53,948 research outputs found

    Integrating incremental learning and episodic memory models of the hippocampal region.

    Get PDF
    By integrating previous computational models of corticohippocampal function, the authors develop and test a unified theory of the neural substrates of familiarity, recollection, and classical conditioning. This approach integrates models from 2 traditions of hippocampal modeling, those of episodic memory and incremental learning, by drawing on an earlier mathematical model of conditioning, SOP (A. Wagner, 1981). The model describes how a familiarity signal may arise from parahippocampal cortices, giving a novel explanation for the finding that the neural response to a stimulus in these regions decreases with increasing stimulus familiarity. Recollection is ascribed to the hippocampus proper. It is shown how the properties of episodic representations in the neocortex, parahippocampal gyrus, and hippocampus proper may explain phenomena in classical conditioning. The model reproduces the effects of hippocampal, septal, and broad hippocampal region lesions on contextual modulation of classical conditioning, blocking, learned irrelevance, and latent inhibition

    Cortico-hippocampal computational modeling using quantum-inspired neural networks

    Get PDF
    Many current computational models that aim to simulate cortical and hippocampal modules of the brain depend on artificial neural networks. However, such classical or even deep neural networks are very slow, sometimes taking thousands of trials to obtain the final response with a considerable amount of error. The need for a large number of trials at learning and the inaccurate output responses are due to the complexity of the input cue and the biological processes being simulated. This article proposes a computational model for an intact and a lesioned cortico-hippocampal system using quantum-inspired neural networks. This cortico-hippocampal computational quantum-inspired (CHCQI) model simulates cortical and hippocampal modules by using adaptively updated neural networks entangled with quantum circuits. The proposed model is used to simulate various classical conditioning tasks related to biological processes. The output of the simulated tasks yielded the desired responses quickly and efficiently compared with other computational models, including the recently published Green model

    Study of classical conditioning in Aplysia through the implementation of computational models of its learning circuit

    Get PDF
    “This is an Accepted Manuscript of an article published by Taylor & Francis in Journal of Experimental & Theoretical Artificial Intelligence on 04 Jul 2007, available online: http://wwww.tandfonline.com/DOI:10.1080/09528130601052177.”The learning phenomenon can be analysed at various levels, but in this paper we treat a specific paradigm of artificial intelligence, i.e. artificial neural networks (ANNs), whose main virtue is their capacity to seek unified and mutually satisfactory solutions which are relevant to biological and psychological models. Many of the procedures and methods proposed previously have used biological and/or psychological principles, models, and data; here, we focus on models which look for a greater degree of coherence. Therefore we analyse and compare all aspects of the Gluck–Thompson and Hawkins ANN models. A multithread computer model is developed for analysis of these models in order to study simple learning phenomena in a marine invertebrate (Aplysia californica) and to check their applicability to research in psychology and neurobiology. The predictive capacities of the models differs significantly: the Hawkins model provides a better analysis of the behavioural repertory of Aplysia on both the associative and the non-associative learning level. The scope of the ANN modelling technique is broadened by integration with neurobiological and behavioural models of associative learning, allowing enhancement of some architectures and procedures that are currently being used
    • …
    corecore