10 research outputs found

    Input source and strength influences overall firing phase of model hippocampal CA1 pyramidal cells during theta: Relevance to REM sleep reactivation and memory consolidation

    Full text link
    In simulation studies using a realistic model CA1 pyramidal cell, we accounted for the shift in mean firing phase from theta cycle peaks to theta cycle troughs during rapid-eye movement (REM) sleep reactivation of hippocampal CA1 place cells over several days of growing familiarization with an environment (Brain Res 855:176–180). Changes in the theta drive phase and amplitude between proximal and distal dendritic regions of the cell modulated the theta phase of firing when stimuli were presented at proximal and distal dendritic locations. Stimuli at proximal dendritic sites (proximal to 100 Μm from the soma) invoked firing with a significant phase preference at the depolarizing theta peaks, while distal stimuli (>290 Μm from the soma) invoked firing at hyperpolarizing theta troughs. The input location-related phase preference depended on active dendritic conductances, a sufficient electrotonic separation between input sites and theta-induced subthreshold membrane potential oscillations in the cell. The simulation results predict that the shift in mean theta phase during REM sleep cellular reactivation could occur through potentiation of distal dendritic (temporo-ammonic) synapses and depotentiation of proximal dendritic (Schaffer collateral) synapses over the course of familiarization. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/49532/1/20143_ftp.pd

    Ih Tunes Theta/Gamma Oscillations and Cross-Frequency Coupling In an In Silico CA3 Model

    Full text link
    channels are uniquely positioned to act as neuromodulatory control points for tuning hippocampal theta (4–12 Hz) and gamma (25 Hz) oscillations, oscillations which are thought to have importance for organization of information flow. contributes to neuronal membrane resonance and resting membrane potential, and is modulated by second messengers. We investigated oscillatory control using a multiscale computer model of hippocampal CA3, where each cell class (pyramidal, basket, and oriens-lacunosum moleculare cells), contained type-appropriate isoforms of . Our model demonstrated that modulation of pyramidal and basket allows tuning theta and gamma oscillation frequency and amplitude. Pyramidal also controlled cross-frequency coupling (CFC) and allowed shifting gamma generation towards particular phases of the theta cycle, effected via \u27s ability to set pyramidal excitability. Our model predicts that in vivo neuromodulatory control of allows flexibly controlling CFC and the timing of gamma discharges at particular theta phases

    Excitatory and inhibitory effects of HCN channel modulation on excitability of layer V pyramidal cells

    Get PDF
    Dendrites of cortical pyramidal cells are densely populated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, a.k.a. Ih channels. Ih channels are targeted by multiple neuromodulatory pathways, and thus are one of the key ion-channel populations regulating the pyramidal cell activity. Previous observations and theories attribute opposing effects of the Ih channels on neuronal excitability due to their mildly hyperpolarized reversal potential. These effects are difficult to measure experimentally due to the fine spatiotemporal landscape of the Ih activity in the dendrites, but computational models provide an efficient tool for studying this question in a reduced but generalizable setting. In this work, we build upon existing biophysically detailed models of thick-tufted layer V pyramidal cells and model the effects of over- and under-expression of Ih channels as well as their neuromodulation. We show that Ih channels facilitate the action potentials of layer V pyramidal cells in response to proximal dendritic stimulus while they hinder the action potentials in response to distal dendritic stimulus at the apical dendrite. We also show that the inhibitory action of the Ih channels in layer V pyramidal cells is due to the interactions between Ih channels and a hot zone of low voltage-activated Ca2+ channels at the apical dendrite. Our simulations suggest that a combination of Ih-enhancing neuromodulation at the proximal part of the apical dendrite and Ih-inhibiting modulation at the distal part of the apical dendrite can increase the layer V pyramidal excitability more than either of the two alone. Our analyses uncover the effects of Ih-channel neuromodulation of layer V pyramidal cells at a single-cell level and shed light on how these neurons integrate information and enable higher-order functions of the brain.publishedVersionPeer reviewe

    Rôle de deux groupes de vésicules dans la transmission synaptique

    Get PDF
    Les synapses formées par les fibres moussues (FM) sur les cellules principales de la région CA3 (FM-CA3) jouent un rôle crucial pour la formation de la mémoire spatiale dans l’hippocampe. Une caractéristique des FM est la grande quantité de zinc localisée avec le glutamate dans les vésicules synaptiques recyclées par la voie d’endocytose dépendante de l’AP3. En combinant l’imagerie calcique et l’électrophysiologie, nous avons étudié le rôle des vésicules contenant le zinc dans la neurotransmission aux synapses FM-CA3. Contrairement aux études précédentes, nous n’avons pas observé de rôle pour le zinc dans l’induction des vagues calciques. Nos expériences ont révélé que les vagues calciques sont dépendantes de l’activation des récepteurs métabotropiques et ionotropiques du glutamate. D’autre part, nos données indiquent que les vésicules dérivées de la voie dépendante de l’AP3 forment un groupe de vésicules possédant des propriétés spécifiques. Elles contribuent principalement au relâchement asynchrone du glutamate. Ainsi, les cellules principales du CA3 de souris n’exprimant pas la protéine AP3 avaient une probabilité inférieure de décharge et une réduction de la synchronie des potentiels d’action lors de la stimulation à fréquences physiologiques. Cette diminution de la synchronie n’était pas associée avec un changement des paramètres quantiques ou de la taille des groupes de vésicules. Ces résultats supportent l’hypothèse que deux groupes de vésicules sont présents dans le même bouton synaptique. Le premier groupe est composé de vésicules recyclées par la voie d’endocytose utilisant la clathrine et participe au relâchement synchrone du glutamate. Le second groupe est constitué de vésicules ayant été recyclées par la voie d’endocytose dépendante de l’AP3 et contribue au relâchement asynchrone du glutamate. Ces deux groupes de vésicules sont nécessaires pour l’encodage de l’information et pourraient être importants pour la formation de la mémoire. Ainsi, les décharges de courte durée à haute fréquence observées lorsque les animaux pénètrent dans les places fields pourraient causer le relâchement asynchrone de glutamate. Finalement, les résultats de mon projet de doctorat valident l’existence et l’importance de deux groupes de vésicules dans les MF qui sont recyclées par des voies d’endocytoses distinctes et relâchées durant différents types d’activités.Mossy fiber-CA3 pyramidal cell synapses play a crucial role in the hippocampal formation of spatial memories. These synaptic connections possess a number of unique features substantial for its role in the information processing and coding. One of these features is presence of zinc co-localized with glutamate within a subpopulation of synaptic vesicles recycling through AP3-dependent bulk endocytosis. Using Ca2+ imaging and electrophysiological recordings we investigated role of these zinc containing vesicles in the neurotransmission. In contrast to previous reports, we did not observe any significant role of vesicular zinc in the induction of large postsynaptic Ca2+ waves triggered by burst stimulation. Moreover, our experiments revealed that Ca2+ waves mediated by Ca2+ release from internal stores are dependent not only on the activation of metabotropic, but also ionotropic glutamate receptors. Nevertheless, subsequent experiments unveiled that the vesicles derived via AP3-dependent endocytosis primary contribute to the asynchronous, but not synchronous mode of glutamate release. Futhermore, knockout mice lacking adaptor protein AP3 had a reduced synchronization of postsynaptic action potentials and impaired information transfer; this was not associated with any changes in the synchronous release quantal parameters and vesicle pool size. These findings strongly support the idea that within a single presynaptic bouton two heterogeneous pools of releasable vesicles are present. One pool of readily releasable vesicles forms via clathrin mediated endocytosis and mainly participates in the synchronous release; a second pool forms through bulk endocytosis and primarily supplies asynchronous release. The existence of two specialized pools is essential for the information coding and transfer within hippocampus. It also might be important for hippocampal memory formation. In contrast to low firing rates at rest, dentate gyrus granule cells tend to fire high frequency bursts once an animal enters a place field. These burst activities, embedded in the lower gamma frequency, should be especially efficient in the triggering of substantial asynchronous glutamate release. Therefore, the results of my PhD project for the first time provide strong evidence for the presence and physiological importance of two vesicle pools with heterogeneous release and recycling properties via separate endocytic pathways within the same mossy fiber bouton

    Determining how stable network oscillations arise from neuronal and synaptic mechanisms

    Get PDF
    Many animal behaviors involve the generation of rhythmic patterns and movements. These rhythmic patterns are commonly mediated by neural networks that produce an oscillatory activity pattern, where different neurons maintain a relative phase relationship. This thesis examines the relationships between the cellular and synaptic properties that give rise to stable activity in the form of phase maintenance, across different frequencies in a well-suited model system, the pyloric network of the crab Cancer borealis. The pyloric network has endogenously oscillating ‘pacemaker’ neurons that inhibit ‘follower’ neurons, which in turn feed back onto the pacemaker neurons. The focus of this thesis was to determine the methods by which phase maintenance is achieved in an oscillatory network. This thesis examines the idea that phase maintenance occurs through the actions of intrinsic properties of isolated neurons or through the dynamics of their synaptic connections or both. A combination of pharmacological and electrophysiological techniques a used to show how identified membrane properties and short-term synaptic plasticity are involved with phase maintenance over a range of biologically relevant oscillation frequencies. To examine whether network stability is due to the characteristic stable activity of the identified pyloric neuron types, the hypothesis that phase maintenance is an inherent property of synaptically-isolated individual neurons in the pyloric network was first tested. A set of parameters were determined (frequency-dependent activity profile) to define the response of each isolated pyloric neuron to sinusoidal input at different frequencies. The parameters that define the activity profile are: burst onset phase, burst end phase, resonance frequency and intra-burst spike frequency. Each pyloric neuron type was found to possess a unique activity profile, indicating that the individual neuron types are tuned to produce a particular activity pattern at different frequencies depending on their role in the network. To elucidate the biophysical properties underlying the frequency-dependent activity profiles of the neurons, the hyperpolarization activated current (Ih) was measured and found to possess frequency-dependent properties. This implies that Ih has a different influence on the activity phase of pyloric neurons at different frequencies. Additionally, it was found that the Ih contribution to the burst onset phase depends on the neuron type: in the pacemaker group neurons (PD) it had no influence on the burst onset phase at any frequency whereas in follower neurons it acted to advance the onset phase in one neuron type (LP) and, paradoxically, to delay it in a different neuron type (PY). The results from this part of the study provided evidence that stability is due in part to the intrinsic neuronal properties but that these intrinsic properties do not fully explain network stability. To address the contribution of pyloric synapses to network stability, the mechanisms by which synapses promote phase maintenance were investigated. An artificial synapse that mimicked the feedforward PD to LP synapse, was used so that the synaptic parameters could be varied in a controlled manner in order to examine the influence of the properties of this synapse on the postsynaptic LP neuron. It was found that a static synapse with fixed parameters (such as strength and peak phase) across frequencies cannot result in a constant activity phase in the LP neuron. However, if the synaptic strength decreases and the peak phase is delayed as a function of frequency, the LP neuron can maintain a constant activity phase across a large range of frequencies. These dynamic changes in the strength and peak phase of the PD to LP synapse are consistent with the short-term plasticity properties previously reported for this synapse. In the pyloric network, the follower neuron LP provides the sole transmitter-mediated feedback to the pacemaker neurons. To understand the role of this synapse in network stability, this synapse was blocked and replaced by an artificial synapse using the dynamic clamp technique. Different parameters of the artificial synapse, including strength, peak phase, duration and onset phase were found to affect the pyloric cycle period. The most effective parameters that influence cycle period were the synaptic duration and its onset phase. Overall this study demonstrated that both the intrinsic properties of individual neurons and the dynamic properties of the synapses are essential in producing stable activity phases in this oscillatory network. The insight obtained from this thesis can provide a general understanding of the contribution of intrinsic properties to neuronal activity phase and how short-term synaptic dynamics can act to promote phase maintenance in oscillatory networks

    Stress, Hypertension and Yoga

    Get PDF
    Stress and stress-related disorders are emerging as a major health challenge. In the classical stress concept, stress can be broadly defined as an actual or anticipated disruption of homeostasis by certain physical and psychological events that are known as ‘stressors’. Prolonged exposure to stress can lead to a destructive, self-perpetuating cascade of neuroendocrine, metabolic and neuropsychological alterations that play an important role in the development and progression of cardio-vascular disease (CVD) like hypertension. Dysregulation of stress system is causally linked to pathogenesis of essential hypertension, which involves over activity of hypothalamic-pituitary-adrenal axis (HPA) and sympathoadrenal system (SAS) and resetting of baroreceptors as the underlying pathophysiological mechanisms. Evidence suggests that regular practice of yogasanas and pranayama appears to cause down-regulation of the HPA axis and the sympathetic nervous system (SNS), increases vagal activity, improves baroreceptor sensitivity, and thereby helps to reduce blood pressure. Although the exact mechanism of beneficial effects of yoga are not known, evidence suggests that yogic intervention may be acting through multiple mechanisms simultaneously influencing diverse neural structures involved in the regulation of the neuroendocrine and the cardiovascular response to stress to cause neurohumoral modulations resulting in alleviation of stress and improvement in cardiovascular indices

    25th Annual Computational Neuroscience Meeting: CNS-2016

    Get PDF
    Abstracts of the 25th Annual Computational Neuroscience Meeting: CNS-2016 Seogwipo City, Jeju-do, South Korea. 2–7 July 201

    26th Annual Computational Neuroscience Meeting (CNS*2017): Part 3 - Meeting Abstracts - Antwerp, Belgium. 15–20 July 2017

    Get PDF
    This work was produced as part of the activities of FAPESP Research,\ud Disseminations and Innovation Center for Neuromathematics (grant\ud 2013/07699-0, S. Paulo Research Foundation). NLK is supported by a\ud FAPESP postdoctoral fellowship (grant 2016/03855-5). ACR is partially\ud supported by a CNPq fellowship (grant 306251/2014-0)

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong
    corecore