9,974 research outputs found

    A rule dynamics approach to event detection in Twitter with its application to sports and politics

    Get PDF
    The increasing popularity of Twitter as social network tool for opinion expression as well as informa- tion retrieval has resulted in the need to derive computational means to detect and track relevant top- ics/events in the network. The application of topic detection and tracking methods to tweets enable users to extract newsworthy content from the vast and somehow chaotic Twitter stream. In this paper, we ap- ply our technique named Transaction-based Rule Change Mining to extract newsworthy hashtag keywords present in tweets from two different domains namely; sports (The English FA Cup 2012) and politics (US Presidential Elections 2012 and Super Tuesday 2012). Noting the peculiar nature of event dynamics in these two domains, we apply different time-windows and update rates to each of the datasets in order to study their impact on performance. The performance effectiveness results reveal that our approach is able to accurately detect and track newsworthy content. In addition, the results show that the adaptation of the time-window exhibits better performance especially on the sports dataset, which can be attributed to the usually shorter duration of football events

    Application of Evolutionary Network Concept in Structuring Mathematics Curriculum

    Get PDF
    Phylogenetic tree and in general, evolutionary network, has found its application well beyond the biological fields and has even percolated into recent high demanding areas, such as data mining and social media chain reactions. An extensive survey of its current applications are presented here. An attempt has been made to apply the very concept in the mathematics course curriculum inside a degree program. Various features of the tree structure are identified within the curriculum network. To highlight various key components and to enhance the visual effect, several diagrams are presented. The combined effect of these diagram provides a sense of the entire curriculum tree structure. The current study can be used as a potential tool for effective student advisement, student placement within the curriculum, efficient resource allocation, etc. Future work may encompass detailing and implementing these applications

    Evolving Networks and Social Network Analysis Methods and Techniques

    Get PDF
    Evolving networks by definition are networks that change as a function of time. They are a natural extension of network science since almost all real-world networks evolve over time, either by adding or by removing nodes or links over time: elementary actor-level network measures like network centrality change as a function of time, popularity and influence of individuals grow or fade depending on processes, and events occur in networks during time intervals. Other problems such as network-level statistics computation, link prediction, community detection, and visualization gain additional research importance when applied to dynamic online social networks (OSNs). Due to their temporal dimension, rapid growth of users, velocity of changes in networks, and amount of data that these OSNs generate, effective and efficient methods and techniques for small static networks are now required to scale and deal with the temporal dimension in case of streaming settings. This chapter reviews the state of the art in selected aspects of evolving social networks presenting open research challenges related to OSNs. The challenges suggest that significant further research is required in evolving social networks, i.e., existent methods, techniques, and algorithms must be rethought and designed toward incremental and dynamic versions that allow the efficient analysis of evolving networks

    Temporal Networks

    Full text link
    A great variety of systems in nature, society and technology -- from the web of sexual contacts to the Internet, from the nervous system to power grids -- can be modeled as graphs of vertices coupled by edges. The network structure, describing how the graph is wired, helps us understand, predict and optimize the behavior of dynamical systems. In many cases, however, the edges are not continuously active. As an example, in networks of communication via email, text messages, or phone calls, edges represent sequences of instantaneous or practically instantaneous contacts. In some cases, edges are active for non-negligible periods of time: e.g., the proximity patterns of inpatients at hospitals can be represented by a graph where an edge between two individuals is on throughout the time they are at the same ward. Like network topology, the temporal structure of edge activations can affect dynamics of systems interacting through the network, from disease contagion on the network of patients to information diffusion over an e-mail network. In this review, we present the emergent field of temporal networks, and discuss methods for analyzing topological and temporal structure and models for elucidating their relation to the behavior of dynamical systems. In the light of traditional network theory, one can see this framework as moving the information of when things happen from the dynamical system on the network, to the network itself. Since fundamental properties, such as the transitivity of edges, do not necessarily hold in temporal networks, many of these methods need to be quite different from those for static networks
    corecore