knowledge discovery tools in biomedical research. However, there is still a large gap 

between the huge amount of effort and resources invested in disease research and the 

little effort in harvesting the published knowledge. The proposed hypothesis generation 

framework (HGF) finds “crisp semantic associations” among entities of interest - that is a 

step towards bridging such gaps. The proposed HGF shares similar end goals like the 

SWAN but the goals are more holistic in nature. HGF was designed and implemented 

using scalable and efficient computational models of disease-disease interaction. The 

integration of mapping ontologies with latent semantic analysis is critical in capturing 

domain-specific direct and indirect “crisp” associations, and making assertions about 

entities (such as disease X is associated with a set of factors Z). Pilot studies were 

performed using two diseases. A comparative analysis of the computed “associations” 

and “assertions” with curated expert knowledge was performed to validate the results. It 

was observed that the HGF is able to capture “crisp” direct and indirect associations, and 
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provide knowledge discovery on demand. The proposed framework is fast, efficient, and 

robust in generating new hypotheses to identify factors associated with a disease. A full 

integrated Web service application is being developed for wide dissemination of the 

HGF. A large-scale study by the domain experts and associated researchers is underway 

to validate the associations and assertions computed by the HGF. 

Key Features of the Work 

Key features that distinguish this work from state-of-the-art solutions are:  i) domain 

specificity, ii) scalability, iii) board coverage of literature and, iv) extraction of direct as 

well as indirect associations among biological entities. Domain specificity is achieved 

through usage of customized medical dictionary; scalability is achieved through 

implementation of a LSA based technique further discussed in the methodology section; 

and broad coverage is based on the fact that 20 years of literature is used to create the 

data set. Finally, because LSA based method is used, the system is capable of capturing 

direct as well as indirect association among different entities. 

Data Sources and Materials 

PubMed Database is a public database developed and maintained by the National Center 

for Biotechnology Information (http://www.ncbi.nlm.nih.gov/), and updated on a daily 

basis. Currently this database contains more than 22 million citations for biomedical 

literature. The core database constructed here is based on the data from PubMed. In the 

next section the exact procedure to construct the data modules are described. 

http://www.ncbi.nlm.nih.gov/
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Hypotheses Generation Framework 

The Hypothesis Generation Framework (HGF) has three major modules: Ontology 

Mapping to generate data-driven domain specific dictionaries, a parameter optimized 

latent semantic analysis (POLSA), and Disease Model. The schematic diagram of the 

overall HGF framework is shown in the Figure 1(A). The model is constructed using the 

POLSA framework, and it is based on the selected documents and the dictionary 

(Figure 1C). Users can query the model and the output is a ranked list of headings. These 

ranked headings are grouped into three sets (unknown factors, potential factors, or 

established factors) using the Disease Model module (Figure 1C and 1D). Analyzing the 

headings in the three sets can facilitate hypothesis generation and information retrieval 

based on user query. 

http://www.biodatamining.org/content/5/1/13/figure/F1
http://www.biodatamining.org/content/5/1/13/figure/F1
http://www.biodatamining.org/content/5/1/13/figure/F1
http://www.biodatamining.org/content/5/1/13/figure/F1
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Figure 1. Flow diagram of the Hypothesis Generation Framework 

A) In a medical and biological setting, Ontology Mapping could use the Medical Subject 

Heading (MeSH) and generate a context-specific dictionary, which is one of the 

parameters of the POLSA model. Associated factors are ranked based on a User Query 

which can be any word(s) in the dictionary. These factors are subsequently grouped into 

three different bins (unknown factors, potential factors or established factors) based on 

our Disease Model. B) Ontology Mapping to create domain-specific dictionary. C) 

Parameter Optimized Latent Semantic Analysis Module. D) Disease Model Module. 



25 
 

Introduction of Ontology Mapping Concept 

MeSH is used to generate the dictionary in the POLSA model. The mapping of MeSH 

ontology to create the dictionary for the POLSA significantly enhances the quality of 

results and provides a crisp association of semantically related entities in biological and 

medical science. All MeSH headings are reduced to single words to create the context 

specific and data driven dictionary (see Figure 1B). For instance, “Reproductive and 

Urinary Physiological Phenomena” is a MeSH term and is reduced to five words in the 

dictionary (1. Reproductive, 2. and, 3. Urinary, 4. Physiological, and 5. Phenomena). In 

the filtering step, duplicates as well as stop words such as “and” or words containing two 

or fewer characters are removed. The final size of this dictionary is 19,165 words. Any 

dictionary word could be used as a query to the HGF. For instance, the disease “stroke” is 

a query in this study. The highly ranked factors with respect to a query-disease are 

considered factors associated with that disease. Cosine similarity measure is used as a 

metric in the HGF. 

POLSA Module 

In order to develop an effective literature-mining framework to model disease-disease 

interaction networks, generate plausible new hypotheses, and support knowledge-

discovery by finding semantically related entities, a Parameter Optimized LSA 

(POLSA)[27] was re-designed and adopted in the proposed HGF framework. 

In addition, a set of associated factors was selected to represent interaction between 

diseases. Ninety-six common associated factors (see Table 1) were selected through a 

literature review from numerous medical articles by two domain experts. As the first step, 

http://www.biodatamining.org/content/5/1/13/figure/F1
http://www.biodatamining.org/content/5/1/13/table/T1
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a set of articles was selected by querying the PubMed database using a series of diseases 

and factors. In the second step, the retrieved articles were manually reviewed by domain 

experts and entities that were associated with diseases or factors were selected. All 

articles considered for this analysis were peer reviewed articles. In addition, some 

common diseases such as diabetes and depression were also included in the set of 96 

factors, as these are believed to be, in many instances, risk factors to other diseases. 

Therefore, the set of 96 associated factors represents a wide range of factors including 

generic factors such as depression and infection as well as specific factors such as 

vitamin E. As the final step, the set was further revised by an expert in the medical field. 

Using the improved POLSA technique Yeasin, et al. 2009), meaningful associations from 

the textual data in the PubMed database are extracted and mined. Furthermore, the factors 

are ranked based on their level of association to a given query. 
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Table 1. Potential risk factors and/or contributing factors selected by medical expert 

 

Titles and abstracts from PubMed (for the past twenty years) for each of the 96 factors 

were downloaded on a local system. On average there were 47,570 abstracts per factor; 

the specific factors such as “maternal influenza” had fewer abstracts associated with them 

(minimum of 160 abstracts/factor) and the more generic factors such as “hormone” were 

associated with a greater number of abstracts (a maximum of 557,554 abstracts/factor). 

The complete collection was then used to construct the knowledge space for the POLSA 

model. Using a query such as “Parkinson” or “stroke” the 96 factors were then ranked 
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based on their relative level of associations to the query. The distribution of a set of 

associated factors with respect to a disease was modeled as a tri-modal distribution: a 

distribution which has three modes. This is due to the fact that some factors are known to 

be associated with the disease and have high scores. Similarly, some factors are known to 

be unassociated to the disease and these have negative scores; in addition, some factors 

may or may not be associated to the disease and these have low similarity scores. Matlab 

was used to generate two tri-modal distributions based on general Gaussian models for 

the two distributions obtained from queries “stroke” and “Parkinson”. The model uses the 

following formulation to describe the tri-modal Gaussian distribution: 

 

Where α1, α2 and α3 are the scaling factors; μ1, μ2 and μ3 are the position of the center 

of the peaks, and σ1, σ2, σ3 control the width of the distributions. The goodness of fit 

was measured using an R-square score. 

Disease Model 

Using a disease model (see Figure 2), it was possible to map the mixture of three 

Gaussian distributions into easy to understand categories. The implicit assumption is that 

if associated factors of a disease are well known, a large body of literature will be 

available to corroborate the existence of such associations. On the other hand, if 

http://www.biodatamining.org/content/5/1/13/figure/F2
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associated factors of a disease are not well documented, the factors are weakly associated 

to the disease with few factors displaying a high level of association (Disease X versus 

Disease Y as shown in the Figure 2). Since the distribution of association level of factors 

(including risk factors) will be different in the two scenarios. In the first case (Disease Y) 

the two dominating distributions are the factors that are associated and those that are not 

associated with the disease; in the second case (Disease X) the dominating distribution is 

that of the potential factors. In essence, if one accepts this assumption then the 

distribution of associated factors follows a tri-modal distribution and it will be intuitive to 

measure the level of association for different factors with respect to a given disease. 

Utilization of a disease model (by a tri-modal distribution) allows better identification of 

the three sets of factors: unknown associations, potential associations and established 

associations. 

 

http://www.biodatamining.org/content/5/1/13/figure/F2
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Figure 2. Model for the distribution of associated factors of a given disease 

If associated factors – such as risk factors are well known as in the case for Disease Y, 

then the two dominating distributions are the factors that are associated and those that are 

not associated with the disease; if on the other hand the associated factors of a disease are 

not well documented (Disease X) then the dominating distribution is that of the potential 

factors.  

Separating the three distributions allows implementation of a dynamic and data-driven 

threshold calculation. Hence, the parameters of the distributions can be used to model a 

cut-off threshold for the factors that are established, potential, or unknown. This method 

is empirical and provides an intuitive approach to evaluate the results. The score can be 

further optimized in a heuristic manner with utilization of a large-scale and 

comprehensive ground truth set. Furthermore, the highly associated factors to the disease 

are the well known factors; the hidden knowledge on the other hand resides in the region 

where the associations are positive yet weak. 
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Results 

Two diseases, namely, Ischemic Stroke (IS) and Parkinson’s Disease (PD), were used as 

queries to the hypothesis generation system. The distribution of associated factors is 

presented in the Figure 3. The results were compared with MedLink neurology 

(http://www.medlink.com/medlinkcontent.asp), a web resource used by clinicians. 

Comparative results were summarized in the Figure 4. In the case of IS, most of the 

associated factors are identified by both systems; however there is a set of factors that 

have only been identified by the proposed approach. In the case of the PD, a large 

number of factors have been identified by both systems. However, there are a number of 

factors that have only been identified by the proposed HGF and only a handful that are 

mentioned in the MedLink neurology which have positive but low similarity score in the 

hypothesis generation framework. 

The tri-modal distribution model is used to group the associated factors into different 

levels. The cut-off values to differentiate between different association levels vary 

slightly depending on the distribution of the similarity scores. The ideal decision 

boundary can be found if a large number of ground truth cases are available; in this 

situation the decision boundary is selected intuitively based on the shape of the 

distributions. For example, in the case of IS, factors are considered highly associated if 

their cosine score is greater than 0.3, factors are possibly associated if their score is 

between 0.1 and 0.3 and are possibly not associated if their score is lower than 0.1. In the 

case of PD, factors are considered highly associated if their cosine score is greater than 

0.2, factors are possibly associated if their cosine score is between 0.1 and 0.2 and finally 

the factors with scores between 0.05 and 0.1 are considered associated at low level, 

http://www.biodatamining.org/content/5/1/13/figure/F3
http://www.medlink.com/medlinkcontent.asp
http://www.biodatamining.org/content/5/1/13/figure/F4
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factors with scores lower than 0.05 are considered possibly not associated with the 

Parkinson’s Disease. 

 

Figure 3. Number of factors identified by MedLink Neurology and by HGF for 

Ischemic Stroke (IS) and Parkinson’s disease (PD) 

Association levels for IS measured by HGF are high (0.3<cosine score) and possible (0.1 

< cosine score < 0.3); associated levels for PD measured by HGF are high (0.2 < cosine 

score), possible (0.1 < cosine score < 0.2) or low (0.05 < cosine score < 0.1). 

In the case of IS, the distribution of known associated factors are more shifted to the right 

as compared to the factors in PD, hence the separation between the known and unknown 

factors is more pronounced. In addition to that, associations at both extreme levels (close 

to +1.0 and −1.0) are likely to be common knowledge; however, the hidden knowledge 

tends to be captured at similarity scores that are low yet positive. Nonetheless, it is not 

realistic to compare the precise similarity score values in order to give more importance 

to one factor versus another factor mainly because there is a systemic bias that is inherent 

to the biological text data and causes the generic factors to be an underestimate of the true 

value (data not shown); hence a direct comparison would fail in this case if no additional 

normalization steps are taken. 
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Figure 4. Distribution of cosine similarity score (dashed line) for risk factors 

associated with Ischemic Stroke (IS) and Parkinson’s disease (PD) 

The frequency represents the number of factors at each cosine similarity level (-1 to +1). 

Tri-modal distribution models are represented by solid lines. 

Figure 3 summarizes a comparative analysis of MedLink Neurology and HGF for IS and 

PD. Overall in the case of IS, twelve factors were identified by both systems and six 

factors were identified by the HGF. In the case of PD, twelve factors were identified by 

both systems, ten factors were identified by the HGF and five factors were identified by 

MedLink Neurology. But, these factors had a low association level in HGF. The five 

factors were either very generic or were not exactly mapped in the set of the 96 factors, 

hence a direct comparison could not be made. Finally, this small scale comparative 

analysis corroborates the hypothesis that HGF based on literature can better predict the 

associated factors for diseases such as IS when the risk and associated factors are well 

http://www.biodatamining.org/content/5/1/13/figure/F3
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studied and documented. In both cases, MedLink, Neurology, and HGF predicted twelve 

common associated factors; however, in the case of PD ten new factors were predicted in 

comparison to six in the case of IS.  

Discussion 

De novo hypothesis generation can provide an approach on how we design experiments 

and select the parameters for the study. Interestingly, associations detected by the 

proposed framework can facilitate extraction of interesting observations and new trends 

in the field. For instance, it was found that PD could possibly be associated with 

immunological disorders; this is an intriguing observation. This analysis also facilitates 

interdisciplinary research and enhances interaction among scientists from sub-specialized 

fields. A manual review of the literature is performed to find evidences for some of the 

associations found only by the HGF; Table 2 summarizes these results. 

Table 2. A subset of factors identified only by the hypothesis generation framework 

 

There are three main limitations in the presented framework. We are currently in the 

process of finding solutions for these limitations. 1) Manual selection of the factors 

creates bias in the dataset and also limits its scalability property. To alleviate this 

http://www.biodatamining.org/content/5/1/13/table/T2
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problem, MeSH hierarchy will be used to generate the set of factors. MeSH comprises 

more than 25,000 subjects headings organized in an eleven-level hierarchy. 2) In the set 

of 96 factors, some factors were very generic and some very specific, therefore, there was 

a systemic bias in the dataset which caused the score for generic factors to be an 

underestimate of the true values and factors with limited information to be overestimated 

(data not shown). To partially solve this technical difficulty, an improved method based 

on local LSA is being developed in our lab. And finally, 3) looking only at the literature 

from the past twenty years was not sufficient for the HGF. The expansion of the literature 

is necessary based on the observation that the association between head trauma and PD 

was significantly lower than expected. 

Generating new hypotheses by mining a vast amount of raw unstructured knowledge 

from the archived reported literature may help in identifying new research trends as well 

as promoting interdisciplinary studies. In addition, the presented framework is not limited 

to uncovering disease-disease interactions; any word from MeSH can be used to query 

the system, and its associated factors can be identified accordingly. Disease-disease 

interaction networks, interaction networks among chemical compounds, drug-drug 

interaction networks, or any specific type of interaction network can be constructed using 

the HGF. The common basis for all these networks is the knowledge embedded in the 

literature. Application of this framework is broad as its usage is not limited to any 

specific domain. For instance, uncovering drug-drug interactions is valuable in drug 

development and drug administration, uncovering disease-disease interaction is important 

in understanding disease mechanisms and advancing biology through integrated 

interdisciplinary research. Even though the framework is not limited to diseases, in this 
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study two neurological diseases were used to test the system and demonstrate the power 

and applicability of the framework. 

In addition to addressing the limitations of the framework, work is in progress to expand 

the HGF framework to allow the user to generate disease networks based on a number of 

user-defined queries. Such customized networks can be valuable to a wide range of 

scientists by promoting a faster identification of associated factors and detection of 

disease-disease interactions. Disease networks based on genetics and proteomics data 

display many connections between individual disorders and disease categories [14, 15]. 

Therefore, as expected, each human disorder does not seem to have unique origins or be 

independent of other disorders. To uncover potential links between two disorders, 

knowledge extraction from medical literature could be greatly beneficial and reliable. 
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Chapter 4: Adaptive Robust and Integrative Analysis for finding Novel 

Associations 

Introduction 

Summary of the Study 

Adaptive Robust and Integrative Analysis for finding Novel Associations (ARIANA), is 

an efficient and scalable Web-based knowledge discovery tool providing a range of 

services in the general areas of text analytics in biomedicine. ARIANA’s core function is 

semantic-sensitive analysis of text data through ontology mapping. The ontology 

mapping is critical for maintaining specificity of the application and ensuring the creation 

of a representative database from an ocean of data for a robust model. In particular, the 

Medical Subject Headings ontology (http://www.nlm.nih.gov/mesh/) was used to create a 

dynamic data-driven dictionary specific to the domain of application, as well as a 

representative database for the system. The semantic relationships among the entities or 

concepts are captured through a parameter optimized latent semantic analysis (POLSA). 

The knowledge discovery and the networks of concepts were captured using a relevance 

model. Finally, an easy to use interface with a flexible visualization module is 

implemented to interact with the data at various levels of granularity. The input to the 

ARIANA can be one or multiple keywords selected from the MeSH ontology and the 

output is a multi-layered network that is collapsible /expandable at levels of granularity 

chosen by the user. This feature makes it easy to interact with the Web Tool, and 

provides the user with the flexibility to focus on the relevant parts of the network and 

hide other details.  The output can also be downloaded as a text file for further processing 

http://www.nlm.nih.gov/mesh/
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and experimentation. The interface was designed to improve the user experience by 

catering to specific needs. 

The dynamic data-driven (DDD) concepts were introduced starting from the domain 

specific “dictionary creation” to the “database selection” and to the “threshold selection” 

for knowledge discovery using relevance model. The key idea is to make the system 

adaptive to the growing amounts of data and also to the creative needs of a diverse users. 

Furthermore, the concepts of relevance model and DDD are critical to provide crisp and 

meaningful information through an intuitive and easy to use Web service application.           

In essence, the ARIANA attempts to bridge the gap between creation and dissemination 

of knowledge. In addition, case studies were performed to evaluate the accuracy of the 

computed results. 

Key Features of the Work 

Key features that distinguish this work are both at the system level and at interface level. 

At the system level, context specificity and hierarchical structure of a medical ontology 

(in this case MeSH) are integrated with PubMed at a data level to enhance the quality and 

specificity of information retrieval. In addition, the broad coverage of the literature along 

with multi gram and context specific dictionary provides additional means to achieve 

higher standards in literature mining. Finally, because of integration of LSA based 

technique and multi gram dictionary, direct as well as indirect associations are captured 

that are based on higher order co-occurrences. At the interface level, features such a 

collapsibility/expandability are key for a multi level representational advantage where 

different users from different fields and with different level of expertise can use the tool 

with ease.  
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Data Sources and Materials 

As in the case for the HGF, ARIANA is also based on the data from PubMed and MeSH 

ontology. However, the data extraction procedure is optimized. In addition to that, MeSH 

vocabularies are used to describe the subject of each journal article. That information is 

also included in the database. The next section describes the exact procedure to construct 

the data modules. 

ARIANA has five main components: (i) Data Stratification, (ii) Ontology Mapping, (iii) 

Parameter Optimized Latent Semantic Analysis (POLSA), (iv) Relevance Model and 

(v) Interface and Visualization. Figure 5 summarizes the overall architecture of the 

system. 

MeSH

Dictionary

User Query

Associated 

Headings 

ranked wrt 

the query

Ontology 

Mapping
POLSA

Relevance 

Model

Unknown Associated 

Headings

Potential Associated 

Headings

Established 

Associated Headings

Heading List

(B)(A) (C)

 

Figure 5. Flow diagram of the ARIANA's backbone 
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Data Stratification 

The dataset for the 276 factors is downloaded from PubMed and stored in a MySQL 

database. The database construction is based on the following design (see Figure 6).  

Using a database to store the data has one key benefit: since the relationship between 

abstract and Headings is many-to-one, each abstract will only be downloaded once, thus 

saving significant amount of storage space. 

Three tables are used to construct the database for the MeSH-based factors. “Factor” 

table contains information regarding the 276 MeSH factors, “most recent article (year)” is 

used to update the entry in the database; “FactorPMID” table contains information need 

to link the factor to PubMed abstracts using PMIDs (unique identifies of PubMed 

abstracts); “PMIDContent” table contains information about each abstract. In 

PMIDContent Mesh Headings are separated by “;”. 

Factor

Name

Factor ID

Most recent article (year)

FactorPMID

Factor ID

PMID

PMIDContent

PMID

Title

Abstract

Year

Mesh Headings
 

Figure 6. Database system 
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Ontology Mapping Module 

The input to the Ontology mapping process is the MeSH ontology (see Figure 7). Using 

this ontology, two parallel paths are followed to create a multi-gram and context-specific 

dictionary in addition to a heading list. To create the multi-gram dictionary, first MeSH 

node identifiers are extracted, and then using a Perl script, the text file containing node 

identifiers is parsed to construct the mono, bi and tri-gram dictionary. The size of the 

multi-gram dictionary is 39,107 words. The last filtering step removes duplicates, stop 

words, words starting with a stop word or number, and all words of length two or less 

characters. For instance, using the MeSH identifier "Reproductive and Urinary 

Physiological Phenomena", the followings eight dictionary words are constructed: 1. 

Reproductive and Urinary, 2. Urinary Physiological Phenomena, 3. Urinary 

Physiological, 4. Physiological Phenomena, 5. Reproductive, 6. Urinary, 7. Physiological, 

8. Phenomena. Two of the eight words are tri-grams, two are bi-grams, and the remaining 

four words are mono-grams.   
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Figure 7. Module A - Ontology Mapping 



43 
 

To create the heading list, a careful analysis by a medical expert is performed and a 

subset of MeSH entries was selected to create the data model. The subset of selected 

headings, referred to as Heading List, is comprehensive and contains headings from an 

array of subjects including anatomy, diseases, chemicals, health care, population 

characteristics and more. A total of 276 headings were selected, and the complete list can 

be found in the appendices. The main focus when selecting the headings was to include 

headings that are of general interest and that are relatively specific.  

POLSA Module 

The Heading List and the Dictionary are the inputs to the POLSA module (see Figure 8). 

Using the Heading List, titles and abstracts of publications are downloaded from the 

PubMed and stored in a MySQL database on a server (over 8,700,000 abstracts were 

selected through this process).  The number of documents in the corpus will be the same 

as the number of elements in the heading list, that is 276 headings.  
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Figure 8. Module B - Parameter Optimized Latent Semantic Analysis (POLSA) 

Each of the 276 documents is parsed to create a term-document-inverse-document 

frequency (TF-IDF) matrix using the words in the dictionary. The pre-processing step is 

minimized and does not include stop word removal and stemming as is usually done in 
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text-mining; that is due to the structure of the dictionary as it contains multi-gram words 

which may have stop words within them. The TF-IDF matrix is then used to create the 

encoding matrix using singular value decomposition.  A user query, which can be any 

word in the dictionary, will also be an input to this module. Using the encoding matrix, 

the query is translated into the reduced eigen space where direct comparison can be made 

with the approximate TF-IDF. The approximate TF-IDF is obtained following 

dimensionality reduction of the encoding matrix. Dimensionality is reduced to cover 90% 

of the total energy, in this case dimensionality is reduced from 276 to 228 to create the 

approximate TF-IDF. A comparison between the query and the documents is made by 

comparing the query in the reduced eigen space and approximate TF-IDF. The cosine 

similarity measure, which represents the relevancy score, is used to capture the angle 

between two vectors representing the query and any of the headings. This measure is 

between +1 and -1. Based on the similarity scores, the headings are then ranked. 

Relevance Model 

One of the main challenges in knowledge discovery is to present the results in an intuitive 

and easy to understand form and also allow exploration of results at user defined levels of 

granularity. The relevance model proposed in this section is a logical extension of disease 

model originally reported in our previous work [31] also discussed in Chapter 3 of this 

dissertation. It is an intuitive, simple and easy to use statistical analysis of rank values to 

compute the strongly related, related, and not related concepts with respect to a user 

query. Figure 9 illustrates the core concepts of the implemented relevance model. The 

concepts in this system are a subset of Medical Subject Headings and the user query is 

constrained by the MeSH ontology. The underlying assumption is if concepts are highly 
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associated then there is a large body of literature available to corroborate existence of 

their association. On the other hand, if two concepts or biological entities are not well 

documented then they are only weakly associated. Furthermore, since the distribution of 

relevance scores is a function of user queries, then the cut-off value to separate highly, 

possibly and weakly associated entities must be determined dynamically and on the fly. 

This requires a simplified yet effective model to ensure scalability. To simplify the 

computation, it was assumed that the distribution of the ranked list can be viewed as a 

mixture of Gaussian and the partition can be computed   using the DDD threshold.  

(C)

Extract parameters of the Model

Calculated cut-off values

Associated Headings 

ranked wrt the query

Cluster the scores into tri-modal 

Disease Model

Unknown 

Associated 

Headings

Potential 

Associated 

Headings

Established 

Associated 

Headings

 

Figure 9. Module C - Relevance Model 
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In particular, the distribution of relevance scores of the Headings for a given query was 

approximated as a tri-modal Gaussian distribution. The separation of the three 

distributions allows implementation of the DDD cut-off system. In our previous work 

[31], also reported in Chapter 3, a curve fitting approach was used to estimate the 

parameters of the tri-modal distribution and the cut-off values. In this work, fuzzy c-mean 

clustering approach was implemented to achieve the same goal but in a more robust and 

scalable manner. This method is much faster and can provide a finely tuned mean to 

evaluate the results on demand. Furthermore, this dynamic data-driven cut-off value 

determination can also be integrated in other information retrieval systems.  

Even though the relevance model can be highly beneficial for a quality information 

retrieval system, the ranked list already provides key information about the association 

between the query and the headings. The top ranked headings are strongly associated 

with the query and the headings ranked at the bottom do not have significant evidence to 

support their association to the query. The headings that are between the two extremes 

are the ones that might or might not be associated with the query as there is some 

supportive evidence for their association. These weak associations are important in the 

knowledge discovery process and call for further investigation by domain experts. These 

weak associations may not always be reported for many cases, and depending on the 

level of the study, less stringent cut off scores can be considered.  

Finally, the computed associations can then be displayed in a network making it easier to 

analyze than a flat list. If multiple queries are presented to ARIANA, the network for 

individual queries are computed and displayed. In addition, common associations 

between queries are also highlighted. Furthermore, the user can hide the queries and their 
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associated Headings that are not of interest and focus on the ones that seem promising 

and perform additional searches based on the results. The power of this visualization is 

manifold: it increases the speed for the visual inspection; it facilitates multi query 

searches; and enhances the quality of the overall search experience.  

The fact that the Heading List is from a hierarchical structure, makes it possible to 

collapse the parts of the network that are of limited interest to the user. Nodes in the 

network that have common parent nodes (parent-child relationship obtained from the 

MeSH ontology) can be merged to simplify the network for a better visualization 

experience. This feature is extremely useful when the number of Heading List increases 

to a few thousands.  

The list of associated Headings that are ranked with respect to a user query is used as 

input to the Relevance Model (see Figure 9). The top ranked Headings are strongly 

associated with the query and the Headings ranked at the bottom do not have significant 

evidence to support their association to the query. The Headings that are between the two 

extremes are the ones that might or might not be associated with the query as there is 

some supportive evidence for their association. These weak associations are important in 

the knowledge discovery process and call for further investigation by domain experts.      

The similarity measure between the query and all the associated Headings is used to 

cluster the Headings into three categories. Fuzzy c-means clustering technique is applied 

to group the associated headings using the MATLAB built-in-function. Using the 

clustering technique, the scores are first grouped into two clusters. Using the membership 

values of these two clusters, the following algorithm is used to assign each Heading  to 

one of the three groups in the Relevance Model.  
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The cosine cut-off values estimated through this process are dynamic and data-driven, 

hence the cut-offs are subject to change as the dataset expands. The input is the limit that 

is defined by an expert to separate the known and unknown Headings and place them into 

the possible Heading group (i.e. the gray zone), a conservative limit threshold of 0.9 was 

chosen to analyze the results (value of j in Algorithm 1).  

 

SET a and b as cluster membership for the headings such that sum(a) ≥ sum(b)  

SET j as the limit to select headings in gray zone 

FOR each heading 

   IF a≤ b                    THEN SET c to 1 

   END IF 

   IF abs(a-b) ≤ j       THEN SET d to 1 

   END IF 

END FOR 

FOR each heading 

   IF c=1               THEN SET group to high_Assoc 

   ELSIF d=1       THEN SET group to possible_Assoc 

   ELSE                SET group to no_Assoc 

   END IF 

END FOR 

 

Algorithm 1. Grouping of Headings based on fuzzy c-mean clustering 

Interface 

The interface is an easy to interact web-tool that accepts one or multiple keywords 

selected from the MeSH ontology and the output is a multi-layered network. Current 

work is in progress to provide the user with collapsibility/expandability feature as 

discussed earlier (see also Figure 10). The visualization module is central part of the 

interface. The primary purpose is to present the associations between the user inputs and 

the 276 Headings. The proximity matrix generated from the ranked list, represents an 

adjacency for the associations between the user inputs and the Headings.  The user is 
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given with the option of providing a threshold which can be applied to the proximity 

matrix, to refine the level of association required. In addition, we are also integrating the 

DDD threshold in the interface.  

 

Figure 10. Collapsibility/expandability feature of the network 

The user input list and the list of 276 Headings together represent the maximum number 

of nodes that are present in the graph. Once the threshold is applied, the number of nodes 

present in the graph is reduced. If no threshold is applied, the maximum number of nodes 

would be 276 in addition to the 10 user inputs.  

To convert the proximity matrix into a graphical network graph, an open source 

JavaScript library (http://d3js.org/) d3 is used. Force-layout is used to represent the 

graphs where nodes and links have dynamic properties and can be moved around by the 

user by stretching or compressing each node using the mouse. When the user relinquishes 

control, the network goes back to its original shape. The nodes and the links in the force 

layout have specific properties such as shape, color, text and also physical properties such 
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as friction, charge, gravity and strength. These properties are set appropriately to create a 

network layout where clutter is minimized.  To convert the proximity matrix, a JSON file 

is written which explicitly identifies the nodes present in the network and the links 

present among those nodes. A JSON is JavaScript Object Notation which is a light 

weight data interchange format. A JSON is built on two data structures, one is a 

collection of key/value (i.e. hash map) pairs and the other is an ordered list of values.  For 

the graph visualization, each of the previously mentioned data structures are used to 

represent the following components: i) the ordered list representing the list of nodes 

present in the network; ii) the key/value pairs representing the links in the network. The 

key corresponds to the source node and the value corresponds to the target node present 

in the above ordered list. When the user queries the system using more than one query 

work, the network displays the common Headings (if applicable) separately (see Figure 11 

and Algorithm 2 in the appendices). 

 

Figure 11. Identification of common nodes for multiple queries. 
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Evaluation 

Evaluation of such analysis is challenging yet very important. The system was evaluated 

through a comprehensive literature review and then further verified by an expert in the 

field. The test case was Ischemic Stroke and a board certified physician in Vascular 

Neurology validated the findings reported here.  

Information Retrieval and Knowledge Discovery 

A series of queries were used to study and evaluate the potential and scope of the system. 

The end goal was to detect level of noise and exactitude when running general queries 

such as common diseases. The results of the analysis are presented in the results section 

and further discussed in the discussion section of this chapter. 

Results 

ARIANA’s main objective is to find the semantic sensitive network of  associations 

among concepts and enhance the quality of knowledge discovery and also user 

experience.  

Four different diseases were used as case studies to illustrate the utility and the scope of 

ARIANA. Diseases used for the study are  i) Ischemic stroke (IS), ii) Parkinson's Disease 

(PD), iii) Lymphoma, and iv) Migraine. Results obtained from the IS simulations are 

compared with literature and evaluated by a medical expert. Results from PD, Lymphoma 

and Migraine are displayed and shortly discussed as well. The results presented here are 

examples and demonstrate how this system can be used to extract information that can be 

forgotten, and hence bridge the knowledge gap. 
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Case I: Disease-Heading Network Figure 12 displays the results with "Ischemic Stroke" as 

query. Table 3 lists the eighteen selected headings with their respective relevance scores.   

The two cut-off values were obtained by applying the DDD system. The cut-off values 

place six Headings into the high association and twelve Headings into the possible 

association group.  All the Headings are directly or indirectly associated with stroke. In 

some cases the indirect association was not obvious and literature search was performed: 

association between i) stroke and Intermittent Claudication [32], and ii) stroke and 

Cyanosis [33].  Table 4 lists lower ranking Headings for up to a relevancy score of 0.01. 

Majority of the Headings listed in table 2 have known association with Ischemic Stroke.   

 
 

Figure 12. Histogram representation of cosine scores for the 276 Headings (query: 

Ischemic Stroke) 
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Table 3. List of Headings ranked and grouped with respect to query "Ischemic 

Stroke" 
 

 Relevancy 

Medical Subject Headings 
MeSH 

tree number 
Score Level 

Cerebrovascular Disorders C14.907.253 0.550 High 

Vascular Diseases C14.907 0.466 High 

Mobility Limitation C23.888 0.447 High 

Myocardial Ischemia C14.907 0.424 High 

Athletes M01.072 0.359 High 

Hemorrhage C23.550 0.245 High 

Mycotoxicosis C21.613.680 0.191 Possible 

Hyperemia C14.907.474 0.128 Possible 

Neuroleptic Malignant Syndrome C10.720.737 0.116 Possible 

Arterial Occlusive Diseases C14.907.137 0.106 Possible 

Pain C23.888.646 0.099 Possible 

Intermittent Claudication C23.888.531 0.096 Possible 

Nervous System Neoplasms C10.551 0.096 Possible 

Personality F01.752 0.094 Possible 

Azotemia C23.550.145 0.088 Possible 

Preconception Injuries C21.676 0.087 Possible 

Cyanosis C23.888.248 0.082 Possible 

Emphysema C23.550.325 0.081 Possible 

Table 4. List of Headings at different relevancy scores with respect to query 

"Ischemic Stroke" 

 

Medical Subject Headings Range of relevancy scores 

Thyroid Diseases; Metabolic Syndrome X; Hypovolemia; Defense 

Mechanisms; Neurotoxicity Syndromes; Age Groups; Autoimmune 

Diseases of the Nervous System 
0.08 to 0.041 

Neoplasms; Minority Groups; Socioeconomic Factors; Alcohol-

Related Disorders; Tumor Virus Infections; Peripheral Vascular 

Diseases; Hepatitis A; Intestinal Diseases, Parasitic 
0.04 to 0.021 

Dermatitis, Occupational; Physical Fitness; Neurocutaneous 

Syndromes; Socialization; Carbon Tetrachloride Poisoning; 

Mycoses; Muscular Diseases; Immunocompetence;  

Trauma, Nervous System; Movement Disorders; Bone Diseases, 

Endocrine; Heart Murmurs; Skin Temperature; Metabolism, Inborn 

Errors; Quality of Life; Arbovirus Infections; Child, Abandoned; 

Rheumatic Diseases; Arthritis, Rheumatoid 

0.02 to 0.01 
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Case II: Disease-Disease Network: A number of diseases were used as query to find the 

network of associations among Headings. The summary of results is presented in the  

Figure 13 and details are available in the appendices. The majority of the identified 

Headings are known to be associated with the query. In some cases the association is not 

strong or it is an indirect association, through other Headings. Only in a few instances the 

Headings do not have any known association with the query.  

 

Figure 13. Information retrieval and knowledge discovery using three queries 
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Parkinson's Disease (PD): The list of ranked Headings for PD highlights the fact that this 

is a neurological disorder, or more specifically a neurodegenerative disease, affecting 

movement and muscle functions (see Figure 13). The identified elements also highlight 

that this disease is likely associated with environmental factors (manganese poisoning, 

heavy metal poisoning, cadmium poisoning, MPTP poisoning).  Case for Migraine: The 

top three ranked Headings to migraine are: coffee, tea and sexually transmitted diseases 

(STD) with score of 0.689, 0.592 and 0.286 respectively. The first two associations are 

expected; however, the association between migraine and STD is less predictable. In a 

recent investigation [34] 200 HIV/AIDS patients were studied and among them 53.5% 

reported headache symptoms and 44% were diagnosed with migraine. In addition to that, 

authors also found a strong correlation between the severity of the HIV disease and the 

strength and frequency of the migraine attacks. Interestingly, this specific article [34] is 

not in the current data model, nonetheless the association is detected; hence this is a clear 

example of knowledge discovery. Case for Lymphoma: Lymphoma, cancer of lymphatic 

system, begins in the cells of the immune system. Generally, lymphoma seems to be 

highly associated with different types of infections, that is predictable since patients with 

a weakened immune system have a higher chance of this cancer. One interesting 

observation is the association of lymphoma and PD with cadmium poisoning. In fact, the 

risk of developing childhood acute lymphoblastic leukemia were increased with exposure 

to cadmium in the drinking water [35]. Some associations, such as cadmium and PD or 

Lymphoma, are known but can be considered forgotten or buried in the ocean of 

publications as they are not usually referenced in medical protocols and textbooks. Hence 
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this tool has great potential for data reuse. ARIANA can extract existing associations and 

improve the quality of information retrieval.  

Discussion 

ARIANA is a web tool targeting a large scientific community: medical researchers, 

epidemiologists, biomedical scientific groups as well as junior researchers with focused 

interests. The tool can be used as a guide to broaden one's horizon by identifying 

seemingly unrelated entities to the user’s query word. ARIANA computes the networks 

of semantically meaningful associations from over 8,000,000 documents and provides the 

relations between query word(s) and the 276 Headings. The guiding principle was to 

make the design efficient, modular and scalable. The framework can be expanded to 

incorporate a much larger set of Headings from the MeSH Ontology. In addition, a 

dynamic data-driven system is implemented to group the ranked Headings into three 

groups for every query. The DDD system can be applied in other systems to improve the 

quality of information retrieval. Furthermore, as a consequence of incorporating a context 

specific multi-gram dictionary, the sparsity of the data model is lower and the size of the 

dictionary is significantly smaller than if all combination of English words were taken 

into consideration. 

First, ARIANA provides a systematic way of data stratification based on domain 

knowledge and application constraints. Second, it uses ontology mapping to create a 

dynamic data driven dictionary, which in turn produces a better model and also helps in 

finding crisp association of concepts. Third, it computes the network of associations 

based on higher order co-occurrence analysis and introduction of relevance model to 

present the results into an easy to use and understandable manner. Finally, a fully 



58 
 

integrated tool allows users to interact with the database and computed association at 

various labels of granularity through an easy to use interface and visualization of 

expandable/collapsible multi-layer network.  In addition, since MeSH provides a 

hierarchical structure, ARIANA can be expanded to include a very large number of 

Headings. 

 Finally, biological entities are diverse in nature and can include different levels of 

granularity; for instance, these entities can include risk factors, drugs, side effects of 

treatment and diseases. Furthermore, network of associations between these entities can 

be useful for management of patients with different conditions. For instance, orthostatic 

hypotension could be triggered by a number of medications such as agents used in the 

treatment of hypertension, myocardial ischemia, psychosis and schizophrenia, depression, 

Alzheimer and Parkinson disease, as well as, a vaccine approved for the prevention of 

cervical cancer [36]. Therefore, the management of patients with such conditions requires 

a careful understanding and evaluation of their health record. The scientific knowledge 

used in the clinical setting will provide new observations (such as publication of new case 

reports) and can lead to innovative experiments for corroboration of novel instances; thus 

completing the knowledge discovery cycle. 
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Chapter 5: Integration of Tools – ARIANA, OMIM and MESH 

Introduction 

Summary of the Study 

In this Chapter, ARIANA is fine tuned and expanded to incorporate 2,545 Headings from 

the MeSH ontology. The Heading selection process is automated through a fine grain 

filtering procedure. The modular design and scalability feature of the ARIANA tool 

allows incorporation of a much larger set of Headings without any technical issue. 

Following the fine-tuning of the system, a tool-level integration process incorporates a set 

of genes in the dictionary and an OMIM derived gene-disease association in the network 

of semantically related entities. OMIM is a flat list of gene disease associations with 

detailed molecular level information and full references. ARIANA, on the other hand, is a 

tool that integrates MeSH ontology and PubMed database and can therefore use 

hierarchical structure of MeSH to organize the disease categories. Mapping of disease in 

PubMed and disease in MeSH is not a direct mapping, as many disease names are unique 

to each database. In OMIM, each disease is unique and has no relationship with other 

diseases. In MeSH, each disease can have a sub class or super class. Equivalence class 

concept is used to map disease from OMIM and MeSH. The mapping being one to many, 

a MeSH disease can be mapped to one or more diseases in OMIM (or zero in some 

cases), where the OMIM database provides additional information regarding gene-disease 

association. The main functionality of integrated tool will still be finding association 

among biological entities with the added genetic information from OMIM. In addition, 
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genes that are in the OMIM database are added to the dictionary to target a different layer 

of semantics as well. This layer of semantics can be complex to analyze and interpret due 

to the nature of the application.  

Finally, we show that fine tuning ARIANA can be valuable for predicting lethal disease-

drug association with no citation in PubMed for the years in the database. Integration of 

genetic information to the ARIANA tool is still experimental and further investigation by 

field experts is needed. 

Key Features of the Work 

Key features that distinguish this work from the state of the art works are at the level of 

tool integration and system enhancement. At the tool integration level, the key 

contribution is design of an equivalence class for mapping of hierarchical and non-

hierarchical databases. At the system enhancement level, the central contribution is fine-

tuning of the POLSA system and refining the dictionary, based on analysis of the 

encoding matrix. Integration of genetic information in the ARIANA tool through addition 

of gene symbols in the dictionary was also one of the added elements of this work.  

Data Source and Materials 

As in the case for the ARIANA with the 276 Headings, the expanded version of 

ARIANA also used PubMed to create the database. In addition to PubMed, MeSH 

ontology is utilized to make the database as precise as possible. The Heading selection is 

optimized to provide a better quality of service to the users. In the next section, the exact 

procedure to construct the data modules is described. 



61 
 

Data Stratification 

The fine-tuned and expanded version of ARIANA  has seven main components, namely, 

Database Creation, Ontology Mapping, Parameter Optimized Latent Semantic Analysis 

(POLSA), Relevance Model, Disease Mapping through  equivalence class, Extraction of 

Gene-Disease association and the Interface. Disease Mapping and Extraction of Gene-

Disease information are the two new components that expand the project to a new level. 

In addition, the Ontology Mapping is fine-tuned through an iterative process. Figure 14 

outlines the conceptual model of the new and improved Web-tool.  

 

Figure 14. Conceptual model of the ARIANA after fine tuning the parameters 

Ontology Mapping Components 

Based on the domain knowledge and the choice of the concepts and entities, a very large 

and broad database is created using a fully automated process. In this expanded version, 

the Heading selection process is also automated, making the system scalable and robust.  
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One of the key functions of Ontology Mapping is to use the information in the encoding 

matrix to filter out terms that provide no new information. This refinement process 

creates an encoding matrix that is not sparse. The multi-gram dictionary is also optimized 

accordingly. In addition, gene names in the OMIM database are added to the dictionary 

as well. Figure 15 shows the steps taken in this module.  
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Figure 15. Fine tuning of Ontology Mapping in ARIANA 

The two key paths in this module are to create a revised multi-gram dictionary that is 

concise and domain specific, and to create a Heading list to be used in the data extraction 

process. The Heading list was initially selected by an expert in the field from the MeSH 

ontology. In the refined version of ARIANA  node information is used to automatically 

extract the best set of Headings. In the next subsection the details of the node filtering 

procedure is described in depth. To revise the multi-gram dictionary, the encoding matrix 
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obtained from the POLSA module is analyzed. Figure 16 and Figure 17 show a snapshot of 

a section the encoding matrix before and after the fine-tuning process.  

Fine-Tuning of the Multi-Gram Dictionary 

Following the analysis of the encoding matrix, it was observed that many of the entries 

were zero even when full SVD was used. Further investigation showed that removing 

some of the irrelevant dictionary words reduced the rows of zeros; hence the problem was 

due to the fact that some dictionary words that were generated through an automated 

process (see Chapter 4) were irrelevant or did not provide sufficient information to the 

model. Removing of these dictionary words creates an encoding matrix that is not sparse. 

Removing the dictionary words that correspond to a row of zeros in the encoding matrix 

is therefore critical for a robust system. The final size of the multi-gram dictionary is 

17,074 words, these include words that are mono, bi, and tri-grams.  
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Figure 16. Section of the encoding matrix following singular value decomposition 

 

Figure 17. Section of the encoding matrix following singular value decomposition 

after refinement 
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Heading Selection Process 

Automatic Heading selection for ARIANA is achieved through a systematic node 

filtering process described here. The automatic framework for the selection of a subset of 

Medical Subject Headings focuses on capturing representative data while creating a 

balanced dataset from an ocean of unstructured text. Eight sub-categories from the MeSH 

tree are selected based on the application constraints and domain knowledge: Diseases 

(C), Chemicals and Drugs (D), Psychiatry and Psychology (F), Phenomena and Processes 

(G), Anthropology, Education, Sociology and Social Phenomena (I), Technology, 

Industry, Agriculture (J), Named Groups (M), and Health Care (N). The eight sub-

categories are subject to filtering where about 2.5-17% of their descendent nodes are 

selected to be included in the final Heading List. The Headings are selected in such a way 

to i) create a balanced representative dataset, ii) remove noise and systemic bias, and iii) 

remove Headings that are either too generic or too specific. Three features are used in the 

filtering process: number of abstracts for each Heading, number of descendent node 

associated with each Heading and ratio (also referred to as fold change) of the number of 

abstract between child-parent node. These features capture the specificity of the 

Headings. Finally, 2,846 Headings from a total of 38,618 are selected to populate the 

database; 61% (1,828 out of 2,846) of the Headings are from the Disease category.  

Heading selection rules are progressive rules and are based on the application constraints. 

The rules for the selection of Headings are adjusted in each sub-category in order to 

include concepts from a wide range of fields, while keeping a higher number of Headings 

from the disease class. The disease class includes the MeSH from the C category and the 

non-disease class contains Headings from all the remaining seven categories. 
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Furthermore, the inclusion criteria are continuously adjusted to reduce the skewness in 

the dataset. For instance, some categories like Chemicals and Drugs (D) are very large 

with over 20,000 sub-headings, while some categories such as Named Groups (M) are 

very small, with only 190 sub-headings, for this reason the selection criteria is 

progressively adjusted to reduce the bias in the dataset. A total of 475 out of 20,015 sub-

headings were selected from the D category (only 2% coverage), while a total of 13 out 

of 190 (or 7% coverage) were selected from the M category. The 475 Headings represent 

less than 50% of the Headings in the non-disease category. To include a higher number of 

Headings to have a higher coverage from the D category will create a skewed dataset 

where Chemical and Drugs are over-represented.  

The main constraint is to select more than half of the Headings from the disease category. 

The filtering process is therefore less stringent for the disease category. The three features 

(number of abstracts for each Heading, number of descendent node that is associated with 

each Heading and fold change) are used to build three rules to measure the specificity of 

the Headings and facilitate the selection process. Headings are selected if they satisfy the 

following three criteria: i) at least one and at most 100 child nodes; ii) at least 1,000 and 

at most 50,000 abstracts; and iii) at most 10 fold change with respect to their parent node. 

The empirical thresholds are selected for the selection process with the goal of reducing 

the systemic bias and noise that is inherent to the biological datasets. In fact, initially the 

number of child nodes for all the factors in the disease category ranged between 0 - 370 

with an average values of 1.7; the average number of child nodes after filtering is 

increased to 5. Hence, the filtering process removes a large number of leaf nodes and a 

few generic nodes, where generic nodes are known to be associated with large number of 
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child nodes. Similarly, before filtering, the number of abstracts for each Heading in the 

disease category ranges between 0 - 563,913 with an average that roses from 5,067 before 

filtering to 10,309 after filtering. These numbers demonstrate that a large number of 

specific and a smaller number of generic diseases are removed, thus the systemic bias due 

to document size is reduced. Lastly, there is also noticeable difference in fold change in 

this category: before filtering the fold change for each Heading ranges from 1 to 11,674. 

The average fold change drops from 201 to 3 following the filtering process. A very high 

fold change can identify Headings that are too specific and could therefore be the cause 

of systemic bias in the dataset. Finally, a total of 1,828 Headings are selected from the C 

category, this number represents 17% coverage from the C category and accounts for 

64% of the total number of Headings in ARIANA's database.  

The Chemical and Drugs category (category D) is one of the largest categories in MeSH 

with 20,015 headings. The selection criteria for this category are therefore very stringent. 

One of the main objectives is to select Headings that would represent a maximum of 50% 

from the non-disease group. A total of 475 headings are selected from the D category, 

this number represents 47% of the headings from the non-disease group. The number of 

child nodes for each Heading ranges from 0 - 1,605 with an average value of 2.5. In the 

filtering process the Headings that have at least one and at most ten child nodes are only 

considered, this limit removes very specific as well as generic Headings. Furthermore, 

the number of abstracts for each Heading ranges from 0 to 1,177,960 with an average 

value of 7,407. These numbers illustrate the range of specificity in the dataset; in fact, a 

Heading that is associated with over one million abstracts is too generic to be useful. 

After filtering, the range of abstracts per Heading is significantly reduced (5,000 - 
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10,000), but the average value is only slightly changed to 7,319. Finally, before filtering 

the fold change reaches a maximum of 557,279 with an average value of 345; after 

filtering the fold change is limited to five and the average value is significantly reduced 

to 2.1.  

Category F, also known as Psychiatry and Psychology category has only 1,050 headings. 

Selection criterion is therefore adjusted to select about 10% of the best representative 

Headings. The 1,050 Headings have a wide range of specificity, indeed the number of 

abstracts for each Heading ranges from 1 to 859,564. The filtering process attempts to 

select the most homogenous Headings to minimize systemic bias and noise. An average 

value of 11,396 abstracts per Headings is slightly reduced to 11,386; however, the range 

is significantly reduced (1,000 to 30,000) in this case. Similarly, before filtering the 

number of child nodes for each heading ranges from 0 to 69 with an average value of 

1.04; after filtering the headings that have less than 2 and more than 50 child nodes are 

removed, bringing the average value to 2.7. Even though the average value is only 

changed slightly, the Headings that were at both extremes of specificity are removed. 

Finally, before filtering, the fold change ranges from 1 to 49,761 with an average value of 

232, which is significantly reduced to 2.7 following the filtering process during which 

Headings having more than 10 fold changes were discarded.  

The G category (Phenomena and Processes) is a relatively large category with 3,164 

Headings. Selection criterion is set to select fewer than 10% of the Headings for the 

database. A total of 242 Headings are selected from this category to represent 24% of the 

non-disease class in the database. Before filtering, the number of abstracts per Heading 

ranges from 0 to 1,266,295; the range is significantly large as some Headings are 
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associated with over one million abstracts and some Headings are associated with fewer 

than ten abstracts. The selection process guarantees inclusion of Headings that have a 

minimum of 1,000 and a maximum of 20,000 abstracts; the average number of abstracts 

per Headings is therefore reduced significantly from 20,374 to 8,755. In the same way, 

the range of child node per Heading is reduced from [0; 248] to [1; 10] thus providing a 

mean to select the best representative Headings. Finally, the fold change ranges from 1 to 

66,905 before filtering, limiting the range to [1; 10] brings the average value of fold 

change from 367 to 3.1, hence proving an additional step in the Heading selection 

process. 

The I (Anthropology, Education, Sociology and Social Phenomena) and J (Technology, 

Industry, Agriculture) categories have similar characteristics with 559 and 558 Headings 

respectively. The I category has an average of 7,374 and J category an average of 7,290 

abstracts per Heading. Similarly, the I category has an average of 1.7 child node while the 

J category has an average of 1.6 child node. Finally, the I and J category have an average 

of 114 and 99 fold change per Heading respectively. The selection rules can therefore be 

adjusted in a similar manner with the ultimate goal to select about 100 nodes to populate 

roughly 10% of the non-disease category.  

To this end, the filtering process is designed in parallel: the filtering process excludes 

Headings that have i) fewer than 1,000 or greater than 10,000 abstracts per Heading, ii) 

fewer than 1 or greater than 10 child nodes, and iii) a fold change greater than 10. As a 

result of this filtering process, a total of 31 headings from the I category and 66 from the 

J category are selected. The average number of abstracts is reduced to 5,520 in the I 

category and 4,787 in the J category. Similarly, the average number of child nodes is 2.2 
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in the I category and 1.6 in the J category; finally, the average fold change per Heading is 

reduced to 3.5 in the I category and 3.1 in the J category. Together these numbers 

demonstrate that the filtering process that relies on a the three features can be best as the 

number of abstract may not in this case be enough and fold change can be a more useful 

measure. In fact, the average number of abstracts is only reduced by 25%-34% after 

filtering for I and J category respectively; however, average fold change is reduced by 

97% for both I and J category. Hence the fold change in this case has a more 

discriminative power.   

The M category (Named Groupes) is a small category with only 190 Headings. The 

selection process filters this category in a way to only include a small subset of Headings 

in the non-disease class. Even though this category has a limited number of Headings, the 

variation in terms of specificity of the topics is large. The number of abstracts per 

Heading in this group ranges from 0 - 3,600,540 with an average of 64,924 abstracts. 

Some of the Headings in this category are very generic with over 3 million abstracts 

while some Headings are very specific with very limited abstracts; therefore the filtering 

process can be very useful in filtering out Headings at both extremes. The child node for 

each heading reaches a maximum of 71 and the fold change ranges from 1 - 15,136. 

Again, these numbers confirm the extent of variability in specificity of the Headings in 

this category. The filtering process, limits the number of abstracts from 1,000 - 20,000 

and the fold change to a maximum of 5 while selecting Headings that have greater than 1 

and fewer than 5 child nodes. After this filtering process there are 13 Headings that are 

selected to be in the non-disease class with an average number of abstracts of 6,785 per 

Heading, an average fold change of 2 and average number of child node of 1.5. The 
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inclusion of a small representative sample from this category can be important as these 

are potentially interesting Headings such as: "Hispanic Americans", "Twins", or 

"Emergency Responders".  

The N category (Health Care) has 2,207 Headings with a large range of specificity. The 

number of abstracts per Heading ranges from 0 - 3,727,938 and the number of child node 

per Heading reaches a maximum of 165 with an average value of 1.7; furthermore the 

fold change per Heading has also a very large range [1 - 121,977]. As with the other 

categories, the filtering process is critical for the selection of a balanced representative 

data. The selection process excludes headings that have i) fewer than 5,000 and greater 

than 10,000 abstracts, ii) fewer than 1 and greater than 10 child nodes, and iii) fold 

change greater than 10. This filtering process creates a small subset of headings from this 

category (for a total of 63, or 6% of the non-disease group). The selected subset of 

Headings has an average number of 7,473 abstracts and an average of 2.3 child nodes in 

addition to an average of 3 fold change. This selection process ensures the inclusion of 

Headings that have moderate specificity thus reducing systemic bias in the dataset.   

One of the key objectives in the factor selection process is to create a balanced 

representative dataset across all categories. In fact, after filtering the average number of 

abstracts, the average number of child nodes and the average number of fold change is 

within closer range. Before filtering, the average number of abstracts per Heading was 

19,451±20,658, this number was reduced to 7,792±2,259; similarly the average number 

of child node per heading was 1.6±0.5 and this number was increased to 2.6±1.1; finally 

the average number of fold change per Heading was 221±99 and this number was 

reduced to 2.8±0.5. If the selected features are good representation of specificity, then the 
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2,846 factors selected through this process have a comparable specificity and can be use 

to build a robust model where noise and systemic bias due to dataset characteristics are 

reduced. The higher the quality of the dataset the higher is the quality of the model and 

that translates directly to a higher quality of knowledge discovery tool.  

Once the Headings are selected, then the duplicates are removed. In MeSH some nodes 

are duplicates as their parent node are different; however, the documents retrieved for 

both duplicated nodes are identical, hence duplicates can be removed without causing any 

inconsistency. A total of 301 Headings are duplicated and are removed in the final stage; 

these include 218 (or 12%) from the C category, 39 (8%) from the D category, 7 (5%) 

from the F category, 32 (13%) from the G category, 2 (3%) from the J category and 

finally 3 (or 4%) from the N category. This reduction is the last step in the Heading 

selection process, reducing the final Heading List from 2,846 to 2,545. 

POLSA  

There is no change in the structure of the POLSA module in the expanded version of 

ARIANA. The main differences are the followings: there are 2.545 Headings in the 

model;  the dictionary is also revised and genes from OMIM are added and irrelevant 

words are removed based on a first run; the approximate TF-IDF is obtained following 

dimensionality reduction of the encoding matrix covering 95% of the total energy, or in 

this case dimensionality is reduced to 1,400 to create the approximate TF-IDF.  

Mapping of Equivalence Class and Tool Integration  

Any given tool solves a specific problem based on set of constraints and limitations. Also 

any given tool attempts in general to be as precise as possible while overcoming the 
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many challenges. Integrating such efforts can be beneficial at many levels; however, the 

main idea is to reduce the inefficiencies due to replication of functionalities. Tool 

integration can be achieved at different levels yet the main challenge is to create an 

efficient mapping of classes. For instance, the main difficulty for the integration of 

Online Mendelian Inheritance in Man (OMIM) database with ARIANA is to map disease 

classes between the two systems. ARIANA uses the hierarchical disease names from 

MeSH while OMIM has a flat list of diseases and their associated genes.  

Therefore, to use and integrate the gene information to the ARIANA web tool we have to 

solve the disease-mapping challenge. The OMIM is a database of human genes and 

genetic disorders (http://www.omim.org/). It is possible to download the full database in a 

local machine and use that information to display any gene disease association that 

relates to the user's query. The main challenge is to extract disease names that correspond 

to the disease names used in MeSH. To be as transparent, we designed a system that 

displays information that is complete without encapsulating or hiding any intermediate 

steps. To solve the disease mapping problem we implemented a three step process that 

would take a disease in MeSH and bring to user's attention a series of genes that may or 

may not be associated to the disease; the expert can make his or her decision as to follow 

the lead. These associations are mainly indirect associations. 

Step 1: extraction of significant words, representing disease names, from the OMIM 

database. The significant word is the first word in the multi-gram disease name that is 

used in the OMIM database. For instance, Alzheimer is the significant word for 

"Alzheimer disease 1, familial". 

http://www.omim.org/downloads
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Step 2: extraction of disease names from OMIM. This entry represents the full disease 

name in the database, including identifiers preceeding or following the disease name. In 

addition, the disease identification number is also kept for furhter reference. OMIM 

identifiers include the followings (when available):  

#:  Phenotype mapping method - # appears in parentheses after a disorder. 1: The 

disorder is placed on the map based on its association with a gene, but the underlying 

defect is not known. 2: The disorder has been placed on the map by linkage; no mutation 

has been found. 3: The molecular basis for the disorder is known; a mutation has been 

found in the gene. 4: A contiguous gene deletion or duplication syndrome, multiple genes 

are deleted or duplicated causing the phenotype. For instance, "Alzheimer disease 1, 

familial, 104300 (3)" has a disease identifier that is 104300 and the phenotype mapping 

method is set to 3. 

Note that the full entry in the OMIM database for the example above is: "Alzheimer 

disease 1, familial, 104300 (3)|APP, AAA, CVAP, AD1|104760|21q21.3" 

That means that the gene APP (also known as AAA, CVAP or AD1) is associated with 

the disease 104300. This association is based on a phenotype mapping explained by #3.  

Step 3: extraction of genes symbol for the identified diseases. For instance in the case of 

"Alzheimer disease 1, familial, 104300"  the corresponding gene symbol is APP.  

Figure 18 shows the mapping process described here. 
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Figure 18. Disease-mapping module for extraction of gene-disease association 

Relevance Model  

The relevance model is as described in Chapter 4. Here we demonstrate (see Figure 19) 

the power of the dynamic data driven technique for extraction of information using three 

simulations: infection, tuberculosis (TB), and multiple sclerosis (MS).  

Using the default setting, we compare the results of the simulations. For the case of 

infection disease, scores higher than 0.06 are considered highly associated (for a total of 

358) and scores between 0.062 and 0.026 are considered possibly associated (for a total 

of 255), scores below 0.026 are clustered in the unknown group. For the case of TB 

scores higher than 0.124 are considered highly associated (for a total of 35 Headings), 
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and scores between 0.124 and 0.059 are considered possibly associated (for a total of 40 

Headings). Score lower than 0.059 are clustered in the unknown group. For the case of 

MS, scores higher than 0.11 are considered highly associated (for a total of 55 Headings), 

and scores between 0.11 and 0.0048 are considered possibly associated (for a total of 40 

Headings). Score lower than 0.0048 are clustered in the unknown group. 

In the first case, infection disease is well studied with over one million publications in 

PubMed. The cut-off values obtained in this case are 0.062 and 0.026 respectively. There 

are over 300 Headings in the first cluster (high association) and over 200 Headings in the 

second cluster (possible association). Using the same setting, the simulation for TB 

returns different cut-off values: 0.124 and 0.059 respectively. TB is less studied, when 

compared to infection, with over 200,000 publications in PubMed. Finally, there are even 

fewer PubMed entries for MS, and for that reason we expect the cut-off values to be 

different. In fact, with the default setting, the two cut-off values for MS are 0.11 and 

0.0048, putting 55 entries in the first cluster and 40 entries in the second cluster.  This 

analysis demonstrates the importance of a dynamic data driven threshold calculation.   
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Figure 19. Histogram representation of three different queries 
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Results 

Knowledge Discovery - Case for "Pulmonary Fibrosis" and "Hexamethonium" 

The drug Hexamethonium is a drug that can be used to treat chronic hypertention, of the 

peripheral nervous system; however, the non-specificity of its action led to discontinuing 

its use. In 2001, a research study in John Hopkins used this drug to induce asthma in 

healthy research objects. During the course of the study, a healthy volunteer, Ellen 

Roche, died only after few days of inhaling this drug. She was diagnosed with pulmonary 

inflammation and fibrosis based on chest imaging and autopsy report following her death 

(http://www.hopkinsmedicine.org/press/2001/july/report_of_internal_investigation.htm). 

In fact in the autopsy report it was stated the following facts: "The microscopic 

examination of the lungs later revealed extensive, diffuse loss of alveolar space with 

marked fibroris and fibrin thrombi involving all lobes. There was also evidence of 

alveolar cell hyperplasia as well as chronic inflammation compatible with an organizing 

stage of diffuse alveolar damage. There was no evidence of bacteria, fungal organisms, or 

viral inclusions on routine or special 

stains."  (http://www.hopkinsmedicine.org/press/2001/july/report_of_internal_investigati

on.htm).  

This study was headed by Dr. Alkis Togias, who made a "good-faith effort" to research 

the drug's (in this case hexamethonium) adverse effects. Dr. Togias search mainly 

focused on a limited number of resources, including PubMed database, and the ethics 

panel subsequently approved the safety of the drug. This tragedy highlights the 
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importance of literature search for designing experiments and enrolling healthy 

individuals in control groups.  

The volunteer was a healthy person with no lung or kidney problems; however, because 

of inhaling a "believed to be safe" chemical she lost her life. One day after enrolling in 

the study she developed a dry cough and dyspnea. Two days after she developed flu-like 

symptoms and her FEV1 was reduced. On May 09, 2001 she was febrile and was 

admitted to the Johns Hopkins Bayview Medical Center (JHBMC). Her chest X-ray 

revealed streaky densities in the right perihilar region and her arterial oxygen saturation 

fell to 84% after walking a short distance.  She was referred to ICU on May 12, 2001. 

She was subsequently intubated and ventilated, suffered bilateral pneumothoraces, and 

presented a clinical picture of adult respiratory distress syndrome (ARDS). She died on 

June 02, 2001. 

 The main message is that this tragic accident could have been prevented. In fact there 

was a case report (Figure 20) of the toxicity of this drug in a 28 year old woman [36]. 

However, when Dr. Togias did his PubMed search, the PubMed database was searchable 

only back to 1966; therefore a basic PubMed search missed this important evidence. 

Professional medical librarians could have found this evidence through other online 

databases such as TOXNET, the Toxicology Data Network resource provided by NLM 

(http://toxnet.nlm.nih.gov/index.html). Following this incident, the federal Office of 

Human Research Protection (OHRP) suspended the University's Federal licence (MPA) 

to conduct human research involving human subjects. "All Federally funded research was 

suspended at: the Johns Hopkins University School of Medicine (JHUSM), the Johns 

Hopkins University School of Nursing, the Johns Hopkins Hospital, the Johns Hopkins 

http://toxnet.nlm.nih.gov/index.html
http://www.ahrp.org/infomail/0701/19.php
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Bayview Medical Center, the Gerontology Research Center of the National Institute of 

Aging-Bayview Campus, the Kennedy-Krieger Institute, and the Applied Physics 

Laboratory. This made the international news headlines, as how a preventable research 

casualty could happen in the this century, where technology and data are at everyone's 

fingertip.  

 

Figure 20. Case report published in Can Med Assoc J. in 1955 

Since the original case report there has not been any new publications regarding the 

association of  Hexamethonium and pulmonary fibrosis, in fact searching the PubMed 

will not identify any relevant material for that pourpose. A PubMed search of : 
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hexamethonium and "pulmonary fibrosis" returns four hits, none of them with available 

abstracts online. One of the returned publications is in Russian language published in 

1967. The other three are publishe in 1979, 1956 and 1967 [37, 38, 39, 40]. Note that, 

PubMed search also includes seraching through the MeSH entires, therefore searching the 

PubMed is not only a keyword-based search. Searching individual entries return 19516 

record for "pulmonary fibrosis" and 7026 entries for Hexamethonium; therefore the 

number of publication on each topic is not the limiting factor. Therefore, still to this date 

there is very limited evidence of the toxicity of this drug in PubMed. The PDF of the case 

report published in 1955 can be found in PubMed today; however, many data mining 

tools, including ARIANA, do not take into account PDFs of articles, especially when 

they are published in the 50s or even 60s. 

We tested ARIANA using the keyword "Hexamethonium" to see whether our system can 

find any association between Hexamethonium and fibrosis /pulmonary fibrosis. Figure 21 

highlights the top ranked Headings and their relevancy scores. The Headings in bold and 

italic are clear indication of the association between what caused the death of Ellen and 

the drug Hexamethonium.  We show that the ARIANA tool can detect this association 

and provide a number of clues of the danger of this drug. ARIANA is based on higher 

order co-occurrence analysis, therefore even though there is no published evidence of this 

association the system could find such relations.  

Searching ARIANA with "Hexamethonium" as query produces a ranked list of 2,545 

Headings. The 13
th

 Heading in the list is "Scleroderma, Systemic", the 16
th

 Heading is 

"Neoplasms, Connective and Soft Tissue>Neoplasms, Connective Tissue>Neoplasms, 

Fibrous Tissue", the 38th Heading is "Pneumonia", the 174
th

 Heading is "Neoplasms, 
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Connective and Soft Tissue>Neoplasms, Connective Tissue>Neoplasms, 

Fibrous>Fibroma " and finally the 257
th

 Heading is "Pulmonary Fibrosis".  Since the 

health of human subjects is at stake, the researcher should, when analyzing the data, look 

at least at the top 500 (or top 20%) ranked Headings. Figure 22 shows the cluster 

membership when relevancy model is applied and the respective cosine score for the top 

25 ranked Headings. Based on the relevancy model analysis the top 7 Headings are 

classified as being highly associated with the drug, the remaining Headings have 

unknown association level. 
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Figure 21. list of Headings with query "Hexamethonium" 
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Ellen died of pulmonary fibrosis and having access to this tool could have prevented her 

death. Pulmonary Fibrosis ranked in the top 10 percentile of the Headings, giving clear 

indication of the potential danger of this drug. In addition, Scleroderma is a chronic 

systemic autoimmune disease characterized by fibrosis, vascular alterations and 

autoantibodies, and having "Scleroderma, Systemic" as one of the top ranked Headings 

should also give a clear indication of potential risks of the drug. This indication can 

trigger the need for further investigation by the researcher and highlight the importance 

of seeking professional help to assure the safety of the drug when using in clinical trials. 

Information Retrieval and Data Reuse - Case for "Alzheimer Disease" 

To show the efficacy of the tool in knowledge extraction we experiment with a common 

disease name: "alzheirmer". A search in PubMed of the keyword "alzheirmer" returns 

65,122 entries (search done on 12/06/2012). Of coarse going through all the 65 thousands 

entries is going to be impossible by a single (or a team) person. On the other hand, as we 

have seen for the case of Hexamethonium, there might be one single case report or some 

key papers that one would be interested to see before designing or implementing any 

research project. We want to test ARIANA's capability in terms of information extraction 

for a simple search.  

For a any query, ARIANA will rank the 2,545 Headings with respect to the relevancy 

score. Figure 23 list the 25 top ranked Headings for the query Alzheimer. Figure 24 shows 

the distribution of the scores. As it is expected most of the Headings have a low score, 

that is close to zero. There a 15 Headings with relevancy score above the first automatic 

threshold (between 0.16 and 0.15), these are categorized as highly associated with the 
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query, there are also two Headings (16
th

 and 17
th

 Headings) that are classified as possibly 

associated with the query (second automatic threshold is between 0.14 and 0.02). All the 

remaining Headings are classified as having unkown association with the query. Being 

classified in the unknow group does not mean that there is no evidence for the 

association, it is just an indication of the strenght of the association, for the reason this 

analysis will focus on the top 3%  (or top 80) of the ranked Headings. Figure 25 shows the 

results of relevancy score as well as the cluster membership when relevance model is 

applied for the top 25 ranked Headings. Based on the relevancy model analysis the top 15 

Headings are classified as being highly associated, the 16
th

 and 17
th

 Headings are 

classified as possible Headings and the remaining Headings have unknown association 

level. However, depending on the purpose of the study, the researcher may want to 

explore more or fewere of the Headings for potential association.  

 

Figure 22. Relevance model applied to the results obtained from simulation of 

query: "Hexamethonium" for the top 25 Headings.  

0 5 10 15 20 25
0

0.25

0.5

0.75

1

M
e
m

b
e
rs

h
ip

 s
c
o
re

Cluster 1

0 5 10 15 20 25
0

0.25

0.5

0.75

11

M
e
m

b
e
rs

h
ip

 s
c
o
re

Cluster 2

0 5 10 15 20 25
0

0.25

0.5

0.75

1

Headings

R
e
le

v
a
n
c
y
 s

c
o
re

Relevancy scores for the top 25 Headings



87 
 

 

Figure 23. Ranked list of the top 25 Headings with query "Alzheimer" 

 

Figure 24. Histogram representation of relevancy score for the query "Alzheimer" 
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Figure 25. Relevance model applied to the results obtained from simulation of 

query: "Alzheimer" for the top 25 Headings 

The analysis presented here was performed with the help of a board certified neurologist 

(Dr. Ramin Zand).  Figure 26 summarizes the findings. In essence, analysis of the top 80 

Headings reveals interesting observations: i) as expected there are a large number of 

identified Headings that are associated with Alzheimer there include Tauopathies, 

Proteostasis Deficiencies, Amyloidosis, Cerebral Arterial Diseases, Multiple System 

Atrophy, and Agnosia; ii) some associations are less obvious, however, a PubMed search 
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clarifies the reason for their high rank, and these include Tissue inhibitor of 

Metalloproteinases [41], Tuberculosis [42], Blood Group Incomptibility [43]. Finally, 

there are few Headings that it is not clear why they are highly ranked and these include 

Rheumatic fever, Strongylida infections, Nerver sheath neoplasms. Yet, the most 

interesting finding is identification of a set of Headings that are associated with 

Alzheimer but are not part of a general knowledge of a neurologist. There is evidence for 

these associations in PubMed; however, bringing these to the attention of a medical 

expert or researcher could have downstream consequences in their practice. These 

Headings are Mononeuropathies [44], Fibrous Dysplasia of Bone [45], Cardiomyopathies 

[46], Testicular Diseases [47] and finally Myositis [48].  
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Figure 26. Mapping results for query: Alzheimer 

Subsequently, the user may search the system with a number of queries. For instance, one 

may be interested to find common Headings between Alzheimer and Myositis because in 

an initial simulation that association was interesting to the researcher. Figure 27 

demonstrates an example of such search. In that example "Dysostoses" is a common 

Heading when three queries (Alzheimer, Myositis and Dysplasia of bone) are searched 

simultaneously. The co-analysis is performed on the top 3% ranked Headings. 
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Figure 27. Co-analysis of the top 3% (80/2545) of the three related Headings 

The next step is to test the Disease Mapping strategy, to extract gene-disease 

associations, with Alzheimer disease. The disease mapping gives rise to direct as well as 

indirect and potential gene-disease associations. Figure 28 and Figure 29 demonstrate the 

results of this analysis. In the first step, Alzheimer is searched in the list of OMIM 

diseases; therefore, all the OMIM listed diseases that start with word "Alzheimer" are 

selected. A total of 22 diseases are selected through this process. These include mainly 

different types of Alzheimer disease. For each of these diseases, there is one or a number 
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of corresponding genes. Figure 28 shows the result of this first step. Most of the identified 

genes are the AD genes in addition to other related genes: AD5, AD6, AD7, AD8, AD9, 

AD10, AD11, AD12, AD13, AD14, AD15, AD16, NOS3, PLAU, APOE, APP, SORL1, 

APBB2, A2M, ACE, BLMH, HFE, MPO, PACIP1, PSEN1 and PSEN2.  The second 

step in the gene identification process, we are looking at related diseases to bring the 

potential indirect genes to the user's attention. Many of the diseases have no identified 

equivalent disease in the OMIM database; however, there are also a number of diseases 

that have a related disease in the OMIM database. Figure 29 shows these diseases and 

their corresponding genes. For instance Amyloidosis, Cerebral Arterial Disease, and 

Multiple System Atrophy have all one or multiple matching diseases in the OMIM 

database. The corresponding disease for Amyloidosis in OMIM is "Amyloidosis, 

Secondary, sesceptibility to" and that disease has APCS as related gene. One could 

investigate the potential association of APCS with Alzheirmer disease by exploring other 

sources of data. In addition to that, it was found that Alzheimer is associated with 

"Cerebral Arterial Disease". Through disease mapping, "Cerebral infarction, 

susceptibility to" is obtained from the OMIM database, which has a mapping to PRKCH 

gene. Finally, Alzheimer is also associated with "Multiple System Atrophy". For this last 

case the disease mapping process identifies eight matching diseases (see Figure 29). These 

lead to a total of eight new genes that may be indirectly associated with Alzheimer.  
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Figure 28. Gene Mapping for Alzheimer 
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Figure 29. Gene Mapping for diseases related to Alzheimer through the disease 

mapping module 

The gene disease identification process is accurate as there is no hidden layer between the 

query and the final genes. It is up to the user to further investigate these findings. 

Integration of genes in the data-mining module of the ARIANA needs significant analysis 

and a number of steps. In fact a total of 192 genes symbols are presently in the dictionary 

and one could query these keywords in order to find potential associations; however, the 

level of non-specificity is still great due to the nature of the literature. In fact many of the 

gene symbols have in one way or another some other meaning in the medical field. For 

instance, AD is also abbreviation for adenovirus, therefore searching the AD genes will 

return association that are not only related to Alzheimer but also related to a completely 

different field. Identification of these elements and expansion of the query, when needed, 
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is crucial for a precise information retrieval and knowledge discovery tool. A second 

example where confusion may arise is for the family of F genes (ie. F2, F5, F7, F8, F9); 

these may be easily confused with generation of hybrids.   

Discussion 

ARIANA can be integrated with other Web Tools or databases. In here we have shown 

that to extract gene-disease association OMIM database can be used. OMIM does not 

have a hierarchical structure; hence, we have to solve the problem of disease mapping. In 

addition, we have also demonstrated the integration of OMIM at a data level, where gene 

symbols from the gene-disease association are added to the ARIANA's dictionary to 

capture additional semantic information. However, since gene symbols are not unique 

words, using just that information can lead to complex analytics and confusing 

associations. Hence, for extraction of crisp associations using LSA based techniques, 

there is a need to incorporate additional information. Finally the main message here is 

that integration at data level or tool level can be very beneficial; however, this process 

needs to be designed and implemented attentively at every level in order to provide a 

system that is as accurate as possible.  

The type of work presented in Chapters 3, 4 and 5 are difficult to validate; however, it is 

critical to find examples of cases where the system would perform exceptionally well but 

also cases where the system would generally fail. We have tried to exercise this idea here. 

We show that ARIANA can be great at finding hidden links among entities derived from 

MeSH hierarchy, but could easily fail when queries are gene symbols such as F2, or 

AD1.   
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Chapter 6: Conclusion 

The main goal of this dissertation is to develop an effective mining of biological literature 

to provide a range of services such as hypothesis generation as well as finding network of 

semantically related concepts to understand the confluence among various concepts 

within a specific domain or across the disciplines. To be useful, such knowledge 

discovery tools must be efficient and scalable with the growing data size. In addition, to 

effectively reduce information overload and complement traditional means of knowledge 

dissemination, it is imperative to develop robust, scalable and easy to use Web service 

applications that are versatile enough to meet the “specific” needs of a diverse 

community. The utility of such a system would be greatly enhanced with the added 

capability of finding semantically similar concepts related to various risk factors, side-

effects, symptoms and diseases. Such systems are expected to bridge the gap between the 

effort and resources invested in acquiring knowledge and their effective usage. 

This dissertation started with a pilot study to build a framework for hypothesis generation 

by mining existing literature to identify a set of factors and their association with 

diseases, phenotypes, or biological processes.  The key idea was to develop a knowledge 

discovery system that can find novel associations so that scientists or researchers can use 

them to generate a new hypothesis or study a biological phenomenon.  In addition, The 

HGF was designed especially to help junior investigators who often find it difficult to 

formulate new hypotheses or, more importantly, corroborate their hypothesis with 

existing literature. The key design concern was always to make the system efficient, 

robust, scalable and practical for a diverse group of users. To make it more effective, the 
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whole development was done to discover domain specific knowledge as well as 

integration of tools. The concept of ontology mapping, semantic analysis and relevance 

model can be used to design and implement an adaptive robust and integrative analysis in 

providing a range of services in biomedicine as well as text analytics. 

Based on the preliminary success, a comprehensive system called, ARIANA was 

developed by expanding the HGF framework. ARIANA is a software architecture and a 

web-based system for efficient and scalable knowledge discovery. ARIANA integrates 

semantic-sensitive analytics of context specific text data through ontology mapping and 

tool integration strategy. ARIANA ensures the specificity required to create a robust 

model from an ocean of data. The framework is scalable with the growing size of 

literature data. ARIANA can find novel associations with no direct citation in the 

database hence, its utility in knowledge discovery and hypotheses generation. At a tool 

integration level, OMIM and ARIANA are layered in a cohesive and unified way to 

present to the user both semantic association and genetic information.  

ARIANA is prototyped using MeSH ontolgy and PubMed database for biomedical and 

scientific applications. ARIANA has five main modules, namely: (i) Data Stratification, 

(ii) Ontology Mapping, (iii) Parameter Optimized Latent Semantic Analysis (POLSA), 

(iv) Relevance Model and (v) Interface and Visualization. At each level, the focus is to 

take into account the specificity of the application and cater to the needs of a wide range 

of users. For instance, the dictionary is customized from the medical language and fine-

tuned subsequently to provide only relevant information. In addition, dynamic data 

driven technique is used at every possible level to customize each unique search. In fact, 

a dynamic data driven threshold calculation is proposed and implemented that takes into 
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account the distribution and scores of ranked Headings to determine the best cut-off 

values to separate the highly, possibly and not likely associated Headings on demand. 

Finally, the interface and visualization module are an integral part of this work, as they 

provide a mean of exploring the tool. As ARIANA targets a wide range of users, the 

interface and visualization modules have focused to bring forward a modular design that 

is scalable with an even large system.  

Empirical results demonstrate the usability and potential of ARIANA in knowledge 

discovery and crisp information retrieval.  Empirical analyses show that ARIANA was 

able to capture the direct/indirect association that was critical in finding connections 

between Hexamethonium and pulmonary fibrosis, migraine and sexually transmitted 

disease, or association of both lymphoma and PD with cadmium poisoning.  

Finally, ARIANA can be integrated with other Web Tools or databases to enhance 

expanded network of associations. For example, ARIANA was integrated with OMIM 

database to capture gene-disease association that can help a wide range of users, from 

junior research scientists to experienced policy making advocates and to medical 

professionals. At one level, users can explore the system to extract general information 

fast and efficiently (for instance, finding what can be associated with migraine). At a 

second level, users can explore the tool to find novel associations; this task maybe more 

time consuming, but for an expert in the field it can be a very interesting and exploratory 

task, as he or she explores PubMed for different highly ranked Headings. It was through 

this process that the association between migraine and STD came to our attention. The 

supporting evidence for that association is recently published and is not part of 

ARIANA's database. At a higher level, the tool can be used to bring forward possible 
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associations and warrant further investigation by professionals before starting an 

experiment. For instance, association between Hexamethonium and pulmonary fibrosis 

can be suggested by ARIANA and evidence can be found through other sources such as 

TOXNET. At an abstract level, ARIANA can be used by team of professionals who make 

important decision about policies and allocate future funding in health care and social 

sciences. For instance identification of elements that directly or indirectly affect 

"adolescent health" or "weight gain" in children can be of tremendous help in designing 

programs to target those niche areas.   
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Appendices 

Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

Medical Subject Headings Tree Number 

Bacterial Infections  C01.252     

Bacteremia  C01.252.100      

Central Nervous System Bacterial Infections  C01.252.200      

Endocarditis, Bacterial  C01.252.300   

Eye Infections, Bacterial  C01.252.354      

Fournier Gangrene  C01.252.377    

Gram-Negative Bacterial Infections  C01.252.400      

Gram-Positive Bacterial Infections  C01.252.410      

Pneumonia, Bacterial  C01.252.620      

Sexually Transmitted Diseases, Bacterial  C01.252.810      

Skin Diseases, Bacterial  C01.252.825      

Spirochaetales Infections  C01.252.847       

Mycoses  C01.703      

Zoonoses  C01.908  

Arbovirus Infections  C02.081      

Bronchiolitis, Viral  C02.109    

Central Nervous System Viral Diseases  C02.182      

DNA Virus Infections  C02.256   

Eye Infections, Viral  C02.325     

Fatigue Syndrome, Chronic  C02.330  

Hepatitis A  C02.440.420    

Hepatitis B  C02.440.435      

Hepatitis C  C02.440.440      

Hepatitis D  C02.440.450      

Hepatitis E  C02.440.470  

Opportunistic Infections  C02.597    

Pneumonia, Viral  C02.705    

RNA Virus Infections  C02.782     

Sexually Transmitted Diseases  C02.800     

Skin Diseases, Viral  C02.825   

Slow Virus Diseases  C02.839   

Tumor Virus Infections  C02.928      

Viremia  C02.937    

Zoonoses  C02.968  

Central Nervous System Parasitic Infections  C03.105      
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Eye Infections, Parasitic  C03.300    

Helminthiasis  C03.335     

Intestinal Diseases, Parasitic  C03.432   

Liver Diseases, Parasitic  C03.518     

Lung Diseases, Parasitic  C03.582    

Mesomycetozoea Infections  C03.600      

Parasitemia  C03.695   

Protozoan Infections  C03.752   

Skin Diseases, Parasitic  C03.858     

Zoonoses  C03.908  

Neoplasms  C04    

Bone Diseases  C05.116     

Cartilage Diseases  C05.182    

Fasciitis  C05.321   

Foot Deformities  C05.330    

Hand Deformities  C05.390   

Jaw Diseases  C05.500    

Joint Diseases  C05.550    

Muscular Diseases  C05.651     

Musculoskeletal Abnormalities  C05.660      

Rheumatic Diseases  C05.799      

Digestive System Diseases  C06    

Stomatognathic Diseases  C07    

Respiratory Tract Diseases  C08    

Otorhinolaryngologic Diseases  C09    

Autoimmune Diseases of the Nervous System  C10.114      

Autonomic Nervous System Diseases  C10.177      

Encephalomyelitis  C10.228.440      

High Pressure Neurological Syndrome  C10.228.470    

Movement Disorders  C10.228.662      

Spinal Cord Diseases  C10.228.854    

Chronobiology Disorders  C10.281    

Cranial Nerve Diseases  C10.292    

Demyelinating Diseases  C10.314      

Nervous System Malformations  C10.500      

Nervous System Neoplasms  C10.551      

Neurocutaneous Syndromes  C10.562      

Neurodegenerative Diseases  C10.574     
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Neuromuscular Diseases  C10.668   

Botulism  C10.720.150    

Heavy Metal Poisoning, Nervous System  C10.720.475      

MPTP Poisoning  C10.720.606    

Neuroleptic Malignant Syndrome  C10.720.737  

Sleep Disorders  C10.886      

Trauma, Nervous System  C10.900    

Genital Diseases, Male  C12.294    

Urogenital Abnormalities  C12.706     

Urogenital Neoplasms  C12.758      

Urologic Diseases  C12.777    

Kidney Diseases  C12.777.419      

Urinary Bladder Diseases  C12.777.829      

Urinary Tract Infections  C12.777.892    

Urolithiasis  C12.777.967    

Female Urogenital Diseases  C13.351        

Pregnancy Complications  C13.703    

Cardiovascular Abnormalities  C14.240      

Cardiovascular Infections  C14.260         

Vascular Diseases  C14.907    

Aortic Diseases  C14.907.109      

Arterial Occlusive Diseases  C14.907.137      

Arteriovenous Malformations  C14.907.150      

Arteritis  C14.907.184      

Cerebrovascular Disorders  C14.907.253      

Diabetic Angiopathies  C14.907.320     

Hyperemia  C14.907.474    

Hypertension  C14.907.489      

Hypotension  C14.907.514      

Myocardial Ischemia  C14.907.585      

Peripheral Vascular Diseases  C14.907.617    

Vasculitis  C14.907.940     

Venous Insufficiency  C14.907.952    

Hematologic Diseases  C15.378      

Lymphatic Diseases  C15.604    

Connective Tissue Diseases  C17.300      

Acid-Base Imbalance  C18.452.076     

Calcium Metabolism Disorders  C18.452.174      
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

DNA Repair-Deficiency Disorders  C18.452.284      

Glucose Metabolism Disorders  C18.452.394      

Iron Metabolism Disorders  C18.452.565      

Lipid Metabolism Disorders  C18.452.584      

Malabsorption Syndromes  C18.452.603      

Metabolic Syndrome X  C18.452.625    

Metabolism, Inborn Errors  C18.452.648      

Mitochondrial Diseases  C18.452.660      

Phosphorus Metabolism Disorders  C18.452.750      

Porphyrias  C18.452.811      

Proteostasis Deficiencies  C18.452.845     

Wasting Syndrome  C18.452.915      

Water-Electrolyte Imbalance  C18.452.950    

Hypervitaminosis A  C18.654.301    

Infant Nutrition Disorders  C18.654.422      

Malnutrition  C18.654.521      

Overnutrition  C18.654.726      

Wasting Syndrome  C18.654.940    

Adrenal Gland Diseases  C19.053      

Bone Diseases, Endocrine  C19.149    

Diabetes Mellitus  C19.246      

Dwarfism  C19.297       

Gonadal Disorders  C19.391      

Parathyroid Diseases  C19.642      

Pituitary Diseases  C19.700          

Thyroid Diseases  C19.874      

Autoimmune Diseases  C20.111    

Addison Disease  C20.111.163   

Antiphospholipid Syndrome  C20.111.197    

Arthritis, Rheumatoid  C20.111.199      

Glomerulonephritis, IGA  C20.111.525  

Hepatitis, Autoimmune  C20.111.567  

Lupus Erythematosus, Systemic  C20.111.590      

Purpura, Thrombocytopenic, Idiopathic  C20.111.759    

Thyroiditis, Autoimmune  C20.111.809  

Hypersensitivity  C20.543      

DNA Damage  C21.111      

Occupational Diseases  C21.447    
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Agricultural Workers' Diseases  C21.447.080     

Dermatitis, Occupational  C21.447.270    

Inert Gas Narcosis  C21.447.426    

Persian Gulf Syndrome  C21.447.653    

Pneumoconiosis  C21.447.800      

Poisoning  C21.613      

Argyria  C21.613.068    

Arsenic Poisoning  C21.613.097    

Bites and Stings  C21.613.127      

Cadmium Poisoning  C21.613.165    

Carbon Tetrachloride Poisoning  C21.613.177   

Fluoride Poisoning  C21.613.380      

Gas Poisoning  C21.613.455      

Lead Poisoning  C21.613.589      

Manganese Poisoning  C21.613.618    

Mercury Poisoning  C21.613.647      

Mycotoxicosis  C21.613.680      

Neurotoxicity Syndromes  C21.613.705     

Plant Poisoning  C21.613.756      

Psychoses, Substance-Induced  C21.613.809      

Water Intoxication  C21.613.932  

Preconception Injuries  C21.676    

Alcohol-Related Disorders  C21.739.100      

Amphetamine-Related Disorders  

Amphetamine-Related Disorders OR Cocaine-Related 

Disorders OR Marijuana Abuse  

C21.739.225  OR  [C21.739.300]  

OR [C21.739.635]    

Tobacco Use Disorder  C21.739.912  

Wounds and Injuries  C21.866    

Arrhythmias, Cardiac  C23.550.073      

Ascites  C23.550.081    

Azotemia  C23.550.145    

Dehydration  C23.550.274   

Emphysema  C23.550.325      

Hemorrhage  C23.550.414      

Hyperammonemia  C23.550.421    

Hyperbilirubinemia  C23.550.429      

Hyperuricemia  C23.550.449    

Hypovolemia  C23.550.455     

Leukocytosis  C23.550.526    
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Menstruation Disturbances  C23.550.568      

Muscle Weakness  C23.550.695    

Nerve Degeneration  C23.550.737      

Body Temperature Changes  C23.888.119      

Body Weight  C23.888.144      

Cardiac Output, High  C23.888.176    

Cardiac Output, Low  C23.888.192    

Chills  C23.888.208    

Cyanosis  C23.888.248    

Eye Manifestations  C23.888.307      

Fatigue  C23.888.369     

Flushing  C23.888.388    

Heart Murmurs  C23.888.447      

Hot Flashes  C23.888.475    

Hypergammaglobulinemia  C23.888.512    

Intermittent Claudication  C23.888.531    

Mobility Limitation  C23.888.550  

Pain  C23.888.646      

Inorganic Chemicals  D01      

Organic Chemicals  D02    

Heterocyclic Compounds  D03    

Polycyclic Compounds  D04      

Macromolecular Substances  D05    

Complex Mixtures  D20     

Biomedical and Dental Materials  D25    

Defense Mechanisms  F01.393    

Human Development  F01.525     

Personality  F01.752      

Appetite  F02.830.071  

Sleep  F02.830.855      

Stress, Psychological  F02.830.900    

Religion and Psychology  F02.880      

Resilience, Psychological  F02.940  

Body Fat Distribution  G03.180.134  

CD4-CD8 Ratio  G12.248    

Immunocompetence  G12.460    

Immunocompromised Host  G12.470     

Sweating  G13.750.829.855    
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Skin Temperature  G13.750.844  

Refraction, Ocular  G14.760    

Vision Disparity  G14.930    

Visual Acuity  G14.940     

Quality of Life  I01.800    

Culture  I01.880.143    

Hierarchy, Social  I01.880.298    

Minority Groups  I01.880.371    

Social Class  I01.880.552      

Social Welfare  I01.880.787    

Socialization  I01.880.813    

Socioeconomic Factors  I01.880.840    

Education  I02    

Human Activities  I03     

Exercise  I03.350      

Leisure Activities  I03.450      

Physical Fitness  I03.621    

Travel  I03.883   

Household Products  J01.516     

Alcoholic Beverages  J02.200.100      

Carbonated Beverages  J02.200.300    

Coffee  J02.200.325    

Milk  J02.200.700      

Milk Substitutes  J02.200.712      

Mineral Waters  J02.200.806    

Tea  J02.200.900  

Food  J02.500    

Age Groups  M01.060    

Alcoholics  M01.066    

Athletes  M01.072    

Caregivers  M01.085    

Child, Abandoned  M01.097    

Child, Exceptional  M01.102      

Child of Impaired Parents  M01.106    

Child, Orphaned  M01.108    

Child, Unwanted  M01.111    

Consultants  M01.120    

Crime Victims  M01.135      
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Table 5. Medical Subject Headings selected by expert and the corresponding MeSH 

tree number 

 

Medical Subject Headings Tree Number 

Criminals  M01.142    

Disabled Persons  M01.150      

Drug Users  M01.169    

Emigrants and Immigrants  M01.189    

Homebound Persons  M01.276    

Homeless Persons  M01.325    

Medically Uninsured  M01.385   

Prisoners  M01.729    

Refugees  M01.755    

Single Person  M01.785  

Students  M01.848     

Terminally Ill  M01.873   

Socioeconomic Factors  N01.824   

Environment  N06.230      
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Initialize Heading List 

Initialize Look Up Array List 

 

For each Heading  

 if relevance score with corresponding input query >= Threshold 

 {  

  add Heading to Heading List; 

  add query number to corresponding Look Up Array List;  

 } 

End; 

 

Writing the JSON file 

 

Step 1. Write all elements in the Heading List to nodes list structure. 

Step 2. Write all elements in the input query list to nodes list structure. 

Step 3. For each element in the Heading List 

 { 

  Generate source target links from corresponding look up list; 

 } 

 End;  

 

Algorithm 2. Generating graph data structure from relevance score given a 

threshold value. 
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Table 6. Associated headings for lymphoma, parkinson and migraine and their 

respective scores 

 

Query node Associated Headings Score 

Lymphoma 

Tumor Virus Infections  0.7283 

DNA Virus Infections  0.6099 

Lymphatic Diseases  0.4247 

Hypergammaglobulinemia  0.4086 

Opportunistic Infections  0.3561 

Skin Diseases, Viral  0.2927 

Bacteremia  0.1639 

Proteostasis Deficiencies  0.1564 

Stomatognathic Diseases  0.1521 

Otorhinolaryngologic Diseases  0.1511 

Intestinal Diseases, Parasitic  0.0215 

Homeless Persons  0.0187 

Hepatitis C  0.0164 

Culture  0.0156 

Age Groups  0.0152 

Aortic Diseases  0.0133 

Personality  0.0129 

Cerebrovascular Disorders  0.0123 

Parathyroid Diseases  0.0122 

Cadmium Poisoning  0.012 

Hepatitis B  0.0112 

Genital Diseases, Male  0.0105 

Pneumonia, Bacterial  0.0104 

Parkinson 

MPTP Poisoning  0.5658 

Neurodegenerative Diseases  0.5598 

Movement Disorders  0.5417 

Manganese Poisoning  0.5237 

Heavy Metal Poisoning, Nervous System  0.4538 

Neuroleptic Malignant Syndrome  0.3299 

Chronobiology Disorders  0.243 

Neuromuscular Diseases  0.2363 

Muscular Diseases  0.1102 

Neurotoxicity Syndromes   0.0573 

Homeless Persons  0.0454 

Socialization  0.0357 

Cadmium Poisoning  0.0298 

Fatigue  0.0248 

Trauma, Nervous System  0.0235 
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Table 6. Associated headings for lymphoma, parkinson and migraine and 

their respective scores 

 

Query node Associated Headings Score 

Parkinson 

Personality  0.0228 

Hypertension  0.0194 

Quality of Life  0.019 

Musculoskeletal Abnormalities  0.0178 

Spinal Cord Diseases  0.0163 

Hepatitis C  0.0158 

Occupational Diseases  0.0134 

Calcium Metabolism Disorders  0.0126 

Nervous System Malformations  0.0123 

Diabetic Angiopathies  0.01 

Migraine 

Coffee  0.689253 

Tea  0.591746 

Sexually Transmitted Diseases, Bacterial  0.286119 

Cranial Nerve Diseases  0.280735 

Spirochaetales Infections  0.274333 

Mycotoxicosis  0.263275 

Eye Manifestations  0.076593 

Age Groups  0.044755 

Defense Mechanisms  0.039117 

Socioeconomic Factors  0.036901 

Trauma, Nervous System  0.025156 

Stress, Psychological  0.023227 

Hemorrhage  0.022374 

Alcohol-Related Disorders  0.020972 

Demyelinating Diseases  0.020954 

Hepatitis A  0.018597 

Central Nervous System Bacterial Infections  0.017044 

DNA Virus Infections  0.0151 

Peripheral Vascular Diseases  0.01285 

Religion and Psychology  0.012325 

Leisure Activities  0.011235 

Body Temperature Changes  0.010895 

Aortic Diseases  0.01057 

Jaw Diseases  0.010016 
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