9,398 research outputs found

    Reporting an Experience on Design and Implementation of e-Health Systems on Azure Cloud

    Full text link
    Electronic Health (e-Health) technology has brought the world with significant transformation from traditional paper-based medical practice to Information and Communication Technologies (ICT)-based systems for automatic management (storage, processing, and archiving) of information. Traditionally e-Health systems have been designed to operate within stovepipes on dedicated networks, physical computers, and locally managed software platforms that make it susceptible to many serious limitations including: 1) lack of on-demand scalability during critical situations; 2) high administrative overheads and costs; and 3) in-efficient resource utilization and energy consumption due to lack of automation. In this paper, we present an approach to migrate the ICT systems in the e-Health sector from traditional in-house Client/Server (C/S) architecture to the virtualised cloud computing environment. To this end, we developed two cloud-based e-Health applications (Medical Practice Management System and Telemedicine Practice System) for demonstrating how cloud services can be leveraged for developing and deploying such applications. The Windows Azure cloud computing platform is selected as an example public cloud platform for our study. We conducted several performance evaluation experiments to understand the Quality Service (QoS) tradeoffs of our applications under variable workload on Azure.Comment: Submitted to third IEEE International Conference on Cloud and Green Computing (CGC 2013

    Cognitive facilitation following intentional odor exposure

    Get PDF
    This paper reviews evidence that, in addition to incidental olfactory pollutants, intentional odor delivery can impact cognitive operations both positively and negatively. Evidence for cognitive facilitation/interference is reviewed alongside four potential explanations for odor-induced effects. It is concluded that the pharmacological properties of odors can induce changes in cognition. However, these effects can be accentuated/attenuated by the shift in mood following odor exposure, expectancy of cognitive effects, and cues to behavior via the contextual association with the odor. It is proposed that greater consideration is required in the intentional utilization of odors within both industrial and private locations, since differential effects are observed for odors with positive hedonic qualities

    Exercise intolerance and fatigue in chronic heart failure: is there a role for group III/IV afferent feedback?

    Get PDF
    Exercise intolerance and early fatiguability are hallmark symptoms of chronic heart failure. While the malfunction of the heart is certainly the leading cause of chronic heart failure, the patho-physiological mechanisms of exercise intolerance in these patients are more complex, multifactorial and only partially understood. Some evidence points towards a potential role of an exaggerated afferent feedback from group III/IV muscle afferents in the genesis of these symptoms. Overactivity of feedback from these muscle afferents may cause exercise intolerance with a double action: by inducing cardiovascular dysregulation, by reducing motor output and by facilitating the development of central and peripheral fatigue during exercise. Importantly, physical inactivity appears to affect the progression of the syndrome negatively, while physical training can partially counteract this condition. In the present review, the role played by group III/IV afferent feedback in cardiovascular regulation during exercise and exercise-induced muscle fatigue of healthy people and their potential role in inducing exercise intolerance in chronic heart failure patients will be summarised

    Algorithms for advance bandwidth reservation in media production networks

    Get PDF
    Media production generally requires many geographically distributed actors (e.g., production houses, broadcasters, advertisers) to exchange huge amounts of raw video and audio data. Traditional distribution techniques, such as dedicated point-to-point optical links, are highly inefficient in terms of installation time and cost. To improve efficiency, shared media production networks that connect all involved actors over a large geographical area, are currently being deployed. The traffic in such networks is often predictable, as the timing and bandwidth requirements of data transfers are generally known hours or even days in advance. As such, the use of advance bandwidth reservation (AR) can greatly increase resource utilization and cost efficiency. In this paper, we propose an Integer Linear Programming formulation of the bandwidth scheduling problem, which takes into account the specific characteristics of media production networks, is presented. Two novel optimization algorithms based on this model are thoroughly evaluated and compared by means of in-depth simulation results

    Mobile Service Clouds: A self-managing infrastructure for autonomic mobile computing services

    Get PDF
    Abstract. We recently introduced Service Clouds, a distributed infrastructure designed to facilitate rapid prototyping and deployment of autonomic communication services. In this paper, we propose a model that extends Service Clouds to the wireless edge of the Internet. This model, called Mobile Service Clouds, enables dynamic instantiation, composition, configuration, and reconfiguration of services on an overlay network to support mobile computing. We have implemented a prototype of this model and applied it to the problem of dynamically instantiating and migrating proxy services for mobile hosts. We conducted a case study involving data streaming across a combination of PlanetLab nodes, local proxies, and wireless hosts. Results are presented demonstrating the effectiveness of the prototype in establishing new proxies and migrating their functionality in response to node failures.

    Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers

    Get PDF
    Background and Purpose: Refinement of robotic exoskeletons for overground walking is progressing rapidly. We describe clinicians\u27 experiences, evaluations, and training strategies using robotic exoskeletons in spinal cord injury rehabilitation and wellness settings and describe clinicians\u27 perceptions of exoskeleton benefits and risks and developments that would enhance utility. Methods: We convened focus groups at 4 spinal cord injury model system centers. A court reporter took verbatim notes and provided a transcript. Research staff used a thematic coding approach to summarize discussions. Results: Thirty clinicians participated in focus groups. They reported using exoskeletons primarily in outpatient and wellness settings; 1 center used exoskeletons during inpatient rehabilitation. A typical episode of outpatient exoskeleton therapy comprises 20 to 30 sessions and at least 2 staff members are involved in each session. Treatment focuses on standing, stepping, and gait training; therapists measure progress with standardized assessments. Beyond improved gait, participants attributed physiological, psychological, and social benefits to exoskeleton use. Potential risks included falls, skin irritation, and disappointed expectations. Participants identified enhancements that would be of value including greater durability and adjustability, lighter weight, 1-hand controls, ability to navigate stairs and uneven surfaces, and ability to balance without upper extremity support. Discussion and Conclusions: Each spinal cord injury model system center had shared and distinct practices in terms of how it integrates robotic exoskeletons into physical therapy services. There is currently little evidence to guide integration of exoskeletons into rehabilitation therapy services and a pressing need to generate evidence to guide practice and to inform patients\u27 expectations as more devices enter the market. Background and Purpose: Refinement of robotic exoskeletons for overground walking is progressing rapidly. We describe clinicians\u27 experiences, evaluations, and training strategies using robotic exoskeletons in spinal cord injury rehabilitation and wellness settings and describe clinicians\u27 perceptions of exoskeleton benefits and risks and developments that would enhance utility. Methods: We convened focus groups at 4 spinal cord injury model system centers. A court reporter took verbatim notes and provided a transcript. Research staff used a thematic coding approach to summarize discussions. Results: Thirty clinicians participated in focus groups. They reported using exoskeletons primarily in outpatient and wellness settings; 1 center used exoskeletons during inpatient rehabilitation. A typical episode of outpatient exoskeleton therapy comprises 20 to 30 sessions and at least 2 staff members are involved in each session. Treatment focuses on standing, stepping, and gait training; therapists measure progress with standardized assessments. Beyond improved gait, participants attributed physiological, psychological, and social benefits to exoskeleton use. Potential risks included falls, skin irritation, and disappointed expectations. Participants identified enhancements that would be of value including greater durability and adjustability, lighter weight, 1-hand controls, ability to navigate stairs and uneven surfaces, and ability to balance without upper extremity support. Discussion and Conclusions: Each spinal cord injury model system center had shared and distinct practices in terms of how it integrates robotic exoskeletons into physical therapy services. There is currently little evidence to guide integration of exoskeletons into rehabilitation therapy services and a pressing need to generate evidence to guide practice and to inform patients\u27 expectations as more devices enter the market

    The effects of different cardiovascular devices on carotid and aortic baroreceptors

    Get PDF
    The baroreflex is a well-studied physiological mechanism that provides instantaneous nerve impulses to higher brain centers about fluctuations in blood pressure. Located within the aortic arch and carotid sinuses, the baroreceptors are mechanosensitive stretch receptors activated by physical distention. When stretched by elevated blood pressure, the baroreflex is activated and serves to reduce sympathetic nerve activity through increased parasympathetic nerve output, ultimately reducing heart rate, contractility and total vascular peripheral resistance. Therefore, through physical perturbation, the baroreflex can be activated and ensuing physiological changes result. Several medical devices have been developed to treat and manage cardiovascular diseases that are affected by blood pressure dysregulation. A significant portion of devices have their mechanistic application at locations at or near the aortic and carotid baroreceptors, which results in alterations of baroreflex activation. This literature review serves to highlight three clinically important cardiovascular devices and the effects they have on the baroreflex through a summarized review of published work in the scientific community. Intra-aortic balloon pumps, left ventricular assist devices and carotid sinus stimulators are cardiovascular devices that have shown promising development and clinical impact since each devices’ initial application in research trials. Each device has been thoroughly reviewed here and the impact that each device has on blood pressure regulation has been investigated via available published work. Results from a limited number of studies have shown that each device has a definite effect on baroreflex activation and subsequent changes in autonomic nervous system function. Modifications in blood pressure through device use appear to be a potential therapeutic approach to managing pathophysiological states, including hypertension and heart failure. Hypertension and heart failure will be discussed in greater detail, reviewing current approaches to disease management and care. The results from the available publications surrounding device use are specific to certain diseases, however, they are also quite generalizable in the sense that these results have shown an overall true effect on blood pressure modification by the baroreflex. Conclusions established from this literature review are that although promising work has been recognized through studying these cardiovascular devices and their effects on blood pressure regulation, much research and development is still needed in order to gain a better understanding of device use and impact in the clinical setting

    Self-Optimization of Internet Services with Dynamic Resource Provisioning

    Get PDF
    Self-optimization through dynamic resource provisioning is an appealing approach to tackle load variation in Internet services. It allows to assign or release resources to/from Internet services according to the varying load. However, dynamic resource provisioning raises several challenges among which: (i) How to plan a good capacity of an Internet service, i.e.~a necessary and sufficient amount of resource to handle the Internet service workload, (ii) How to manage both gradual load variation and load peaks in Internet services, (iii) How to prevent system oscillations in presence of potentially concurrent dynamic resource provisioning, and (iv) How to provide generic self-optimization that applies to different Internet services such as e-mail services, streaming servers or e-commerce web systems. This paper precisely answers these questions. It presents the design principles and implementation details of a self-optimization autonomic manager. It describes the results of an experimental evaluation of the self-optimization manager with a realistic e-commerce multi-tier web application running in a Linux cluster of computers. The experimental results show the usefulness of self-optimization in terms of end-user's perceived performance and system's operational costs, with a negligible overhead
    • …
    corecore