
RENAUD GERVAIS

Towards High-Accuracy Augmented Reality GIS for

Architecture and Geo-Engineering

Mémoire présenté
à la Faculté des études supérieures et postdoctorales de l’Université Laval

dans le cadre du programme de maîtrise en sciences géomatiques
pour l’obtention du grade de Maître ès sciences (M.Sc.)

Faculté de Foresterie, de Géographie et de Géomatique
UNIVERSITÉ LAVAL

QUÉBEC

2012

©Renaud Gervais, 2012

Résumé

L’architecture et la géo-ingénierie sont des domaines où les professionnels doivent pren-
dre des décisions critiques. Ceux-ci requièrent des outils de haute précision pour les
assister dans leurs tâches quotidiennes. La Réalité Augmentée (RA) présente un excel-
lent potentiel pour ces professionnels en leur permettant de faciliter l’association des
plans 2D/3D représentatifs des ouvrages sur lesquels ils doivent intervenir, avec leur
perception de ces ouvrages dans la réalité. Les outils de visualisation s’appuyant sur
la RA permettent d’effectuer ce recalage entre modélisation spatiale et réalité dans le
champ de vue de l’usager. Cependant, ces systèmes de RA nécessitent des solutions de
positionnement en temps réel de très haute précision. Ce n’est pas chose facile, spé-
cialement dans les environnements urbains ou sur les sites de construction. Ce projet
propose donc d’investiguer les principaux défis que présente un système de RA haute
précision basé sur les panoramas omnidirectionels.

Abstract

Architecture and geo-engineering are application domains where professionals need to
take critical decisions. These professionals require high-precision tools to assist them in
their daily decision taking process. Augmented Reality (AR) shows great potential to
allow easier association between the abstract 2D drawings and 3D models representing
infrastructure under reviewing and the actual perception of these objects in the reality.
The different visualization tools based on AR allow to overlay the virtual models and
the reality in the field of view of the user. However, the architecture and geo-engineering
context requires high-accuracy and real-time positioning from these AR systems. This
is not a trivial task, especially in urban environments or on construction sites where
the surroundings may be crowded and highly dynamic. This project investigates the
accuracy requirements of mobile AR GIS as well as the main challenges to address when
tackling high-accuracy AR based on omnidirectional panoramas.

To the three loves of my life, Odette, Joline and

Dominique and to my father, Paul.

A month in the laboratory can often

save an hour in the library.

– Frank Westheimer

Acknowledgments

I would like to thank the following persons and organizations for their support:

• Stéphane Côté, my co-director at Bentley Systems for his infinite supply of fresh
ideas and paradigm shifts and his availability to discuss those ideas. Stéphane
was also the one who introduced me to the wonderful world of research and he
greatly contributed to shape the very motivating path that I now follow. I thank
him deeply.

• Sylvie Daniel, my director at Laval University for her experience and rigor which
were key elements helping this project stay on track, even when entering deep
forests of thoughts was unavoidable.

• Bentley Systems for offering a stimulating applied research environment and for
giving me experience both in the corporate and academic world at the same time.

• Stéphane Poirier, my dear friend and colleague for all the discussions and help he
provided. A one hour problem solving session with Stéphane could easily save me
day(s) of work each time.

This project was financially supported by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC), the Fonds québécois de la recherche sur la nature
et les technologies (FQRNT) and Bentley Systems Inc. in the context of the Industrial
Innovation Scolarships program BMP-Innovation.

Contents

1 Introduction 1

1.1 Context . 1
1.2 Problem Statement . 8
1.3 Objectives . 11

1.3.1 Sub-objective 1: specifying the accuracy requirements 12
1.3.2 Sub-objective 2: determining suitable tracking approaches for mo-

bile AR GIS dedicated to geo-engineering 12
1.3.3 Sub-objective 3: validating the selected potential tracking ap-

proaches . 12
1.4 Methodology . 13
1.5 Structure of the thesis . 15

2 Literature Review and Mobile AR Concepts 16

2.1 Mobile AR GIS Compliant Tasks and Accuracy Requirements 17
2.1.1 Mobile AR GIS compliant tasks 17
2.1.2 Precision and accuracy definition 18
2.1.3 Absolute accuracy requirements 19
2.1.4 Scale invariant accuracy representation 21

2.2 Mobile AR Concepts . 27
2.3 Tracking . 30

2.3.1 Passive solutions . 30
2.3.1.1 GNSS . 31
2.3.1.2 Indoor positioning and pedestrian navigation 33
2.3.1.3 MEMS . 36

2.3.2 Active solutions . 37
2.3.2.1 Fiducial markers . 38
2.3.2.2 Natural Features Tracking 40

2.4 Tracking Methods Compliant with Mobile AR GIS for Geo-engineering . 51

3 Orientation Tracker 55

3.1 Related Work . 56
3.2 Orientation Tracker System . 57

iv

3.2.1 Map Construction . 57
3.2.1.1 Panorama construction 57
3.2.1.2 Feature extraction . 59

3.2.2 Tracking Phase . 61
3.3 System Evaluation . 64

3.3.1 Using a MEMS -type orientation tracker 64
3.3.1.1 Evaluation setup . 64
3.3.1.2 Results . 65

3.3.2 Using the “Pan-Tilt” camera . 72
3.3.3 Stability test . 72

3.3.3.1 Results . 74
3.3.3.2 Analysis . 74

3.4 Error Sources . 76
3.4.1 SURF implementation . 76
3.4.2 Accuracy of the point of interest detector 78

3.4.2.1 Repeatability . 78
3.4.2.2 OpenSURF performance evaluation 80

3.4.3 Hardware imperfections/limitations 82
3.5 OT conclusion . 82

4 Panorama-Based Pose Refinement 84

4.1 A Different Approach to High-Accuracy Panorama-Based Augmentations 85
4.2 Adaptive Line Tracking with Multiple Hypotheses 90

4.2.1 Initialization and first pose estimation 91
4.2.2 Line model generation . 91
4.2.3 Identification of the multiple edge hypotheses 92

4.2.3.1 Line discretization . 92
4.2.3.2 Search for gradient maxima along line’s normal 93

4.2.4 Pose refinement using multiple hypotheses 94
4.3 Experiments, Results and Discussion 96

4.3.1 PBPR prototype implementation 97
4.3.2 Description of the data sets . 97
4.3.3 Description of the experiments 99
4.3.4 Results and analysis . 102

4.3.4.1 First data set: the City of Sight models 102
4.3.4.2 Second data set: the LiDAR-based models 112

4.4 Synthesis and conclusion . 113

5 Conclusions and Future Work 115

5.1 Conclusions . 115
5.1.1 Review of the project objectives and proposed research 115

v

5.1.1.1 Lessons learned from the OT experiment 117
5.1.1.2 Lessons learned from the PBPR experiment 118

5.1.2 Research contributions . 119
5.2 Future Work . 121

5.2.1 Future work related to OT . 121
5.2.2 Future work related to the PBPR method 123

Bibliography 123

A Pinhole Camera Model 132

List of Tables

2.1 Definitions of construction-site related tasks that could benefit from the
introduction of AR in the workflow [1]. 18

2.2 Matrix of operational spaces for work tasks as presented in [1]. Each task
is categorized by the viewing distance (view dist.) it must be conveyed at,
expressed in meters, and by the required accuracy (req. acc.), expressed
in millimeters. 20

2.3 Matrix of Operational Spaces for Work Tasks (Table 2.2) displaying error
tolerance expressed in pixel (values in parentheses are the corresponding
angular tolerance). Values have been computed with the following cam-
era setting: 640 × 480 pixels ; focal length: 721 mm. 26

3.1 Results from the stability test using a completely still video consist-
ing of 200 frames. OT implementation relies on the SURF descriptors
(from points identified by the SURF detector) computed using the library
OpenCV. Results are expressed in degrees. The Resolution is the resolu-
tion of the video, Video blur and Pano blur are the size of the Gaussian
filter applied to the video and panorama respectively, Avg and Avg* are
the average orientation values, with and without outliers respectively,
provided by OT and Stdev and Stdev* are the standard deviation of the
orientation values, with and without outliers respectively, provided by
OT. Finally, there are the True negative and False positive count. . . . 75

3.2 Results from the stability test using a completely still video consisting
of 200 frames. OT implementation relies on the SURF descriptors (from
points identified by the SURF detector) computed using the library Open-
SURF. Results are expressed in degrees. The Resolution is the resolution
of the video, Video blur and Pano blur are the size of the Gaussian filter
applied to the video and panorama respectively, Avg and Avg* are the
average orientation values, with and without outliers respectively, pro-
vided by OT and Stdev and Stdev* are the standard deviation of the
orientation values, with and without outliers respectively, provided by
OT. Finally, there are the True negative and False positive count. 77

List of Figures

1.1 Examples of construction site monitoring in action. (source: (left):

http://goo.gl/kmUvE) . 3
1.2 (left) Top view of a city and the corresponding (right) 3D isometric view.

The top view, which emulates what can often be seen on traditional
blueprints, makes some of the elements difficult to interpret and their
depth in relation to the camera is impossible to estimate. 3

1.3 (left) Different types of metadata (restaurants, user’s photos, stores, etc)
displayed in Layar and (right) Wikitude Drive, an application that dis-
plays the route to follow directly overlayed on the road (based on GPS)
(source: (left): http://goo.gl/BbFEi (right): http://goo.gl/mhbQm). . . 5

1.4 AR as a mean to preview the scenery before the building process (source:

http://goo.gl/hQrf0). 5
1.5 (left) A streetlight selected in reality and its related meta-information;

and (right) “X-Ray” vision used to see an underground pipe network
(source: (right): http://goo.gl/qoSYP). 6

1.6 (left) Passive tracking where external sources send position data to the
user and (right) active tracking where the user’s device identifies its po-
sition by analysing the environment. 7

viii

1.7 Illustration of what is understood by coherence and accuracy in terms of
AR. (top left) Bird’s view of a street and building being augmented. The
user is represented in the bottom right corner of the illustration and is
currently looking at the building. The black square represents the actual,
physical building (as-built). The red square is a coherent augmentation,
that is, perfectly aligned with the as-built structure. The green dashed
square represents the as-designed, geolocalized model that is the accurate
representation. In this example, and to better illustrate the difference
between “coherent” and “accurate”, there are differences between the as-
designed and the as-built. (top right) The scene from the perspective of
the user when looking at the building with his naked eyes. (bottom left)
The user perspective of a coherent augmentation. (bottom right) The
user perspective of an accurate augmentation; in this illustration, the
user is able to see errors (offsets) that took place during the construction
process. (note: (top left): The user should be represented from a bird’s

view to be coherent, but it was left in side view for the sake a clarity.) . 10
1.8 Workflow diagram of the activities associated with each sub-objective . 14

2.1 The Precision Vs. Accuracy target analogy. (left) High accuracy and
low precision and (right) high precision and low accuracy (source: (left):

http://goo.gl/tH1u2 (right): http://goo.gl/X8fiH). 19
2.2 Angular error tolerance illustration. A camera C is located at a distance

d from the point of interest O where the task is being conveyed. ǫ repre-
sents the task’s accuracy requirement and θ is the corresponding angular
error tolerance. The red circle represents the error margin; it is here
represented by a circle on the XZ plane for the sake of clarity, but the
error can be aligned along any direction in the 3D space. 23

2.3 FOV determination based on the pinhole camera model. The model
consists of an image plane π and a 3D point O, representing the camera

center or the focus of projection. The positive z axis that goes from O

through the center c of the image plane is called the optical axis. A 3D
point in the world P is projected on the image plane π at point p. φ

is the angular FOV of the camera, f is the focal length of the camera
and ρ is the resolution (the total number of pixels in each of the image’s
dimensions). Only the horizontal FOV is represented on this figure for
readability purposes. The same principle applies for the vertical FOV.
xim and yim represents the coordinate system of the image. 24

ix

2.4 Conversion between angular measurements and pixel measurements based
on the pinhole camera model. The model consists of an image plane π

and a 3D point O, representing the camera center or the focus of pro-

jection. The positive z axis that goes from O through the center c of
the image plane is called the optical axis. A 3D point in the world P

is projected on the image plane π at point p. φ is the angular FOV of
the camera, f is the focal length of the camera, θ is an angular mea-
surements with its projected length (τ), in pixels, on the image plane
and ρ is the resolution (the total number of pixels in each of the image’s
dimensions). Only the horizontal FOV is represented on this figure for
readability purposes. The same principle applies for the vertical FOV.
xim and yim represents the coordinate system of the image. 25

2.5 Diagrams illustrating the different components and organization of (left)
an optical see-through HMD and (right) of a video see-through HMD
(source: (left): http://goo.gl/IWQu3 (right): http://goo.gl/WwVhu). . . 29

2.6 Illustration of the GNSS urban canyon problem. As the GNSS signal
is unable to penetrate matter, tall buildings greatly reduce the line of
sight of the receiver and it therefore becomes more difficult to get the
4 simultaneous satellite signals that are required for determining the
receiver position (source: http://goo.gl/M66ap). 33

2.7 Illustration of GNSS repeater setup. The antenna on the roof of the
building receives the GNSS signal and rebroadcast it inside the build-
ing. ρsk represents the geometric range between the k-th satellite and
the reference antenna, lc0 represents the cable length between the refer-
ence antenna and the switching repeater, lci represents the cable length
between the switching repeater and i-th re-radiation antenna and lri rep-
resents the range between i-th re-radiation antenna and the receiver [2]. 36

2.8 The MTx orientation sensor from XSens (source: http://goo.gl/9OjiQ). . 37
2.9 (left)Typical symbol used by the Studierstube library [3] and (right) an

example where multiple markers are used to track the position of a device
inside a room (source: (left): http://goo.gl/FE7W6). 38

2.10 Finding the pose of the camera consists of finding the transformation ma-
trix between the camera’s coordinate system and the marker’s coordinate
system. (XC ,YC ,ZC) are the camera’s coordinates, (xC ,yC) are the cam-
era screen’s corrdinates and (Xm,Ym,Zm) are the marker’s coordinates.
(source: [4]) . 39

x

2.11 Example of optical flow. The red crosses represent the location of the
image features in the last video frame and the green crosses are the
image features identified in the current frame. A link between two crosses
representing the movement vector is drawn between two corresponding
features. Optical flow consists of analyzing the movement vector field
created between two frames (source: http://goo.gl/CsMC2). 41

2.12 Example of a panorama captured at a construction site 44
2.13 Example of panorama and live video correspondences 45
2.14 (left) The image stitching process consists in finding the spherical coor-

dinate of each image on a base sphere and (right) a grid representing
the field of view of an observer standing at its center (source: (left):

http://goo.gl/vA6sd (right): http://goo.gl/vWMgT). 46
2.15 Illustration of the projection surface expansion of a given viewing an-

gle θ the further away the projection angle is from the plane’s normal
(represented by the z-axis in the figure). O is the camera’s center of
projection. 47

2.16 (left) Illustration of the deformations generated by a rectilinear projec-
tion. (right) Example of a panorama projected using the rectilinear pro-
jection. (source: (left): http://goo.gl/sI5oO (right): http://goo.gl/jWRBp) 47

2.17 Individual images are aligned properly and displayed in the 3D space.
The cylindrical projection plane is located behind the images. The green
arrows represent the coordinate system of the projection plane (the x

axis is illustrated as a curve to highlight the fact that this projection
surface will be unrolled to yield a planar surface). (source: Modified

from http://goo.gl/9U3ep) . 48
2.18 A cylindrical projection of points on a unit sphere centered at O consists

of extending the line OS for each point S until it intersects a cylinder
tangent to the sphere at its equator at a corresponding point C. If the
sphere is tangent to the cylinder at longitude λ0, then a point on the
sphere with latitude φ and longitude λ is mapped to a point on the
cylinder with height tan φ . [5] . 49

2.19 (left) Illustration of the deformations generated by a cylindrical projec-
tion. (right) Example of a panorama projected using the cylindrical pro-
jection. (source: (left): http://goo.gl/gDyzq (right): http://goo.gl/cOHcW) 50

2.20 Example of cylindrical projection. This illustration help to grasp the
limitation of this type of representation: deformations at the poles and
blind spots (indicated by a red “x”) (source: http://goo.gl/1V2v3). . . 50

xi

2.21 Individual images are aligned properly and displayed in the 3D space.
The spherical projection plane is located behind the images. The red
arrows represent the coordinate system of the projection plane (the (x,y)
notation is used to highlight that the projection surface will be unrolled
to yield a planar surface). (source: Modified from http://goo.gl/9U3ep) . 51

2.22 (left) Illustration of the deformations generated by an equirectangular
projection. (right) Example of a panorama projected using the equirect-
angular projection. (source: (left): http://goo.gl/Uy1Da (right): http://goo.gl/oB0U8) 52

3.1 Workflow diagram of the proposed Orientation Tracker system 58
3.2 Difference between the (left) flattened spherical projection and the (right)

planar projection. The spherical projection does not keep the lines
straight and distort the image; it is therefore impossible to compare
SURF features extracted from each image respectively. 61

3.3 (left) An example of a discretized sphere. (right) An illustration of the
panorama reprojection process. The pixels of the generated panorama
are reprojected on the individual planes of the discretized sphere. (note:

(left): It must be noted that in OT’s specific case, the planes of the dis-

cretized sphere will all be the exact same size and may overlap each other

in some regions (unlike what is seen in the illustration)) (source: (left):

http://goo.gl/h5lKJ (right): http://goo.gl/IQFLR) 62
3.4 Example of plane coverage using an identical number of planes but a

different plane size ratio, respectively equal to (top) 1.0 and (bottom) 2.0 63
3.5 The evaluation setup using XSens’s MTx 66
3.6 Illustration of the roll, pitch and yaw rotation axes using the airplane

example (source: http://goo.gl/bNNuO). 66
3.7 A visualization of a rotation angle of θ by an Euler axis ê 67
3.8 Panorama captured in office to evaluate the accuracy of Orientation

Tracker using the MTx. 67
3.9 Graphs representing the orientations provided by both the MTx and OT.

The top one represents the absolute difference, in degrees, between the
orientation values provided by both systems. The abscissa represents
the number of frame captured and processed by the system and the
ordinate is the absolute difference, in degrees, between the orientation
values returned by the MTx and OT. The bottom graph shows the actual,
raw orientation, in radians, of each system. An enlargement of this graph
is proposed at Figure 3.10. 69

3.10 Enlargement of the captured orientations by the MTx and OT shown at
the bottom of Figure 3.9. The abscissa represents the number of frame
captured and processed by the system and the ordinate is the returned
orientation value, expressed in radians, of each system. 70

xii

3.11 Graph showing the drift of the MTx measurement, observed on a recorded
session involving a limited number of orientation changes. The abscissa
represents the number of successive orientation measurements done with
the MTx. The ordinate represents an angular value, expressed in radians.
The blue, red and green lines each represents one axis of rotation of the
MTx (Roll, Pitch, Yaw). The purple distribution (theta) represents the
absolute value of the rotation angle (using only the angular component
of the Rodrigues parameter – see Sub-section 3.3.1.1). The drift zone are
particularly obvious at ~3500 and ~5500 on the abscissa axis (highlighted
by the two red squares). 71

3.12 The “pan-tilt” camera Axis 213 PTZ (source: http://goo.gl/CQ5vM). . 73
3.13 Panorama of the room used to run the stability test of OT 73
3.14 The point x1 and xi are projections of the 3D point X into images I1 and

Ii: x1 = P1X and xi = PiX where P1 and Pi are the projection matrices.
A detected point x1 is repeated if xi is detected as well. It is ǫ-repeated if
a point is detected in the ǫ-neighborhood of xi. In the context of planar
scenes the point x1and xi are related by the homography H1i. (source: [6]) 79

3.15 OpenSURF repeatability rate under increasing rotation and scaling changes
(source: [7]). 81

3.16 OpenSURF repeatability rate under decreasing light conditions (source: [7]). 81

4.1 Multiple images referenced together using Microsoft Photosynth without
merging them into a single panorama image. Each image is accurate on
its own. (source: http://goo.gl/A8e7L) 86

4.2 Example of an AR visualization using individual images referenced in a
system like Microsoft Photosynth. It can be noticed that the augmenta-
tion stops at the different edges of the current image due to the offsets
between the images thus avoiding inconsistencies in the augmentation.
(source: Modified from http://goo.gl/LRDJT) 88

4.3 Overview of the proposed workflow for the PBPR approach. 89
4.4 Example of recursive line sampling. The numbers represent the order in

which the line is discretized into points. For example, if 3 sample points
are required, the points 1-2-3 will be selected. If 6 points are required,
the points 1-2-3-4-5-6 will be selected. This ensure a relatively uniform
distribution of the sample points along the line to be discretized. 93

xiii

4.5 (top) Example of an image filtered with an oriented anisotropic Gaussian
filter and hypothesis identification for a specific line point. The current
model line considered is displayed in red and the line’s normal at the
current position is displayed in yellow. It can be observed that gradient
parallel to the line in red are preserved while gradients in other direction
are degraded and blurred. (left) Zoomed-in crop of the original image
and (right) the same crop on the image filtered with the anisotropic
Gaussian filter. It can be observed that the gradients are only preserved
in the vertical direction. 95

4.6 Musikverein model (textured and wireframe) from the “City of Sights” [8]
data set used for the first tests of the “Adaptive Line Tracking” algorithm. 98

4.7 Sample frame (undistorted) representing a paper reconstruction of the
Musikverein model. A part of the building is slightly occluded on the
right side of the frame. 98

4.8 (left) Berlin Cathedral wireframe model from the “City of Sights” data
set [8] and (right) sample frame (undistorted) representing a paper con-
struction of the Berlin Cathedral model. 99

4.9 CAD models built from LiDAR point clouds and associated images recorded
on Laval University campus (Quebec city, Canada). 100

4.10 Augmentation of the Musikverein model using two different virtual cam-
era poses. Comparison between the (top) flawed virtual camera pose
result and the (bottom) refined virtual camera pose result. The orange
lines represents the 3D model in wireframe and the blue lines simply
highlight the correspondences between the 3D model and the image. . . 103

4.11 Augmentation of the Musikverein model using two different virtual cam-
era poses. Comparison between the (top) reference virtual camera pose
result and the (bottom) refine virtual camera pose result. The orange
lines represents the 3D model in wireframe and the blue lines simply
highlight the correspondences between the 3D model and the image. . . 104

4.12 Highlight and details of the differences between the augmentation shown
in Figure 4.11. Comparison between the (left) augmentation based on
the reference virtual camera pose and the (right) augmentation based on
the refine virtual camera pose. The highlighted zone numbered “1” is
depicted in the second line of the figure and the zone numbered “2” is
depicted on the third line of the figure. 105

4.13 Highlight of a potential cause of the shift of the model to the right: a
line of the model (in red) that is occluded by the tower to the right may
introduce errors since the PBPR tried to match this line with the nearest
visible edge on the image (highlighted in green). 106

xiv

4.14 Augmentation of the Berliner Dom model using two different virtual
camera poses. Comparison between the (top) flawed virtual camera pose
result and the (bottom) refined virtual camera pose result. The orange
lines represents the 3D model in wireframe and the blue lines simply
highlight the correspondences between the 3D model and the image. . . . 107

4.15 Augmentation of the Berliner Dom model using two different virtual
camera poses. Comparison between the (top) reference virtual camera
pose result and the (bottom) refined virtual camera pose result. The
orange lines represents the 3D model in wireframe and the blue lines
simply highlight the correspondences between the 3D model and the
image. 108

4.16 Augmentation of the Berliner Dom model, without the dome lines, using
two different virtual camera poses. Comparison between the (top) flawed
virtual camera pose result and the (bottom) refined virtual camera pose
result. The orange lines represents the 3D model in wireframe and the
blue lines simply highlight the correspondences between the 3D model
and the image. 109

4.17 Augmentation of the Berliner Dom model, without the dome lines, using
two different virtual camera poses. Comparison between the (top) refer-
ence virtual camera pose result and the (bottom) refined virtual camera
pose result. The orange lines represents the 3D model in wireframe and
the blue lines simply highlight the correspondences between the 3D model
and the image. 110

4.18 Highlight and details of the differences between the augmentations shown
in Figure 4.17. Comparison between the (left) augmentation based on
the reference virtual camera pose and the (right) augmentation based on
the refined virtual camera pose. 111

5.1 Example of hardware that can be used to capture a one-shot 180◦ panorama
image: (left) fisheye lens with a 8–15 mm focal length and (right) a stan-
dard camera aimed at a hyperbolic mirror. (source: (left): http://goo.gl/Dh7Fp

(right): http://goo.gl/exeD7) . 122
5.2 Example of a 3D CAD model render. Produced from the approximate

pose computed from the manual initialization realized on the image on
the right. 124

xv

A.1 The pinhole or perspective camera model. The model consists of an
image plane π and a 3D point O, representing the camera center or the
focus of projection. The positive z axis that goes from O through the
center c of the image plane is called the optical axis. A 3D point in
the world P is projected on the image plane π at point p. xim and yim

represents the coordinate system of the image. 133

Chapter 1

Introduction

1.1 Context

Architecture and civil engineering are fields that interact with abstract representations
of real objects. These abstractions are required for different tasks: planning, design,
construction, maintenance, inspection, etc. These tasks, however, often involve inter-
pretation ambiguities. For instance, in the case of the construction task, builders have
to correctly interpret the CAD (Computer-Aided Design) files that the architects and
engineers provided in order to build the given infrastructure according to specifications.
As abstract representations (2D blueprints and 3D models) are used to convey the in-
formation, and because it is impossible to model every square or cubic millimeter of
the environment and of the objects to be built, ambiguities are inherent to these repre-
sentations. Thus, they could be interpreted differently by the various actors exploiting
them on site and at the office. Therefore, inspection and monitoring tasks are generally
requested in architecture or civil engineering projects in order to ensure that minimal
differences exist between the as-built and the as-planned1 infrastructure. Ambiguities
in the interpretation stem from the need to compare 2D or 3D abstractions with real,
3D objects that present very different physical features (e.g. texture, color) and that
are located in a different visual setting.

Nowadays, the main tools that support the use of 2D and 3D models in the architec-
ture and geo-engineering fields consist of pieces of software that can be classified into
two categories: GIS (Geographic Information System) that are mainly used to capture,

1The term "as-planned" or "as-designed" is often used to describe the way a structure was planned to

be built (e.g. the original blueprints) while the term "as-built" describes the way the same construction

was actually built in the real world (i.e. its actual realization).

2

store, manipulate, analyze, manage and display all types of geographically referenced
data and CAD (Computer-Aided Design) that are used to streamline the design process:
drafting, documentation and manufacturing. These tools can be used when the user
has access to a computer; data can be requested, visualized, updated, etc. However, if
the architect or engineer needs to go on-site, his alternatives for getting access to the
data begin to fall short; paper plans are often the only viable support. While paper
is a great tool, being light, foldable and resistant, it presents one main limitation: the
model it represents is static both in time and space.

That limitation can be illustrated in the following example: a civil engineer is on a
construction site where a given structure is being built (Figure 1.1). His visit of the site
aims at conducting the usual verifications (validation of the project progress according
to the schedule, survey of the differences between the as-planned and as-built structures,
etc). Before leaving the office, he takes the paper plan representing the building as it
should look like at today’s date if the project is on time. He prints the paper plans from
multiple points of view from key locations. During the on-site evaluation, he has to
constantly compare the objects in the real world with their abstract representation on
blueprints in order to know where he is located in the plan’s reference system. This is
not a trivial task, especially if the assessment task requires a high level of accuracy: the
engineer has to compare the actual reality with a mental, intangible, 3D reconstruction
of a 2D blueprint. If he notices a particular structure that highly differs from the actual
model due to delay in the construction schedule, he needs to access the plans and notes
of the previous evaluation (checkpoint) to be able to quantify the effective delay in the
project. If the structure also happens to be complex, the civil engineer may feel the
need to use 3D information to better conduct his assessment task (the usefulness of 3D
data increases with the complexity of the structure being surveyed as 2D projections of
complex structures tend to get spatially confusing – see Figure 1.2 –, mostly because
of clutter and the fact that the human brain can only keep so much information in its
working memory (3-5 chunks of information [9])). If he did not anticipate such a need
(it is indeed difficult to bring on site all the data related to a project) the only way he
can access 3D models, most of the time, is to go to the site’s portacabin (if there is one
on the site) or go back to the office to either take a decision or to print a new set of
paper plans with the required information.

Mobile technology, however, continues to evolve and alternatives to static desktops
or bulky laptops begin to appear for actors of construction sites. Mobile GIS are tools
that are specifically well adapted for manipulating and accessing geospatial data on the
field (ESRI2, Bentley3, etc.). Such systems retain the main features of standard, desktop

2http://goo.gl/SBrrr
3http://goo.gl/BjbhG

3

Figure 1.1 – Examples of construction site monitoring in action. (source: (left):

http://goo.gl/kmUvE)

Figure 1.2 – (left) Top view of a city and the corresponding (right) 3D isometric view.

The top view, which emulates what can often be seen on traditional blueprints, makes

some of the elements difficult to interpret and their depth in relation to the camera is

impossible to estimate.

4

GIS solutions, but is especially designed for mobile platforms (UMPC4, ThoughBook,
Tablet PC, smartphone). Thus, a user can access the data dynamically (queries, ma-
nipulations, updates, modifications, etc.) on the field or out of the office. However
the interaction paradigm adopted for such devices has not really changed from those of
desktop solutions involving a mouse and keys combinations. Mobile device screens are
generally small. Therefore, the space for interaction is limited and prevents an accurate
(and effective) reproduction of the desktop navigation environment [10]. CAD software
also have followed this trend and it is now possible to navigate 3D models on mobile
devices as well. It must be noted that most of these mobiles applications are more
geared towards visualization and navigation than editing which still requires complex
interfaces only provided by desktop solutions.

As manipulated data mainly consists of 2D and 3D models (often geolocalized5),
tools allowing better manipulation, representation and thus, communication of this
information, are necessary in order to provide more adapted and efficient tools to the
different actors working on a construction site, especially those who are concerned
about inspection tasks. More efficient tools should lead to improvements in the overall
construction monitoring process (better error detection rate, better monitoring of the
project’s schedule, etc.). In order to provide such innovative solutions, new means
of representation, visualization and interaction with 3D data for mobile solutions in
architecture and civil engineering contexts must be proposed. Among the current efforts
to meet such goal, augmented reality is a steadily growing research field that proposes
promising approaches to visualize and interact with the real environment and its related
data.

Augmented reality (AR) is a research area and an emerging technology related
to the registration of computer generated elements to reality. The artificial elements
displayed are directly related to the real objects in the physical world; these elements
can be information about an object (e.g. the metadata related to objects in the real
world – Figure 1.3 (left)), instructions about specific actions to be taken (e.g. highlight
a specific path to follow to reach a target while driving a car – Figure 1.3 (right)) or
virtual 2D or 3D models (e.g. 3D model of a building showing what the current scenery
could look like if such a building was built at a specific location – Figure 1.4). The goal
of AR is to achieve, in real time, a combination of virtuality and reality such that users
of such technology could have access to a coherently unified world (i.e. as if the virtual
elements were actually part of the real world). The final rendered image, merging both
the virtual and real elements, is also called an augmentation.

4UMPC: Ultra-Mobile PC.
5Geolocalized means that the model contains meta-information about its geographic location in the

real world.

5

Figure 1.3 – (left) Different types of metadata (restaurants, user’s photos, stores, etc)

displayed in Layar and (right) Wikitude Drive, an application that displays the route to

follow directly overlayed on the road (based on GPS) (source: (left): http://goo.gl/BbFEi

(right): http://goo.gl/mhbQm).

Figure 1.4 – AR as a mean to preview the scenery before the building process (source:

http://goo.gl/hQrf0).

6

Figure 1.5 – (left) A streetlight selected in reality and its related meta-information;

and (right) “X-Ray” vision used to see an underground pipe network (source: (right):

http://goo.gl/qoSYP).

Mobile GIS would greatly benefit from AR. Indeed, using such a combination of
technologies, a user located, for instance, on a construction site or on a street, would
be able to use the AR component to select an object directly in reality6 in order to
access, for example, the object’s metadata. This presents a much more intuitive way
to interact with the data [11]: instead of having to look up the object on a map, the
user could simply select it in the reality and the metadata related with that object
would be overlaid to the display (Figure 1.5 (left) shows an example of such results
being displayed over the objects – streetlamps in this specific case). This aim and click
interface could be seen as a “real world GIS”, where the map data would be directly
overlaid to reality, upon user request. In addition, AR would allow the usual 2D data
(e.g. blueprints) to be displayed in their full 3D CAD format and in context (Figure 1.5
(right) shows an example of this principle; a 3D model of underground pipes are overlaid
over the reality to allow a user to see what is hidden beneath the surface).

However, developing an AR system is not easy to achieve: in order to perform
a correct superposition of the virtual and real world elements, the system needs to
know, at all time, the exact position (x,y,z) and orientation (roll,pitch,yaw) of the
user. The position and orientation data are used to correctly align the virtual world so
that it “fits” seamlessly with the real world. That process is called registration and is
fundamental to AR. This is why a tracking solution is required for any AR system to
work. Tracking consists of retrieving the user’s position and orientation by following its
movements in the world. There are two distinct approaches to tackle this user tracking
problem, namely passive, which consists in relying on available infrastructures that
send information from which the user’s position can be inferred (e.g. GPS), and active,

6In fact, the selection takes place on a live video capturing the reality. See Section 2.2 for more

details on video see-through AR.

7

Figure 1.6 – (left) Passive tracking where external sources send position data to the user

and (right) active tracking where the user’s device identifies its position by analysing the

environment.

which consists in relying on user’s devices (camera, laser, IR, sonar, etc) that tries to
identify their location by making sense of their environment (Figure 1.6). For each of
these tracking paradigms, many solutions exist. A short review of the different tracking
approaches will be proposed in Section 2.3.

The overall quality of the augmentation will directly depend on the chosen tracking
solution to correctly overlay the virtual information over the real world image. Different
tracking technologies produce different levels of accuracy and precision. Thus, not all
tracking technology are suited or relevant for all AR applications. One way to categorize
the different AR applications is by their accuracy and precision requirements; they
span a whole spectrum and range from mild AR to strong AR7. Mild AR is generally
associated with “casual” applications where the displayed data is an obvious abstraction
of the elements to which they are related or are providing information about (e.g.

a restaurant is represented by a “fork-and-a-plate” icon) and the positioning of the
information is approximate (e.g. the restaurant icon can be positioned anywhere on
the surface or the surrounding of the building’s façade). Layar8 and Wikitude9 are
both recent applications that fall into this category (Figure 1.3). While very useful and
entertaining, the “mild” type of AR is not well suited for engineering-level work; the
precision provided by the tracking technology tends to be insufficient. This low quality

7The terms mild AR and strong AR are defined by us to better illustrate the nature of a given AR

application in relation to the level of accuracy of the data it manipulates.
8www.layar.com
9www.wikitude.org

8

of the tracking does not only affect the accuracy and precision of the augmentation, but,
as the user is mobile, it heavily affects the stability of the rendering (jitter can often be
observed when using mild-type AR tracking). It is worth mentioning mild AR is not
regarded as an augmented reality solution in the AR community. On the other side of
the spectrum lies strong AR. Strong AR applications often relate to information that
needs to be precisely registered with the reality (for instance overlaying an as-designed
3D CAD model over the actual structure being built for an inspection or displaying
meta-information about a specific infrastructure elements). In these applications, the
AR system will be used to support decisions that bear major consequences. Any error
induced by the system could therefore compromise projects, in part or entirely. In order
to allow infrastructure professionals to take decisions based on AR systems, strong AR
is required. Therefore, this research will only be interested in strong AR applications
and its related challenges.

1.2 Problem Statement

During the last ten years, AR research work has tackled a variety of topics, among
which tracking techniques, interactions techniques, calibration and registration, AR ap-
plications and display techniques have been the five main research areas [12]. Among
these topics, tracking has been one of the most investigated problem for one very good
reason: tracking is fundamental for AR systems. Indeed, as mentioned in the previous
section, tracking is the favored option to retrieve, in real time, the position and orien-
tation of a user. Therefore, the quality of the tracking directly influences the quality of
the augmentation. Generally, there are three different, but related key issues that are
considered when tackling the tracking problem in an AR context: stability, coherence

and accuracy. A stable system ensures that the position of the virtual elements move
in a consistent manner with the user’s movements. This characteristic is important
since virtual elements that moves around even when the user stands still greatly hin-
der both the experience and the usability. A coherent system ensures that the virtual
elements does not look “out-of-place” (e.g. overlaying a 3D model of a house over the
corresponding real house in such a way that no visible offset between the two exists –
any visible offset would break the illusion of an “unified” world). Finally, an accurate
system displays the elements at their real position and orientation in the world. For
example, if the virtual element should be located 30 cm to the right, as specified by
its geolocalization, it will be displayed at the correct location. It might mean that an
offset between the real element and its virtual counterpart will be displayed, affecting
the coherence aspect. Using an accurate AR system, offset between the real element
and its virtual counterpart (i.e. incoherent visualization) will allow detecting differ-

9

ences between the as-built and as-planned item (see Figure 1.7 for an illustration of the
difference between the coherence concept and the accuracy concept).

Engineers and architects are professionals that typically take decisions that bear im-
portant consequences; bad decisions could easily compromise part or the entire project
(that can cost both important amount of time and money) or even compromise public
safety. Therefore they first and foremost requires accuracy out of their systems to make
sure the project is conducted as planned. The accuracy of the augmentations (which
is directly related to the tracking accuracy) is therefore the main criteria a mobile AR
GIS solution should fulfill to be able to support engineering-level decisions [1]. However,
achieving such accuracy with geolocalized, 3 dimensional data (e.g. 3D CAD models)
faces several challenges, the principal ones being listed below:

Mobile tracking limitation Very high accuracy augmentation on mobile devices evolv-
ing in unprepared outdoor environments10 cannot currently be achieved easily
(see Section 2.3). This is due to the current limitations of the majority of avail-
able tracking solutions and to the high accuracy need of architecture and geo-
engineering fields. There are some tracking technology that allow a very high
level of precision and accuracy, but these are either too constraining in terms
of environment control (the environment needs to be calibrated and prepared
beforehand) or are simply unavailable indoor.

Hardware limitation In order for an AR GIS platform to be accepted and adopted by
architects and engineers operating on construction sites, it must be usable with
already available technological means. That means that, ideally, the platform
should avoid specialized (i.e. costly) components as much as possible. If positive
results can be obtained from a low-cost platform as of now, it proves that a mobile
AR GIS platform should be sustainable in the future as well. The platform should
also be mobile; this add constraints on the hardware selection (e.g. bulkiness,
heaviness, calibration requirements, availability, etc.). A good way to respect
these limitations is to favor already integrated technologies, such as tablets and
smartphones which come already equipped with cameras (even if they offer low
resolutions).

Accuracy requirements Engineering and architecture work includes a very wide vari-
ety of tasks. Each of these tasks will have varying level of accuracy requirements.
Moreover, AR may not be an appropriate support for all these tasks. Shin et

al. [1, 13] identified a subset of engineering tasks that could benefit from AR. In

10Unprepared environments are environments that have not been modified in order to use a tracking

solution (i.e. no markers have been installed, no additional infrastructure has been set up, etc.).

10

Figure 1.7 – Illustration of what is understood by coherence and accuracy in terms of AR.

(top left) Bird’s view of a street and building being augmented. The user is represented

in the bottom right corner of the illustration and is currently looking at the building.

The black square represents the actual, physical building (as-built). The red square is

a coherent augmentation, that is, perfectly aligned with the as-built structure. The

green dashed square represents the as-designed, geolocalized model that is the accurate

representation. In this example, and to better illustrate the difference between “coherent”

and “accurate”, there are differences between the as-designed and the as-built. (top right)

The scene from the perspective of the user when looking at the building with his naked

eyes. (bottom left) The user perspective of a coherent augmentation. (bottom right) The

user perspective of an accurate augmentation; in this illustration, the user is able to see

errors (offsets) that took place during the construction process. (note: (top left): The

user should be represented from a bird’s view to be coherent, but it was left in side view

for the sake a clarity.)

11

these studies, quantitative information about the level of accuracy that engineer-
ing work requires has also been documented. However, no accuracy level threshold
for a general-use mobile AR GIS has been specified. This threshold is required in
order to design AR platform aiming to support decisions in high-accuracy fields
like engineering and architecture.

Factors influencing the accuracy level Accuracy is likely to be influenced by multi-
ple factors. Indeed, the environment in which architects and engineers operate are
not always ideal for tracking (e.g. the environment might be dynamic – passersby,
cars, machinery, etc. – thus decreasing the accuracy of an AR system using com-
puter vision). Moreover, these factors might be strongly linked to the approach
that is used to perform the augmentation of the real world. As accuracy has not
been a main area of focus in AR, the factor influencing this metric have not been
clearly determined. To propose an accurate approach to mobile AR, these factors
must be inventoried and their relative importance weighted.

As it has been highlighted in Section 1.1, there is a need for mobile GIS solutions that
are specifically adapted to engineering and architecture tasks on the field. AR appears
like a promising approach to answer this need. However, as of now, there is no available
solution on the market mainly due to the high accuracy need of these fields of application.
One of the main components of AR systems is tracking. This research aims to explore
tracking solutions in order to propose a mobile AR GIS solution adapted to engineering
and architecture monitoring tasks. Before being able to design such solutions, it is
necessary to determine which tracking approaches are able to meet the requirements of
these tasks. This is the problematic of the proposed research. In other words, the main
question to be answered is the following:

which tracking approach(es) is/are the most promising towards the design of

mobile AR GIS dedicated to architecture and geo-engineering fields given the

high accuracy required, the lack of specification of the targeted accuracy, the

outdoor mobile tracking context, and the numerous factors that can affect

this accuracy?

1.3 Objectives

The main objective of this project is to provide an answer to the problem stated in the
previous section, that is:

12

to define the accuracy requirements of an AR mobile GIS in a geo-engineering

context and list the technical approach(es) that are most suited to achieve

this accuracy level. This main objective can be broken down in three sub-
objectives described in the next subsections.

1.3.1 Sub-objective 1: specifying the accuracy requirements

As mentioned previously in Section 1.2, accuracy requirements vary depending on the
task at hand. Before being able to evaluate the adequacy of tracking approaches for
mobile AR GIS in geo-engineering contexts, the accuracy requirements of these mobile
systems need to be specified in such a way that these requirements can be used to
evaluate the system independently of the task being conveyed. The determination of
these accuracy requirements aims at ensuring the accuracy of a tracking approach is
able to meet the specifications of the task or, if it does not, quantify by how much it
differs.

1.3.2 Sub-objective 2: determining suitable tracking approaches

for mobile AR GIS dedicated to geo-engineering

This sub-objective aims to determine, among the current tracking methods available,
which ones present good potential for achieving mobile AR GIS solution compliant with
the geo-engineering context (i.e. meeting the accuracy requirements specified through
sub-objective 1 and allowing architects or civil engineers to conduct inspection tasks on
the field).

1.3.3 Sub-objective 3: validating the selected potential track-

ing approaches

This last sub-objective aims at validating the potential of the proposed tracking ap-
proaches. This last step will ultimately yield recommendations on which approach(es)
is/are suitable for a mobile AR GIS or what prevents it/them to be appropriate in the
geo-engineering context of this research.

13

1.4 Methodology

The global methodology adopted to conduct this research is one of engineering. Engi-
neering is known for its straightforward method: acquire needed knowledge, generate
ideas and formulate hypotheses, verify these hypotheses and knowledge with prototypes
and evaluate the results produced. There are a certain number of iterations done until
the project gets to a satisfactory state or the formulated hypotheses gets confirmed or
refuted.

This section describes the various steps involved in the approach designed to meet
the three sub-objectives presented above, and therefore the project’s global objective.
This approach is synthesized through the workflow diagram display in Figure 1.8.

The two first steps are dedicated to the completion of sub-objective 1. They consists
of, respectively, a literature review and the determination of a scale-invariant accuracy
representation that takes into account the multiple variables defining the accuracy re-
quirements of a task. The literature review aimed mainly at finding answers to the
various issues with relation to accuracy requirements of AR in a mobile GIS context.
The review focused on work describing the different tasks that must be accomplished
on a construction site and their accuracy requirements, specifically in a AR context.
A scale-invariant accuracy representation was then proposed as a way to abstract the
different factors influencing the accuracy requirements of a given task.

The two following steps are dedicated to the fulfillment of sub-objective 2. They
consist of a literature review of the different tracking solutions available as well as
a selection, among these solutions, of those that present potential for high accuracy
AR. The literature review was conducted in the fields of indoor and outdoor tracking,
pedestrian navigation and geolocation, especially applied to AR. It allowed to identify
the different tracking solutions currently available along with their respective accuracy.
Based on this metric, approaches were selected for further investigation in this research.

Finally, sub-objective 3 is based on agile software development methodologies11. It
consists of the typical agile cycle: design, implementation and revision. Once a given
approach was selected for investigation, the first step was to specify the performance
and accuracy objectives of the current approach based on the accuracy requirements
set with the sub-objective 1. It then led to the design of both the software architecture

11"Agile Software Development is a group of software development methodologies based on iterative

and incremental development, where requirements and solutions evolve through collaboration between

self-organizing, cross-functional teams." [14]

14

Figure 1.8 – Workflow diagram of the activities associated with each sub-objective

and the tests that were used to validate wether the approach met or not the objectives.
The solution and the tests were then implemented. If the objectives were met and
the time allocated for the project has not been exceeded, another approach could be
considered for investigation. On the other hand, if the objectives were not met, some
further investigation was required in order to see if any improvement could be made to
the given approach. If some improvements could be identified, they were implemented
and tested or suggested as future works.

15

1.5 Structure of the thesis

Chapter 2 will present the literature reviews conducted to meet sub-objective 1 and 2.
These reviews identify the construction site related tasks that could benefit from AR
and their respective accuracy requirements. They also propose the different available
tracking solutions. The ones that are compliant with mobile AR GIS for geo-engineering
are identified in this chapter.

Chapter 3 and Chapter 4 concern the work carried out to meet sub-objective 3.
Chapter 3 will present the first prototype proposed in this research project: Orienta-
tion Tracker. The related work will be detailed before describing the principles of the
method. The result of the prototype evaluation will then be presented. The chapter will
conclude on the different identified factors that influence negatively the accuracy of the
method. Chapter 4 will present the second prototype proposed in this research project:
Panorama-Based Pose Refinement. The approach will first be presented and justifica-
tions for departing from an online tracking method will be provided. The method will
then be presented in details before presenting and analyzing the results of its evaluation.
The chapter will conclude by discussing the potential of this approach for high-accuracy
AR.

Finally, Chapter 5 will propose the different conclusions drawn from the experiments
presented in Chapter 3 and 4 and suggest future work.

Chapter 2

Literature Review and Mobile AR

Concepts

AR is a relatively broad field of research. It relates, among others, to computer vision,
robotics, visualization, positioning, artificial intelligence, and therefore makes use of
many different concepts. This chapter mainly presents the different key concepts that
will be involved or influence the selection of tracking solutions suitable for mobile AR
GIS dedicated to geo-engineering contexts.

The first part of the chapter will focus on the typical tasks taking place on a con-
struction site. Their accuracy requirement will be reviewed and a unified accuracy
representation model will be provided towards the selection of the most suitable track-
ing solutions for mobile AR GIS. The second part of the chapter will be dedicated
to AR. Formal definition of AR and mobile AR will be provided and the constraints
brought forth by the mobility to the AR challenge will be underlined. Since tracking is
at the core of the AR challenge, the third part of the chapter will provide a review of
tracking methods. Based on this review, the most promising tracking approaches for
mobile AR GIS will be determined. Finally, the chapter will conclude with the list of
tracking solutions that will be further investigated.

17

2.1 Mobile AR GIS Compliant Tasks and Accuracy

Requirements

As stated in Chapter 1, high accuracy is required for mobile AR GIS dedicated to
different applications such as construction site monitoring or infrastructure inspection.
This section aims at defining in a more tangible and quantitative manner these accuracy
requirements (i.e. fulfillment of sub-objective 1). First, the geo-engineering tasks that
could benefit from a mobile AR GIS will be presented. Then, a formal definition of
the terms precision and accuracy will be provided to better highlight the different
implications of each term. Because this research aims to fulfill quantitative objectives,
the accuracy requirements of the different selected tasks will be quantified. Shin et

al. [1, 13] did an extensive investigation of these issues. Therefore, the list of tasks
benefiting from AR and their accuracy requirements are mostly a synthesis of their
work. Finally, as it is anticipated that the required accuracy depends on different
factors (e.g. the nature of the task, the scale of the infrastructure, ...), the accuracy
requirements for a mobile AR GIS will be expressed in a unified, task-independent
representation. This unified representation is necessary in order for the mobile AR GIS
solutions to be evaluated on the same bases for multiple tasks, taking place at different
scales.

2.1.1 Mobile AR GIS compliant tasks

Before addressing the accuracy issue and the expected performance of a mobile AR
GIS on a construction site, the different tasks that can be achieved using a mobile
AR GIS on such a construction site and their definitions need to be reviewed. Shin
et al. carried out such a review and evaluated which of them might be improved by
introducing AR into the workflow1. The tasks compliant with a mobile AR GIS system
and their definitions are presented in Table 2.1.

These tasks are very diverse and require varying level of accuracy. These will be
quantified in Section 2.1.3 after presenting the formal distinction between the accuracy

and precision terms as this distinction is crucial to this research project.

1While Shin et al. selected only a small subset of the presented tasks, it is highly probable that most

of these activities could benefit, in one form or another, of AR. Nonetheless, their selection represents

a good variety of tasks and gives a good overview of the different accuracy needs on a construction

site.

18

Work task Definition

Layout Determining, ascertaining, and marking dimensions

Excavation Breaking up, turning over, removing, or filling soil

Positioning Moving heavy objects to certain locations and
orientations for installation

Inspection Examining installed workmanship by an approved state
or city personnel to verify quality and that the work
installed to the pre-approved drawings and that the
work meets all codes

CoordinationOrganizing and determining upcoming work flows or
resource allocation

Supervision Seeing if work is performed as planned

Commenting Conveying supplementary information regarding a task

Strategizing Figuring out the detailed procedures for specific tasks

Table 2.1 – Definitions of construction-site related tasks that could benefit from the

introduction of AR in the workflow [1].

2.1.2 Precision and accuracy definition

Precision and accuracy are two related but actually different concepts. Because this
project put such a high emphasis on accuracy and precision, it is important to clearly
highlight the differences between these two notions. The Oxford English Dictionary

describes precision and accuracy as follows:

Precision The reproducibility or reliability of a measurement or numerical result; a
quantity expressing this. [15]

Accuracy The state of being accurate (Exact, precise, correct, nice; in exact confor-
mity to a standard or to truth). [16]

A visual representation of these definitions is provided using the target analogy (Fig-
ure 2.1).

Ideally, a system should be both precise and accurate. Precision without accuracy
will result in a user consistently making decisions that are off. On the other hand,
an accurate but imprecise system will result in a user making, on average, a correct
decision. Mathematically speaking, precision is related to the standard deviation of a set

19

Figure 2.1 – The Precision Vs. Accuracy target analogy. (left) High accuracy and low

precision and (right) high precision and low accuracy (source: (left): http://goo.gl/tH1u2

(right): http://goo.gl/X8fiH).

of values and the accuracy is the mean’s bias compared to its true value. The problem
is that decisions are individual actions that are not averaged over time. Therefore, the
said system will always be off, even if, on average, the decision is correct.

2.1.3 Absolute accuracy requirements

There are mainly two concepts that must be considered when quantifying the accuracy
requirement of a given task. The first one is the actual accuracy requirement of the task,
in an absolute reference system, thus expressed in meters (e.g. the layout task requires
a very high accuracy of 1 mm – below this threshold, the dimension measurements
and validation are not considered reliable enough). The second concept is the distance

between the observer (user) and the observed object when the task is being conveyed
(viewing distance). Indeed, each task typically needs to be executed at a given distance
from the observed object (e.g. it would not make sense for the supervisor of a machinery-
operated excavation activity to stand at 50 cm from the place where the hole is being
dug). This second concept is central to the determination of a unifying accuracy and
precision representation and will be explained further (as well as its implications) in
Section 2.1.4.

As the absolute accuracy requirements and the viewing distance are interrelated,
Shin et al. combined both metrics in a matrix they called “Matrix of Operational
Spaces for Work Tasks”; it is reproduced in Table 2.2.

All the tasks span a very wide spectrum, both in term of viewing distance, ranging
from 0.5 m to 108 m, and accuracy requirements, ranging from 1 mm to 50 mm. This
raises an issue when trying to specify the accuracy requirements of a mobile AR GIS
system. Indeed, expressing accuracy using two metrics makes it difficult to evaluate
a system that must be able to convey multiple tasks because it offers no threshold to

20

View

Dist.

(m)→

Reachable

(0-0.5)

Very

short

(0.5-3)

Short

(3-6)

Medium

(6-18)

Long

(18-60)

Very

long

(60-108)

Extremely

long

(+108)

Req.

Acc.

(mm)↓

Ultimate

(0-1)

Layout

Positioning

Inspection

High

(1-6)

Positioning

Inspection

Intermediate

(6-13)

Positioning

Excavation

Inspection

Excavation

Inspection

Inspection

Low

(13-25)

Positioning

Very low

(25-50)

Coordination

Supervision

Commenting

Strategizing

Coordination

Supervision

Commenting

Strategizing

Inspection

Coordination

Supervision

Commenting

Strategizing

Inspection

Extremely

low

(+50)

Coordination

Supervision

Commenting

Strategizing

Coordination

Supervision

Commenting

Strategizing

Coordination

Supervision

Commenting

Strategizing

Coordination

Supervision

Commenting

Strategizing

Table 2.2 – Matrix of operational spaces for work tasks as presented in [1]. Each task

is categorized by the viewing distance (view dist.) it must be conveyed at, expressed in

meters, and by the required accuracy (req. acc.), expressed in millimeters.

21

assess if the system fulfills the overall requirements of engineer and architects. These
values need to be expressed in a way that a single threshold in terms of accuracy and
precision can be adopted as the overall accuracy need for an mobile AR GIS system.
The following subsection proposes a solution to this issue.

2.1.4 Scale invariant accuracy representation

As illustrated in the previous section, the accuracy requirement of a task is specified for
a given viewing distance. It makes the comparison between the accuracy requirement
of tasks difficult. Indeed, assessing if achieving a 50 mm accuracy at a viewing distance
of 100 m is more difficult than achieving an accuracy of 1 mm at a distance of 0.5 m is
not straightforward. Thus, having a single metric to encompass both the accuracy and
distance variables would facilitate the accuracy comparison of various tasks.

In this research’s context, the accuracy of a given AR system is expressed as the
maximal distance error that is supported by a given task above which the task’s integrity
is compromised. As specified in Section 2.1.3, any task must be realized at a given
distance from the main point of interest of the said task (e.g. the main point of interest
of an excavation task is the location where the hole is being dug). For simplicity, the
camera’s position is also assumed to be fixed (i.e. static). In this context, the ratio
between the required absolute accuracy and viewing distance can be expressed as an
angular offset because the camera’s only degrees of freedom (DOF) are its orientation.
An angular value is appropriate for comparison purposes since it is scale independent.
Thus, a given task having an accuracy requirement (ǫ m) executed at a distance (d m)
from the task’s main point of interest can be converted into an angular representation
(θ) using Equation 2.1 (illustrated at Figure 2.2).

θ = arcsin
(

ǫ

d

)

(2.1)

Typically, mobile AR is carried out using handheld devices and video see-through
approaches (see Section 2.2). That is, the augmentation is displayed on a representation

of reality captured by the device’s camera. Therefore, it is sometime useful to express
the accuracy in terms of pixels2 as it is common to every video see-through mobile
AR system and it is the smallest data unit used in imagery. It is especially helpful,
for obvious reasons, if a tracking component of the mobile AR system is based on

2Pixel: "a single point in a raster image, or the smallest addressable screen element in a display

device; it is the smallest unit of picture that can be represented or controlled." [17]

22

computer vision. The conversion between angular accuracy value (θ) and pixel value
(τ) is achieved easily by using the pinhole camera model. The first step is to compute
the field of view (FOV) of the camera. The FOV of the camera (φ) at a given focal
length (f) can be calculated using Equation 2.2 (illustrated at Figure 2.3). The focal
length (f) can be obtained through camera calibration3. Finally, the angular error
tolerance (θ) can be expressed in pixels (τ) using Equation 2.3, where ρ represents
the resolution of the captured image (in pixels) and φ is the previously determined
angular field-of-view of the camera (illustrated at Figure 2.4). The opposite conversion
(from pixel error tolerance to angular error tolerance) can be obtained trivially from
Equation 2.3 resulting in Equation 2.4.

φ = 2 × arctan

(

ρ/2
f

)

(2.2)

τ = ρ ×
θ

φ
(2.3)

θ = φ ×
τ

ρ
(2.4)

The conversion of the accuracy requirement from a distance tolerance into a angu-
lar tolerance has been applied to all the tasks described previously. Table 2.2 proposed
a categorization of each task given their accuracy requirements and their viewing dis-
tance. A similar table is presented at Table 2.3. However, each cell has been filled
with a converted accuracy requirement expressed in angular tolerance (and example of
corresponding pixel tolerance calculated for a generic web camera4 in parentheses)5.

The different values shown in Table 2.3 confirmed the intuitive notion that, for
a given accuracy requirement, the further away the user is from the observed object
and the more precise and accurate the mobile AR GIS solution should be. In this

3"Camera resectioning is the process of finding the true parameters of the camera that produced

a given photograph or video." [18] Camera resectioning is often called "camera calibration". The true

parameters of the camera are used to make the correspondence between world 3D coordinate system

and the 2D projection of the image (in pixel coordinates). Thus, it becomes possible to associate

real-world dimensions to a pixel. See Appendix A for details on the pinhole camera model and its

parameters.
4These results have been computed assuming a camera with 640 × 480 pixel resolution and 721 mm

focal length.
5For each cell, the mean value of both ranges (viewing distance and accuracy requirement) are

considered for the calculation. Thus, for a range of [3,6], the 4.5 value is used.

23

Figure 2.2 – Angular error tolerance illustration. A camera C is located at a distance

d from the point of interest O where the task is being conveyed. ǫ represents the task’s

accuracy requirement and θ is the corresponding angular error tolerance. The red circle

represents the error margin; it is here represented by a circle on the XZ plane for the sake

of clarity, but the error can be aligned along any direction in the 3D space.

24

f

φ/2

x

y

z

P

x im

yim

p

π

c

O

ρ/
2

Figure 2.3 – FOV determination based on the pinhole camera model. The model consists

of an image plane π and a 3D point O, representing the camera center or the focus of

projection. The positive z axis that goes from O through the center c of the image plane

is called the optical axis. A 3D point in the world P is projected on the image plane π at

point p. φ is the angular FOV of the camera, f is the focal length of the camera and ρ

is the resolution (the total number of pixels in each of the image’s dimensions). Only the

horizontal FOV is represented on this figure for readability purposes. The same principle

applies for the vertical FOV. xim and yim represents the coordinate system of the image.

25

f

φ

τ

θ

x

y

z

P

x im

yim

p

π

c

O

ρ

Figure 2.4 – Conversion between angular measurements and pixel measurements based

on the pinhole camera model. The model consists of an image plane π and a 3D point O,

representing the camera center or the focus of projection. The positive z axis that goes

from O through the center c of the image plane is called the optical axis. A 3D point in the

world P is projected on the image plane π at point p. φ is the angular FOV of the camera,

f is the focal length of the camera, θ is an angular measurements with its projected length

(τ), in pixels, on the image plane and ρ is the resolution (the total number of pixels in

each of the image’s dimensions). Only the horizontal FOV is represented on this figure

for readability purposes. The same principle applies for the vertical FOV. xim and yim

represents the coordinate system of the image.

26

View

Dist.

(m)→

Reachable

(0-0.5)

Very

short

(0.5-3)

Short

(3-6)

Medium

(6-18)

Long

(18-60)

Very

long

(60-108)

Extremely

long

(+108)

Req.

Acc.

(mm)↓

Ultimate

(0-1)

0.115◦

(1.523 px)

High

(1-6)

0.115◦

(1.523 px)

Intermediate

(6-13)

0.121◦

(1.617 px)

0.045◦

(0.606 px)

0.014◦

(0.187 px)

Low

(13-25)

0.091◦

(1.213 px)

Very low

(25-50)

0.179◦

(2.394 px)

0.055◦

(0.737 px)

0.026◦

(0.342 px)

0.020◦

(0.266 px)

Extremely

low

(+50)

0.239◦

(3.192 px)

0.073◦

(0.982 px)

0.034◦

(0.456 px)

0.027◦

(0.355 px)

Table 2.3 – Matrix of Operational Spaces for Work Tasks (Table 2.2) displaying error

tolerance expressed in pixel (values in parentheses are the corresponding angular toler-

ance). Values have been computed with the following camera setting: 640 × 480 pixels ;

focal length: 721 mm.

27

proposed representation of accuracy, the ratio between accuracy and viewing distance
is more determinant than the absolute accuracy requirement of the task. It is also worth
observing the required accuracy is very high. The less demanding tasks (accuracy of
50 mm at a viewing distance of 12 m) still requires an accuracy of 0.239◦ (3 pixels)
while the most demanding task (accuracy of 9.5 mm at a viewing distance of 39 m)
requires a 0.014◦ (0.2 pixel) accuracy. As a point of comparison, a relatively high-
accuracy orientation sensor (XSens’ MTx – see Section 2.3.1.3) can achieve an accuracy
of ≈ ±1◦; this is a little less than five time the minimum accuracy requirement of the
less demanding task. This confirms that high accuracy AR is a difficult problem that
requires novel solutions.

Relying on Table 2.3, it can be observed that the accuracy requirements of a mobile
AR GIS solution will vary in function of the engineering task at hand. Summarizing
the values of Table 2.3 in relation to the viewing distance: tasks that must be realized
at relatively short viewing distances (0-18 m) require a system having an approximate
accuracy of 0.1◦ and tasks realized at a larger distance (18+ m) require, on average an
accuracy < 0.05◦.

2.2 Mobile AR Concepts

AR is a concept where virtual elements or objects are superposed and correctly regis-
tered to actual elements in the reality to form a seamless and coherent world. Azuma [19]
proposed to define an AR system or application as a solution fulfilling the following three
criteria:

1. Combines real and virtual

2. Interactive in real time

3. Registered in 3-D.

Not all AR systems can be considered mobile. Scholl et al. [20] proposes a definition
for mobile AR:

Instead of being represented by an avatar like in many traditional computer
games, players are their own avatar moving in the game world by moving

28

in their real environment.6

Mobile AR system are typically comprised of a few hardware components: display,
tracking, input and computer components. The display is the component where the
augmentations are rendered. They most often consist of either head-mounted displays
(HMD) or handheld devices (e.g. smartphone). The tracking component consists either
of dedicated tracking hardware (e.g. GPS) or a combination of hardware and software
(e.g. camera hardware used in conjunction with computer vision techniques) that aims
to estimate the user’s (or device’s) position and orientation. The input component
can be used to interact with the augmentations. These interactions can be realized
by manipulating the elements directly on the display (e.g. touchscreen) or by using
dedicated hardware (e.g. special gloves that can be tracked in space). Finally, the
computer component is used to analyze the data captured by the system (e.g. camera,
GPS, infrared, sonar, etc.) to synthesize and position augmentations.

In order to render an augmentation (i.e. merge the virtual elements and the real
world), an AR system can use one of two main strategies: video see-through and optical
see-through. Optical see-through systems employ half-silver mirrors to reflect the over-
lay information into the user’s eye. Most of the time, these systems use head-mounted
displays (HMD) (Figure 2.5 (left)). Video see-through systems, on the other hand,
capture the reality through a camera and the captured image is then augmented with
correctly positioned virtual elements before being fed to the screen for visualization
(Figure 2.5 (right)7). All handheld devices use video see-through for AR since they are
equipped with standard resolution camera. Also, most mobile AR systems, nowadays,
are based on handheld devices.

Building a mobile AR system imposes constraints on different components of the
system. The first challenge concerns the user or device tracking: in order to be able to
merge virtual elements with the real world, the system needs to know the camera pose
(i.e. the position and orientation of the camera capturing reality) at all time during the
augmentation phase. This is not a trivial task, especially in a mobile context, where
the user should be able to move freely and anywhere he needs to use the system. This
challenge is further heightened if a handheld platform is used. Handheld devices are

6Note: [20] is a paper that has been written in the context of mobile AR games. This definition

still is accurate for our application context by substituting the terms "player" and "game world" by

"user" and "workspace world" respectively.
7Figure 2.5 presents video see-through display as a HMD to better illustrate the difference between

optical see-through and video see-through. Video see-through can be, and most of the time is, achieved

on handheld devices where the reality is captured by the integrated camera and the display is done

on the actual screen of the device (see Figure 1.3 for examples of video see-through AR realized on

handheld devices).

29

Figure 2.5 – Diagrams illustrating the different components and organization of (left)

an optical see-through HMD and (right) of a video see-through HMD (source: (left):

http://goo.gl/IWQu3 (right): http://goo.gl/WwVhu).

not very stable, mainly because these devices are hand-held and it is difficult and/or
counter-intuitive for any user to keep a steady hand for any extended length of time.
This context requires more adaptability and robustness out of the tracking solution.

Another component impacted by the mobility of the system is the camera. As
one of the criterion of AR states that the system must be interactive in real-time (see
Azuma’s definition [19]), the camera must be able to sustain a minimal framerate8.
The capability of a mobile AR system to sustain the required framerate depends on
the selected tracking solution. For example, a tracking solution based on computer
vision requires more processing time than a hardware-based tracking method since
each frame has to be processed individually in order to extract the camera position
and orientation that will be used to align the virtual and real worlds. Hardware-based
tracking solutions generally feed directly the position and orientation information to the
mobile AR system. Thus, in such applications, the device’s processing time is mainly
dedicated to the augmentation step.

Finally, any system relying on computer vision techniques for tracking the camera
pose must be robust to the different “difficult” conditions inherent to outdoor mobile
systems. For example, difficult illumination settings like direct sunlight, scenes that
are too dark or unevenly lighted might compromise the analysis of the system in some
portion of the image. Also, the system has to tackle occlusion problems. That is, there
might be some object(s) that occlude, completely or partially, the scene that the system
tries to track. Lastly, fast motion can be a hurdle. When the user changes the viewpoint
of the camera too quickly (i.e. quickly enough so that the camera’s framerate is not
sufficient), motion blur will be added in the captured image. This blur may compromise
the tracking, especially if the system uses some primitives that are sensible to blur (e.g.

8To be considered "real-time", a given framerate should not be below 15 frame per second (fps).

This threshold must be adapted to each application context; when rapid motions need to be captured

by the video stream, the framerate should be higher (30-60 fps or more) in order to avoid "skipped

frames" in the user’s perception.

30

corner primitives [21]).

A review of the available tracking solutions is provided in the next section.

2.3 Tracking

Tracking is one of the fundamental issues of AR. Changes in the viewer’s position and
orientation need to be tracked in order to properly render the graphics according to his
field of view. Six degrees of freedom (DOF) tracking (3 DOF for position and 3 DOF for
orientation) is a difficult problem. To provide a nice augmentation experience, tracking
should be carried out in real-time and ideally no prior knowledge of the environment.
Moreover, the review of the different tracking solutions presented in this section demon-
strates that the difficulty inherent to the measurement of the viewer’s position tend to
be proportional to the level of precision and accuracy needed. Indeed, in order to in-
crease the precision and accuracy of a tracking solution, the hardware needs to be more
specialized, the algorithms (real-time or post-processing) are getting more complex and
precise and/or a more thorough calibration process might be required. Tracking is an
ongoing field of research on its own and has still many unresolved issues. There are
mainly two different, but often complementary, categories of approaches in order to as-
sess or track the changes inherent to the position and/or orientation of the user: passive

solutions and active solutions. The following sections describe the methods belonging
to these two categories respectively.

2.3.1 Passive solutions

Passive tracking solutions consist of using a given “signal” from an outer source in order
to derive from it the position and/or orientation of a device. The signal can belong
to various domains like radio-frequencies (RF), sound, laser, magnetic fields, gravity,
etc. Many different tracking systems relying on such signals are available nowadays.
This subsection will address only the systems that could be considered in a mobile AR
solution. These are: Global Navigation Satellite System (GNSS), urban and indoor
alternatives to GNSS and MicroElectroMechanical Systems (MEMS).

31

2.3.1.1 GNSS

GNSS is a positioning system based on the signal emitted from a series of orbiting satel-
lites. The most well-known implementation of these systems is the Global Positioning
System (GPS), which was developed and still is maintained by the United States gov-
ernment. GNSS is by far the most popular tracking solution addressing the positioning

problem (GNSS is unable to provide any orientation information). This technology is
based on the trilateration9 of a minimum of 4 simultaneous pseudorange10 measure-
ments. Thus, a GNSS receiver must detect the emitted signal of at least 4 different
satellites simultaneously. Pseudorange is calculated using the time-of-flight (TOF) of
the GNSS signal (the time the signal takes to reach the receptor once broadcasted by
the satellite). GNSS satellites and receivers use very accurate clocks in order to make
these time estimates. Even so, it is still essential to estimate the clocks’ error. This is
crucial as an error of one microsecond (1.0 × 10−6 s) yields to an absolute position error
of about 300 meters11.

The precision a typical consumer-level GNSS receiver, as can be found in cars and
mobile phones, can achieve is about several meters (≈±10m) [24]. Moreover, GNSS
display the following limitations:

• The Earth’s atmosphere (specifically the ionosphere and the troposphere) causes
delays in the signal transmission yielding additional error. Also, this error is not
the same for all satellites and depends on its position: a satellite near the horizon
will involve larger delays as the signal has to travel a longer distance inside the
atmosphere than a satellite located near the zenith). Other GNSS receivers, like
differential GPS (DGPS), rely on specific approaches to better model and estimate
this atmostpheric delay and therefore can increase the resulting precision (≈±2-
5m) [25] at the cost of additional constraints on the measurement context. Thus,
DGPS requires the receiver to be located in a range of 200 km of a reference station
– the precision decreases the further away the receiver is from the reference station.

• GNSS signal is hardly able to penetrate matter. As a consequence, it can be

9Trilateration: “A method of surveying analogous to triangulation in which each triangle is deter-

mined by the measurement of all three sides.” [22]
10To determine its position, a satellite navigation receiver will determine the ranges to (at least) four

satellites as well as their positions at time of transmitting. Knowing the satellites’ orbital parameters,

these positions can be calculated for any point in time. The pseudoranges of each satellite are obtained

by multiplying the speed of light by the time the signal has taken to travel from the satellite to the

receiver. As there are accuracy errors in the time measured, the term pseudoranges is used rather than

ranges for such distances. [23]
11c × 1.0−6 s = 300 m where c is the constant for the speed of light (≈ 3.08 m/s)

32

blocked or reflected by almost any solid. For example, concrete, glass, wood,
foliage and human flesh all block the signal significantly if not completely.

• Some surface will act like a mirror for the frequencies used by the GNSS. If the
receiver intercepts a signal that has been reflected on a surface, it will interpret the
signal as being received directly from the satellite even if the reflection has added
some delays in the TOF. This is known as the multipath problem. The more
objects and clutter are around the receiver, the more significant the multipath
problem becomes (and thus, the precision is further decreased).

In a mobile AR context, these GNSS limitations can impact the performance of the
system. First, the overall precision of standard GNSS receivers is relatively low (i.e.
10 meters is about the width of a street). It can limit the capability of a user to
interact with items in the real world. However, it may be sufficient for some applications,
especially those in the mild augmentation category. The inability of GNSS signals to
efficiently penetrate matter also creates the “urban canyon” problem (Figure 2.6): tall
buildings will significantly reduce the line-of-sight of the receiver thus making it more
difficult to receive the 4 simultaneous satellite signals that are required for determining
the user’s position. Moreover, even if 4 satellites are visible, being able to see more
satellites will improve the precision. Geo-engineering contexts may not always involve
urban canyon situations, but the typical user will be around tall structures (skyscrapper,
towers, bridges, etc). It is therefore sensible to assume that in such applications, the
line-of-sight of the GNSS receiver will almost always be partially occluded. Finally,
a construction site or urban environment is cluttered with different objects likely to
produce reflection of the GNSS signal thus increasing the multipath problems (and
reducing the precision).

It is worth emphasizing that GNSS receiver cannot be used indoor due to the in-
ability of the signal to efficiently penetrate solid matter. Even if an indoor receiver
would manage to measure a signal, the multipath problem would be so important that
it would be impossible to expect a precision higher than 50-100 meters [26]. The indoor
positioning problem and the pedestrian navigation problem (i.e. tracking a pedestrian
in a urban environment, going in and out of buildings without losing the ability to
retrieve its position) depend on alternative solutions to standard GNSS. These will
presented next.

33

Figure 2.6 – Illustration of the GNSS urban canyon problem. As the GNSS signal is

unable to penetrate matter, tall buildings greatly reduce the line of sight of the receiver

and it therefore becomes more difficult to get the 4 simultaneous satellite signals that are

required for determining the receiver position (source: http://goo.gl/M66ap).

2.3.1.2 Indoor positioning and pedestrian navigation

There are some alternative solutions to GNSS receivers for positioning in urban context
which could also be considered for indoor positioning and pedestrian navigation: ultra-
wideband (UWB), indoor messaging system (IMES), high sensitivity GPS (HSGPS)
and GPS-repeaters.

UWB Chiu and O’Keefe [27] propose a relatively formal definition of UWB and a
list of benefits:

UWB pulses are very short, ranging from a few tens of picoseconds to a
few nanoseconds and usually last only a few cycles of an RF carrier wave.
Since the pulses are short, the energy is spread across a large bandwidth
and produces a low power density.

[. . .]
UWB offers the following benefits:

1. With power spread over large bandwidth, frequency selective fading
from materials/multipath is mitigated;

2. There are minimal multipath cancellation effects;

3. Low energy density gives minimal interference to nearby systems and
minimal RF health hazards;

34

4. For ranging, there is very fine time resolution for precise distance mea-
surement.

UWB-based tracking can achieve precisions of a few decimeters [28, 29].

In a mobile AR context, UWB positioning have a high potential in terms of achievable
precision. The fact that it can still provides decimetric precision in cluttered environ-
ments (e.g. building sites) is also an important asset. However, it is still based on
trilateration and it therefore requires the setup and calibration of an infrastructure,
even if temporary, of at least four emitters in order to derive a unique position.

IMES IMES is a technology that is at an early stage of development. The objective
is to offer a seamless tracking solution. A user could rely on a GNSS receiver outdoor
and, when entering a building, use the same receiver to keep the tracking indoor. IMES
aims at developing an indoor infrastructure (a network of emitters) that can override
the GNSS signals when the user enters in a building. The signal sent from IMES would
not contain time measurements (as it is the case with the original GNSS signals), but
would instead contain the position of the nearest emitters.

Dempster [30] and Forssell [31] both propose an exhaustive list of pros and cons of
this technology. Among them, the ones that requires consideration for a mobile AR
system are presented below:

• Pros:

– Good reliability

– More precise than Assisted-GPS12, which is the currently used technology

• Cons:

– Requires an important infrastructure. To have a decent coverage, emitters
needs to be installed at 20-30 meters from each other.

– Because it is the location of the emitter that is broadcasted, high precision
would require the installation of numerous emitters.

– Precision becomes dependent of the calibration that has been done upon the
installation of the emitters.

12Assisted GPS (A-GPS) is a support infrastructure that enable a receiver to access the satellites’

information faster and more reliably in poor reception conditions. For example, in cities, the cellular

network can be used for this purpose. A-GPS does not enable an higher precision than standard GPS;

it only enables to use GNSS signals in very poor reception conditions.

35

HSGPS HSGPS aims at reenforcing the GNSS signal strength after it has been atten-
uated and degraded when passing through solid matter. It does so by integrating the
signal over a given length of time. For example, integrating the signal over 20 ms allow
for an increase of 10 dB in the signal’s strength. It allows the use of GNSS receiver
even under heavy occlusion (e.g. in a forest or inside a building). As its name implies,
this tracking solution does not aim to be more precise than traditional GNSS solutions,
but instead to allow a receiver to be more sensitive (and therefore to be able to derive a
position measurement) to degraded signals in traditionally difficult location for GNSS
signals. Lachapelle [26] has shown that this type of receiver can achieve a precision
ranging from 15 to 50 meters in a forest and 45 meters inside a covered stadium.

GNSS repeaters GNSS repeaters consist of installing an additional infrastructure
that repeats the GNSS signals inside a building so that a receiver can determine its
location indoor. Jee [2] proposes the following description of the GNSS repeater system:

The key to using a GNSS repeater for positioning is a radio frequency (RF)
switching device. This device takes a single input (i.e., the live signals from
outdoors) and switches it among multiple re-radiation antennas, one at a
time. By means of this time domain multiplexing, receivers can sequentially
track GNSS signals from the multiple re-radiation antennas installed at
different locations without self-interference. With this switching among the
re-radiation antennas a change occurs in the signal retransmission path. The
change corresponds to the time difference of arrival (TDOA) between the
switched retransmission antennas and the user. Therefore, if we have four
retransmission antennas connected to the switching repeater, we can obtain
three TDOA measurements for three-dimensional positioning.

An example of a GNSS repeater setup is illustrated in Figure 2.7.

This technology presents some limitations. The most important one in a mobile AR
context is the overall precision that can be achieved: it will, at most, be similar to the
precision of a standard GNSS receiver. Moreover, since the signals are repeated indoor,
which is an environment much more prone to multipath problems, the overall precision
will often be lower than the precision of the outdoor antenna (1-10 meters).

36

Figure 2.7 – Illustration of GNSS repeater setup. The antenna on the roof of the

building receives the GNSS signal and rebroadcast it inside the building. ρsk represents

the geometric range between the k-th satellite and the reference antenna, lc0 represents

the cable length between the reference antenna and the switching repeater, lci represents

the cable length between the switching repeater and i-th re-radiation antenna and lri

represents the range between i-th re-radiation antenna and the receiver [2].

2.3.1.3 MEMS

MEMS stands for MicroElectroMechanical Systems which include, among others, gy-
roscopes, accelerometers and magnetometers. A gyroscope is a device used for mea-
suring orientation. It relies on the principles of angular momentum conservation. An
accelerometer measures the proper acceleration of the device. Multi-axis models are
available to detect the magnitude as well as the direction of the proper acceleration
(including gravity). An accelerometer can also be used to sense orientation since it can
be deduced from multiple readings of the acceleration’s direction (because direction
of weight changes when an object rotates). A magnetometer is used to measure the
strength and the direction of a magnetic field. Vector magnetometers have the capabil-
ity to measure the component of a magnetic field in a particular direction, thus allowing
to measure the orientation of the device.

Some orientation sensing technologies, such as the XSens MTx13 (Figure 2.8), uses
a combination of gyroscopes and magnetometers. The orientation is computed in an
“absolute” manner, that is, the reference frame for each measurements is always the
same (no relative measurements). A magnetometer is used to measure the direction of
the magnetic north in order to ensure stability. If the device includes accelerometers,

13http://www.xsens.com/en/general/mtx

37

Figure 2.8 – The MTx orientation sensor from XSens (source: http://goo.gl/9OjiQ).

the position can also be calculated but only in a relative manner. This is achieved by
estimating the device displacement in 3D space based on the variations of acceleration
between two given positions. This problem is named dead reckoning.

The accuracy and the refresh rate of these devices are relatively high (≈ ±1◦ at
120 Hz in the case of the XSens MTx14), making them very robust and reliable systems,
even in difficult contexts like very rapid motions. However, they are very sensitive to
magnetic interferences and, as they are relative measurement tools (mainly applies for
accelerometers), they are also very likely to drift over time; the longer the tracking
system relies only on this hardware and the larger the drift is (as it accumulates over
time).

2.3.2 Active solutions

Active tracking solutions aim at recognizing the device’s surroundings in relation to a
previously known or learned environment in order to determine its current position and
orientation. The recognition is done based on a sensor that can capture the environ-
ment which is then interpreted. The most common way to capture the environment
is by using a video camera. Other means include LiDAR15, sonar, IR16, etc. In this
study, only video-based recording of the environment is considered given the mobile
AR context and related usage of video cameras in the current outdoor solutions (see
Section 2.2). When dealing with images or video sequences, the general approach to
conduct scene interpretation (required by active tracking solutions) is to rely on com-

14See http://www.xsens.com/en/general/mtx for complete specifications.
15LiDAR: Light Detection And Ranging
16IR: Infrared

38

Figure 2.9 – (left)Typical symbol used by the Studierstube library [3] and (right) an

example where multiple markers are used to track the position of a device inside a room

(source: (left): http://goo.gl/FE7W6).

puter vision algorithms. Computer vision (CV) is “a set of computational techniques
aimed at estimating or making explicit the geometric and dynamic properties of the
3-D world from digital images” [32].

The following sections will present the various CV methods generally used for track-
ing purposes.

2.3.2.1 Fiducial markers

Fiducial markers are a technology that enables a full 6 DOF tracking solution relying
solely on CV algorithms. It consists of visually distinctive markers (Figure 2.9(left))
which are affixed in the environment. Their size and position in the environment must
be known by the system beforehand; if several markers are used to track a same object
(or environment) (Figure 2.9(right)) simultaneously, they must be calibrated and their
relative position must also be known by the system.

The tracking consists in retrieving the pose of the camera in relation to the marker(s)’
coordinate system (Figure 2.10). The method is explained in details by Kato and
Billinghurst [4], but here is an overview of the algorithm:

1. Find the shape of the marker in the image;

39

Figure 2.10 – Finding the pose of the camera consists of finding the transformation

matrix between the camera’s coordinate system and the marker’s coordinate system.

(XC ,YC ,ZC) are the camera’s coordinates, (xC ,yC) are the camera screen’s corrdinates

and (Xm,Ym,Zm) are the marker’s coordinates. (source: [4])

2. Identify the marker using template matching;

3. Recover pose of the marker by analyzing the projection of the marker’s edge in
the image.

This technology is very easy to use (thanks to the development of libraries like
ARToolKit17 and Studierstube18). However, it has some constraints:

• The markers need to be installed in the environment;

• The markers need to be calibrated (the system must know exactly the location of
each marker in the environment);

• In most marker libraries (e.g. ARToolKit), a marker must be entirely seen into
the camera’s field-of-view for the tracking to be effective (marker-based systems
show very poor robustness to occlusion). More recently, marker libraries based
on NFT (Section 2.3.2.2) show more robustness to partial occlusions;

• The marker detection step is sensitive to changes in environment (light conditions
and shadows);

• Most implementations show relatively important jitter19 and therefore, lack of

17http://www.hitl.washington.edu/artoolkit/
18http://studierstube.icg.tugraz.at/main.php
19Jitter: slight irregular movement, variation, or unsteadiness, especially in an electrical signal or

electronic device [33].

40

accuracy for small number of markers20.

In the context of mobile AR in unprepared environments, fiducial markers technology
presents a major drawback: the marker needs to be affixed in the environment prior to
using the system. The problem is worsen when a 360◦ coverage is required: an important
number of markers need to be installed. In addition, it is required to carefully calibrate
each marker. Finally, if the user wants to walk farther away or closer to the structures,
there need to be markers of different size set up in the environment to ensure that
at least one marker will be visible in the camera’s FOV at all time, and that its size
enables the camera to view it large enough to calculate a position out of it.

2.3.2.2 Natural Features Tracking

Natural Features Tracking (NFT) is a specific field of research in computer vision. It
consists of finding, in an image, points that have high discriminative value (corners,
strong gradients, etc.). These points and their surroundings are then extracted and
analyzed to compute descriptors that are invariant to a range of factors (illumination
changes, rotation, scaling, minor changes in point-of-view, etc.). Many solutions have
been developed using this principle such as the Features from Accelerated Segment
Test corner detector (FAST [34]), Scale-Invariant Feature Transform (SIFT [35]) and
Speeded-Up Robust Features (SURF [36]). These solutions have proven to be really
robust, even in varying outdoor conditions. Moreover, even if this type of technology
can be computationally expensive, many implementations of these solutions have been
optimized to be able to run in real-time (under certain conditions of resolution and
minimal hardware performance). It is interesting to note that when using a tracking
approach based on natural features, most of the time the precision is expressed in pixels

instead of meters21.

NFT can be used in different ways to determine the user’s position and orientation.
The next subsections presents the three main methods usually exploited in the AR field,
namely: optical flow; SLAM; panorama.

Optical Flow Optical flow is “the distribution of apparent velocities of movement of
brightness patterns in an image” [37]. In a tracking context, this technique can be used

20Increasing the number of markers yields an increased tracking stability; however, the installation

and calibration processes get tedious and problematic rather quickly as the number of marker increases.
21More in-depth information about the implication of the accuracy representation is provided in

Section 2.1.

41

Figure 2.11 – Example of optical flow. The red crosses represent the location of the image

features in the last video frame and the green crosses are the image features identified in

the current frame. A link between two crosses representing the movement vector is drawn

between two corresponding features. Optical flow consists of analyzing the movement

vector field created between two frames (source: http://goo.gl/CsMC2).

to deduce the displacement (i.e. position and orientation) of the camera between two
(successive) images by tracking corresponding natural features on each image. When
using a video camera, this procedure is applied between two consecutive frames. This
tracking solution provides relative measurements. It cannot compute an absolute po-
sition and orientation because it only accumulates the various displacements since the
initialization of the process. Figure 2.11 shows an example of such tracking in real time.

Optical flow is a solution that is easy to implement if only the 3 DOF related to
orientation need to be tracked. Displacements of pixels on screen can easily be converted
to angular values given a basic knowledge of the camera’s field-of-view. Optical flow
can also be used as a complete 6 DOF tracking solution, but it then requires complex
models to evaluate the change in depth (when the user in moving along the “Z” axis
in his local reference frame – or going “forward”). In order to achieve this estimation
with precision, a fine evaluation of the scale change of the objects is required. This can
be a problem when the camera gets too far or too close to these objects. Additional
limitations inherent to the optical flow approach are the following:

• Since optical flow methods provide only measurements in relation to the user’s
initial position and orientation, absolute measurements become impossible as soon
as the tracking continuity is lost (i.e. one or more pairs of frames fail to return a
displacement measurement).

• Optical flow methods display very poor resilience to occlusions or moving ob-

42

jects [38]; according to the moving object’s size, the computer vision approach
may interpret the image contents as if the user was moving instead of just the
object.

• Optical flow methods display very poor robustness to rapid motions if the motion
blur is not estimated and corrected using usually complex methods (or used as a
cue to estimate the motion velocity – again using complex methods) [39]; if the
user moves too fast, blur will be observed in the images yielding errors in the
natural features’ position. As the tracking is relative to the initial position, these
types of errors then accumulate and create drift over time.

SLAM-based Approaches SLAM stands for Simultaneous Localization and Map-

ping and has first been introduced by Leonard and Durrant-Whyte in 1991 [40]. It
consists of creating a map of an unknown environment using different types of fea-
tures while at the same time keeping track of the current position and orientation (i.e.

6 DOF) of a robot (or user) in the said map. In fact, SLAM could be considered more
like a general framework as it consists of many parts which all can be implemented us-
ing different sub-algorithms (feature extraction, association, map building, localization,
etc.). It has been developed in the field of robotics but has recently showed great results
for visual tracking applied to augmented reality by offering a solution that is robust
to occlusions, view-point and illumination changes for small environments using recent
advances in NFT [41, 42, 43]. Such SLAM applications are also called monoSLAM
since they use a single camera and therefore rely only on monocular computer vision
algorithms (no stereo vision, sonar, laser or inertial captors as it is often found in the
robotic applications of SLAM).

This type of system presents great performances and stable tracking. They also
allow to derive the camera pose based on direct measurements of the environment,
either through a camera or other sensors (e.g. sonar, laser, etc.). However, it also
displays some drawbacks:

• SLAM requires to have devices able to directly measure (or derive indirectly using
calculations) the depth of the points they measure (stereo camera, laser, sonar,
vision, etc) [44].

• Large environments are more difficult to handle; SLAM systems are, for now, only
usable in small environments because of the number of features to maintain in
the map. Moreover, if the map is too big, the localization time in the said map
becomes too computationally expensive and prevent real-time usage [45].

43

• Estimation of the depth of the extracted features is not easy for a monoSLAM
system. It can be achieved using overlapping images of a scene taken from dif-
ferent points-of-view. However, this requires complex algorithms and important
computational power in order to sustain real-time performances [41, 42, 43].

In a mobile AR context, stereoscopic SLAM systems might not be envisioned as a
possible solution due to the hardware requirements. Indeed, the two cameras of a
stereoscopic SLAM need to be installed at a minimal distance from each other on the
mobile device in order to correctly triangulate the depth of the features. This does not
come standard on mobile devices (they come with at least a camera, often two, but
not located on the same side of the device – one in the back for capturing pictures and
videos and the one in the front mainly for video conferencing). MonoSLAM solutions
are more adapted to mobile AR, at least in terms of hardware requirements.

Panorama-based orientation tracking

Definition A panorama is:

A picture of a landscape or other scene, either arranged on the inside of
a cylindrical surface, to be viewed from a central position (also called cy-
clorama), or unrolled or unfolded and made to pass before the spectator,
so as to show the various parts in succession. Hence, more generally: any
pictorial representation of a panoramic view. [46]

An example of a panorama captured from a construction site is presented in Figure 2.12.
A panorama can be obtained in a single shot, using fish-eye lenses or using hyperbolic
mirrors. A panorama can also be obtained from multiple snapshots of a scene cover-
ing 360◦. These snapshots need to be assembled (i.e. stitching process) to build the
panorama. This is achieved manually or automatically using software like Hugin22 or
Microsoft Image Composite Editor (MS ICE)23.

Orientation tracking Orientation tracking based on panoramas can be consid-
ered as a very specific case of SLAM-based tracking (Section 2.3.2.2). Indeed, panorama-
based orientation tracking tries to emulate the map of the SLAM system by using a

22hugin.sourceforge.net
23http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE/

44

Figure 2.12 – Example of a panorama captured at a construction site

brute-force approach: the whole panorama becomes a map of natural features. When
a camera is at a fixed, static position, and its orientation is freely modified, the camera
“perceives” the world exactly as a panorama would.

Typically, the first step consists in building the panorama. The user, equipped
with a camera (the camera is either affixed on a hand-held device or connected to
the main panorama-based tracking system), changes his orientation. The system then
dynamically and incrementally builds the panorama while using NFT technology to
match the live camera image with the panorama (Figure 2.13). Once the panorama is
built, the user can change his orientation freely as the live view is continually compared
to the reference system (i.e. the panorama) in order to calculate the orientation of
the camera. The use of a panorama as a reference system allows the system to be
particularly robust to drift, which was one of the main problems with optical flow,
while maintaining its simplicity. Recent advances in portable computing hardware and
computer vision have enabled real-time reconstruction of panoramas using a live video
feed [47], getting conceptually closer to SLAM approaches where the map creation and
the localization take place concurrently [48].

One potential problem when using a panorama as a reference system is the scene’s
dynamism. As specified in Chapter 1, it is not possible to expect a static scene for
the application cases this work is interested in. However, even if the scene is dynamic,
the panorama remains a good reference system in most cases. Because the panorama
assembly step typically involves a large number of pictures (or a video feed) of the real
world scene, the dynamic elements can be cropped out relatively easily [49]. However,

45

Panorama

Live camera

Figure 2.13 – Example of panorama and live video correspondences

there are some cases that might prevent correct use of a panorama as a reference system
(e.g. if the dynamic objects move too slowly and are therefore captured at the same
location on multiple images, they will appear in the final panorama – cars stopping at
a red light).

The idea behind panorama-based orientation tracking is a compromise between op-
tical flow and SLAM solutions. Optical flow is simple to implement but lacks the
reference system of SLAM approaches. On the other hand, SLAM solutions, while
having an “absolute” reference system and being very robust to occlusions and rapid
motions, presents limitations for “large” environment and are too complex to integrate
and adapt given the scope of the project.

Projection types Panorama images, as it is the case with any geographical maps,
must be projected onto a surface. The choice of the projection surface must be done
carefully as not all projections are appropriate for all uses. This section will detail the
main projections that can be considered and their implication in a context of panorama-
based tracking.

46

Figure 2.14 – (left) The image stitching process consists in finding the spherical co-

ordinate of each image on a base sphere and (right) a grid representing the field of

view of an observer standing at its center (source: (left): http://goo.gl/vA6sd (right):

http://goo.gl/vWMgT).

A “perfect” or “complete” panorama can be seen as a (360◦ × 180◦) field of view. It
corresponds to a sphere (Figure 2.14 (right)) where the observer is standing at the exact
center. However, a panorama is also an image which is, by definition, a projection of
the reality onto a plane. The different projections therefore correspond to the different
ways that a sphere can be mapped to a planar representation. For each projection, a
projection of the meshed sphere represented in Figure 2.14 (right) will be presented in
order to highlight the different implications (deformations, FOV, etc) of the projection
along with an example of the projection applied to a real panorama.

In the context of this project, the panorama images are created through the reg-
istration (i.e. matching) and merging of a set of individual images (as captured by
standard mobile devices’ camera). This matching process tries to retrieve the spheri-
cal coordinate (roll,pitch,yaw) of each captured image on a sphere (Figure 2.14 (left)).
This result in a spherical, intermediate representation that needs to be projected on a
surface.

The first projection surface to consider is the plane. This projection is called rec-

tilinear projection. In theory, an infinite plane tangent to the sphere can be used to
project a FOV of only 180◦ . However, in practice, an horizontal viewing angle of 120◦

or more will be very difficult to project because, for a given viewing angle, the projection
surface on the plane expands the further away the projection angle is from the plane’s
normal (Figure 2.15). Moreover, it will induce strong distortions as the horizontal FOV
increases as it can be observed in Figure 2.16.

47

Figure 2.15 – Illustration of the projection surface expansion of a given viewing angle

θ the further away the projection angle is from the plane’s normal (represented by the

z-axis in the figure). O is the camera’s center of projection.

Figure 2.16 – (left) Illustration of the deformations generated by a rectilinear projection.

(right) Example of a panorama projected using the rectilinear projection. (source: (left):

http://goo.gl/sI5oO (right): http://goo.gl/jWRBp)

48

y

x

Figure 2.17 – Individual images are aligned properly and displayed in the 3D space. The

cylindrical projection plane is located behind the images. The green arrows represent the

coordinate system of the projection plane (the x axis is illustrated as a curve to highlight

the fact that this projection surface will be unrolled to yield a planar surface). (source:

Modified from http://goo.gl/9U3ep)

A way around the limitations of the rectilinear projection is to project the aligned
pictures on the surface of a cylinder, through cylindrical projection. The cylinder can
then be unrolled to yield a flat plane. The aligned pictures are displayed in a 3D space,
each located at a distance equivalent to their focal length f from the camera’s center
of perspective (3D point where the images were taken from – represented by a red ball
in Figure 2.17). The value of the pixel on the unrolled projection surface (i.e. the
cylinder) at position (x,y) can be retrieved by calculating the corresponding angular
position (φ,λ) (in radians) (Figure 2.18) in the aligned image space (Equations 2.5 and
2.6 are based on a cylinder radius of 1):

φ = tan−1 (y) (2.5)

λ = x + λ0 (2.6)

where λ0 is the longitude for x = 0 (this value is set by the creator of the map) [5].

Cylindrical projection is often used for landscape and architecture, as well as for

49

Figure 2.18 – A cylindrical projection of points on a unit sphere centered at O consists

of extending the line OS for each point S until it intersects a cylinder tangent to the

sphere at its equator at a corresponding point C. If the sphere is tangent to the cylinder

at longitude λ0, then a point on the sphere with latitude φ and longitude λ is mapped to

a point on the cylinder with height tan φ . [5]

geographical maps24. Projecting pixels on a cylinder will cause deformations (straight
lines will be bent). Also, proportions are not maintained when moving along the central
meridian of the cylinder (i.e. fixed λ and variable φ) (Figure 2.19). Finally, the cylin-
drical projection involves blind spots at the poles as illustrated in Figure 2.20. From
the definition above, a panorama is described as an image projected on a cylindrical

surface. While this is how panoramas are presented most of the time, this is not the
only projection that can be used. In the context of panorama as a constituent of a
tracking solution, the main other projection surface is the sphere.

The projection where images are projected onto the surface of a sphere is named
equirectangular projection. It maps meridians to equally spaced vertical straight lines,
and circles of latitude to evenly spread horizontal straight lines. Similarly to the cylin-
drical projection, the equirectangular projection introduces deformations (Figure 2.22).
The value of the pixel on the projection surface at position (x,y) on the unrolled sphere
can be retrieved by calculating the corresponding angular position (φ,λ) in the aligned
image space (Figure 2.21) (the Equations 2.7 and 2.8 are based on a sphere ray of 1):

φ = y (2.7)

24Maps ofen use the Mercator version which is mathematically more complex but allow to keep some

important properties for maps.

50

Figure 2.19 – (left) Illustration of the deformations generated by a cylindrical projection.

(right) Example of a panorama projected using the cylindrical projection. (source: (left):

http://goo.gl/gDyzq (right): http://goo.gl/cOHcW)

Figure 2.20 – Example of cylindrical projection. This illustration help to grasp the limi-

tation of this type of representation: deformations at the poles and blind spots (indicated

by a red “x”) (source: http://goo.gl/1V2v3).

51

y

x

Figure 2.21 – Individual images are aligned properly and displayed in the 3D space.

The spherical projection plane is located behind the images. The red arrows represent

the coordinate system of the projection plane (the (x,y) notation is used to highlight that

the projection surface will be unrolled to yield a planar surface). (source: Modified from

http://goo.gl/9U3ep)

λ = λ0 + x sec φ1 (2.8)

where λ0 is the longitude for x = 0 and where φ1 = 0◦ for the equirectangular
projection (this projection is a specific case of many cylindrical equidistant projection
for which the value of φ1 varies) [50].

The main advantage of the equirectangular projection over the cylindrical projection
is that there is no blind spots at the poles, thus allowing a complete 360◦ view.

2.4 Tracking Methods Compliant with Mobile AR

GIS for Geo-engineering

The previous sections described the constraints inherent to AR in a mobile, engineering
context, the different tracking solutions that can be used to assess the camera position-
ing and orientation and also the accuracy requirement for a system to be sustainable
in a architecture and geo-engineering context. Relying on this knowledge, the main
tracking approaches relevant to the present research work can now be selected.

52

Figure 2.22 – (left) Illustration of the deformations generated by an equirectangular

projection. (right) Example of a panorama projected using the equirectangular projection.

(source: (left): http://goo.gl/Uy1Da (right): http://goo.gl/oB0U8)

Tracking could be carried out using a passive or an active approach. The passive
approach comprised of GNSS, indoor positioning and MEMS. The active approach
comprised of computer vision-based methods relying on fiducial markers and NFT like
optical flow, SLAM-based approaches and panorama-based tracking. GNSS is not very
well suited for high accuracy tasks. Indeed, the signal used in this technology degrades
quickly when interacting with solid matter or when in presence of reflective materials
(multipath problem). These problems become very limiting especially when the sys-
tem evolves indoor or in very cluttered environments such as urban environments (e.g.

urban canyon) or construction sites. Alternatives to GNSS systems exist (indoor posi-
tioning), but most technologies belonging to this category require the installation of an
additional infrastructure (UWB, IMES or GNSS repeaters all require the setup of a net-
work of emitters). This is not acceptable in the context of this research since installing
additional infrastructure requires lengthy set-up and often precise calibration. For a
relatively mobile user evolving in a highly dynamic environment, this constraint would
hinder any extensive usage of the mobile AR GIS solution. Moreover, these systems
only provide the user’s position and any positioning system should be complemented
with a device to capture the orientation in order to achieve 6 DOF tracking. MEMS
are often used to measure device or users orientation. However, they mainly provide
relative measurements and thus, they are often prone to drift. Compasses can also be
used for this purpose, but the ones that comes with standard mobile devices such as
tablets are very sensible to magnetic interferences and are often limited both in terms
of the number of tracked DOF and of the precision they can achieve (even when using
computer vision techniques to improve the accuracy of the compass, Park and Park [51]
could only achieve a precision of 2.2◦).

Tracking solutions based on computer vision can also be used in mobile AR (active
approaches). Markers-based approaches are very easy to use in short-range applications
but are not adapted to the geo-engineering context of this project since they require

53

to be installed on site and calibrated before usage (as it is the case with some of
the previously mentioned passive solutions). Optical flow approach suffers from similar
limitation as MEMS devices, namely it is a relative orientation approach which is prone
to drift.

HSGPS, SLAM-based approaches and panorama-based tracking stem as tracking
solutions suitable for a geo-engineering context. Nonetheless, HSGPS, even though it
allows the reception of a GNSS signal in suboptimal conditions, does not offer very
high positioning precision. In fact, this technology aims at improving the reception of
the GNSS signal but does not offer any improvement in terms of precision compared
to traditional GNSS receiver (which precision range is 5-10 m). This is too low for
the requirements of most of the tasks occurring on a construction site as detailed in
Section 2.1. SLAM-based systems are a very promising tracking solution for mobile AR,
but they are very complex to develop, mainly because each step of the algorithm can
be implemented in many different ways and using many different sensors. Moreover,
they face problems when tackling tracking in large environments, due to the quickly
expanding map size. Panorama-based tracking, on the other hand, presents the same
central advantages of the SLAM-based approaches but is a simpler system. This how-
ever comes at the cost of a more constrained mobility, namely 3 DOF instead of 6 for
SLAM-based approaches.

Given the strengths and weaknesses of the tracking approaches, panorama-based
tracking was selected because it is the approach that presents the less critical limitations.
However, this force the adoption of a 3 DOF (orientation only) solution. Nevertheless,
given the time span of the M.Sc. project, it is a reasonable alternative because it allows
to reduce the overall complexity of the problem at hand. This scope is still aligned with
the objectives of this research. Solving the 3 DOF problem represents a first step in the
direction of high accuracy mobile AR GIS. Measurements on construction site are often
carried out using instruments mounted on tripods (ex. total station). A user requiring
accuracy and precision will rarely use a measuring device while changing its position very
often. Moreover, working with panorama images present strong advantages, namely:

• They are built using cheap and readily available devices: a standard camera and
a computer is all that is required;

• It enables the use of already existing data (i.e. externally produced panorama
images – Google StreetView or Earthmine for example);

• It enables the use of computer vision algorithms, which has the potential of achiev-
ing pixel or sub-pixel precision;

54

• For the visualization process:

– it enables the user to “pause” the reality by displaying the corresponding
portion of the panorama image instead of the live video feed if the scene’s
dynamism hinders the augmentation experience or the accuracy of the selec-
tion;

– it allows a user to remove occlusions (e.g. passersby, cars, etc.) through post-
processing or by merging newly captured images with the current panorama;

– it gives context by displaying a larger field-of-view compared to a standard
camera; this context is most useful if the visualization is done offline or
remotely because the user cannot see the surrounding.

Therefore, given the advantages of the panorama-based approach, its simplicity in com-
parison to SLAM approach, its robustness to drift in comparison to optical flow or
orientation trackers, its capability to potentially achieve pixel precision, it has been
selected as the tracking method to investigate in the proposed research project.

Chapter 3 will detail the panorama-based tracking introduced in Section 2.3.2.2. It
consists of using the panorama as a map of landmarks that will be used to calculate the
orientation of each frame of the video camera during the augmentation phase. Chapter 4
will present a revised version of this approach in an attempt to increase the accuracy and
precision of the overall system through the improvement of the initialization process
(the initialization task consists in finding the pose between the virtual elements and the
panorama).

Chapter 3

Orientation Tracker

Orientation Tracker (OT) is the first approach that was developed and investigated
to achieve high-accuracy AR in the context of the proposed project. It consists of a
panorama-based tracking system. A panorama is first created and the tracking phase
is then initiated. The tracking consists in retrieving the orientation of each live image
from the video feed (relative to the panorama) by matching it with the corresponding
area in the panorama. Therefore, as its name implies, it is a system aimed at calculating
the orientation of a given frame; thus, it is limited to 3 DOF. The user’s position is
assumed to be stable (i.e. no translation movements). If the device is actually hand-
held, the assumption that objects are far enough from the user so that a slight change
in position will not disturb the orientation values in a very noticeable manner [52] can
usually be made. However, if the user is doing a close-up task (e.g. layout), this cannot
be assumed and the user would be better off using a tripod or any stable installation.

This chapter presents the result of the experiments aimed at determining whether
this tracking approach is able to fulfill the accuracy requirements of geo-engineering and
architecture tasks. First, a review of the related work is provided, giving an overview of
where OT stands in relation to other panorama-based systems. Then, a more in-depth
view of the algorithm used by the Orientation Tracker system is proposed. Finally, the
results of the accuracy evaluation are presented and a review of the different elements
that influence the accuracy of this system is performed.

56

3.1 Related Work

Lately, panorama creation and tracking begins to spark interest in the AR community
and several systems using panorama images as the main mean of tracking have been
developed. The following paragraphs provide a review of the main work carried out on
that topic.

Envisor, a system developed by Diverdi et al. [52], is a solution that is conceptu-
ally close to Orientation Tracker. It aims at creating a panorama, in real-time and
incrementally, for which a tracking system is required. The tracking is based on a
hybrid approach: a combination of frame-to-frame tracking (i.e. optical flow – see Sec-
tion 2.3.2.2) and image descriptors (e.g. SURF or pixel patches) to add robustness.
The image descriptor extraction process is dynamic, creating and deleting features on
the fly, similar to SLAM-type systems. In a further improvement of Envisor, adding
relocalization upon tracking failure, Kim et al. [53] also provide an in-depth evaluation
of the accuracy of the overall system. In very controlled contexts, the system achieves
an accuracy ranging from 0.5◦ to 3◦. In a free motion setup, the accuracy mainly ranges
from 0.5◦ to 10◦, even when relying on the relocalization functionality.

The main difference between OT and Envisor concerns the targeted objective of the
systems: OT’s main objective is to determine, with high accuracy, the orientation of
the camera based on panorama tracking while Envisor aims at creating a panorama for
which a tracking system is required. Also, the orientation assessment is not the sole
purpose of OT, since, ultimately, it aims at using the panorama for the augmentation
of the physical environment instead of augmenting the live view (probably at the cost
of reduced accuracy as the scene is likely to have changed since the panorama has
been built – this remains to be tested). Finally, for simplicity purposes, OT does not
handle the computation and deletion of the image features on the fly as does Envisor.
Therefore, OT needs to project part of the panorama on smaller planes to generate
rectilinear projections that are comparable to the live feed images (see Section 3.2.1.2).

Another state-of-the art system proposed by Wagner et al. [54] aims to port a
tracking system similar to Envisor to mobile platforms. The panorama is projected
onto a cylindrical surface, thus creating “dead zones” at the top and bottom of the
panorama (Figure 2.19). It also introduces distortions that are proportional to the
distance from the horizon line. While it can operate at real-time speed, its accuracy
and precision remains in the range of the results presented by Envisor (i.e. about 4◦ in
horizontal direction).

57

These ranges of accuracy are not fulfilling the required accuracy calculated in Sec-
tion 2.1. To fulfill the accuracy constraint, the angular error tolerance should be in the
interval [0.01◦,0.20◦]. The proposed approach, OT, aims to satisfy this constraint. The
next section will describe the main components of this system.

3.2 Orientation Tracker System

Orientation Tracker is composed of two main components: Feature Map Construction

and Tracking. These two components do not work in parallel, unlike SLAM-based
solutions. The user must first build the feature map before initiating the tracking phase.
Figure 3.1 proposes an overview of OT workflow including the various steps executed
when operating the system. The following sub-sections provide in-depth information
about, respectively, the map construction and the tracking component.

3.2.1 Map Construction

Map Construction is the preliminary task to be completed before any orientation can
be computed by the system (tracking). Because OT is based on panorama images, the
first step consists in assembling the panorama. This panorama image is then processed
further to build a map of features used to conduct the tracking.

3.2.1.1 Panorama construction

Principles The panorama construction process is very important. As the panorama
image will be the reference system of OT, the accuracy of the computed orientation is
positively correlated to the overall quality1 of the panorama. That is, if the panorama
construction process introduces a spatial uncertainty (σx,σy) on the pixels, any spa-
tial information deduced from the panorama will have, assuming a perfect matching
algorithm, an uncertainty of (σx,σy).

1The term quality can be interpreted in different ways in this context (e.g. visually pleasing or

coherent (no pedestrian "cut in half" at the junction of two different images)), but it is here under-

stood as the property that states that each pixel is spatially accurate. For example, if the reality is

sampled at orientation (θW orld,φW orld), the corresponding information should be located at orientation

(θP ano,φP ano) in the panorama.

58

Figure 3.1 – Workflow diagram of the proposed Orientation Tracker system

59

The first step of the panorama construction process consists in capturing the pictures
of the environment. The camera is affixed to a tripod and pictures covering at least
a 360◦ field of view in the horizontal dimension are recorded (it is important to “close
the loop” when stitching all the images together). The pictures should have a minimal
overlap region of approximately 20% to 50% [55]. Increasing the overlap between the
pictures results in an improved stitching at the cost of additional processing time (since
there are more images to process).

Implementation In order to stitch all the images together, an external program
called Microsoft Image Composite Editor© (MS ICE) was used. Experiments were
also realized with AutoStitch© [56, 57], but MS ICE proved to be more adapted to the
context’s accuracy needs (MS ICE uses a fixed focal length while AutoStitch makes small
adjustments in order to make some pictures fit in the panorama – adjusting the focal
length introduces local deformations). MS ICE also allows the use of different projection
types and adjustments of the said projection of the panorama before rendering it to its
final form, providing additional flexibility. Figure 2.12 was rendered using MS ICE. To
have a complete representation of the environment without deformations at the poles,
the equirectangular (spheric) projection was used for rendering the panorama.

3.2.1.2 Feature extraction

Principles Once the visual representation of the map is built, features characterizing
the image content have to be computed. Such features allow associations to be carried
out between the live video feed images and the panorama, and thus matching each
image with its corresponding area in the panorama.

Feature extraction is a process that is not invariant to image distortions. For this
reason, if the flattened panorama is simply fed to the feature extraction algorithm,
the extracted features from the panorama will not be “compatible” with the features
extracted from the live camera feed (Figure 3.2 highlights the difference in term of
distortion between the flattened portion of the panorama in equirectangular projection
and the live input from the camera). In other words, two features extracted from the
same corresponding location on both the flattened panorama and the live image will
bear very little similarity and mismatches are very likely to occur. In order for the
features to be comparable, they must be extracted from a planar projection, as it is the
projection natively used by a camera. To meet this constraint, the projection sphere
of the panorama was discretized in a uniformly distributed number of planes (which

60

resolution is similar to the input camera’s resolution) (Figure 3.3)2.

Once the sphere is discretized, the panorama is reprojected on these smaller planes
(Figure 3.3). Feature extraction is applied on these planes and image features are stored.
The “feature map” consists of these image features. This feature map is not “global”;
each plane references only its own image features. Each plane’s position is stored as a
(θ,φ) position on the sphere.

Implementation The image descriptor that was used to represent image features is,
like the original Envisor system [52], Speeded-Up Robust Features (SURF) [36] technol-
ogy. Specifically, the implementation proposed by the OpenCV library3 was chosen
since all the other components of OT were already using OpenCV.

The process of discretizing the panorama into a number of planes required that the
said planes had to be positioned in an uniform manner on the surface of the sphere. For
this purpose, a solution based on physics formula for charge repulsion (inverse square
law) was used to diffuse random points in an uniform arrangement. An implementation
developed by Jonathan D. Lettvin4 was used.

The number of planes, their size and resolution are adjustable parameters of OT.
However, in practice, only two of them are of interest for the experiments presented in
this thesis: the number of planes and the plane size expressed as a ratio of the FOV of
the current camera5. According to our experiments, the number of planes must be high
enough to cover the entire surface of the panorama and the plane size must be a little
larger than the camera’s FOV (a ratio ranging from 1.2 to 1.4 provided good results

2While it may seems like discretizing the panorama into smaller planes comes down to using indi-

vidual images, using a panorama presents many advantages: the panorama creation process tend to

remove outliers that appear only on one image (in the image set used to assemble the panorama), it

greatly reduces the search space for matching against the live camera image by generating planes that

have a larger FOV than the one offered by the camera and it has also the ability to generate the planes

at any location on the sphere (this is useful if the current live image is located at the boundaries of

two images).
3http://opencv.willowgarage.com/wiki/
4The code is available at http://local.wasp.uwa.edu.au/~pbourke/geometry/spherepoints/
5Such representation of the plane size allows to automatically compute the correct resolution for any

given plane, reducing sources of error. In practice, it is possible to set the plane size and its resolution

independently, but in order to provide good results, they must be proportional to the corresponding

parameters of the live camera (the live camera feed will be compared to the panorama projection on

these planes).

61

Figure 3.2 – Difference between the (left) flattened spherical projection and the (right)

planar projection. The spherical projection does not keep the lines straight and distort

the image; it is therefore impossible to compare SURF features extracted from each image

respectively.

without affecting the performances too much when using between 20 and 30 planes6).
Having a plane size larger than the camera’s FOV allows more robustness when selecting
the best plane to be matched with the input camera image. An illustration of the
panorama coverage is proposed in Figure 3.4. Two panoramas are presented for which
the number of planes is equal but the plane size ratio is different.

3.2.2 Tracking Phase

Once the feature map has been built, the orientation tracking phase begins (see Fig-
ure 3.1 for the workflow of the tracking phase). First, a frame is captured from the live
video feed. The frame is then corrected for radial and tangential distortions7 before
applying the image feature extraction algorithm (SURF in this case). The features
are then compared to the features previously extracted on the different planes of the
map. The plane where the largest number of matches is found is selected. If the num-
ber of matches is sufficient (the minimum number of matches required to compute an

6As a rule of thumb, the plane size ratio should always be higher than 1.0 to ensure that a frame

captured by the camera can fit on one plane, but not too high in order to prevent any important

decrease in performance. The number of planes is then adapted to ensure a full coverage of the

equirectangular panorama.
7Radial distortions is caused by the camera’s optics. This has the effect of bending straight lines

into slight curves. Tangential distortions is caused by misalignment of the camera’s sensor with the

camera’s optics. This introduces slight skew in the image. To correct these distortions, the camera’s

distortion parameters must be determined through camera calibration. The image is then remapped

to correct the previously calculated distortions. [32]

62

Figure 3.3 – (left) An example of a discretized sphere. (right) An illustration of the

panorama reprojection process. The pixels of the generated panorama are reprojected

on the individual planes of the discretized sphere. (note: (left): It must be noted that in

OT’s specific case, the planes of the discretized sphere will all be the exact same size and

may overlap each other in some regions (unlike what is seen in the illustration)) (source:

(left): http://goo.gl/h5lKJ (right): http://goo.gl/IQFLR)

homography is 4), the homography is computed using RANSAC [58] for selecting the
subset of points that minimize the back-projection error. In this specific experiment,
algorithms available in OpenCV library were used to compute the homography. The
homography allows to determine the camera frame’s center on the plane. This position
is then reprojected on the virtual sphere (i.e. the panorama projection surface). This
position on the surface of the sphere represents the orientation of the camera in relation
to the panorama.

Optionally (not shown in the workflow diagram), a pose refinement feature is pro-
posed. This pose refinement technique is useful when the live camera image is located
at the junction of different planes. In this specific case, there may be enough features to
compute an homography using a given plane of the discretized sphere, but not enough
to make sure this homography is very accurate. The pose refinement principle consists
in using the best fitting plane, initially selected (cf. previous paragraph), to compute
an approximate homography and then using this first orientation to refine the result fur-
ther. A temporary plane, centered at the camera’s orientation (previously computed),
is created. The panorama is then reprojected on this plane resulting in a “synthetic”
image that is as similar as possible to the image captured from the live camera. SURF
features are extracted again on this new image and compared to the features extracted
from the live camera image. Finally, the homography is once again computed from the

63

Figure 3.4 – Example of plane coverage using an identical number of planes but a

different plane size ratio, respectively equal to (top) 1.0 and (bottom) 2.0

64

new set of matches.

3.3 System Evaluation

Sub-objective 3 aims at validating the potential of tracking approaches for mobile AR
GIS applied in an architecture and geo-engineering context. In order to carry out such
validation for OT approach, its accuracy (and indirectly, the precision8) had to be mea-
sured. OT’s accuracy assessment was carried out with two external measurements tools
used as ground-truth references: a MEMS-type orientation tracker from the company
XSens9 and a PTZ camera from the company Axis10.

The data sets involved in the accuracy assessment experiments consisted of two
components: a panorama (used to build the feature map) and a video. Both compo-
nents were recorded from the exact same location, using a tripod. The video consisted
of a sequence of frames captured using a camera setup on the tripod. The external
measurement tool measured an orientation value for each frame (information about the
setup will be provided below – Section 3.3.1.1). The experiments consisted in feeding
OT with the video sequence and in recording the orientation computed for each frame
of the video. Comparison of orientation values provided by OT and those measured
by the external measurement tool allowed assessing the accuracy performance of the
proposed orientation tracking solution.

3.3.1 Using a MEMS -type orientation tracker

3.3.1.1 Evaluation setup

To assess the accuracy of OT, the XSens MTx11, a 3DOF orientation tracker, was used.
This device has a static accuracy of 1◦ and a dynamic accuracy of 2◦RMS1213.

8As seen in Section 2.1.2, accuracy and precision are two distinct but intertwined concepts. However,

even if accuracy remains the principal focus of this research, accuracy without precision is to be avoided.
9www.xsens.com

10www.axis.com
11http://www.xsens.com/en/general/mtx
12RMS: Root Mean Square. It is a statistical measure of the magnitude of a varying quantity.
13It is worth noticing that, even if the MTx is less accurate than the required accuracy calculated

at Section 2.1, it was used primarily to validate OT and have an overview of what could be achieved

with this approach.

65

The web camera (a Logitech QuickCam for Notebooks Pro) and the MTx were setup
on the same platform (Figure 3.5) and for each frame captured by the camera, the orien-
tation value returned by the MTx was saved. To avoid extensive inter-sensor calibration,
the tripod’s rotational movement was locked in order to free only one axis (heading –
also called yaw (Figure 3.6)) and an absolute rotational representation (called Rodrigues
parameters[59]) was used. Using such representation, the rotation is expressed as a ro-
tation axis in 3D space (a unit 3D vector) and an angle of rotation14 (Figure 3.7). Given
the operational context where only one rotation axis is free on the tripod, the rotational
representation allows dismissing the vector’s orientation and keeping only the angular
value as the significant measurement for the subsequent comparison with the reference
data set15.

Tests were conducted in a controlled environment including only static components
(i.e. no moving objects; constant lighting). The panorama created for this test is shown
at Figure 3.8. The resolution of the camera was set to 320x240; this is quite low, but
is here justified by the hardware limitations of this project (Section 1.2): native video
resolution of the cameras that come equipped with mobile devices (such as smartphones
or tablets) are often of resolution of 320x240 or 640x480. OT’s internal panorama
representation was set to 20 planes with a plane size ratio (expressed as a ratio of the
FOV of camera) of 1.2 (see Section 3.2.1.2). The experiments consisted in rotating
slowly the platform supporting the camera and XSens sensor up to a specific angle
while pausing a few time (arbitrarily) along the way before bringing the platform back
to its starting position. This rotation process was repeated four times.

3.3.1.2 Results

The graphs representing the recorded data sets is shown in Figure 3.9 and 3.10. The
graphs show that the orientation values measured by OT and the XSens sensor respec-
tively are consistent and follow the same progression. However, some differences are
noticeable:

• Several obvious outliers are located near the peaks (frames ∼ [350,600], ∼ [1050,1150]
and ∼ [1300,1400]). These erratic values are related to OT only and they are not

14Rodrigues parameters can also be expressed using a compact form where only a 3D vector is used.

The vector’s norm then represents the angle of rotation.
15Keeping only one free axis on the tripod helps keeping the rotation comparison simple by removing

the need of error-prone calibration steps. The rotation axis can be oriented in any way, as long as the

rotation is kept on this single axis for the evaluation. It is therefore generic and suited for the accuracy

evaluation of OT.

66

Figure 3.5 – The evaluation setup using XSens’s MTx

Figure 3.6 – Illustration of the roll, pitch and yaw rotation axes using the airplane

example (source: http://goo.gl/bNNuO).

67

Figure 3.7 – A visualization of a rotation angle of θ by an Euler axis ê .

Figure 3.8 – Panorama captured in office to evaluate the accuracy of Orientation Tracker

using the MTx.

68

negligible. However, given the large discrepancy between these erroneous values
and the a priori relevant orientations, these outliers could be removed using, for
instance a Kalman filter [60, 61];

• The error amplitude does not seem constant throughout the graph. The first
peak (frames ∼ [150,800]), for example, shows an error range that evolves almost
linearly up to orientation discrepancy between OT and MTx of 0.17 rad (i.e. about
10◦). One hypothesis explaining this observation would be a bad calibration
between the camera and the MTx; indeed, as shown in Figure 3.5, the setup
has not been calibrated correctly since the camera’s center MTx’s center are not
located at equal distance from the center of rotation of the tripod’s head. This
would be sufficient to create a parallax error explaining the offset observed;

• When observing Figure 3.10 more closely, a small drift is observable at the be-
ginning of each plateau (caused by the pauses introduced in the rotation of the
platform – if the platform stops moving, the orientation values should remain con-
stant). While small in these observations, mainly because of the shortness of the
pauses, this drift could easily explain the variations of the error amplitude. To val-
idate this hypothesis, the MTx orientations was recorded for a very small number
of orientation variations. Results can be observed in Figure 3.11. These results
highlight the fact that the sensor experienced a strong drift in its orientation mea-
surements16. To validate such phenomenon was not due to a malfunctioning of
the device, the drift tests were conducted with another MTx sensor which yielded
similar results. Drift tests were also ran outdoor in order to move the sensor
away from potential magnetic fields in the experiment environment, but the same
observations were recorded (having no equipment to measure the strength of the
magnetic fields in the test environment, it was not possible to assess the impact
of the magnetic field). Since according to the specifications, the MTx is drift-free,
the support team at XSens was contacted. Unfortunately, they were not able
to identify the source of the drift, beside perhaps a bad initial calibration of the
internal MTx components.

These first results allowed to confirm that OT was indeed in working order; it was
able to track the orientation and the orientation values were coherent. However, the
MTx, that acted as our ground-truth measure for this experiment, showed important
drift problems preventing any quantification of the accuracy of the orientation values
returned by OT.

16This should not be observed since XSens claims that that this technology should be drift-free.

69

Figure 3.9 – Graphs representing the orientations provided by both the MTx and OT.

The top one represents the absolute difference, in degrees, between the orientation values

provided by both systems. The abscissa represents the number of frame captured and

processed by the system and the ordinate is the absolute difference, in degrees, between

the orientation values returned by the MTx and OT. The bottom graph shows the actual,

raw orientation, in radians, of each system. An enlargement of this graph is proposed at

Figure 3.10.

70

Figure 3.10 – Enlargement of the captured orientations by the MTx and OT shown at

the bottom of Figure 3.9. The abscissa represents the number of frame captured and

processed by the system and the ordinate is the returned orientation value, expressed in

radians, of each system.

71

Figure 3.11 – Graph showing the drift of the MTx measurement, observed on a recorded

session involving a limited number of orientation changes. The abscissa represents the

number of successive orientation measurements done with the MTx. The ordinate repre-

sents an angular value, expressed in radians. The blue, red and green lines each represents

one axis of rotation of the MTx (Roll, Pitch, Yaw). The purple distribution (theta) rep-

resents the absolute value of the rotation angle (using only the angular component of the

Rodrigues parameter – see Sub-section 3.3.1.1). The drift zone are particularly obvious

at ~3500 and ~5500 on the abscissa axis (highlighted by the two red squares).

72

3.3.2 Using the “Pan-Tilt” camera

The second set of tests was carried out using a PTZ (Pan-Tilt-Zoom) camera. Such
a camera is often used for surveillance and security purposes as it can be controlled
remotely. Typically, hardware consists of a camera mounted on a support which can be
rotated through given axes (the PTZ camera can rotate about two different axes – pan
and tilt17) using dedicated motors. Commands and requests can be sent to the camera
via a LAN18 connection.

The Axis 213 PTZ19 (Figure 3.12) manufactured by the company Axis was used in
this experiment. The model specifications involved a precision of ±0.23◦20 in both rela-
tive and absolute displacements which fulfilled the accuracy and precision requirements
for OT performance assessment.

However, it stemmed from the preliminary tests that the PTZ camera motors were
indeed precise, but not accurate. Also, image deformations in the range of several pixels
were observed (up to 7 pixels in some images). The main hypothesis explaining this
behavior would be that the CCD was slightly off-center relative to the camera’s rotation
center.

Consequently, the PTZ camera was not considered reliable and accurate enough to
be used as a ground-truth measurement tool for testing OT’s accuracy and precision.

3.3.3 Stability test

A stability test was conducted to further explore the capabilities of panorama-based
tracking. A stability test does not aim at measuring the accuracy, but instead is more
focused on the precision. Given that ground-truth measurements have proven to be
difficult to get, precision results can be obtained more easily and can help in assessing
the limits of the system. Indeed, as OT is a real-time system, measures are not accu-
mulated over time; this prevents the system to be statistically accurate. OT therefore
needs to be accurate for each of its measurements. Precision then becomes a good
measure quantifying the potential of OT to be accurate. In other words, if OT has a
precision below its required accuracy, it means this solution will not meet the accuracy

17Corresponding respectively to yaw and pitch angles of Figure 3.6.
18LAN: Local Area Network
19http://www.axis.com/products/cam_213/
20Specified by a technical support person of the Axis company in an email communication.

73

Figure 3.12 – The “pan-tilt” camera Axis 213 PTZ (source: http://goo.gl/CQ5vM).

Figure 3.13 – Panorama of the room used to run the stability test of OT

requirements of a mobile AR GIS dedicated to geo-engineering21.

The stability test consisted in building a panorama (Figure 3.13) of an experimenta-
tion lab, involving series of surveyed targets on the walls, and then capturing a sequence
of 200 frames from the exact same position, without moving the camera at all. The ex-
periment was ran with input videos at two different resolutions (320x240 and 640x480)
in order to assess if higher resolution resulted in important error reduction. Ideally, the
computed orientation values should be perfectly stable and show little to no variation.
Also, the variations should be lower than the precision required for OT; if OT cannot
retrieve its orientation in a reproducible manner when presented with a video consist-
ing of frames recorded from the exact same point of view, it is very unlikely that the
precision would improve when moving the camera around.

21See Section 2.1.2 for a reminder of the difference between accuracy and precision.

74

3.3.3.1 Results

The stability results are synthesized in Table 3.1. The metric used to assess OT’s
stability is the standard deviation (stdev). The number and type of error made by OT
during the tests are also included in Table 3.1. When OT was unable to determine the
orientation of a frame, the error was considered as a “true negative”. Such error, while
important to minimize, is not critical as the system can make the correct diagnosis about
the value it provides; OT can therefore reject it on its own. A “false positive” error,
on the other hand, is far more problematic since a completely false value is considered
as a correct orientation. The standard deviation calculated without the false positive
errors that were relatively obvious (noted “stdev*”) is also included in Table 3.1. This
computation was carried out by considering that these false positive values would be
easy to remove with a filtering algorithm. In the proposed context, any values greater
than 60◦ (the average is around 51◦) are considered as outliers.

The first stability experiments demonstrated high variability. Indeed, the standard
deviation of the measurements was 0.543◦, even when the outliers were manually re-
moved. One hypothesis justifying this variability was the presence of noise generally
included in all video capturing devices. To assess this hypothesis, the same experiments
were conducted again while applying simple Gaussian filters of varying sizes (i.e. none –
also noted as 1x1 –, 3x3 and 5x5) to both the panorama and the input frames extracted
from the captured video. Next section provides a detailed analysis of Table 3.1 results.

3.3.3.2 Analysis

It stems from the results in Table 3.1 that the number of errors can be very high, reach-
ing 71 in the worst case22, especially when using video images at the lower resolution
setting. The highest error rates occur when Gaussian filters applied on the panorama
are of larger size than the ones applied on the video (in which case the panorama is
more blurred than the input video). The panorama is therefore more blurred than the
input video. Indeed, filtering the panorama with larger Gaussian filter means removing
possible smaller features. Thus, only large features are detected and included in the
map. Considering that the input video is not as blurred, many lower scale features, that
can be noise in the image, are extracted. However, they will have no possible match
in the map. This greatly increases the possibility for mismatches to occur. Also, error
rate is two to three time higher with the lower resolution input video. Indeed, Gaus-
sian filter impact is stronger on the lower resolution images. A 3x3 filter has halved

22Third row: 67 true negative errors and 4 false positive errors.

75

Resolution Video blur Pano blur Avg Avg* Stdev Stdev* True negative False positive

320x240 1x1 1x1 52.117 51.645 6.635 0.543 4 1
320x240 1x1 3x3 51.467 51.467 0.466 0.466 62 0
320x240 1x1 5x5 52.623 51.556 8.740 0.554 67 4
320x240 3x3 1x1 53.063 51.651 12.226 0.321 1 3
320x240 3x3 3x3 51.536 51.536 0.374 0.374 8 0
320x240 3x3 5x5 51.715 51.715 0.411 0.411 0 0
320x240 5x5 1x1 54.233 51.632 14.887 1.319 12 6
320x240 5x5 3x3 51.527 51.527 0.427 0.427 31 0
320x240 5x5 5x5 51.753 51.753 0.522 0.522 20 0
640x480 1x1 1x1 52.003 52.003 0.565 0.565 14 0
640x480 1x1 3x3 52.115 52.115 0.526 0.526 14 0
640x480 1x1 5x5 51.886 51.886 0.699 0.699 2 0
640x480 3x3 1x1 51.848 51.848 0.486 0.486 0 0
640x480 3x3 3x3 52.028 52.028 0.413 0.413 0 0
640x480 3x3 5x5 51.857 51.857 0.567 0.567 1 0
640x480 5x5 1x1 51.697 51.697 0.541 0.541 5 0
640x480 5x5 3x3 52.009 52.009 0.424 0.424 0 0
640x480 5x5 5x5 52.083 52.083 0.526 0.526 0 0

Table 3.1 – Results from the stability test using a completely still video consisting of

200 frames. OT implementation relies on the SURF descriptors (from points identified

by the SURF detector) computed using the library OpenCV. Results are expressed in

degrees. The Resolution is the resolution of the video, Video blur and Pano blur are the

size of the Gaussian filter applied to the video and panorama respectively, Avg and Avg*

are the average orientation values, with and without outliers respectively, provided by

OT and Stdev and Stdev* are the standard deviation of the orientation values, with and

without outliers respectively, provided by OT. Finally, there are the True negative and

False positive count.

76

the smoothing effect on a 640x480 image than on a 320x240 image. Higher resolution
images also have four times more pixels, resulting in potentially more features. Higher
number of features raises the probability for a correct match to be identified.

As regard the standard deviation (with outlier rejection – Stdev*) metric, some
variations, in the range of 0.321◦ to 1.319◦, can be noticed. They appear to be a function
of the blur applied to the panorama and the input video. From the data collected, it
is hard to identify a causality effect between the size of the Gaussian filter (i.e. the
ratio of blur) and the best performance (lowest values of “Stdev*”). Even so, looking
only at the standard deviation values, the “best” Gaussian filter configuration yields a
standard deviation of 0.321◦. This is higher than the minimal accuracy and precision
requirements calculated in Section 2.1.4 (the application requiring the lowest accuracy
still has a threshold value of 0.239◦). It means that, with a perfectly stable camera, with
only the noise of the CCD altering the input image, and in an ideal environment (enough
features, no occlusions, good illumination of the scene), the orientation computed by
OT is varying by almost 0.5◦. This is too high for this project’s requirements.

These high variations highlight the fact that there are still error sources that need
to be controlled. The next section will provide a review of the various sources of errors
influencing the stability.

3.4 Error Sources

Orientation Tracker proved to be a tracking system that works but that presents some
stability issues (Section 3.3.3). These results means that some error sources were not
accounted for when designing the system and that these error sources influenced the
results negatively. This section provides a list of the error sources that could have
influenced the results.

3.4.1 SURF implementation

The SURF implementation used in the proposed project could be the first source of
OT relative instability. Indeed, as reported by Gossow et al. [62], there seems to be
a performance variability between the different SURF implementations that cannot be
easily dismissed. Furthermore, “performance” does not only include the processing
speed, but also the matching rate. To test this hypothesis, the stability test detailed at

77

Resolution Video blur Pano blur Avg Avg* Stdev Stdev* True negative False positive

320x240 1x1 1x1 52.281 51.745 7.603 0.517 0 1
320x240 1x1 3x3 51.851 51.851 0.516 0.516 0 0
320x240 1x1 5x5 52.035 52.035 0.468 0.468 0 0
320x240 3x3 1x1 52.219 52.219 0.729 0.729 0 0
320x240 3x3 3x3 52.077 52.077 0.743 0.743 0 0
320x240 3x3 5x5 51.924 51.924 0.707 0.707 0 0
320x240 5x5 1x1 57.096 51.704 22.770 0.683 2 11
320x240 5x5 3x3 51.856 51.489 5.190 0.476 2 1
320x240 5x5 5x5 51.442 51.442 0.440 0.440 3 0
640x480 1x1 1x1 52.315 51.714 7.208 0.573 9 2
640x480 1x1 3x3 54.156 51.160 13.739 0.725 1 11
640x480 1x1 5x5 53.281 51.538 12.305 0.599 9 5
640x480 3x3 1x1 51.860 51.860 0.575 0.575 9 0
640x480 3x3 3x3 51.657 51.414 3.481 0.595 0 1
640x480 3x3 5x5 51.773 51.773 0.588 0.588 0 0
640x480 5x5 1x1 51.599 51.438 2.265 0.247 5 1
640x480 5x5 3x3 51.395 51.395 0.362 0.362 0 0
640x480 5x5 5x5 51.534 51.534 0.374 0.374 0 0

Table 3.2 – Results from the stability test using a completely still video consisting of

200 frames. OT implementation relies on the SURF descriptors (from points identified

by the SURF detector) computed using the library OpenSURF. Results are expressed in

degrees. The Resolution is the resolution of the video, Video blur and Pano blur are the

size of the Gaussian filter applied to the video and panorama respectively, Avg and Avg*

are the average orientation values, with and without outliers respectively, provided by

OT and Stdev and Stdev* are the standard deviation of the orientation values, with and

without outliers respectively, provided by OT. Finally, there are the True negative and

False positive count.

Section 3.3.3 (which relied on the OpenCV implementation) were conducted again using
the OpenSURF library [7]. While, according to OpenSURF author’s, less optimized
for real-time performance, the implementation is compliant with the original SURF
algorithm as proposed by Bay et al. [36]. The stability results are displayed in Table 3.2.

When comparing these results with the ones in Table 3.1, the main observation con-
cerns the error rate. OpenSURF performed much better in that standpoint (decreasing
the numbers of error by 100% in many cases). Indeed, OpenSURF seems much more
consistent than the implementation proposed by OpenCV23. This tends to confirm the
results found in Gossow et al. [62] study: different SURF implementations yield different
results and the difference is hardly negligible.

This variability between the different implementations of the same technology def-

23That is, at the time of this writting (OpenCV version 2.1.0).

78

initely is an uncertainty factor in the proposed tracking system. Gossow et al. found
that the latest version of OpenSURF yields better results than other implementations.
Nevertheless, stability score of OT using OpenSURF still is insufficient (a standard
deviation averaging 0.5◦), showing that this is not the only error source.

3.4.2 Accuracy of the point of interest detector

Performing image matching or object recognition based on high level feature descriptors
like SURF or SIFT, generally consists of two main operations: detection of points
of interest and description of these points using high level features. Assuming that
incorrect matches between the features can be filtered out, any inaccuracies in the
position and/or orientation computed by a NFT solution should be related to the
detection process. Indeed, when a match is found between two features, the location

of the features in the images are used to compute the transformation involved in the
determination of the position and/or orientation of a frame in relation to its reference
system (as for OT, this transformation is an homography and the reference system is
a panorama). The feature location is determined solely by the detection algorithm.
Therefore, to increase the accuracy of a solution based on natural features in image (as
is OT), efforts should be focused on the point of interest detector.

The main criteria used in the literature to evaluate the performance of a detector is
the repeatability. This criteria needs to be investigated in further details to determine
its relationship with the accuracy of the currently evaluated detection algorithm.

3.4.2.1 Repeatability

Given two images representing, in part or in whole, the same scene under different
recording conditions, a detector can be qualified as “good” if it can identify the same
points on the two images in a reliable and accurate manner. In order to measure
this performance, Schmid et al. [6] first proposed the repeatability rate as a metric.
This metric was later used as the main performance criterion in the most widely used
benchmark for detector evaluation, which was proposed by Mikolajczyk et al. [63]. This
benchmark was also used by Evans [7] when evaluating the OpenSURF library.

Schmid et al. [6] defines the repeatability as follow:

Repeatability signifies that detection is independent of changes in the

79

Figure 3.14 – The point x1 and xi are projections of the 3D point X into images I1 and

Ii: x1 = P1X and xi = PiX where P1 and Pi are the projection matrices. A detected

point x1 is repeated if xi is detected as well. It is ǫ-repeated if a point is detected in the

ǫ-neighborhood of xi. In the context of planar scenes the point x1and xi are related by

the homography H1i. (source: [6])

imaging conditions, i.e. the parameters of the camera, its position relative
to the scene, and the illumination conditions. 3D points detected in one
image should also be detected at approximately corresponding positions in
subsequent ones.

[...]
Repeatability rate is defined as the number of points repeated between

two images with respect to the total number of detected points.

The repeatability concept is illustrated in Figure 3.14. Given a 3D point X that is
projected on two different images I1 and Ii using projection matrices P1 and Pi, resulting
in projected points x1 = P1X and xi = PiX. In a planar scene, the unique relation that
exist between x1 and xi can be represented by an homography H1i so that xi = H1ix1.
Given the error involved in the projection process, an error range ǫ need to be included
in the equation. Therefore, for x1 to be correctly repeated, xi must be detected in
image Ii as well. It is ǫ-repeated if a point is detected in the ǫ-neighborhood of xi.

In terms of accuracy, the concept of ǫ-repeatability is fundamental as ǫ is the thresh-
old value that defines what is a repeated point and what is not. Therefore, repeatability
rate is bound to increase as ǫ increases. However, that also means that a higher re-

peatability rate does not imply a higher accuracy of the detected points.

80

3.4.2.2 OpenSURF performance evaluation

When he proposed the OpenSURF library, Evans [7] used the image detector bench-
mark proposed by Mikolajczyk et al. [63] to evaluate his library (Bay et al. [36] used the
same benchmark to test the SURF algorithm when it was first introduced). The results
are presented in Figure 3.15 and Figure 3.16 (as OT is a system that will mainly deals
with rotation, scaling and light changes – viewpoint changes are not considered as it is
taken for granted that the user is static or that he uses a tripod – only these results are
presented). It can be observed that OpenSURF performs relatively well, substaining a
repeatability rate higher than 50% for all the studied conditions. Sustaining a repeata-
bility rate of 50% is critical; below that threshold, no statistical method can distinguish
inliers from outliers.

The problem with the results provided by the benchmark is that it uses an error
range value of ǫ = 1.5 pixels . This means that each image feature that is matched (and
by assuming a 100% matching rate for the description and matching algorithm), the
position of the said feature is accurate up to 1.5 pixels, most of the time. This threshold
value is too high for the accuracy requirements of this research as most of the task
compliant with an AR GIS require an accuracy higher than 1 pixel. A smaller threshold
should therefore be used (0.2 < ǫ < 1 pixel as determined in Section 2.1). Tests should
be conducted again with the Mikolajczyk et al. [63] data set with a smaller threshold.
Schmid et al. [6] have already run tests using an error range value of ǫ = 0.5 pixel, but at
the time of publication of Schmid et al.’s work, modern detectors such as Fast-Hessian or
FAST [34], two detectors commonly used in conjunction with the SURF descriptor for
the point-of-interest detection step24, were not developed. Supplementary tests should
include these new detectors to assess if they improve former detectors such as the
Harris corner detector [64] which, while presenting the best overall results in Schmid’s
study, showed a repeatability rate below 50% with a threshold ǫ equal to 0.5 pixel.
That being said, it is not very likely that the SURF detector would provide a good
enough accuracy. Indeed, Remondino [65] showed that both Harris corner detector and
the Hessian operator (SURF uses an approximation of the Hessian matrix, mainly for
performance purposes) consistently returned a shift of 1 pixel in position.

24Fast-Hessian is actually the point-of-interest detector proposed by Bay et al. [36] when they intro-

duced the SURF algorithm.

81

Figure 3.15 – OpenSURF repeatability rate under increasing rotation and scaling

changes (source: [7]).

Figure 3.16 – OpenSURF repeatability rate under decreasing light conditions

(source: [7]).

82

3.4.3 Hardware imperfections/limitations

When building panorama images in order to use them as an accurate representation of
the reality, the hardware used to record the image matters. Even sophisticated cameras
record images with some imperfections. These imperfections must be corrected. One
example is the radial and tangential distortions induced by the lens of the camera. This
type of distortions can be “easily” corrected, as it has been done with OT, through the
calibration of the camera (e.g. using OpenCV library and a checkboard-like pattern
printed on paper [32]). Once the intrinsic parameters of the camera are known, each
image recorded by the camera can be corrected and used as if they were captured using
a pin-hole camera25.

However, there are other factors that may distort the images. When investigating
accurate panorama building with the Axis PTZ camera (Section 3.3.2), Bilodeau [66]
noticed that the hardware introduced variations that could not easily be dismissed.
Namely, he observed that hardware misalignment could yield to distortion of many
pixels in the images.

Also, one of the most limiting factor for the accuracy of the OT system is the camera

resolution. It is obvious, at this point, that increasing the resolution of the captured
images would bear important improvements of the accuracy of the system. Indeed,
because OT uses the SURF algorithm that has an accuracy level expressed in pixels,
doubling the resolution of the camera effectively reduces the angular value represented
by one pixel in half and thus, doubles the accuracy of the system.

3.5 OT conclusion

Orientation Tracker is a system that retrieves the orientation of a user by comparing
the live video feed of the camera with a previously captured panorama. The experi-
ments conducted in this project and described in this chapter allowed to investigate
the accuracy and stability of panorama-based tracking in various contexts where a high
accuracy is required.

The overall accuracy for OT, when in motion, has not been measured quantitatively

25Calibration is not a perfect process and error will always remain. However, when realized carefully,

the remaining error is usually very small and can be dismissed for the type of application that this

project is interested in.

83

because of different hardware as well as ground-truth problems. However, stability tests
were conducted and a variation of about 0.5◦ was measured. Such variation is very
high considering that the accuracy threshold for the least demanding task should be
approximately 0.3◦. Three potential causes have been identified as the reason for such
variation: the SURF implementation, the point of interest detector accuracy definition
and camera hardware imperfections.

This section highlighted some of the limitations and challenges of panorama-based
tracking. It also highlighted the difficulties to reach a very accurate and real-time
tracking solution. The next chapter will consider another approach to high accuracy
augmentation system while still using panorama images as its core.

Chapter 4

Panorama-Based Pose Refinement

Panorama-based pose refinement (PBPR) is an additional approach for high accuracy
AR. This work is a direct follow-up to the experiments involving OT. This approach, like
OT, relies on panorama images. However, it differs from OT in one main aspect: while
OT is a tracking method, aiming to retrieve the rotational pose of the user’s head for
each frame of a video stream, the PBPR approach aims to produce high accuracy static

augmentations on panoramic images produced from multiple images. Its main purpose
is to assist the user in finding the virtual camera pose of the 3D model corresponding to
a captured panorama as accurately as possible in order to augment it. Put simply, the
virtual camera pose is the virtual counterpart to the real-world camera pose used to
capture an image of a scene. The virtual camera pose determines from which point of
view a given 3D model will be rendered. The challenge of AR is to determine the relation
between the real-world camera pose used to capture an image of a given element and the
virtual camera pose of a 3D representation of this element so that both representations
can be aligned to produce an augmented view of a scene. Thus, in the PBPR approach,
the goal is to determine which virtual camera pose will produce a point of view of
the 3D element that will allow the best alignment possible with the already captured
panorama. This approach is also a solution to some of the shortcomings identified in
the experiments using OT as described in Section 3.4.

In this chapter, the general PBPR approach will first be presented along with the
context that justified a change of strategy from tracking to offline virtual camera pose
refinement. Then, the method will be described as well as the preliminary experiments
conducted to assess its potential as a high-accuracy mobile AR GIS approach. The
results of these tests will be analyzed before concluding. It should be noted that,
due to time constraints, it was not possible to thoroughly and quantitatively test the
accuracy of the approach. However, preliminary tests were conducted and enough data

85

was collected to draw qualitative conclusions on the potential of the overall approach
as well as to identify potential problems and future work.

4.1 A Different Approach to High-Accuracy Panorama-

Based Augmentations

In Chapter 3, a panorama-based tracking solution was proposed (OT). Experiments
with this system highlighted the many limitations that prevented reaching the accuracy
needed for architecture and engineering tasks. OT addressed the accuracy issue of
mobile AR GIS as a tracking problem, since the tracking component is fundamental
to AR and it strongly influences the mobile AR system performance. However, the
tracking accuracy is not the ultimate goal but a step towards what really matters to a
mobile AR GIS, that is, the accuracy of the actual augmentation. In other words, what
is important is that the architect or the engineer, while observing an augmentation,
can have the confidence in the decisions he takes based on the information that is
displayed. PBPR is an approach that considers only the augmentation aspects: it
only operates on static panorama images, mainly for simplicity and problem isolation
purposes. Indeed, considering the relative complexity of the real-time and dynamic
tracking problem, it was decided to isolate only the augmentation component of the
problem. This simplification does not prevent useful conclusions to be drawn as the
augmented panorama images, even if static, can still provide important decision support
information (e.g. allowing to visually assess a given situation with its projected state
in the case of a construction site monitoring task).

Panorama images present great potential for high accuracy AR: they provide con-
text, they are relatively easy and cheap to produce and they could yield to pixel-precise
augmentations (using computer vision algorithms, which can achieve pixel or sub-pixel
precision). However, as identified in the last chapter (Section 3.2.1.1), there is an
accuracy bottleneck related to the panorama construction process. That is, the over-
all accuracy of the augmentation cannot be higher than the accuracy with which the
panorama has been built (i.e. the degree at which the panorama accurately represents
the reality). The panorama creation process is flawed in that, when built from multiple
individual images, it introduces distortions caused by some adjustments which are re-
quired to correctly “close the loop” of a 360◦ panorama. These distortions are hard to
both calibrate and correct contrarily to distortions in a single image. Indeed, distortions
in an individual image, which are mostly related to the imperfections of the hardware
used to acquire the panorama, are relatively easy to correct through camera calibration

86

Figure 4.1 – Multiple images referenced together using Microsoft Photosynth without

merging them into a single panorama image. Each image is accurate on its own. (source:

http://goo.gl/A8e7L)

and image undistortion. Once undistorted, an individual image can be considered an
accurate projection of the world (at least for the accuracy and precision requirements of
this research). Therefore, a solution aiming to work around the inaccuracies caused by
the assembly of images into a panorama could do so by only manipulating the individual
images composing a panorama. This is the strategy used by the PBPR approach.

The simplest way to work at the image level while preserving the different advantages
provided by the panorama image would be to cross-reference the individual images while
skipping the merging process altogether. The result would be a set of individual images
referenced together (Figure 4.1). Such “mosaics” can be assembled automatically with
a system like Microsoft Photosynth1 that also provides an intuitive interface to navigate
such image mosaics.

The use of such mosaics, however, adds some constraints. The first one is that it is
not possible to work with a single panorama image anymore since the individual images
are not merged together. This also implies that there will be various degrees of overlap

1http://photosynth.net/

87

and slight offsets among the images (see Figure 4.1). The offsets among the images can
add up to a fair amount. If a 3D model is overlaid over this, the augmentation will
be very accurate within a small subset of individual images2, but will display strong
inconsistencies within others; this will result in a very poor overall augmentation. The
proposed solution to this issue consists in determining the virtual camera pose of the
3D model on each individual image composing the mosaic (i.e. a slightly different
virtual camera pose will be associated with each individual image to ensure that the
augmentation is as accurate as possible for each single image). Therefore, it would
ensure that when a user is inspecting a specific part of the mosaic (i.e. an individual
image), he would always look at an accurate augmentation (even if only locally) (see
Figure 4.2 for an example). This constraint is not a major hurdle in the geo-engineering
and architecture context of this research. Indeed, the field of view offered by a single
image is generally big enough to display all the important elements required to take a
decision. This is mainly due to the fact that the accuracy requirements of all the tasks
identified in Section 2.1.1 are relatively proportional to the distance between the user
and the augmented object. Moreover, it would be possible to use an interface similar
to Photosynth that would provide the user with an overall view of the project area and
thus some context while enabling interaction with individual images.

The central problem of this approach can be stated as follow: how to determine the
virtual camera pose for each individual image of the mosaic, considering that a typical
panorama is composed of 50-100 individual images? The proposed approach relies on
a manual initialization step that matches elements of the model with corresponding
items in the mosaic. As mentioned previously, the virtual camera pose resulting from
an initialization over a mosaic will be accurate for some individual images while some
inconsistencies will be observed in others. The idea is then to use this first virtual
camera pose approximation (realized on the mosaic) as a starting point to further refine
the virtual camera pose automatically for each single image of the mosaic so that the
virtual camera pose is adjusted specifically for each single image. This is achieved by
using an adaptive form of line tracking [68]3. In a nutshell, the PBPR approach allows
a user to generate as many individually refined virtual camera pose as there are images
composing the mosaic by realizing a single manual initialization step. A summary of
the proposed workflow for the PBPR is illustrated in Figure 4.3.

2Most likely, the images that will diplay the most accurate augmentation will be the ones on which

the initialization points were selected during the manual registration process [67].
3Usually, vision-based markerless tracking uses line tracking or texture (this includes texture

patches, SURF, SIFT, etc.). Line tracking has some advantages over texture patches in that, if we

want to use the information provided by the 3D model, we do not need a textured 3D CAD model

(which is not the norm in the geo-engineering industry). Moreover, lines of the model are much more

likely to be steadily observed in a real-world capture over time as the texture information is more

unreliable over time (season changes, daylight, occlusions, etc.).

88

Figure 4.2 – Example of an AR visualization using individual images referenced in a

system like Microsoft Photosynth. It can be noticed that the augmentation stops at the

different edges of the current image due to the offsets between the images thus avoiding

inconsistencies in the augmentation. (source: Modified from http://goo.gl/LRDJT)

89

Figure 4.3 – Overview of the proposed workflow for the PBPR approach.

90

The investigation of the central problem of this approach, however, required to
make some assumptions along with an overall simplification of the initial problem as
stated in Section 1.2. The first simplification consists in putting aside the real-time
tracking component to focus exclusively on the accurate augmentation of static images;
the tracking component is no longer the component defining the accuracy of the overall
system. The second simplification implies that, because this approach is based on line

primitives, the focus of this specific experiment is shifted from accuracy to coherence

(Section 1.2). Indeed, line tracking algorithms (or any computer vision-based algorithm)
aim at matching an image and a corresponding model. In this context, a system can be
accurate in relation to the real world only if the model is accurate and representative of

the reality. If the 3D model is accurate, then a coherent system becomes an accurate one.
Finally, as the experiment is focused on computer vision methods, a last assumption
consists in assuming that the augmented structures are visible in the image (i.e. no
underground infrastructure models can be overlaid).

The adaptative line tracking method used in the proposed PBPR approach is de-
tailed by Wuest et al. [69] and is based on the method proposed by Vacchetti et al. [68].
This method is presented in details in the next section.

4.2 Adaptive Line Tracking with Multiple Hypothe-

ses

Wuest et al. [69] propose a method to achieve AR by tracking, on each of the camera
frames, the visible lines of a 3D CAD model. From an approximate registration of
the model with the image, the line tracking algorithm ensures that the image-model
registration is constantly updated. The application context is different: while Wuest
et al. used the 3D model in order to track the virtual camera pose, it is used here to
augment the panorama. Even if the end result is not the same the aim of both cases
is identical: determine the virtual camera pose which will produce a point of view of
the 3D model coherent with the reality (or representation of reality – using panoramic
images in the context of this work). Therefore, for the application case of this project,
only one iteration of the algorithm is required since the augmentation is done on a static
image. This algorithm (adapted to this specific context) consists of the following steps:

1. Initialization and first pose estimation: the user provides a set of correspondences
between the image and the 3D model to create an approximate virtual camera
pose;

91

2. Line model generation: creation of a Hidden Lines 3D model from the approx-
imate registration of the image and the 3D model, done through the manual
initialization step, so that only edges that are potentially visible on the image are
kept;

3. Identification of the multiple edge hypothesis:

(a) Discretization of each line of the projected model into points along the line;
the number of points should be proportional to the line length on the image

plane;

(b) For each line point, selection of the g gradient maxima along the line’s normal,
where g is the number of hypothesis4;

4. Refining the registration using a numeric non-linear minimization algorithm like
Levenberg-Marquardt [70] with Tukey’s estimator [71] as the error function.

Each of these steps are explained in greater details in the next subsections.

4.2.1 Initialization and first pose estimation

The first step of this method consists in manually associating 3D points of the model
with 2D positions in the image. In fact, any initialization method can be used for this
step (e.g. POSIT [72] or the 3-points method proposed by Ameller et al. [73]), as long
as an approximate camera pose is computed and the resulting pose is close enough to
the pose of the camera when recording the image.

4.2.2 Line model generation

Most 3D CAD models of buildings consist of polygons [74]. As the pose refinement pro-
cess is based on lines, the model needs to be converted to a wireframe representation [75].
This process simply consists in removing any polygon while retaining their edges; most
CAD software provide this model representation. Subsequently, only the lines that are
expected to be visible on the image on which the pose refinement will be applied must be
considered. Therefore, some of the lines of the model need to be truncated or deleted
so that only the expected visible parts are left. This can be achieved automatically

4An hypothesis is a point to be tested in the image as an edge point potentially corresponding to

the projected line.

92

through standard raycasting [76] from the provided camera pose; any portion of an
edge that cannot be reached by a virtual ray coming from the virtual camera’s center
because it is occluded by one or multiple polygon(s) of the model should be removed.

4.2.3 Identification of the multiple edge hypotheses

Once the model is in a wireframe representation and involves only the visible edges
in the image (cf. Section 4.2.1), it can be projected onto the image using the first
estimation of the virtual camera pose5. Then, the potential matches between the lines
of the model and their counterparts in the image need to be found. This is achieved by
first discretizing the lines and then finding the potential matches between the sampled
points. These two steps are described below. The matching process yields multiple
hypotheses (i.e. to each sampled point corresponds several potential matches). The
advantage of using multiple hypotheses has been demonstrated by Vacchetti et al. [68].
The multiple match hypotheses are then used in the pose refining step.

4.2.3.1 Line discretization

First, each line of the model must be discretized into a set of sample points for which
potential matches in the image will be searched. It is important to note that the
number of sample points must be chosen relative to the projected (i.e. 2D) line length
and not the actual length of the model line (3D). If this technique is used in a real-time
application (thus is used for tracking), these points must also be distributed evenly
along the projected line in order for the tracking to be robust. Again, in the context of
real-time tracking, it is also important that the same sample points are used for each
frame. To discretize the model lines, Wuest et al. [69] sample directly the 3D line model
in a recursive manner (see Figure 4.4) and adapt the number of points to project on
the image relatively to the projected line length at each frame. They then select the n

first points of the 3D line to calculate the 2D/3D correspondences where

n =
projected line length

sample point density
(4.1)

5See Section 4.2.3.1 for details.

93

Figure 4.4 – Example of recursive line sampling. The numbers represent the order in

which the line is discretized into points. For example, if 3 sample points are required,

the points 1-2-3 will be selected. If 6 points are required, the points 1-2-3-4-5-6 will be

selected. This ensure a relatively uniform distribution of the sample points along the line

to be discretized.

where sample point density is a value determined manually6.

Each of these sample point p is then projected on the image plane (resulting in pi):

pi = KMp (4.2)

where K represents the matrix comprised of the camera’s intrinsic parameters (focal
length, principal point), M is the camera pose such that

M =
[

R3×3 T3×1

]

4×3
(4.3)

where R is the rotation matrix and T is the translation vector7.

4.2.3.2 Search for gradient maxima along line’s normal

Once every visible lines of the model have been discretized in a number of sample points,
potential matches for each of these points must be identified. Traditional line tracking
methods usually search for the closest gradient maximum along the line’s normal. In
the context of Wuest et al. [69] approach, the search is expanded to multiple possible
hypotheses for increased robustness. To be selected as a potential match (and thus
to be added to the list of hypotheses), a point (i.e. a pixel in the image) needs to
have a strong intensity gradient value; in addition, the gradient must be oriented in
approximately the same direction as the normal of the line that is currently considered.

6The density should be function of the type of lines in the model and the processing power available.

If the lines are straight, the density of sample points can be lowered. However, if the lines are splines,

a higher density should provide a better accuracy. The density also has an impact on processing

power since more points will be considered when analyzing the image. Therefore, when setting the

sample point density, a tradeoff between real-time processing needs and accuracy requirements should

be found.
7See Appendix "Pinhole Camera Model" for more details on the camera model and projection.

94

Such analysis is carried out using anisotropic Gaussian filters applied on the region of
interest (i.e. along the line’s normal).

Anisotropic Gaussian filters are simply non-isometric 2D filters that can be oriented.
They can be used to smooth an image in a given direction to preserve the gradients in
only one direction (e.g. if an anisotropic Gaussian filter oriented at 45◦ is applied to an
image, only the edges displaying the same orientation will be preserved while the others
will be smoothed out). For efficiency purposes, these filters can be pre-computed using
various discrete angle values (belonging to the range [0 − π]) and the following general
equation:

f(x,y) = Ae−(a(x−x0)2+2b(x−x0)(y−y0)+c(y−y0)2) (4.4)

where A is the maximum amplitude of the function and

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

(4.5)

b = −
sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

(4.6)

c =
sin2 θ

2σ2
x

+
cos2 θ

2σ2
y

(4.7)

where θ is the rotation to apply to the Gaussian function and σx and σy are the
standard deviation of the Gaussian distribution (i.e. level of smoothing) in the x and
y dimension respectively.

Once the image region has been smoothed using the appropriate anisotropic Gaus-
sian filter, the final step consists of applying a gradient maxima filter (

[

1 0 −1
]

)
along the line’s normal and to select the g highest values, where g is the number of
hypotheses considered. An example of the anisotropic Gaussian filtering and hypothesis
identification is presented in Figure 4.5.

4.2.4 Pose refinement using multiple hypotheses

When each line point has been associated with multiple hypotheses, the virtual camera
pose of the model must be refined so it better matches the point of view represented by

95

Figure 4.5 – (top) Example of an image filtered with an oriented anisotropic Gaussian

filter and hypothesis identification for a specific line point. The current model line consid-

ered is displayed in red and the line’s normal at the current position is displayed in yellow.

It can be observed that gradient parallel to the line in red are preserved while gradients

in other direction are degraded and blurred. (left) Zoomed-in crop of the original image

and (right) the same crop on the image filtered with the anisotropic Gaussian filter. It

can be observed that the gradients are only preserved in the vertical direction.

96

the image. The goal is to minimize the distance between the 3D model points projected
on the 2D image and their 2D image correspondences. The minimization is done using
the Levenberg-Marquardt algorithm which is a numeric and non-linear minimization
method. The function to be minimized is the weighted distance between the current
projection of the 3D model line point on the 2D image pi and the hypothesis qi along
the line’s normal ~n. The function involve all the 3D model line points projected on
the 2D image. Considering all the i line points of the 3D model for which there are j

selected hypotheses, the function to be minimized is the following:

err =
∑

i

ρT uk

(

min
j

∆(pi,qi,j)
)

(4.8)

where ρT uk is the Tukey estimator function, ∆ is the distance function and qi,j is the
jth hypothesis corresponding to point pi. The distance function can be computed as
follow:

∆(p,q) = |(q − p) · ~n| (4.9)

Tukey’s estimator is used as both a weighting function and a outlier removal [68] (i.e. it
is not necessary to apply a statistic-based outlier removal algorithm like RANSAC [58]
when using Tukey’s estimator). It can be expressed as:

ρT uk(x) =















c2

6

[

1 −
(

1 −
(

x
c

)2
)3
]

if|x| ≤ c

c2

6
if|x| > c

(4.10)

where c = k · σ, σ is the standard deviation of the estimation error and k is a constant
representing the resulting rate of outliers.

4.3 Experiments, Results and Discussion

A prototype has been developed implementing the previously described algorithm. This
section describes the experiments conducted using the developed prototype. First, de-
tails about the prototype implementation will be provided. Then the two data sets
involved in the experiments will be described. Afterward, the contents of the experi-
ments will be presented and explanations about the test rational and purpose will be
provided. Finally, the results of these tests will be described and analyzed and the
overall potential of the proposed approach for high-accuracy AR GIS will be discussed.

97

4.3.1 PBPR prototype implementation

For the manual initialization step, the method developed by Poirier [67], named Sphere-

icalPnP was used. This method is specifically designed to work on omnidirectional
images, but is very well suited for standard images as well. It is summarized in the
following three steps:

1. Manual selection of the 3D model-image correspondences by the user;

2. Computation of an approximate virtual camera pose from a random sample of
correspondences (e.g. using RANSAC);

3. Refining of the pose using a non-linear minimization algorithm (e.g. using Levenberg-
Marquardt)8.

To convert the 3D model into a “visible edge only” model, Wuest et al. [69] tested the vis-
ibility of each point using an extension of OpenGL called GL_OCCLUSION_TEST_HP

that directly uses the video card hardware to carry out the calculations. This has a
definite advantage for real-time usage. In this experiment, Bentley MicroStation (CAD

software) was used9 to build a “visible edges”10 line model using the camera pose pro-
vided by the manual initialization step.

The other steps of the algorithm described in Section 4.2 were implemented in
a prototype developed in the C++ programming language in a Microsoft Windows
environment.

4.3.2 Description of the data sets

The prototype was tested using two data sets with different levels of complexity: the
first data set involved 3D models with simple geometry (planes) and a very low number
of lines while the second data set consisted of 3D models where the level of detail

8This pose refinement is unrelated to the subsequent line-based pose refinement. In this step, an

approximate pose for the whole mosaic is needed. The non-linear minimization is used to determine

the best pose possible considering the manual point input of the user. When a rough pose has been

determined, the line-based pose refinement algorithm will be applied to each single image that is part

of the mosaic so that the pose fits each individual image with the best achievable precision.
9Mainly for simplicity purposes since it was easy and that there was no need for automation (one

time process for each data set).
10This is the name of the Microstation function that was used.

98

Figure 4.6 – Musikverein model (textured and wireframe) from the “City of Sights” [8]

data set used for the first tests of the “Adaptive Line Tracking” algorithm.

Figure 4.7 – Sample frame (undistorted) representing a paper reconstruction of the

Musikverein model. A part of the building is slightly occluded on the right side of the

frame.

and complexity was more aligned with engineering and architecture use cases. The 3D
models of the second data set were built from mobile LiDAR point clouds.

The first data set consisted of two 3D models provided by the “City of Sights” data
set [8]. The first model, representing the Musikverein in Vienna (Austria), consists of
planes and a limited number of lines (Figure 4.6). The image used for the pose refine-
ment process was extracted from a video of a scene containing a paper reconstruction
of the 3D model. On this image, the model is partially occluded at the right side (Fig-
ure 4.7). The second model, representing the Berliner Dom, i.e. the Cathedral of Berlin
(Germany), is slightly more complex as it presents domes of circular shapes (consisting
of multiple straight lines) that might prove more difficult to augment (Figure 4.8). The
image used for the pose refinement process was extracted from the same video file as
the first model. In this image, the model is not represented entirely (some parts are
cropped by the frame of the camera) and there is no occlusion.

99

Figure 4.8 – (left) Berlin Cathedral wireframe model from the “City of Sights” data

set [8] and (right) sample frame (undistorted) representing a paper construction of the

Berlin Cathedral model.

The second data set consisted of two 3D models of buildings of Laval Univer-
sity campus (Quebec City, Canada). These models were created by Mahmoud Alwa,
M.Sc. [77, 78] using terrestrial LiDAR point clouds. CAD models based on point clouds
are good candidates for a semi-automatic pose refinement process as they are accurate
3D representations of the real environment and therefore present several characteristics
similar to those visible in the images of this physical world. The 3D models and a
picture of the corresponding building on the campus are displayed in Figure 4.9.

4.3.3 Description of the experiments

The purpose of the PBPR approach (Section 4.1) is to determine the virtual camera
pose for each individual image of the mosaic in order to “augment” it (in the augmented
reality sense). Given the geo-engineering context of the proposed research work, the
coherence of the augmentation is a key performance criteria. Thus, the experiments
have been designed towards the assessment of such a criteria. They consist in assessing
and comparing the coherence of the augmentation achieved using two different methods:
the PBPR pose computation and a reference pose computation method. The latter is
the SphericalPnP method proposed by Poirier [67]. This method allows for coherent
augmentation as long as the manually input points are carefully selected. Also, because
the PBPR pose computation is actually a refinement, it requires an initial virtual cam-
era pose as an input. To emulate the fact that the initialization process realized on the
mosaic will output locally flawed virtual camera poses for each image, the input of the
PBPR method will be produced using SphericalPnP to which flawed manual registra-
tions will be fed (see Point 2a). While it may seems strange to use SphericalPnP to
produce the input virtual camera pose for the PBPR method and for its evaluation, it is

100

Figure 4.9 – CAD models built from LiDAR point clouds and associated images recorded

on Laval University campus (Quebec city, Canada).

101

here completely justified since SphericalPnP is a method that outputs a virtual camera
pose which precision and accuracy is dependent of the quality of the manually inputted
associations between the 3D model and the image. Only qualitative visual comparisons
of the two method performances have been carried out during these experiments, mainly
due to time constraints.

The various steps involved in these experiments are described below:

1. Computation of the reference virtual camera pose

(a) Manual registration of the 3D model with the image by carefully and precisely
associating four11 vertices of the model with their corresponding locations
on the image.

(b) Computation of the reference virtual camera pose.

2. Computation of the refined virtual camera pose using PBPR method

(a) Flawed manual registration of the 3D model with the image by associating
four vertices of the model with their corresponding locations on the image
with an error of 5 to 20 pixels. These error values were estimated based on
a qualitative study of a few data sets where an initialization was realized
on a relatively local zone (approximately the size of a single camera frame)
of the panorama and the error was visually observed on other zones of the
panorama.

(b) Computation of the flawed virtual camera pose.

(c) Application of PBPR method to refine the virtual camera pose

3. Visual comparison of the image augmentations (i.e. superimposition of the 3D
model on the image), using respectively:

(a) the flawed virtual camera pose and the refine virtual camera pose;

(b) the reference virtual camera pose and the refine virtual camera pose.

11Four is the minimal number of association required to compute a camera pose without ambiguities.

However, since robustness and accuracy are the main concerns for this experiment, it would be more

advised to consider more than the minimum number of correspondences between the 3D model and

the image. However, since the selected models are relatively simple (at least in the City of Sights data

set), four correspondences should be enough for the computed virtual camera pose to be correct.

102

4.3.4 Results and analysis

4.3.4.1 First data set: the City of Sight models

The first test involved the Musikverein model. Figure 4.10 shows the comparative
result of the augmentation using, respectively the flawed virtual camera pose and the
refined virtual camera pose computed by the PBPR method. Figure 4.11 shows the
comparative result of the augmentation using, respectively the reference virtual camera
pose and the the refined virtual camera pose. The differences are then displayed and
highlighted in greater details in Figure 4.12.

In general, the generated virtual camera pose of both methods (i.e. SphericalPnP
and PBPR) are very similar. Essentially two differences have been noticed. The first
difference, highlighted by the red circle in Figure 4.12, tends to indicate that the virtual
pose computed by the PBPR method shifted the model to the right. There is a dis-
crepancy of several pixels between the model and the image on the upper right side of
the image. This could be explained by the fact that one line of the Musikverein model
is still being considered in the pose refinement even though it is occluded in the scene
(Figure 4.13). The line could not have been removed in the hidden line model creation
process as there is no way to know that this line will be occluded in the real-world scene.
The PBPR method searched for potential matching lines in the image and found one
(highlighted in green in Figure 4.13), erroneously shifting the model towards this false
positive line. The second difference, highlighted by the pink circle in Figure 4.12, shows
that it is the manual initialization that produced shifted results. This is probably due
to the fact that no initialization point is located in this zone of the model12 when the
manual initialization was conveyed.

The second test involved the model of the Berliner Dom. Figure 4.14 shows the
comparative result of the augmentation using, respectively the flawed virtual camera
pose and the refined virtual camera pose. Figure 4.15 shows the comparative result of
the augmentation using, respectively the reference virtual camera pose and the refined
virtual camera pose.

Even though the pose refinement seem to have improved the virtual camera pose
slightly, the results show both augmentations remain very incoherent. This is obviously
an important problem. The problem is even more noticeable when comparing the

12In order to obtain the best virtual camera pose using a manual initialization method, the "anchor"

points needs to be spread out as uniformly as possible on the 3D model. Local errors may occur if no

points are located in a given area.

103

Figure 4.10 – Augmentation of the Musikverein model using two different virtual camera

poses. Comparison between the (top) flawed virtual camera pose result and the (bottom)

refined virtual camera pose result. The orange lines represents the 3D model in wireframe

and the blue lines simply highlight the correspondences between the 3D model and the

image.

104

Figure 4.11 – Augmentation of the Musikverein model using two different virtual cam-

era poses. Comparison between the (top) reference virtual camera pose result and the

(bottom) refine virtual camera pose result. The orange lines represents the 3D model in

wireframe and the blue lines simply highlight the correspondences between the 3D model

and the image.

105

Figure 4.12 – Highlight and details of the differences between the augmentation shown in

Figure 4.11. Comparison between the (left) augmentation based on the reference virtual

camera pose and the (right) augmentation based on the refine virtual camera pose. The

highlighted zone numbered “1” is depicted in the second line of the figure and the zone

numbered “2” is depicted on the third line of the figure.

106

Figure 4.13 – Highlight of a potential cause of the shift of the model to the right: a line

of the model (in red) that is occluded by the tower to the right may introduce errors since

the PBPR tried to match this line with the nearest visible edge on the image (highlighted

in green).

refined virtual camera pose to the reference virtual camera pose. The main hypothesis
justifying these results is that many lines of the model (especially located in the different
domes of the model) were kept in the hidden line version of the model even though these
lines are not visible in the real-world image.

To confirm this hypothesis, the virtual camera poses were computed after manually
removing the lines of the domes. Figure 4.16 shows the augmentation using respectively
the flawed virtual camera pose and the refined virtual camera pose. Figure 4.17 shows
the augmentation using respectively the reference virtual camera pose and the refined
virtual camera pose. The differences are then displayed and highlighted in greater
details in Figure 4.18.

There are again two main differences between the reference virtual camera pose
result and the refined virtual camera pose result. However, they are very subtle and
consists of shift of only few pixels (highlighted by the red and pink circles in Figure 4.18).
In general, the reference virtual camera pose provide slightly better augmentations but
they are visually very similar.

The results of the test with the Berliner Dom model without the domes’ lines tend

107

Figure 4.14 – Augmentation of the Berliner Dom model using two different virtual

camera poses. Comparison between the (top) flawed virtual camera pose result and the

(bottom) refined virtual camera pose result. The orange lines represents the 3D model in

wireframe and the blue lines simply highlight the correspondences between the 3D model

and the image.

108

Figure 4.15 – Augmentation of the Berliner Dom model using two different virtual

camera poses. Comparison between the (top) reference virtual camera pose result and

the (bottom) refined virtual camera pose result. The orange lines represents the 3D

model in wireframe and the blue lines simply highlight the correspondences between the

3D model and the image.

109

Figure 4.16 – Augmentation of the Berliner Dom model, without the dome lines, using

two different virtual camera poses. Comparison between the (top) flawed virtual camera

pose result and the (bottom) refined virtual camera pose result. The orange lines repre-

sents the 3D model in wireframe and the blue lines simply highlight the correspondences

between the 3D model and the image.

110

Figure 4.17 – Augmentation of the Berliner Dom model, without the dome lines, us-

ing two different virtual camera poses. Comparison between the (top) reference virtual

camera pose result and the (bottom) refined virtual camera pose result. The orange lines

represents the 3D model in wireframe and the blue lines simply highlight the correspon-

dences between the 3D model and the image.

111

Figure 4.18 – Highlight and details of the differences between the augmentations shown

in Figure 4.17. Comparison between the (left) augmentation based on the reference virtual

camera pose and the (right) augmentation based on the refined virtual camera pose.

112

to confirm the hypothesis that lines of the model that have no visible correspondence in
the real-world scene yield to incoherent augmentation when using the PBPR method.
This is to be expected since the refinement method is based on visible lines. However,
what is more of a problem is the seemingly very weak robustness of the PBPR method
to this problem. The phenomenon seems to have impact on the resulting virtual camera
pose even if only one line of the model does not find a match (or worst, a false positive
match) in the real-world scene, as it has been observed with the Musikverein model.
The method is supposedly relatively resilient to occlusion given a manual adjustment of
the Tukey constant [69], but this resilience has not been observed with the Musikverein
and BerlinerDom (with the domes’ lines) models even when reducing the constant’s
value significantly13.

In terms of coherence, even though the analysis is done qualitatively based on the
visual aspect of the augmentation (how well it “fits” the real-world image), it must
be noted that the virtual camera poses generated by the PBPR method do not show
coherence levels that would meet the geo-engineering criteria presented in Section 2.1
(no visible offsets between the augmented structure and the overlaid model). This is
true for both the Musikverein and Berliner Dom models. Indeed, the offsets highlighted
in Figure 4.12 and 4.18 exceed few pixels.

4.3.4.2 Second data set: the LiDAR-based models

The next tests of these experiments involved the two models presented at Figure 4.9.
However, no useful evaluation could be achieved due to several problems inherent to
the virtual camera pose computation using the PBPR method. Indeed, either the
augmentation based on the refined virtual camera pose was worse than the one based
on the flawed virtual camera pose or no augmentation could be computed at all. Given
the complexity of these models and considering the results obtained from the Berliner
Dom model presented at the previous subsection, this outcome is not surprising. Indeed,
these two models consists of a very high number of lines, many of which do not have
visible correspondences in the real-world pictures. From these experiments, we can
draw the conclusion that not only should the models be a representation of the reality
as accurate as possible, but each of the model’s lines should be visible in the image (or
a more flexible approach should be devised).

13This is not to say that the method is not robust to occlusions. Additional tests would be required

to check if an optimal value of the Tukey constant would solve the occlusion issues observed in the two

previous 3D models.

113

4.4 Synthesis and conclusion

In this chapter, a panorama-based pose refinement method has been proposed as an
alternative to the accuracy bottleneck caused by the panorama creation process. The
proposed PBPR approach consists in applying the adaptative line tracking approach
developed by Wuest et al. [69]. Because this approach associates visible lines of the
model with the edges in the real-world image, if an augmentation is to be accurate, the
3D model used must be as representative of the reality as possible. The method was
tested on two different data sets: one consisted of two simple 3D models composed of
few lines and the other consisted of two real-world models built from terrestrial LiDAR
point clouds. The experiments consisted of visually comparing the augmentation results
using virtual camera pose computed respectively by a flawed method (i.e. inaccurate
manual registration of the 3D model with the image), a reference method (i.e. manual
registration of the 3D model with the image using the SphericalPnP method proposed
by Poirier) and the PBPR method.

The two simple 3D models yielded similar augmentation results for the three camera
pose computation methods. However, when slightly more complex models were used,
discrepancies among the augmentation results could clearly be identified. Even the
reference method showed augmentation incoherence. The fact that some model lines
did not have visible line correspondences in the image was identified as the source of
the coherence errors. This issue was even more noticeable when the PBPR method was
applied to the real-world models; no coherent virtual camera pose could be computed.
This means that, while generating the hidden line and wireframe version of the model,
the visibility of all the lines of the model need to be checked in the real-world image. In
the engineering or architecture contexts of this research project, such issue requires an
operator to manually identify and remove the lines that are not visible in the physical
world, task which is viewpoint-dependent. This would completely defeat the purpose
of the PBPR semi-automatic approach.

These experiments also highlighted that even in a simplified context, achieving pixel
accuracy on a virtual camera pose is not easy. Many factors can quickly degrade the
registration between the 3D model and the image when relying on computer vision
techniques (e.g. occlusions).

Ideally, the PBPR approach would yield augmentations more coherent than manual
initialization through an automatic and pixel-precise match of the 3D model and image.
However, in order to achieve such coherent augmentations, the method should be able
to correctly differentiate between information in the model that can be used and infor-

114

mation that is irrelevant. Another approach would be to create a representation of the
model which can directly be compared with the real-world image (e.g. by extracting
only the contours of the model).

These experiments demonstrated that the PBPR approach, while providing results
relatively close to a careful manual initialization in simple cases, does not provide virtual
camera pose close enough to the real camera pose of the image to be compliant with
the accuracy requirements of geo-engineering and architecture fields. Moreover, the
PBPR method failed to scale for increases in the level-of-detail and complexity of the
3D models. However, it is possible that other primitives, instead of lines alone, could
provide more coherent results and increased robustness.

Chapter 5

Conclusions and Future Work

This M.Sc. work has focused on tracking approaches compliant with accurate mobile
AR GIS systems dedicated to architecture and geo-engineering applications. The main
approach considered was the use of omnidirectional panorama images along with differ-
ent computer vision techniques. Two different solutions were explored: one using online
orientation tracking (OT) and the other using image-based pose refinement. Both ap-
proaches demonstrated strengths and weaknesses and their exploration has provided
insights about the potential of using panorama images in high-accuracy AR contexts.
This chapter discusses these matters and also proposes suggestions for future work.

5.1 Conclusions

5.1.1 Review of the project objectives and proposed research

The main objective of this research project was stated as such: to define the accuracy

requirements of an AR mobile GIS in a geo-engineering context and list the technical

approach(es) that are most suited to achieve this accuracy level. It has been broken
down into three sub-objectives:

• Sub-objective 1: specifying the accuracy requirements

• Sub-objective 2: determining suitable tracking approaches for mobile AR GIS
dedicated to geo-engineering

116

• Sub-objective 3: validating the selected potential tracking approaches.

The first sub-objective was met through a literature review. The accuracy requirements
of a wide spectrum of tasks related to these fields were determined. These accuracy
requirements varied as a function of the task at hand and the distance between the
user and the location of the object being augmented. To simplify this metric, it was
determined that, if the user’s position remains constant, an accuracy of approximately
0.129◦ for most tasks conveyed at relatively close ranges (0-18 m) and 0.035◦ for tasks
conveyed at longer ranges (+18 m) would be required to enable decision support for
architects and engineers.

The second sub-objective was then met by conducting a review of the different
available tracking solutions. Most of these solutions would neither fulfill the previously
identified accuracy requirements nor be appropriate for the engineering and architecture
context of this research. However, one of them seemed to present high potential to
achieve the required level of accuracy: panorama-based tracking. Two approaches,
relying on panorama-based tracking were then selected for investigation: Orientation
Tracker (OT) and Panorama-Based Pose Refinement (PBPR).

Finally, the last sub-objective consisted in developing prototypes and propose tests
in order to validate the selected approaches to assess their potential for mobile AR GIS
solutions. The first approach to be validated was the Orientation Tracker system. This
system was designed to provide the orientation of a live video frame by comparing the
image contents with a corresponding panorama image, acting as a reference system.
While OT was able to provide coherent orientation measurements, it failed to achieve
the required level of accuracy previously determined. This first experiment with OT
has enabled the identification of different accuracy limitations of a panorama-based
tracking system (they will be described below). In order to address one of these limita-
tion (considered as an accuracy bottleneck), a second experiment, PBPR, was proposed.
It considered an alternative approach: tackling the accuracy problem of image-based
augmentation by focusing on static augmentations instead of the online tracking compo-
nent. This approach is worthwhile because high-accuracy augmentations, even if static,
can still be very useful to any user as it allows decision support. Again, the approach
achieved positive results for a very simple case: the virtual camera pose returned by the
PBPR method was comparable to a virtual camera pose obtained through very careful
manual initialization. However, the method simply failed when applied to more complex
cases. Conclusions specific to each approach are detailed in the next two subsections.

117

5.1.1.1 Lessons learned from the OT experiment

While developing and testing Orientation Tracker, it was found that using omnidirec-
tional panorama images as the reference of a vision-based 3 DOF tracking solution
presents some problems:

• The panorama construction process itself is flawed: automatic panorama creation
usually provides visually seamless results, but the proposed research underlined
that the process also involves local distortions which make some portions of the
image a more or less an accurate representation of reality by several pixels.

• There are no studies to confirm that the different image feature detectors used
by the SURF algorithm, which are used in order to match the different images
together, are able to reliably locate a corresponding pair of features with a sub-
pixel precision;

• The different libraries implementing the SURF image descriptor offers varying lev-
els of performance and accuracy. This means that the chosen implementation has
an non-negligible effect on the overall system and that not every implementation
might be “true” to the original SURF algorithm;

The first issue is a strong hurdle if panorama images are to be used in high accuracy
fields. Indeed, the accuracy of the tracking system and, therefore, of the overall augmen-
tation is limited by the accuracy of the representation of the reality; a system cannot
be more accurate than the accuracy of the reference system it is based on.

OT experiment also highlighted a more general problem when assessing the accuracy
of a tracking technology. System evaluation, while often considered a simple validation
operation, is, in the context of accuracy assessment, far from being trivial. In this
work, it had important implications. Because the system under study (OT) is required
to measure the reality, accurate1 measurements of the reality are required to validate
the values provided by OT. However, each system that measures the reality is prone
to error. This problem was highlighted in Sections 3.3.1 and 3.3.2. Initially, MEMS-
type hardware was judged as appropriate to validate OT. However, after an extensive
testing phase, it was concluded that the hardware was easily disturbed by magnetic
interferences and miscalibrations. Using a pan-tilt camera (with a high-accuracy motor)
then seemed a reasonable alternative, only to observe some problems regarding the
hardware construction (Section 3.4.3).

1The measurements need to be at least as accurate as the evaluated system’s required accuracy.

118

The ground-truth problem is usually encountered when a field is relatively young
and that no benchmark for testing a given type of technology has been established. This
is a problem because the comparison between systems developed by different groups
becomes difficult without a given standard. Also, high accuracy validation requires high-
end hardware, not always available to all research groups. The difficulties encountered
during the OT experiment are definitely an argument in favor of the development of a
standard benchmark.

Toward the end of the experiments of this project, such a benchmark was published
by Gruber et al. [8]. Their work provides a complete set of models that can be easily
built using cardboard paper or that can be used in their virtual form (CAD models).
They also provides videos with corresponding ground-truth poses for every frame, com-
puted with different methods (computer vision and mechanical arm).

5.1.1.2 Lessons learned from the PBPR experiment

One of the most important problem related to the use of panorama images for high
accuracy AR, identified in the OT experiment, is the distortions introduced in the
panorama during the creation process. This presents a bottleneck in terms of the
achievable accuracy of panorama-based augmentations. The next experiment, PBPR,
was an attempt to work around this problem by only processing the individual images
composing the omnidirectional panorama. Starting from a manually determined and
very approximate virtual camera pose provided by the user, the PBPR consisted of
refining this virtual camera pose for each and every individual image so that they
would each display the most coherent augmentation possible. The pose refinement was
done using line primitives.

The conveyed evaluation of the PBPR method being qualitative instead of quan-
titative, it is not possible to state that a pixel accuracy augmentation is achievable
through this method. However, the test conducted on a simple geometry model pro-
vided an augmentation very similar to one resulting of a carefully executed manual
initialization.

Additional tests were conducted on more complex models. They demonstrated that
the method did not scale very well. Indeed, the PBPR method seemed very sensible
to edges that were present in the models while being either poorly or not visible at
all in the scene (e.g. due to occlusions or poorly lit portions of the frame). The
presence of these edges with no correspondence shifted the computed virtual camera
pose significantly. This hypothesis was confirmed by comparing the resulting virtual

119

camera pose of the PBPR method applied on two slightly different versions of the
same model (with and without edges with no visual correspondence in the scene). This
problem was highlighted even more when applying the PBPR method on real use case
(i.e. very complex) models; no coherent results were obtained.

This leads to the conclusion that lines alone may not be the best primitive for
virtual camera pose refinement in very complex contexts. At first, line primitives were
selected as it was the most straightforward choice considering the architecture and geo-
engineering application fields. Indeed, 3D models are usually composed of polygons
(which can be simplified to lines). Image descriptors could also be used to refine the
augmentation, but the problem lies in the availability of textured 3D models. Moreover,
matching the texture of a 3D model with corresponding real-world images may cause
some problems: textures are sensitive to lighting conditions, season changes or any
changes of the physical environment that might have occurred between the 3D model
creation and the image acquisition. There are solutions for the online creation of 3D
textured models (ProFORMA [79] and Vi3Dim2) but they can only be used on small
scale objects or require that a checkerboard pattern is present under the object. These
limitations prevent their use when large scale objects (e.g. building) need to be modeled.
Another solution could consist in using the same set of images to create both the
textures of the model and the panorama. In this specific case, no pose refinement
method would be required as mapping textures from an image to a 3D model essentially
corresponds to creating a registration between the model and the image respective
spaces (initialization). It is to be noted, though, that the creation of such textured
model would be much more time consuming for the user than providing an approximate
virtual camera pose through manual initialization. Such use of the same data set for
both the panorama and the textured model might prevent any large scale use of this
alternative.

5.1.2 Research contributions

In this M.Sc. work, two main approaches, based on panorama images, were considered.
Each one of these approaches required that some simplifications of the original problem
was made: OT reduced the number of tracked DOF from 6 to 3 while the PBPR
approach dropped the tracking component completely in order to focus on the accuracy
of static augmentations. These compromises, although very important, do not reduce
the relevance of this research’s contributions. While these simplifications would have
generated prototypes that would have been incompatible, in part, with the definition

2http://www.vi3dim.com

120

of AR, they allowed the problems, already very complex, to be brought down to a
acceptable level of complexity for the length of a M. Sc. project. Also, as the central
objective of this project was to evaluate the potential of approaches for high accuracy
AR in architecture and geo-engineering contexts, conclusions drawn from simplified
contexts can be generalized to their more complex counterparts.

The two main experiments described in this research have highlighted the fact that
panorama images in conjunction with computer vision techniques show potential for
future AR GIS applications but might not provide a suitable solution that is both
simple and very accurate. Namely, this research has highlighted, through prototype
development and testing, that the computer vision components induce errors at different
levels of the process preventing the accuracy objective to be met. Also, the selected
hardware, mainly the camera’s resolution was one of the main limiting factor. Instead,
it might be worth looking into sensor fusion and advanced algorithms (e.g. SLAM) that
would pair hardware solutions with computer vision techniques to increase the overall
accuracy of the system. It would also be worth considering higher quality hardware
components; a greater camera resolution (in pair with more capable processing unit)
should be on the top of the list.

The two experiments (OT and PBPR) suggest that a relatively good accuracy can
be produced using only panorama images and computer vision techniques, even if the
said accuracy does not fulfill the requirements of decision support tasks of architects
and geo-engineers. The proposed approaches could be of use for applications that would
have slightly lower accuracy requirements (≥ 0.5◦).

Finally, this research has confirmed the overall difficulty in aiming for mobile AR
that is able to support engineering-level decisions while using off-the-shelf and relatively
low-quality hardware. Even in simplified use cases (i.e. 3 DOF), the many components
involved in the virtual camera pose determination algorithms can quickly accumulate er-
ror. The importance of carefully choosing each of these components has been highlighted
throughout the experiments. In answer to the main objective of this research, that is
identifying the technical approach(es) that are most suited to achieve the accuracy level
required in architecture and geo-engineering contexts, the experiments realized cannot
direct towards a specific tracking solution recommendation. Someone interested in high
accuracy mobile AR should first evaluate appropriate tracking methods in controlled
environments and with ideal hardware specifications. In the case where no real-time,
highly accurate and mobile tracking solution would be available, alternatives to a real-
time AR system might be worth considering. This was a key aspect of the PBPR
approach: if the accuracy is more crucial than real-time interaction, considering static
augmentations could still enable highly reliable insights for professional users as long

121

as an automatic or semi-automatic method to accurately anchor a 3D model with an
image is available.

5.2 Future Work

This study focused on the use of panorama images in the context of mobile AR GIS
dedicated to architecture and geo-engineering applications. Two main experiments have
been realized: OT and PBPR. These experiments explore possible avenues to achieve
pixel-accurate augmentation of the real world. Based on these experiments, several
conclusions were drawn about both the feasibility and the potential of each type of
approach. These experiments also sparked some ideas that were left untouched due to
time constraints and might prove to be worth investigating in the future. Some of these
ideas are presented here.

5.2.1 Future work related to OT

The experiments with OT highlighted some potential problems that need to be tackled
before being able to achieve highly accurate augmentations using an online, computer
vision only orientation tracking system.

The first one is the point of interest detector accuracy. The current benchmark
used to evaluate the point of interest detectors does not include a metric to assess
explicitly the accuracy of the detector. Instead, the main metric is the repeatability (or
ǫ-repeatability, see Section 3.4.2) which consists of calculating the proportion of points
for which a correspondence is found within a distance of ±1.5 pixel of the ground
truth. The ǫ value involved in the experiments described in this thesis was too high
to assess the performance of a particular point of interest detector technology in the
context of the proposed application fields. Repeatability tests should be run with a
smaller threshold (ǫ ≤ 1.0 pixel). A point of interest detector that would show poor
performances to this test should be avoided.

Another important problem underlined by the proposed research is the flawed panorama
construction process. In fact, this problem was important enough that it justified the
second experiment of this study (PBPR). PBPR presented a specific way to work around
this problem. However, a different solution could consist in capturing a panorama us-
ing a single capture shot instead of merging a few dozens individual images together.

122

Figure 5.1 – Example of hardware that can be used to capture a one-shot 180◦ panorama

image: (left) fisheye lens with a 8–15 mm focal length and (right) a standard camera aimed

at a hyperbolic mirror. (source: (left): http://goo.gl/Dh7Fp (right): http://goo.gl/exeD7)

Different hardware solutions could enable this process: using a fisheye lens or by taking
a picture of the environment indirectly via a hyperbolic mirror (Figure 5.1). If such
hardware are to be used in conjunction with any computer vision algorithm, it would
be important to make sure that the captured frames can be undistorted accurately. In-
deed, hyperbolic mirrors and fish-eye lenses present stronger distortions than standard
camera lenses. For the images to be used for computer vision algorithms, it is neces-
sary to have high confidence in the camera calibration process. This might prove to be
more crucial in the case of the hyperbolic mirror since the mirror might present more
imperfections than a high quality fish-eye lens. Moreover, the optical axes of both the
camera and the hyperbolic mirror has to be carefully aligned. Finally, when captur-
ing the panoramic image through the hyperbolic mirror, it is required to account for
the distortion introduced by both the lens of the camera and the mirror and therefore
require a different calibration technique (see the work of Mei and Rives [80]).

123

5.2.2 Future work related to the PBPR method

In Section 4.2, a pose refinement algorithm was proposed relying on image line ex-
traction and matching with corresponding 3D model features. However, while being a
good approach for line tracking for simple models composed only of visually observable
edges, line tracking had trouble dealing with more complex cases. To get around this
problem, image descriptor technology such as SURF or SIFT could be used. However,
as stated in Section 5.1.1.2, textured 3D models are not the norm in the architecture
and geo-engineering industry. Instead, it should be possible to use a rendering engine
to create a high quality monochrome render of the 3D CAD model and to use SIFT or
any image comparison features that works on intensity gradient. The problem would
therefore amount to comparing two images.

The overall idea and workflow for this approach is very similar to the one proposed
for the PBPR method in Section 4.1. The user first provides approximate model-image
correspondences and a first virtual camera pose is computed. Then, this pose is used
to produce a high-quality monochromatic render of the model (a simple example illus-
trated at Figure 5.2). These two images can now be compared with a high-level image
descriptor algorithm (e.g. SIFT) that works on intensity gradient or with a contour
extraction algorithm. Once a set of 2D correspondences is obtained, and because the
position and orientation from which the render was produced are exactly known (i.e.

the virtual camera pose), a new set of 3D model-image correspondences can be fed to
the Levenberg-Marquardt algorithm in order to refine the pose. However, it must be
noted that all the conclusions drawn from the OT experiment (Section 5.1.1.1) apply
to this type of approach as it uses the same basic components (i.e. computer vision).

124

Figure 5.2 – Example of a 3D CAD model render. Produced from the approximate pose

computed from the manual initialization realized on the image on the right.

Bibliography

[1] D. H. Shin, W. Jung, and P. S. Dunston, “Camera constraint on multi-range
calibration of augmented reality systems for construction sites,” Virtual and

Augmented Reality in Design and Construction, vol. 13, no. Special Issue, pp.
521–535, 2008.

[2] G. Jee and M. Petovello, “What is GNSS repeater-based positioning and how is it
different from using pseudolites?” Inside GNSS, no. July/August 2009, pp. 18–21,
2009.

[3] D. Schmalstieg and D. Wagner, “Experiences with handheld augmented reality,”
in 2007 6th IEEE and ACM International Symposium on Mixed and Augmented

Reality, Nara, Japan, Nov. 2007, pp. 1–13.

[4] H. Kato and M. Billinghurst, “Marker tracking and HMD calibration for a video-
based augmented reality conferencing system,” in 2nd IEEE and ACM Interna-

tional Workshop on Augmented Reality, 1999. (IWAR ’99) Proceedings. IEEE,
1999, pp. 85–94.

[5] E. W. Weisstein, “Cylindrical projection,” MathWorld–A Wol-

fram Web Resource, [Online; accessed 28-July-2011]. Available:
http://mathworld.wolfram.com/CylindricalProjection.html

[6] C. Schmid, R. Mohr, and C. Bauckhage, “Evaluation of interest point detectors,”
Int. J. Comput. Vision, vol. 37, no. 2, pp. 151–172, 2000.

[7] C. Evans, “Notes on the OpenSURF library,” University of Bristol, Tech. Rep.
CSTR-09-001, Jan. 2009.

[8] L. Gruber, S. Gauglitz, J. Ventura, S. Zollmann, M. Huber, M. Schlegel,
G. Klinker, D. Schmalstieg, and T. Höllerer, “The city of sights: Designing an
augmented reality stage set,” in Proc. Nineth IEEE International Symposium on

Mixed and Augmented Reality (ISMAR’10), Seoul, Korea, Oct. 2010.

http://mathworld.wolfram.com/CylindricalProjection.html

BIBLIOGRAPHY 126

[9] N. Cowan, “The magical number 4 in Short-Term memory: A reconsideration
of mental storage capacity,” Behavioral and Brain Sciences, vol. 24, no. 01, pp.
87–114, 2001.

[10] C. Rinner, M. Raubal, and B. Spigel, “User interface design for Location-Based
decision services,” in 13th International Conference on GeoInformatics, 2005.

[11] M. Rohs, J. Schöning, M. Raubal, G. Essl, and A. Krüger, “Map navigation with
mobile devices: virtual versus physical movement with and without visual context,”
in Proceedings of the 9th international conference on Multimodal interfaces, ser.
ICMI ’07. Nagoya, Aichi, Japan: ACM, 2007, pp. 146–153, ACM ID: 1322219.

[12] F. Zhou, H. B. Duh, and M. Billinghurst, “Trends in augmented reality tracking,
interaction and display: A review of ten years of ISMAR,” in 7th IEEE/ACM

International Symposium on Mixed and Augmented Reality, 2008. ISMAR 2008.
IEEE, Sep. 2008, pp. 193–202.

[13] D. H. Shin and P. S. Dunston, “Evaluation of augmented reality in steel column
inspection,” Automation in Construction, vol. 18, no. 2, pp. 118–129, Mar. 2009.

[14] Wikipedia, “Agile software development — wikipedia, the free en-
cyclopedia,” 2011, [Online; accessed 9-August-2011]. Available:
http://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=443605182

[15] “precision, n. (2.d. statistics),” The Oxford English Dictio-

nary, Mar. 2010, [Online; accessed 31-October-2011]. Available:
http://dictionary.oed.com/cgi/entry/50186553

[16] “accuracte, a. (3),” The Oxford English Dictionary, [Online; accessed
17-November-2010]. Available: http://dictionary.oed.com/cgi/entry/50001458

[17] S. Amos, Newnes Dictionary of electronics. Oxford Boston: Newnes, 1999.

[18] Wikipedia, “Camera resectioning — wikipedia, the free ency-
clopedia,” 2011, [Online; accessed 31-October-2011]. Available:
http://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=455201872

[19] R. Azuma, “A survey of augmented reality,” Presence: Teleoperators and Virtual

Environments, vol. 6, no. 4, pp. 355—385, Aug. 1997.

[20] W. Broll, I. Lindt, I. Herbst, J. Ohlenburg, A. K. Braun, and R. Wetzel, “Toward
Next-Gen mobile AR games,” IEEE Computer Graphics and Applications, vol. 28,
no. 4, pp. 40–48, Aug. 2008.

http://en.wikipedia.org/w/index.php?title=Agile_software_development&oldid=443605182
http://dictionary.oed.com/cgi/entry/50186553
http://dictionary.oed.com/cgi/entry/50001458
http://en.wikipedia.org/w/index.php?title=Camera_resectioning&oldid=455201872

BIBLIOGRAPHY 127

[21] G. Klein and D. Murray, “Improving the agility of Keyframe-Based SLAM,” in
Proc. 10th European Conference on Computer Vision (ECCV’08), Marseille, Oct.
2008, pp. 802–815.

[22] “trilateration, n.” The Oxford English Dictionary, Nov.
2011, [Online; accessed 11-November-2011]. Available:
http://www.oed.com/view/Entry/206064?redirectedFrom=trilateration

[23] Wikipedia, “Pseudorange — wikipedia, the free encyclope-
dia,” 2011, [Online; accessed 11-November-2011]. Available:
http://en.wikipedia.org/w/index.php?title=Pseudorange&oldid=445339239

[24] M. Arikawa, S. Konomi, and K. Ohnishi, “Navitime: Supporting pedestrian nav-
igation in the real world,” Pervasive Computing, IEEE, vol. 6, no. 3, pp. 21–29,
2007.

[25] R. Sabatini and G. Palmerini, “Differential global positioning system (DGPS) for
flight testing,” NATO Research and Technology Organisation, Tech. Rep. RTO-
AG-160 AC/323(SCI-135)TP/189 Volume 21, Oct. 2008.

[26] G. Lachapelle, “Pedestrian navigation with high sensitivity GPS receivers and
MEMS,” Personal and Ubiquitous Computing, vol. 11, no. 6, pp. 481–488, 2007.

[27] D. S. Chiu and K. P. O’Keeke, “DGPS + UWB,” GPS World, no. March 2009,
2009.

[28] V. Renaudin, B. Merminod, and M. Kasser, “Optimal data fusion for pedestrian
navigation based on UWB and MEMS,” in PLANS 2008, 2008.

[29] S. Ingram, D. Harmer, and M. Quinlan, “UltraWideBand indoor positioning sys-
tems and their use in emergencies,” in Position Location and Navigation Sympo-

sium, 2004. PLANS 2004, 2004, pp. 706–715.

[30] A. Dempster, “QZSS’s indoor messaging system - GNSS friend or foe?” Inside

GNSS, no. January/February 2009, pp. 37–40, Jan. 2009.

[31] B. Forssell, “Indoor message system evaluated,” GPS World, no. April 2009, Apr.
2009.

[32] E. Trucco and A. Verri, Introductory Techniques for 3-D Computer Vision. Upper
Saddle River, NJ, USA: Prentice Hall PTR, 1998.

[33] “jitter, n. (2),” The Oxford English Dictionary, Apr. 2010, [Online; accessed
09-April-2012]. Available: http://oxforddictionaries.com/definition/jitter

http://www.oed.com/view/Entry/206064?redirectedFrom=trilateration
http://en.wikipedia.org/w/index.php?title=Pseudorange&oldid=445339239
http://oxforddictionaries.com/definition/jitter

BIBLIOGRAPHY 128

[34] E. Rosten and T. Drummond, “Machine learning for high-speed corner detection,”
in European Conference on Computer Vision, vol. 1, May 2006, pp. 430–443.

[35] D. G. Lowe, “Distinctive image features from Scale-Invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, Nov. 2004.

[36] H. Bay, A. Ess, T. Tuytelaars, and L. Vangool, “Speeded-Up robust features
(SURF),” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346–359,
Jun. 2008.

[37] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial intelligence,
vol. 17, no. 1-3, pp. 185–203, 1981.

[38] J. Xiao, H. Cheng, H. Sawhney, C. Rao, M. Isnardi, and S. Corporation, “Bilat-
eral filtering-based optical flow estimation with occlusion detection,” in In ECCV,

volume I, 2006, pp. 211–224.

[39] I. M. Rekleitis, “Steerable filters and cepstral analysis for optical flow calculation
from a single blurred image,” in In Vision Interface, 1996, pp. 159–166.

[40] J. J. Leonard and H. F. Durrant-Whyte, “Mobile robot localization by tracking
geometric beacons,” Robotics and Automation, IEEE Transactions on, vol. 7, no. 3,
pp. 376–382, Jun. 1991.

[41] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, “MonoSLAM: Real-Time
single camera SLAM,” IEEE Transactions on Pattern Analysis and Machine In-

telligence, vol. 26, no. 6, pp. 1052–1067, 2007.

[42] G. Klein and D. Murray, “Parallel tracking and mapping for small AR workspaces,”
in Proc. Sixth IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR’07), Nara, Japan, Nov. 2007.

[43] R. O. Castle, D. J. Gawley, G. Klein, and D. W. Murray, “Towards simultaneous
recognition, localization and mapping for hand-held and wearable cameras,” in
Proc. International Conference on Robotics and Automation, Rome, Italy, April

10-14, 2007, 2007, pp. 4102–4107.

[44] S. Riisgaard and M. Rufus Blas, “SLAM for dum-
mies : A tutorial approach to simultaneous localization
and mapping,” [Online; accessed 25-February-2009]. Available:
http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-412JSpring-2005/9D8DB59F-

[45] E. Eade and T. Drummond, “Scalable monocular SLAM,” in Proceedings of

the 2006 IEEE Computer Society Conference on Computer Vision and Pattern

Recognition - Volume 1. IEEE Computer Society, 2006, pp. 469–476.

http://ocw.mit.edu/NR/rdonlyres/Aeronautics-and-Astronautics/16-412JSpring-2005/9D8DB59F-24EC-4B75-BA7A-F0916BAB2440/0/1aslam_blas_repo.pdf

BIBLIOGRAPHY 129

[46] “panorama, n. (1),” The Oxford English Dictio-

nary, Jun. 2011, [Online; accessed 25-July-2011]. Available:
http://www.oed.com/view/Entry/136923?redirectedFrom=panorama

[47] T. Langlotz, D. Wagner, A. Mulloni, and D. Schmalstieg, “Online creation of
panoramic augmented reality annotations on mobile phones,” IEEE Pervasive

Computing, 2010.

[48] G. Klein and D. Murray, “Parallel tracking and mapping on a camera phone,” in
Proc. Eigth IEEE and ACM International Symposium on Mixed and Augmented

Reality (ISMAR’09), Orlando, Oct. 2009.

[49] Z. Zhu, G. Xu, E. Riseman, and A. Hanson, “Fast generation of dynamic and multi-
resolution 360 deg; panorama from video sequences,” in Multimedia Computing and

Systems, 1999. IEEE International Conference on, vol. 1, Jul. 1999, pp. 400 –406
vol.1.

[50] E. W. Weisstein, “Cylindrical equidistant projection,” MathWorld–

A Wolfram Web Resource, [Online; accessed 28-July-2011]. Available:
http://mathworld.wolfram.com/CylindricalEquidistantProjection.html

[51] J. Park and J. Park, “3DOF tracking accuracy improvement for outdoor augmented
reality,” in Mixed and Augmented Reality (ISMAR), 2010 9th IEEE International

Symposium on, Oct. 2010, pp. 263 –264.

[52] S. DiVerdi, J. Wither, and T. Hollerer, “Envisor: Online environment map
construction for mixed reality,” in 2008 IEEE Virtual Reality Conference, Reno,
NV, USA, Mar. 2008, pp. 19–26.

[53] S. Kim, C. Coffin, and T. Höllerer, “Relocalization using virtual keyframes
for online environment map construction,” in Proceedings of the 16th ACM

Symposium on Virtual Reality Software and Technology. Kyoto, Japan: ACM,
2009, pp. 127–134.

[54] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time panoramic
mapping and tracking on mobile phones,” Waltham, MA, Mar. 2010, pp. 211–218.

[55] S. E. Chen, “Quicktime VR: an image-based approach to virtual environment nav-
igation,” in Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, 1995, pp. 29–38.

[56] M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant
features,” Int. J. Comput. Vision, vol. 74, pp. 59–73, Aug. 2007.

http://www.oed.com/view/Entry/136923?redirectedFrom=panorama
http://mathworld.wolfram.com/CylindricalEquidistantProjection.html

BIBLIOGRAPHY 130

[57] M. Brown and D. G. Lowe, “Recognising panoramas,” in Proceedings of the Ninth

IEEE International Conference on Computer Vision - Volume 2, ser. ICCV ’03.
Washington, DC, USA: IEEE Computer Society, 2003, pp. 1218–.

[58] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for
model fitting with applications to image analysis and automated cartography,”
Commun. ACM, vol. 24, no. 6, pp. 381–395, Jun. 1981.

[59] S. Belongie, “Rodrigues’ rotation formula,” MathWorld–A Wol-

fram Web Resource, [Online; accessed 22-November-2011]. Available:
http://mathworld.wolfram.com/RodriguesRotationFormula.html

[60] R. E. Kalman, “A new approach to linear filtering and prediction problems,” Jour-

nal Of Basic Engineering, vol. 82, no. Series D, pp. 35–45, 1960.

[61] R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,”
Journal Of Basic Engineering, vol. 83, no. 1, pp. 95–108, 1961.

[62] D. Gossow, P. Decker, and D. Paulus, “An evaluation of open source SURF
computer vision implementations,” Active Vision Group, University of Koblenz-
Landau, Koblenz, Germany, Tech. Rep., 2009.

[63] Mikolajczyk, Tuytelaars, Schmid, Zisserman, Matas, Schaffalitzky, Kadir, and
Gool, “A comparison of affine region detectors,” Int. J. Comput. Vision, vol. 65,
no. 1-2, pp. 43–72, 2005.

[64] C. Harris and M. Stephens, “A combined corner and edge detection,” in
Proceedings of The Fourth Alvey Vision Conference, 1988, pp. 147–151.

[65] F. Remondino, “Detectors and descriptors for photogrammetric applications,” In-

ternational Archives of the Photogrammetry, Remote Sensing and Spatial Informa-

tion Sciences, vol. 36, no. 3, pp. 49–54, 2006.

[66] V. Bilodeau, “Panorama creation: Construction of accurate 360 degrees panora-
mas,” Bentley Systems Inc, Quebec, Qc, Canada, Tech. Rep., Aug. 2010.

[67] S. Poirier, “Estimation de pose omnidirectionnelle dans un contexte de realité
augmentée,” Quebec, Qc, Canada, 2011.

[68] L. Vacchetti, V. Lepetit, and P. Fua, “Combining edge and texture information for
Real-Time accurate 3D camera tracking,” in Proceedings of the 3rd IEEE/ACM

International Symposium on Mixed and Augmented Reality. IEEE Computer
Society, 2004, pp. 48–57.

http://mathworld.wolfram.com/RodriguesRotationFormula.html

BIBLIOGRAPHY 131

[69] H. Wuest, F. Vial, and D. Strieker, “Adaptive line tracking with multiple hypothe-
ses for augmented reality,” in Mixed and Augmented Reality, 2005. Proceedings.

Fourth IEEE and ACM International Symposium on, 2005, pp. 62–69.

[70] K. Levenberg, “A method for the solution of certain non-linear problems in least
squares,” Quarterly Journal of Applied Mathmatics, vol. II, no. 2, pp. 164–168,
1944.

[71] E. W. Weisstein, “Tukey’s biweight,” MathWorld–A Wolfram

Web Resource, [Online; accessed 25-November-2011]. Available:
http://mathworld.wolfram.com/TukeysBiweight.html

[72] D. F. Dementhon and L. S. Davis, “Model-based object pose in 25 lines of
code,” International Journal of Computer Vision, vol. 15, pp. 123–141, 1995,
10.1007/BF01450852.

[73] M.-a. Ameller, B. Triggs, and L. Quan, “Camera pose revisited: New linear
algorithms,” in In 14eme Congres Francophone de Reconnaissance des Formes et

Intelligence Artificielle, 2002, p. 2002.

[74] Wikipedia, “3D modeling — wikipedia, the free ency-
clopedia,” 2012, [Online; accessed 10-January-2012]. Available:
http://en.wikipedia.org/w/index.php?title=3D_modeling&oldid=469144987

[75] “Wire-frame, a. (2),” The Oxford English Dictionary,
Dec. 2011, [Online; accessed 10-January-2012]. Available:
http://www.oed.com/view/Entry/272645?redirectedFrom=wireframe

[76] Wikipedia, “Ray casting — wikipedia, the free encyclo-
pedia,” 2011, [Online; accessed 10-January-2012]. Available:
http://en.wikipedia.org/w/index.php?title=Ray_casting&oldid=460841099

[77] “GéoÉduc3D : la géomatique au service des jeux vidéos et de
l’apprentissage - accueil,” [Online; accessed 29-November-2011]. Available:
http://geoeduc3d.scg.ulaval.ca/

[78] “GEOIDE,” [Online; accessed 29-November-2011]. Available:
http://www.geoide.ulaval.ca/

[79] Q. Pan, G. Reitmayr, and T. Drummond, “ProFORMA: probabilistic feature-
based on-line rapid model acquisition,” in Proc. 20th British Machine Vision Con-

ference (BMVC), London, Sep. 2009.

[80] C. Mei and P. Rives, “Single view point omnidirectional camera calibration from
planar grids,” in IEEE International Conference on Robotics and Automation, Apr.
2007.

http://mathworld.wolfram.com/TukeysBiweight.html
http://en.wikipedia.org/w/index.php?title=3D_modeling&oldid=469144987
http://www.oed.com/view/Entry/272645?redirectedFrom=wireframe
http://en.wikipedia.org/w/index.php?title=Ray_casting&oldid=460841099
http://geoeduc3d.scg.ulaval.ca/
http://www.geoide.ulaval.ca/

Appendix A

Pinhole Camera Model

The most commonly used camera model to represent the projection of a scene on an
image plane is the pinhole camera model (also referred as the perspective camera model).
Most of the information presented here is adapted (or directly ported) from [32].

Images are, by definition, mostly in two dimensions. That means that a point in the
real world needs to be converted somehow to find its place on the image’s projection
plane. Between these two coordinate systems, there is the camera world that refers to
3D points from the point-of-view of the camera. This set of transformations includes
the intrinsic and extrinsic camera parameters. The first allows to project a given point
expressed in the camera’s coordinate system onto the projection plane while the second
allows to define the position and orientation of the camera according to the reference
coordinate system (often referred as the world’s coordinate system).

Intrinsic parameters

Trucco and Verri [32] defines the intrinsic parameters as follow:

Intrinsic parameters can be defined as the set of parameters needed to
characterize the optical, geometric, and digital characteristics of the viewing
camera. For a pinhole camera, there are three sets of intrinsic parameters,
specifying respectively:

• the perspective projection, for which the only parameter is the focal
length, f ;

133

f

x

y

z

P

x im

yim

p

π

c

O

Figure A.1 – The pinhole or perspective camera model. The model consists of an image

plane π and a 3D point O, representing the camera center or the focus of projection. The

positive z axis that goes from O through the center c of the image plane is called the

optical axis. A 3D point in the world P is projected on the image plane π at point p. xim

and yim represents the coordinate system of the image.

• the transformation between the camera frame coordinates and pixel
coordinates;

• the geometric distortion introduced by the optics.

The pinhole camera model is illustrated in Figure A.1. The model consists of an image
plane π and a 3D point O, representing the camera center or the focus of projection.
The positive z axis that goes from O = [0 0 0]t through the center c = [cx cy f]t

of the image plane is called the optical axis.

134

The first set of parameters (the focal length f 1) allows to project a 3D point in
the camera world P = [X Y Z]t on the image plane π at point p = [x y z]t2.
The image plane, perpendicular to the optical axis, is located at a distance of the focal
length f of the camera. The following equations allow the projection of P on the image
plane π, expressed in the camera coordinate system:

x = f
X

Z

y = f
Y

Z
(A.1)

The second set of parameters allows to convert the projected point p = (x,y), ex-
pressed in the camera’s coordinate system, in pixel coordinates (image’s coordinates)
(xim,yim). This conversion also involves the actual, physical dimensions (in mm) of the
pixels of the camera (sx,sy) and the center of the image plane c = (cx,cy). Note that
the sign change in Equation A.2 is due to the fact that the camera’s coordinate system
and the image reference frame have inverted x and y axis (Figure A.1).

x = −(xim − cx)sx

y = −(yim − cy)sy (A.2)

The third and last set of parameters is related to the radial distortion introduced by
the imperfections of the optics in the camera. The distortion becomes really visible near
the edge of the image (distortion at (cx,cy) is null) – easily resulting in a shift of several
pixels. Fortunately, these deformations can be modeled with parameters k1, . . . ,kn

where, in most standard calibrations, n = 4 is sufficient to undistort an image for it to
be usable for processing.

Most of CV algorithms expect an undistorted image as an input. It means that
the image should be remapped to compensate for its shifted center c and the radial
distortion modeled with parameters k1, . . . ,kn. Most CV libraries (e.g. Intel’s OpenCV)
can determine these sets of parameters using an once-in-a-lifetime calibration process
and undistort images.

1The focal length can be different in x and y direction resulting in having two focal length values

fx and fy. We however make the assumption that these values are equals resulting in a single f value.
2As the z component of a point on the image plane is always f , the representation p = [x y]t is

used instead of p = [x y f]t.

135

Extrinsic parameters

Extrinsic parameters represents the transformation from the world’s coordinate system
to the camera reference frame. This can simply be modeled using a rotation R and
a translation T in 3D space. A point in the world can be brought in the camera’s
coordinate system using the following matrix transformation:

Pc = R(Pw − T) (A.3)

Transformations summary

If a point P =
[

X Y Z 1
]t

w
in the world needs to be converted to a position in

pixels in the image’s reference frame (
[

x y z
]t

im
), all the transformations described

above can be combined in a single matrix expression, where Mint and Mext are respec-
tively the matrix representing the intrinsic and extrinsic parameters of the camera, f

is the focal length of the camera, (sx,sy) are the physical dimensions (in mm) of the
pixels of the camera, R is a rotation matrix and T is a translation matrix:









x

y

z









im

= MintMext













X

Y

Z

1













w

(A.4)









x

y

z









im

=









−f/sx 0 cx

0 −f/sy cy

0 0 1









(

R3x3
... −RtT3x1

)













X

Y

Z

1













w

(A.5)

	Introduction
	Context
	Problem Statement
	Objectives
	Sub-objective 1: specifying the accuracy requirements
	Sub-objective 2: determining suitable tracking approaches for mobile AR GIS dedicated to geo-engineering
	Sub-objective 3: validating the selected potential tracking approaches

	Methodology
	Structure of the thesis

	Literature Review and Mobile AR Concepts
	Mobile AR GIS Compliant Tasks and Accuracy Requirements
	Mobile AR GIS compliant tasks
	Precision and accuracy definition
	Absolute accuracy requirements
	Scale invariant accuracy representation

	Mobile AR Concepts
	Tracking
	Passive solutions
	GNSS
	Indoor positioning and pedestrian navigation
	MEMS

	Active solutions
	Fiducial markers
	Natural Features Tracking

	Tracking Methods Compliant with Mobile AR GIS for Geo-engineering

	Orientation Tracker
	Related Work
	Orientation Tracker System
	Map Construction
	Panorama construction
	Feature extraction

	Tracking Phase

	System Evaluation
	Using a MEMS -type orientation tracker
	Evaluation setup
	Results

	Using the ``Pan-Tilt'' camera
	Stability test
	Results
	Analysis

	Error Sources
	SURF implementation
	Accuracy of the point of interest detector
	Repeatability
	OpenSURF performance evaluation

	Hardware imperfections/limitations

	OT conclusion

	Panorama-Based Pose Refinement
	A Different Approach to High-Accuracy Panorama-Based Augmentations
	Adaptive Line Tracking with Multiple Hypotheses
	Initialization and first pose estimation
	Line model generation
	Identification of the multiple edge hypotheses
	Line discretization
	Search for gradient maxima along line's normal

	Pose refinement using multiple hypotheses

	Experiments, Results and Discussion
	PBPR prototype implementation
	Description of the data sets
	Description of the experiments
	Results and analysis
	First data set: the City of Sight models
	Second data set: the LiDAR-based models

	Synthesis and conclusion

	Conclusions and Future Work
	Conclusions
	Review of the project objectives and proposed research
	Lessons learned from the OT experiment
	Lessons learned from the PBPR experiment

	Research contributions

	Future Work
	Future work related to OT
	Future work related to the PBPR method

	Bibliography
	Pinhole Camera Model

