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Note to Reviewers 
 

We would like to thank both Reviewers for their thorough and considered review of our 

manuscript. We found all the comments to be thoughtful and constructive, and have allowed 

us to make some significant improvements to the manuscript. We hope these amendments are 

to your satisfaction. We have replied to each comment in this document (in red), and where a 

manuscript amendment was required, we have highlighted the changed text in yellow 

(added/revised words or sections) and in red (deleted) within the manuscript file. We hope 

you enjoy reading the revised version of the manuscript.  
 
 

Reviewer #1:  

 

This is an important and interesting review. The manuscript is very well designed and 

written. However, I suggest that the authors included a section about the effects of exercise 

training on group-III/IV receptors and/or mechano and metaboreflex.  
 

AUTHORS: we really thank the reviewer for this useful comment. As suggested, we included 

a section “Exercise training as therapy for chronic heart failure patients” describing the 

general guidelines and effect of aerobic and resistance training on CHF as well as its potential 

beneficial effect on EPR.  
 
 

Reviewer #2:  
 
There are some questions to explain about the article   «Exercise intolerance and fatigue in 

CHF:is there a role for group III/IV afferent feedback?»: 
-Could you give an explanation about the relationship of this afferent feedback with the 

respiratory response? 

-Is there any role for the diaphragmatic muscle in this afferent feedback? 

-If so,have you reviewed the role of the respiratory training in this field/inspiratory muscle 

threeshold? 
-Could you give more information about the benefict of resistance training vs endurance 

training (continuous/intervalic)? 
 

AUTHORS: we really thank the reviewer for these useful comments. We have included a 

section called “Exercise training as therapy for chronic heart failure patients” in which we 

described the effect of different types of training on physical capacity of CHF patient. In the 

same section we also included how these can reduce the exaggerated activity of peripheral 

muscle afferents.  
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Abstract 

 

 Exercise intolerance and early fatigability are hallmark symptoms of chronic heart failure 

(CHF). While the malfunction of the heart is certainly the leading cause of CHF, the patho-

physiological mechanisms of exercise intolerance in these patients are more complex, 

multifactorial, and only partially understood. Some evidences point towards a potential role of an 

exaggerated afferent feedback from group III/IV muscle afferents in the genesis of these 

symptoms. Overactivity of feedback from these muscle afferents may cause exercise intolerance 

with a double action: by inducing cardiovascular dysregulation, by reducing motor output, and 

by facilitating the development of central and peripheral fatigue during exercise. Importantly, 

physical inactivity appears to negatively affect the progression of the syndrome, while physical 

training can partially counteract this condition. In the present review, the role played by the 

group III/IV afferents feedback in the cardiovascular regulation during exercise and exercise-

induced muscle fatigue of healthy people and their potential role in inducing exercise intolerance 

in CHF patients will be summarised.  

 

Keywords: Metabo-reflex, Fatiguability, Circulation, Exercise pressor reflex, Sensory neurons, 

Muscle fatigue. 
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Introduction 

 

 Exercise intolerance and early fatigability are hallmark symptoms of chronic heart failure 

(CHF). These symptoms severely limit daily activities and have been traditionally considered as 

the consequence of the inability of the heart to meet the metabolic demand of the muscles during 

exercise, with the malfunction of the heart as a pump as the leading cause 1. However, the patho-

physiological mechanisms of exercise intolerance in CHF are more complex, multifactorial, and 

only partially investigated and understood.  

 At heart level, the combination of systolic and diastolic abnormalities concurs in reducing 

the capacity to increase cardiac output (CO). Moreover, several other abnormalities such as 

impairments in peripheral endothelial-dependent vasodilation, reduction in systemic oxygen 

delivery, reduction in pulmonary reserve, and respiratory muscle perfusion have all been 

observed and they potentially account for the reduced exercise capacity in this syndrome 2–5.  

 Changes in skeletal muscle metabolism, functioning, composition, and architecture have 

also been described and, in the last years, there has been mounting evidence that these changes 

play a pivotal role in the development of exercise intolerance and in the reduction of exercise 

capacity. Some clues point towards the existence of a peripheral reflex that becomes hyperactive 

secondary to the described skeletal muscle alterations and may contribute to the exercise 

intolerance and the early fatigability experienced by these patients 5,6. Specifically, it has been 

reported that some hormonal systems (i.e. renin-angiotensin-aldosterone, vasopressin, and atrial 

natriuretic peptide) are over-activated and that patients show altered autonomic nervous system 

activity at rest and during exercise, with exaggerated sympathetic tone associated with 

parasympathetic withdrawal. While the exact mechanisms causing this hormonal and autonomic 

dysregulation are still to be fully elucidated, it appears that an exaggerated afferent feedback 

from group III/IV muscle afferents may be at least in part responsible for this dysregulation 7,8,6,5. 

Importantly, physical inactivity appears to negatively affect the progression of the syndrome, 

while physical training can partially reverse this condition. Importantly, enhancements in 

exercise capacity observed after physical training appear to be the consequence of improvements 

in muscle and vascular function rather than in cardiac functions. Although effective in reducing 

mortality, classical pharmacological treatments, such as angiotensin-converting enzyme 

inhibitors, β-blockers, and diuretics show very limited or null effects on exercise capacity 3,6,9–12.  
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 To date, most of the literature investigating the role of group III/IV muscle afferents have 

focused on the physiology and pathophysiology of cardiovascular regulation during effort 

exercise. Only recently a series of experiments have emphasised their role on muscle fatigue 

development and in the inhibition of central motor drive, which negatively affect exercise 

performance 13,14. Thus, overactivity of feedback from group III/IV muscle afferents may cause 

exercise intolerance with a double action: by inducing cardiovascular dysregulation and by 

facilitating the development of muscle fatigue. In the present narrative review, we will 

summarise the role of the group III/IV afferents feedback in the cardiovascular regulation during 

exercise and exercise-induced muscle fatigue of healthy people and their potential role in 

inducing exercise intolerance in CHF patients.  

 

 

Role of group III and IV muscle afferents on the cardiovascular regulation during dynamic 

exercise in healthy subjects 

 

 In healthy subjects, the cardiovascular adjustment to dynamic exercise is characterized by 

an increase in heart rate (HR) and stroke volume (SV), which together enhance CO. At the same 

time, a profound reduction in systemic vascular resistance (SVR) takes place due to metabolite-

induced vasodilation in the working muscle. As result, mean arterial pressure (MAP) remains 

stable or slightly increases 15–17. Behind these hemodynamic changes there is a fine tuning 

operated by neural mechanisms.  

 Specifically, at least three neural mechanisms concur in this physiological response. One 

is a central mechanism, commonly known as “central command”. In this mechanism, the 

cardiovascular control areas located in the brainstem are reflexively activated by regions of the 

brain responsible for motor unit recruitment. Central command is believed to establish a basal 

level of sympathetic activity and parasympathetic withdrawal to the cardiovascular apparatus 

closely linked to the exercise intensity 18,19.  

This basic pattern of autonomic activity is in turn modulated by a second mechanism 

arising from peripheral signals originating from type III/IV muscle afferents in the muscle, which 

act as mechano- and metabo- receptors. Group III/IV nerve endings represent more than 50% of 

the total muscle afferents and constitute the sensory arm of a reflex which is collectively termed 
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the “exercise pressor reflex” (EPR). These muscle afferents convey information about the 

mechanical and metabolic variations of the contracting muscle via the spinal cord to the 

cardiovascular control centres within the brainstem 18,20–22. It was reported that most group III 

afferents act mainly as “mechanoreceptors” as they respond to mechanical distortion, whereas 

group IV afferents appear to respond to metabolites accumulation, so that they can be considered 

as “metaboreceptors” as well as nociceptors. Several substances such as lactic acid, potassium, 

bradykinin, arachidonic acid products, ATP, diprotonated phosfate, and adenosine are thought to 

stimulate the metaboreceptors in the muscle 23,24. It should be noticed that a sub-population of 

group III/IV nerve endings respond to both mechanical and chemical stimuli 25,26. Some 

evidences suggest that mechanoreceptors can be sensitised by metabolites accumulation making 

it difficult to isolate their pure mechano- from metabo properties 23,27. Group III/IV muscle 

afferents project to the dorsal horn of the spinal cord. However, little is known about the central 

pathways of the EPR their projections at cortical and subcortical level but it seems that the 

medulla oblongata is essential for its expression 22,28,29.  

 The activation of both central command and EPR leads to autonomic adjustments 

characterised by increase in sympathetic activity and parasympathetic withdrawal. This 

autonomic regulation is in turn modulated by the third reflex operating during exercise: the 

baroreflex. Arterial baroreceptors are located in the carotid sinus bifurcation and aortic arch and 

sense rapid changes in blood pressure thereby activating the baroreflex. When arterial blood 

pressure is acutely increased or reduced, the baroreceptors are stretched or compressed, and this 

deformation causes increment or reduction in afferent neuronal firing rate, respectively. The 

control over blood pressure is achieved by reflexively inducing rapid adjustments in HR and 

SVR in responses to changes in MAP 30,31. The baroreflex activity avoids any excessive variation 

in blood pressure and opposes any mismatch between vascular resistance and CO 32,32,33.  

 One interesting point of the functioning of these reflexes is how they interact their 

interaction during dynamic exercise, as both the central command and the EPR can modulate the 

activity of the baroreflex 34. In detail, it was reported that during exercise the operating point of 

the baroreflex is shifted and that the stimulus response curve is relocated to a higher arterial 

blood pressure in direct relation to exercise intensity, without any change in its sensitivity 30,35,36. 

In short, the baroreflex is still operating during exercise, but the blood pressure operating point is 

higher than rest, although it is as effectively as at rest in controlling blood pressure 30,34,37.  
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It is remarkable that the target blood pressure can often be achieved despite a lack in 

response of one of the regulated variables, thereby suggesting that these reflexes operate with a 

high level of effectiveness and integration 18,38,39. For example, it has been demonstrated in 

several human investigations dealing with EPR that when cardiac contractility cannot be 

enhanced, the possibility to increase SV and CO is precluded. Then, the target blood pressure is 

achieved by recruiting the SVR reserve (i.e., by inducing arteriolar vasoconstriction). Similarly, 

if venous return is impaired and/or the reserve in cardiac preload is exploited, then the 

recruitment of the SVR reserve is the main mechanism through which the EPR operates to adjust 

hemodynamics 40. In short, it appears that whenever SV and CO can not properly increase (such 

as in CHF patients), then exaggerated arteriolar constriction becomes the main mechanism 

through which the target blood pressure is reached. Differently, in healthy subjects the preferred 

cardiovascular adjustment during EPR is a flow-mediated (i.e. CO-mediated) mechanism 

obtained by recruiting the inotropic and preload reserves 40. 

Hence, during exercise, central command, EPR, and baroreflex are all activated and 

complex interaction occurs between these reflexes. While it is well ascertained that some 

redundancy and neural occlusion exist between EPR and central command (i.e. their effects do 

not sum), it is also remarkable that they can modulate the activity of the other two. As previously 

exposed, the most studied interaction is the modulation of baroreflex operated by central 

command and EPR. However, interaction has also been demonstrated between central command 

and EPR. Actually, several evidences suggest that inputs from type III/IV muscle afferences 

modulate the central command activity and exert an inhibitory effect on central motor drive 41. In 

particular, it was observed that reduction in afferent input from type III/IV muscle afferents 

during exercise obtained with epidural anaesthesia resulted in an increase in central command 

activity. These findings support the thesis that central command cannot work properly without 

adequate feedback from peripheral muscle and that, at the same time, this feedback limits central 

command and motor drive 13,41.  

 

 

Role of group III and IV muscle afferents on the development of muscle fatigue during 

dynamic exercise in healthy subjects 
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 Sustained physical exercise inexorably leads to a reduced capacity to generate maximal 

force or power. This has been commonly described as muscle fatigue 14. Most of muscle fatigue 

has been documented to occur at or distal to the neuromuscular junction 42, and has been 

commonly defined peripheral fatigue. Conversely, central fatigue refers to the inability of the 

central nervous system to optimally recruit the muscle (e.g. a significant decrease in voluntary 

activation) 14. Supraspinal fatigue, a subset of central fatigue, can be described as a suboptimal 

output from the motor cortex 14. Consequently, the interaction between central and peripheral 

fatigue leads to decrease in maximal force or power. The role and interplay of central and 

peripheral fatigue in exercise tolerance and termination has been object of discussion for several 

years 43,44. Peripheral fatigue is measured by comparing the force of the muscle elicited by 

electrical stimulation of the corresponding motor nerve before and after exercise 45. 

Quantification of central fatigue is generally performed with the superimposed twitch technique 

46. More recently, transcranial magnetic stimulation (TMS) has been effectively used to study and 

quantify supraspinal fatigue on different exercise paradigms 47.  

 Several experiments have been performed to understand and identify the physiological 

mechanisms contributing to the generation of muscle fatigue 14,43. A considerable amount of 

experimental evidences supports the hypothesis that during high intensity exercise, the activity of 

group III/IV muscle afferents might facilitate the development of central fatigue via an inhibitory 

feedback at different sites of the motor pathway and also by influencing the level of motor unit 

activation 41,48. Injection of hypertonic saline in the muscle has been classically used as 

experimental approach to stimulate type III/IV muscle afferents. A reduction of low-threshold 

motor unit discharge rate during low intensity muscular contraction 49,50 and maximal force 

production of knee extensor 50 and elbow flexors muscles 51 have been found this approach. 

Other studies reported a decrease in motor evoked potentials elicited by transcranial direct 

stimulation TMS, thus providing evidences of an inhibitory effect at supraspinal level 52. The 

reduction in maximal force production seems to be caused by decrease in voluntary activation 

(e.g. increase in central fatigue). This hypothesis seems to be confirmed in studies where 

voluntary activation was significantly reduced in elbow flexors muscles 51. On the other hand, 

other studies reported an increase in spinal motoneurons excitability 53. Overall, these studies 

showed that motor unit activation can be partially regulated by peripheral reflexes elicited by 

group III/IV muscle afferents. 
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 Post-exercise circulatory occlusion has also been employed as alternative experimental 

approach to stimulate group III/IV muscle afferents. In regards, early investigations 

demonstrated that maximal voluntary contraction and voluntary activation were significantly 

reduced and did not recover until the circulation was restored 54–57. Interestingly, when the 

fatigued muscle was kept ischemic, the decline in maximal force and voluntary activation was 

also present in unfatigued muscle of the same limb 55,56. These findings suggest the presence of 

convergence and divergence effect at spinal level 58, where muscle afferents from one muscle 

may have projections to the dorsal horn receiving inputs from other adjacent muscles. Studies 

involving TMS demonstrated that the decline maximal force production and voluntary activation 

was also caused by an inhibitory effect at supraspinal level 55,56,59.  

 Pharmacological blockade has also been adopted as experimental approach to study the 

role of group III/IV muscle afferents 41. This type of intervention performed prior whole-body 

exercise, is able to attenuate approximately 60% of feedback from these afferents. Overall, these 

investigations reported that during high intensity cycling exercise, voluntary drive (estimated by 

means of electromyography), metabolites accumulation, and peripheral fatigue increased when 

the feedback from exercising muscles was attenuated 60–62. It should be considered, that in these 

studies, physical performance was unchanged or impaired when afferent feedback was 

attenuated, and this was probably the consequence of an impaired cardiorespiratory response 

41,61,63. More recently, a series of experiments involving TMS reported an increase in 

corticospinal excitability when feedback from exercising muscles was attenuated 64–66. These 

preliminary findings seem to confirm previous experiments showing that group III/IV muscle 

afferents promote central fatigue during exercise. 

 

 

Group III and IV muscle afferents and their role in cardiovascular regulation and 

fatigability in patients with chronic heart failure 

 

During EPR, several abnormalities in the cardiovascular regulation have been 

demonstrated in individuals suffering from CHF. To study the metaboreflex, i.e. the metabolic 

part of the EPR, some human studies employed the post-exercise muscle ischemia method, 

which induces metabolites accumulation thereby stimulating type III/IV muscle afferents in the 
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muscle. During the metaboreflex activation in patients with CHF, an increase in MAP similar to 

that observed in healthy individuals was found. However, the mechanisms underlying this 

cardiovascular response were markedly different between patients and controls. In detail, in 

patients suffering from CHF the rise in MAP was reached via a SVR increase, while in healthy 

individuals this was the result of a flow increment, i.e. CO elevation 67. This observation was 

recently replied also in patients suffering from heart failure with preserved ejection fraction 68 as 

well as in patients with coronary artery disease 69. This abnormal hemodynamics seemed the 

consequence of the incapacity of CHF patients to recruit the reserves in cardiac performance and 

in cardiac pre-load in response to the metaboreflex. The exaggerated increase in SVR (i.e. 

arteriolar constriction) compensated for the inability to increase SV. Interesting, in CHF patients 

the MAP response was well preserved notwithstanding their lower CO in comparison with 

healthy subjects. Hence, it appears that CHF causes a functional shift from a flow-mediated (i.e. 

CO increase) to a vasoconstriction-mediated (i.e. SVR increase) in the mechanisms by which the 

target blood pressure is reached during EPR. It is to be considered that this hemodynamic 

scenario closely resembles what has been also reported in animal models of CHF 70–72.  

It is to be highlighted that the described exaggerated arteriolar constriction in response to 

metaboreflex potentially restrains muscle perfusion 73, and this likely contributes to the early 

development of fatigue and exercise intolerance shown by CHF patients. In detail, while in 

healthy subjects metaboreflex activation maintains skeletal muscle perfusion 73, this is not the 

case in CHF, where exaggerated vasoconstriction takes place during the metaboreflex. In this 

scenario, even the exercising muscle may become vasoconstricted 67,74,75 and this occurrence 

may lead to deleterious consequences in terms of exercise tolerance and muscle tropism.  

It has been proposed the so called “muscle hypothesis” to explain at least in part the 

exercise intolerance shown by CHF patients. In detail, it has been suggested that CHF initiates a 

vicious circle where damage to the heart and disturbance in central haemodynamics trigger 

compensatory mechanisms, including neurohumoral and sympathetic activation, which 

persistently vasoconstricts the muscle circulation. In the longer term, this condition becomes 

harmful and damages at vascular and endothelial level develop, with chronic inflammation, and 

necrosis at muscular level. Various signs of myopathy, muscle mass reduction, and abnormal 

metabolic and mechanical functions are actually present in CHF 76,77. Importantly, these muscle 

abnormalities correlate better with exercise tolerance compared to measures of left ventricular 
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function 74. The described muscle abnormalities in turn cause elevation in the feedback from 

III/IV afferents during muscle contraction, and this heightens EPR activity and dys-regulates 

hemodynamics, with excessive arteriolar constriction and muscle hypoperfusion. In short, in 

CHF central hemodynamic abnormalities in response to EPR initiates a vicious circle which, in 

the longer term, causes muscle hypoperfusion, muscle wasting, and reduction in strength 5,78.  

In support to the “muscle hypothesis” there are experimental findings in heart transplant 

recipients during the metaboreflex activation. In these patients exercise capacity, although 

improved, remains abnormally impaired after transplant compared to normal individuals. This 

indicates that restoring cardiac function does not fully enhance aerobic metabolism. A possible 

explanation for the incomplete recovery might be muscular abnormalities which developed 

before transplant and persist after transplant, thereby impairing exercise capacity in these 

patients 79,80. Moreover, it has been observed that improvement in exercise capacity after heart 

transplant was paralleled by improvements in cardiovascular response to metaboreflex, with a 

gradual reduction in the metaboreflex-induced arteriolar constriction 79. Collectively, these 

findings in heart transplant recipients seem to indicate that the EPR is dys-regulated in these 

patients before transplant and that this dys-regulation tends to ameliorate several months after 

transplant, in parallel with muscle metabolism and functions. This observation appears to be in 

line with the “muscle hypothesis” of CHF.  

Some authors have argued against the concept that metaboreflex is accentuated in the 

CHF syndrome. Specifically, they have proposed that mechanoreceptor rather than 

metaboreceptor stimulation is responsible for the abnormal haemodynamic observed in CHF 

during EPR activation 81–83. It has also been proposed that metaboreflex control of sympathetic 

activity is attenuated in CHF and that metaboreceptors are desensitised in this syndrome 28. It is 

likely that the conflicting results in scientific literature on whether muscle metaboreflex is 

attenuated or accentuated may depend on the degree of muscle abnormalities of the CHF 

population, the degree of metaboreceptor desensitisation, and the mode of exercise being 

performed. Furthermore, authors reporting attenuated metaboreflex and accentuated 

mechanoreflex employed animal model of CHF (mainly rats), thus the application of these 

findings in humans is contentious. Moreover, evidence suggests that mechanoreceptors are 

sensitised by metabolites, thus rendering it difficult to differentiate the role of mechanoreflex 

from that of metaboreflex 27. Finally, it should be considered that, in the human model, most 
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studies dealing with metaboreflex employed the post-exercise muscle ischemia method to assess 

metaboreflex function. This manoeuvre probably rules out any contribution of mechanoreceptors 

since they do not operate in this setting.  

 Whatever the mechanoreflex or the metaboreflex are responsible for the abnormal 

elevation in EPR activity, the EPR is dysfunctional in these patients. It is interesting to note that 

Amann and colleagues 84 were able to demonstrate that lumbar intrathecal fentanyl reduced the 

excessive vascular resistance during knee-extensor exercise in a CHF population, thereby 

demonstrating a role of type III/IV muscle afferents in the abnormal hemodynamics in this 

syndrome. More recently, Van Iterson and colleagues 85 reported that blocking type III/IV muscle 

afferents with intrathecal fentanyl in a population of CHF patients resulted in a faster V̇O2 

kinetics. They hypothesised that the slower V̇O2 kinetics of CHF was the consequence of 

peripheral and central hemodynamic maldistribution due to abnormal group III/IV muscle 

afferents activation and that blocking these afferents could at least partially restore a normal 

exercise response.  

 Concerning the role played by type III/IV muscle afferents on exercise capacity, it should 

be underscored that very few studies have been conducted in clinical population 84,86. Gagnon 

and colleagues 86 were the first to investigate the exercise response following their 

pharmacological blockade in COPD. Contrarily to what found in healthy population, endurance 

time during a cycling constant work-rate was enhanced by an average of 215 seconds. According 

to the authors, the reduced and delayed hyper-ventilatory response and lowered perceived 

dyspnoea during exercise might provide a possible explanation for the increased exercise 

capacity. Furthermore, a deeper loss in quadriceps muscle strength and a higher lactate level after 

exercise with spinal anaesthesia was also found. In CHF patients, Amann and colleagues 84 found 

an in increase in vascular conductance, peripheral blood flow (15% increase), and leg oxygen 

delivery together with a significant reduction in MAP following intrathecal fentanyl. 

Interestingly, the decline in maximal force production of the quadriceps following exercise was 

attenuated by 30% compared to control condition. Taken together, these findings suggest that in 

these kinds of clinical population, type III/IV afferents feedback might play a pivotal role to 

reduce exercise tolerance 6,87,88.  

One phenomenon recently proposed to explain the potential influence of group III/IV 

afferents on the muscle fatigue development is their ability to affect cerebral blood flow and 
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oxygenation. It has been proposed that the EPR activation lowered cerebral perfusion by 

counteracting the normal vasodilation occurring at brain level during exercise. This would 

increase the sense of effort and impair motor drive 9. However, the regulation of cerebral 

circulation is complex, and more research is warranted to better understand the phenomenon and 

to confirm this hypothesis.   

Experimental studies proposed that afferent feedback from ventilatory muscles might be 

important for exercise intolerance in CHF patients. Both animal and human model reported 

histological and biochemical alterations of the diaphragm muscle in CHF 89. Respiratory muscle 

dysfunction is typically observed in CHF patients and this is often called as respiratory muscle 

weakness which is caused by a substantial reduction in respiratory muscle strength (in 

particularly the diaphragm) 90. During exercise, CHF patients develop early diaphragmatic 

fatigue by therefore limiting the ventilatory response and so reducing pulmonary gas exchange 

and oxygen delivery. Furthermore, increased in breathlessness, exertional dyspnoea from low 

exercise intensities if typically observed. Similarly, to the locomotor muscles, an exaggerated 

metaboreflex from respiratory muscle has been observed 91. This mechanism, also described as 

inspiratory muscle metaboreflex, is particularly important during sustained exercise as it 

modulates the competition for blood flow between the locomotor and respiratory muscles 92. This 

mismatch potentially leads to increase in the ventilatory work and may exacerbate exertional 

dyspnoea and exercise intolerance. Taken together, these respiratory muscle abnormalities have 

been shown to contribute to early development of fatigue in CHF patients 90.  

It should be considered that the number of studies is very limited and therefore the 

precise role of group III/IV muscle afferents contributing to the development of muscle fatigue 

and exercise tolerance in the clinical population is largely unknown. Nevertheless, these 

preliminary studies provide encouraging evidences that these muscle afferents can be the target 

of future therapeutic strategies. The major putative mechanisms responsible for the exercise 

intolerance and early fatigue induced by type III/IV afferents feedback in CHF are shown in Fig 

1. 

 

Exercise training as therapy for chronic heart failure patients 
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Aerobic exercise training is recognized as an important adjunct for improving the quality 

of life of CHF patients. The benefits aerobic training have been discussed in previous reviews 

93,94. Aerobic training demonstrated to positively affect maximal oxygen consumption, central 

and peripheral hemodynamic function, peripheral vascular function and muscular function. 

These adaptations result in a higher workload for the same HR and perceived exertion 93. 

Continuous aerobic training of 45-60 min duration is well tolerated and recommended for CHF 

patients. Recently, interval/intermittent aerobic training has been shown to be more effective. 

This involves <5 min bouts at 90-95% of the maximal exercise capacity interspaced by >3 min 

of recovery 94.  

Resistance training has also been introduced to counteract the decline in functional 

alteration and muscle mass of the locomotor muscles. Previous works recommended an intensity 

of 30-40% of 1RM and RPE <12 for increasing local aerobic capacity, while 40-60% of 1RM 

and RPE <15 for increasing muscle mass. It is importance to notify that aerobic exercise remain 

the main training and therefore the resistance training can be considered as complement 94. 

Since respiratory muscle weakness is inversely correlated with exercise capacity, 

interventions with the potential to improve respiratory muscle strength might be able to counter 

this condition. Recent studies focused on the role of respiratory muscle training for the 

improvement of respiratory muscle strength in CHF. Several beneficial effects such as 

improvement in maximal inspiratory capacity, improvement in peripheral and respiratory oxygen 

supply, reduction in exertional dyspnoea have been reported together with improved exercise 

capacity and exercise tolerance with a better quality of life 98. Winkelmann et al.99 showed that 

inspiratory muscle training combined with aerobic training was more beneficial than aerobic 

training alone in CHF patients. However, the optimal training regimen is yet to be defined. 

However, it seems that the benefits of respiratory muscle training appear to be intensity-

dependent suggesting that high intensity training regimens is required to obtain improvement in 

aerobic capacity 100. Interestingly, a study performed by Chiappa and colleagues91 showed that 

inspiratory muscle training was capable to decrease limb vasculature resistance by increasing 

blood flow of limb muscles at rest and during exercise. One of the main results of this 

adaptations was the attenuation of the metaboreflex activity91. Other mechanisms might also be 

responsible for the increase in exercise capacity in CHF patients such as resting left ventricular 
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function, endothelial vasodilator function and improved ventilatory response. However, other 

mechanisms are yet to be elucidated.  

In animal models of CHF (rats), it was demonstrated that exercise exerts beneficial 

effects on the exaggerated EPR, although the underlying mechanisms have not be completely 

elucidated 95,96. Observations in humans reported that exercise training could reverse the 

exaggerated exercise-induced sympathetic activity, vasoconstriction, and ventilatory drive in 

patients with CHF 97. More recently, these observations have been confirmed and support the 

concept that the exaggerated EPR activity is at least in part responsible for the sympathetic 

overactivity in CHF patients and that this condition can be successfully counteracted by exercise 

training 95. However, it is to be acknowledged that the mechanisms of exercise-mediated 

beneficial effects on EPR remain largely unknown in humans. Further studies are warranted to 

definitively prove whether exercise training is effective in reducing the exaggerated EPR in these 

patients. 

 

 

Conclusions and future directions 

  

In summary, the pathophysiological mechanisms of exercise intolerance and exercise 

induced muscle fatigue in patients with CHF are complex and involve peripheral and central 

factors. In this context, reflexes mediated by group III/IV muscle afferents appear to play an 

important role in the phenomenon. The exaggerated afferent feedback coming from these fibres 

potentially causes hemodynamic dysregulation, with excessive sympatho-excitation and 

arteriolar constriction. The abnormally elevated neural feedback may also exacerbate the rate of 

development of peripheral and central fatigue by causing a restriction in motoneuronal output. 

Whether this exaggerated feedback arises from the activity of mechano- or metabo-receptors is 

still a matter of debate. There is also the possibility that both receptors are involved in the 

phenomenon. Future study specifically designed is necessary to unravel this question.  

 Although demonstrated in few studies, exercise induced muscle fatigue in clinical 

population can be partially attributed to a higher and/or abnormal activity of group III/IV muscle 

afferents and also explain the reduced exercise capacity and exercise intolerance of patients 

suffering from CHF. In light of these findings, further studies are required to elucidate the 
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mechanisms of group III/IV muscle afferents at various sites of the motor pathway and 

peripheral level during exercise.  

 It is important that future investigations take into account the possible effects of 

pharmacological therapy on the correction of the type III/IV muscle afferents hyperactivity. From 

a clinical perspective it would be useful to verify whether blockade these receptors limits the 

excessive sympathetic excitation and the reduced motor output observed in CHF patients. To the 

best of our knowledge, a drug that specifically blocks these afferents has yet to be tested in 

humans. Another further field for future research is the effect of physical training on type III/IV 

afferents activity. Such an investigation would reveal whether a physical training program would 

dampen the hyperactivity shown by these muscle afferents in CHF syndrome. This would have 

the practical consequence to test whether the prescription of physical activity and the adoption of 

an active lifestyle is an effective means to treat the exercise intolerance and to reduce fatigability 

in these patients.  
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Figure caption 

 

Fig. 1 putative mechanisms responsible for the exercise intolerance and early fatigue induced by 

type III/IV afferent feedback in chronic heart failure. Abnormal central abnormal hemodynamics 

initiate a cascade which ultimately result in an increase in III/IV afferents feedback activity. It is 

to be highlighted that physical training may potentially counteract this malfunctioning at various 

levels, while, to date, no pharmacological intervention has been demonstrated able to correct this 

abnormal regulation.  
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