1,600 research outputs found

    Aspects of User Experience in Augmented Reality

    Get PDF

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    Real-time Illumination and Visual Coherence for Photorealistic Augmented/Mixed Reality

    Get PDF
    A realistically inserted virtual object in the real-time physical environment is a desirable feature in augmented reality (AR) applications and mixed reality (MR) in general. This problem is considered a vital research area in computer graphics, a field that is experiencing ongoing discovery. The algorithms and methods used to obtain dynamic and real-time illumination measurement, estimating, and rendering of augmented reality scenes are utilized in many applications to achieve a realistic perception by humans. We cannot deny the powerful impact of the continuous development of computer vision and machine learning techniques accompanied by the original computer graphics and image processing methods to provide a significant range of novel AR/MR techniques. These techniques include methods for light source acquisition through image-based lighting or sampling, registering and estimating the lighting conditions, and composition of global illumination. In this review, we discussed the pipeline stages with the details elaborated about the methods and techniques that contributed to the development of providing a photo-realistic rendering, visual coherence, and interactive real-time illumination results in AR/MR

    A Scalable GPU-Based Approach to Shading and Shadowing for Photo-Realistic Real-Time Augmented Reality

    Get PDF

    Generating Light Estimation for Mixed-reality Devices through Collaborative Visual Sensing

    Get PDF
    abstract: Mixed reality mobile platforms co-locate virtual objects with physical spaces, creating immersive user experiences. To create visual harmony between virtual and physical spaces, the virtual scene must be accurately illuminated with realistic physical lighting. To this end, a system was designed that Generates Light Estimation Across Mixed-reality (GLEAM) devices to continually sense realistic lighting of a physical scene in all directions. GLEAM optionally operate across multiple mobile mixed-reality devices to leverage collaborative multi-viewpoint sensing for improved estimation. The system implements policies that prioritize resolution, coverage, or update interval of the illumination estimation depending on the situational needs of the virtual scene and physical environment. To evaluate the runtime performance and perceptual efficacy of the system, GLEAM was implemented on the Unity 3D Game Engine. The implementation was deployed on Android and iOS devices. On these implementations, GLEAM can prioritize dynamic estimation with update intervals as low as 15 ms or prioritize high spatial quality with update intervals of 200 ms. User studies across 99 participants and 26 scene comparisons reported a preference towards GLEAM over other lighting techniques in 66.67% of the presented augmented scenes and indifference in 12.57% of the scenes. A controlled lighting user study on 18 participants revealed a general preference for policies that strike a balance between resolution and update rate.Dissertation/ThesisMasters Thesis Computer Science 201

    Adaptive Vision Based Scene Registration for Outdoor Augmented Reality

    Get PDF
    Augmented Reality (AR) involves adding virtual content into real scenes. Scenes are viewed using a Head-Mounted Display or other display type. In order to place content into the user's view of a scene, the user's position and orientation relative to the scene, commonly referred to as their pose, must be determined accurately. This allows the objects to be placed in the correct positions and to remain there when the user moves or the scene changes. It is achieved by tracking the user in relation to their environment using a variety of technology. One technology which has proven to provide accurate results is computer vision. Computer vision involves a computer analysing images and achieving an understanding of them. This may be locating objects such as faces in the images, or in the case of AR, determining the pose of the user. One of the ultimate goals of AR systems is to be capable of operating under any condition. For example, a computer vision system must be robust under a range of different scene types, and under unpredictable environmental conditions due to variable illumination and weather. The majority of existing literature tests algorithms under the assumption of ideal or 'normal' imaging conditions. To ensure robustness under as many circumstances as possible it is also important to evaluate the systems under adverse conditions. This thesis seeks to analyse the effects that variable illumination has on computer vision algorithms. To enable this analysis, test data is required to isolate weather and illumination effects, without other factors such as changes in viewpoint that would bias the results. A new dataset is presented which also allows controlled viewpoint differences in the presence of weather and illumination changes. This is achieved by capturing video from a camera undergoing a repeatable motion sequence. Ground truth data is stored per frame allowing images from the same position under differing environmental conditions, to be easily extracted from the videos. An in depth analysis of six detection algorithms and five matching techniques demonstrates the impact that non-uniform illumination changes can have on vision algorithms. Specifically, shadows can degrade performance and reduce confidence in the system, decrease reliability, or even completely prevent successful operation. An investigation into approaches to improve performance yields techniques that can help reduce the impact of shadows. A novel algorithm is presented that merges reference data captured at different times, resulting in reference data with minimal shadow effects. This can significantly improve performance and reliability when operating on images containing shadow effects. These advances improve the robustness of computer vision systems and extend the range of conditions in which they can operate. This can increase the usefulness of the algorithms and the AR systems that employ them

    An interest point based illumination condition matching approach to photometric registration within augmented reality worlds

    Get PDF
    With recent and continued increases in computing power, and advances in the field of computer graphics, realistic augmented reality environments can now offer inexpensive and powerful solutions in a whole range of training, simulation and leisure applications. One key challenge to maintaining convincing augmentation, and therefore user immersion, is ensuring consistent illumination conditions between virtual and real environments, so that objects appear to be lit by the same light sources. This research demonstrates how real world lighting conditions can be determined from the two-dimensional view of the user. Virtual objects can then be illuminated and virtual shadows cast using these conditions. This new technique uses pairs of interest points from real objects and the shadows that they cast, viewed from a binocular perspective, to determine the position of the illuminant. This research has been initially focused on single point light sources in order to show the potential of the technique and has investigated the relationships between the many parameters of the vision system. Optimal conditions have been discovered by mapping the results of experimentally varying parameters such as FoV, camera angle and pose, image resolution, aspect ratio and illuminant distance. The technique is able to provide increased robustness where greater resolution imagery is used. Under optimal conditions it is possible to derive the position of a real world light source with low average error. An investigation of available literature has revealed that other techniques can be inflexible, slow, or disrupt scene realism. This technique is able to locate and track a moving illuminant within an unconstrained, dynamic world without the use of artificial calibration objects that would disrupt scene realism. The technique operates in real-time as the new algorithms are of low computational complexity. This allows high framerates to be maintained within augmented reality applications. Illuminant updates occur several times a second on an average to high end desktop computer. Future work will investigate the automatic identification and selection of pairs of interest points and the exploration of global illuminant conditions. The latter will include an analysis of more complex scenes and the consideration of multiple and varied light sources.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Towards high-accuracy augmented reality GIS for architecture and geo-engineering

    Get PDF
    L’architecture et la gĂ©o-ingĂ©nierie sont des domaines oĂč les professionnels doivent prendre des dĂ©cisions critiques. Ceux-ci requiĂšrent des outils de haute prĂ©cision pour les assister dans leurs tĂąches quotidiennes. La RĂ©alitĂ© AugmentĂ©e (RA) prĂ©sente un excellent potentiel pour ces professionnels en leur permettant de faciliter l’association des plans 2D/3D reprĂ©sentatifs des ouvrages sur lesquels ils doivent intervenir, avec leur perception de ces ouvrages dans la rĂ©alitĂ©. Les outils de visualisation s’appuyant sur la RA permettent d’effectuer ce recalage entre modĂ©lisation spatiale et rĂ©alitĂ© dans le champ de vue de l’usager. Cependant, ces systĂšmes de RA nĂ©cessitent des solutions de positionnement en temps rĂ©el de trĂšs haute prĂ©cision. Ce n’est pas chose facile, spĂ©cialement dans les environnements urbains ou sur les sites de construction. Ce projet propose donc d’investiguer les principaux dĂ©fis que prĂ©sente un systĂšme de RA haute prĂ©cision basĂ© sur les panoramas omnidirectionels.Architecture and geo-engineering are application domains where professionals need to take critical decisions. These professionals require high-precision tools to assist them in their daily decision taking process. Augmented Reality (AR) shows great potential to allow easier association between the abstract 2D drawings and 3D models representing infrastructure under reviewing and the actual perception of these objects in the reality. The different visualization tools based on AR allow to overlay the virtual models and the reality in the field of view of the user. However, the architecture and geo-engineering context requires high-accuracy and real-time positioning from these AR systems. This is not a trivial task, especially in urban environments or on construction sites where the surroundings may be crowded and highly dynamic. This project investigates the accuracy requirements of mobile AR GIS as well as the main challenges to address when tackling high-accuracy AR based on omnidirectional panoramas

    Augmented Reality

    Get PDF
    Augmented Reality (AR) is a natural development from virtual reality (VR), which was developed several decades earlier. AR complements VR in many ways. Due to the advantages of the user being able to see both the real and virtual objects simultaneously, AR is far more intuitive, but it's not completely detached from human factors and other restrictions. AR doesn't consume as much time and effort in the applications because it's not required to construct the entire virtual scene and the environment. In this book, several new and emerging application areas of AR are presented and divided into three sections. The first section contains applications in outdoor and mobile AR, such as construction, restoration, security and surveillance. The second section deals with AR in medical, biological, and human bodies. The third and final section contains a number of new and useful applications in daily living and learning
    • 

    corecore