215 research outputs found

    Gait quality is improved by locomotor training in individuals with SCI regardless of training approach

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While various body weight supported locomotor training (BWSLT) approaches are reported in the literature for individuals with spinal cord injury (SCI), none have evaluated outcomes in terms of gait quality. The purpose of this study was to compare changes in measures of gait quality associated with four different BWSLT approaches in individuals with chronic motor-incomplete SCI, and to identify how gait parameters differed from those of non-disabled (ND) individuals.</p> <p>Methods</p> <p>Data were analyzed from 51 subjects with SCI who had been randomized into one of four BWSLT groups: treadmill with manual assistance (TM), treadmill with electrical stimulation (TS), overground with electrical stimulation (OG), treadmill with locomotor robot (LR). Subjects with SCI performed a 10-meter kinematic walk test before and after 12 weeks of training. Ten ND subjects performed the test under three conditions: walking at preferred speed, at speed comparable to subjects with SCI, and with a walker at comparable speed. Six kinematic gait quality parameters were calculated including: cadence, step length, stride length, symmetry index, intralimb coordination, and timing of knee extension.</p> <p>Results</p> <p>In subjects with SCI, all training approaches were associated with improvements in gait quality. After training, subjects with SCI walked at higher cadence and had longer step and stride lengths. No significant differences were found among training groups, however there was an interaction effect indicating that step and stride length improved least in the LR group. Compared to when walking at preferred speed, gait quality of ND subjects was significantly different when walking at speeds comparable to those of the subjects with SCI (both with and without a walker). Post training, gait quality measures of subjects with SCI were more similar to those of ND subjects.</p> <p>Conclusion</p> <p>BWSLT leads to improvements in gait quality (values closer to ND subjects) regardless of training approach. We hypothesize that the smaller changes in the LR group were due to the passive settings used for the robotic device. Compared to walking at preferred speed, gait quality values of ND individuals walking at a slower speed and while using a walker were more similar to those of individuals with SCI.</p

    Experience of Robotic Exoskeleton Use at Four Spinal Cord Injury Model Systems Centers

    Get PDF
    Background and Purpose: Refinement of robotic exoskeletons for overground walking is progressing rapidly. We describe clinicians\u27 experiences, evaluations, and training strategies using robotic exoskeletons in spinal cord injury rehabilitation and wellness settings and describe clinicians\u27 perceptions of exoskeleton benefits and risks and developments that would enhance utility. Methods: We convened focus groups at 4 spinal cord injury model system centers. A court reporter took verbatim notes and provided a transcript. Research staff used a thematic coding approach to summarize discussions. Results: Thirty clinicians participated in focus groups. They reported using exoskeletons primarily in outpatient and wellness settings; 1 center used exoskeletons during inpatient rehabilitation. A typical episode of outpatient exoskeleton therapy comprises 20 to 30 sessions and at least 2 staff members are involved in each session. Treatment focuses on standing, stepping, and gait training; therapists measure progress with standardized assessments. Beyond improved gait, participants attributed physiological, psychological, and social benefits to exoskeleton use. Potential risks included falls, skin irritation, and disappointed expectations. Participants identified enhancements that would be of value including greater durability and adjustability, lighter weight, 1-hand controls, ability to navigate stairs and uneven surfaces, and ability to balance without upper extremity support. Discussion and Conclusions: Each spinal cord injury model system center had shared and distinct practices in terms of how it integrates robotic exoskeletons into physical therapy services. There is currently little evidence to guide integration of exoskeletons into rehabilitation therapy services and a pressing need to generate evidence to guide practice and to inform patients\u27 expectations as more devices enter the market. Background and Purpose: Refinement of robotic exoskeletons for overground walking is progressing rapidly. We describe clinicians\u27 experiences, evaluations, and training strategies using robotic exoskeletons in spinal cord injury rehabilitation and wellness settings and describe clinicians\u27 perceptions of exoskeleton benefits and risks and developments that would enhance utility. Methods: We convened focus groups at 4 spinal cord injury model system centers. A court reporter took verbatim notes and provided a transcript. Research staff used a thematic coding approach to summarize discussions. Results: Thirty clinicians participated in focus groups. They reported using exoskeletons primarily in outpatient and wellness settings; 1 center used exoskeletons during inpatient rehabilitation. A typical episode of outpatient exoskeleton therapy comprises 20 to 30 sessions and at least 2 staff members are involved in each session. Treatment focuses on standing, stepping, and gait training; therapists measure progress with standardized assessments. Beyond improved gait, participants attributed physiological, psychological, and social benefits to exoskeleton use. Potential risks included falls, skin irritation, and disappointed expectations. Participants identified enhancements that would be of value including greater durability and adjustability, lighter weight, 1-hand controls, ability to navigate stairs and uneven surfaces, and ability to balance without upper extremity support. Discussion and Conclusions: Each spinal cord injury model system center had shared and distinct practices in terms of how it integrates robotic exoskeletons into physical therapy services. There is currently little evidence to guide integration of exoskeletons into rehabilitation therapy services and a pressing need to generate evidence to guide practice and to inform patients\u27 expectations as more devices enter the market

    Upper Limb Capabilities, Self-Care and Fine Motor Activities with and Without Equipment in Persons with Cervical Spinal Cord Injury at Discharge from Rehabilitation and 1 Year Post-Injury

    Get PDF
    Introduction: There is little information on the impact of assistive technology or devices (AT) on function. The purpose of this project was to explore the impact of AT on self-care (SC) and fine motor (FM) function in persons with cervical SCI, and to examine the functional capabilities of those who benefit from AT. Methods: Persons with acute cervical SCI, all levels and AIS grades, with an upper extremity motor score (UEMS) \u3e 0 were enrolled. At discharge from rehabilitation and 1 year post-injury we collected the Capabilities of Upper Extremity questionnaire (CUE-Q), and the combined SC and FM questions of the SCI Functional Index (SCI-FI) and SCI-FI/AT short forms. The arm with the highest CUE-Q side score was designated the better side. The impact of AT on SC and FM function was evaluated by looking at the difference in SCI-FI and SCI-FI/AT scores, and changes over time. Results: There were 67 participants with data at rehab discharge and 1-year post-injury, 50 male and 17 female, average age 43.3 ± 15.6 years. Median scores by neurologic groupings are shown in the table. All groups demonstrated improvements in CUE-Q and SCI-FI scores from discharge to 1 year post-injury (table and radar charts). By neurologic group, AT was useful for the greatest percentage of persons classified as C4-C5 AB for FM and C6-T1 AB for SC), least useful for C6-T1 CD (charts at right). AT was helpful for the greatest number of items for SC in the C4-C5 CD group at discharge (bolded numbers in table). There tended to be less use of AT for tasks at 1 year compared to rehab discharge. For example, the percentage of persons using AT for brushing teeth at discharge was 48%, while at 1 year it was only 25%. Conclusion: Many persons with tetraplegia are able to perform self-care and fine motor tasks easier using AT, but the benefit depends on the level and severity of injury. There is a decreased reliance on AT over time, which may in part be due to continued recovery after rehabilitation discharge.https://jdc.jefferson.edu/rmposters/1013/thumbnail.jp

    High-Intensity Variable Stepping Training in Patients With Motor Incomplete Spinal Cord Injury: A Case Series

    Get PDF
    Background and Purpose: Previous data suggest that large amounts of high-intensity stepping training in variable contexts (tasks and environments) may improve locomotor function, aerobic capacity, and treadmill gait kinematics in individuals poststroke. Whether similar training strategies are tolerated and efficacious for patients with other acute-onset neurological diagnoses, such as motor incomplete spinal cord injury (iSCI), is unknown. Individuals with iSCI potentially have greater bilateral impairments. This case series evaluated the feasibility and preliminary short- and long-term efficacy of highintensity variable stepping practice in ambulatory participants for more than 1 year post-iSCI. Case Series Description: Four participants with iSCI (neurological levels C5-T3) completed up to 40 one-hour sessions over 3 to 4 months. Stepping training in variable contexts was performed at up to 85% maximum predicted heart rate, with feasibility measures of patient tolerance, total steps/session, and intensity of training. Clinical measures of locomotor function, balance, peak metabolic capacity, and gait kinematics during graded treadmill assessments were performed at baseline and posttraining, with more than 1-year follow-up. Outcomes: Participants completed 24 to 40 sessions over 8 to 15 weeks, averaging 2222 ± 653 steps per session, with primary adverse events of fatigue and muscle soreness. Modest improvements in locomotor capacity where observed at posttraining, with variable changes in lower extremity kinematics during treadmill walking. Discussion: High-intensity, variable stepping training was feasible and tolerated by participants with iSCI although only modest gains in gait function or quality were observed. The utility of this intervention in patients with more profound impairments may be limited

    Budget impact analysis of robotic exoskeleton use for locomotor training following spinal cord injury in four SCI Model Systems

    Get PDF
    Background We know little about the budget impact of integrating robotic exoskeleton over-ground training into therapy services for locomotor training. The purpose of this study was to estimate the budget impact of adding robotic exoskeleton over-ground training to existing locomotor training strategies in the rehabilitation of people with spinal cord injury. Methods A Budget Impact Analysis (BIA) was conducted using data provided by four Spinal Cord Injury (SCI) Model Systems rehabilitation hospitals. Hospitals provided estimates of therapy utilization and costs about people with spinal cord injury who participated in locomotor training in the calendar year 2017. Interventions were standard of care walking training including body-weight supported treadmill training, overground training, stationary robotic systems (i.e., treadmill-based robotic gait orthoses), and overground robotic exoskeleton training. The main outcome measures included device costs, training costs for personnel to use the device, human capital costs of locomotor training, device demand, and the number of training sessions per person with SCI. Results Robotic exoskeletons for over-ground training decreased hospital costs associated with delivering locomotor training in the base case analysis. This analysis assumed no difference in intervention effectiveness across locomotor training strategies. Providing robotic exoskeleton overground training for 10% of locomotor training sessions over the course of the year (range 226–397 sessions) results in decreased annual locomotor training costs (i.e., net savings) between 1114to1114 to 4784 per annum. The base case shows small savings that are sensitive to parameters of the BIA model which were tested in one-way sensitivity analyses, scenarios analyses, and probability sensitivity analyses. The base case scenario was more sensitive to clinical utilization parameters (e.g., how often devices sit idle and the substitution of high cost training) than device-specific parameters (e.g., robotic exoskeleton device cost or device life). Probabilistic sensitivity analysis simultaneously considered human capital cost, device cost, and locomotor device substitution. With probabilistic sensitivity analysis, the introduction of a robotic exoskeleton only remained cost saving for one facility. Conclusions Providing robotic exoskeleton for over-ground training was associated with lower costs for the locomotor training of people with SCI in the base case analyses. The analysis was sensitive to parameter assumptions

    Reliability of videotaped observational gait analysis in patients with orthopedic impairments

    Get PDF
    BACKGROUND: In clinical practice, visual gait observation is often used to determine gait disorders and to evaluate treatment. Several reliability studies on observational gait analysis have been described in the literature and generally showed moderate reliability. However, patients with orthopedic disorders have received little attention. The objective of this study is to determine the reliability levels of visual observation of gait in patients with orthopedic disorders. METHODS: The gait of thirty patients referred to a physical therapist for gait treatment was videotaped. Ten raters, 4 experienced, 4 inexperienced and 2 experts, individually evaluated these videotaped gait patterns of the patients twice, by using a structured gait analysis form. Reliability levels were established by calculating the Intraclass Correlation Coefficient (ICC), using a two-way random design and based on absolute agreement. RESULTS: The inter-rater reliability among experienced raters (ICC = 0.42; 95%CI: 0.38–0.46) was comparable to that of the inexperienced raters (ICC = 0.40; 95%CI: 0.36–0.44). The expert raters reached a higher inter-rater reliability level (ICC = 0.54; 95%CI: 0.48–0.60). The average intra-rater reliability of the experienced raters was 0.63 (ICCs ranging from 0.57 to 0.70). The inexperienced raters reached an average intra-rater reliability of 0.57 (ICCs ranging from 0.52 to 0.62). The two expert raters attained ICC values of 0.70 and 0.74 respectively. CONCLUSION: Structured visual gait observation by use of a gait analysis form as described in this study was found to be moderately reliable. Clinical experience appears to increase the reliability of visual gait analysis
    • …
    corecore