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Abstract: Classical conditioning is a fundamental paradigm in the study of learning and thus in understanding 

cognitive processes and behaviour, for which we need comprehensive and accurate models. This paper aims 

at evaluating and comparing a collection of influential computational models of classical conditioning by 

analysing the models themselves and against one another qualitatively. The results will clarify the state of 

the art in the area and help develop a standard model of classical conditioning. 

1 INTRODUCTION 

In natural environments, there is a constant need for 

organisms to accommodate their behaviour to 

dynamic surroundings. Learning to predict the 

regularities in such sensory rich conditions is the key 

for adaptive behaviour and decision-making. 

Predictive learning studies have mostly been 

conducted within the context of classical 

conditioning –which is based on the principle that 

repeated pairings of two events will allow an 

individual to predict the occurrence of one of them 

upon presentation of the other, as consequence of the 

formation of a link between them (see Mackintosh, 

1994; Pearce and Bouton, 2001; Hall, 2002). This 

simple idea is at the basis of many associative 

learning phenomena and has proved to be relevant to 

human learning both theoretically (judgment of 

causality and categorization, e.g., (Shanks, 1995)) 

and practically, as the core of a good number of 

clinical models  (Haselgrove and Hogarth, 2011; 

Schachtman and Reilly, 2011).  

The last 50 years has seen the progressive 

refinement of our understanding of the mechanisms 

of classical conditioning and this has resulted in the 

development of several influential theories that are 

able to explain with considerable precision a wide 

variety of experimental findings, and to make non-

intuitive predictions that have been confirmed. This 

success has spurred the development of increasingly 

sophisticated models that encompass more complex 

phenomena. In such context, it is widely 

acknowledged that computational modelling plays a 

fundamental part (e.g., Dayan and Abbot, 2001; 

Schmajuk, 1997; 2010a). 

There are two main motivations for using 

computational models: on the one hand, be it in the 

form of a specific programming language or as a 

formal model, implementations require 

unambiguous definitions that make the underlying 

psychological models more precise. On the other 

hand, algorithms allow us to execute calculations 

rapidly and, most importantly, accurately. The 

outputs of a simulation feedback the psychological 

models –thus becoming an essential part of the cycle 

of theory formation and refinement. Automation is 

critical, particularly when models are described in 

non-linear equations that can only be solved 

numerically as it is the case of recent models of 

conditioning (Vogel et al., 2004; Schmajuk, 2010b; 

Alonso and Mondragón, 2011). In particular, 

(Schmajuk and Alonso, 2012) brought together as a 

special issue on computational models of classical 

conditoining a collection of papers that represent the 

leading edge of the field. Henceforth we are 

referring to the papers in the issue by acronysms of 

the models  themselves or the by the initials of the 

authors if none was given, that is, we are coining 

them GP, LCT, SLGK, PHK+, TD, MKM/APECS, 

AMAN and SOCR, respectively. Notwithstanding 

the relative merits of each model, as a theoretical 

corpus (Schmajuk and Alonso, 2012) showed that 

there is no unanimity on what the basic principles 
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and mechanisms of classical conditioning are or on 

standard procedures to investigate them. Although 

there is agreement, or at least some convergence, 

that learning is driven by the minimization of 

prediction error (but see Witnauer et al. above for a 

different view), the models considered differ 

substantially on the nature of stimulus representation 

(configural vs. elemental), the role of attention in the 

formation of associations, and about how temporal 

properties affect conditioning.  

In order to build more comprehensive theories of 

classical conditioning it is thus critical that we carry 

out an exhaustive analysis of such models, that is, 

that we evaluate them and compare them against one 

another. Crucially, three requirements for 

contributors to the special issue were set (Alonso 

and Schmajuk, 2012): (1) models should be tested 

against a list of phenomena for which there was a 

consensus about their reliability; (2) model 

parameters should be fixed across simulations; and 

(3) authors should make available the simulations 

they used to test their models. In short, the models 

and their simulations should be replicable. 

The list of phenomena was compiled by 

domains, as follows: acquisition phenomena (6 

phenomena), extinction (3), generalization (3), 

discriminations (17), inhibitory conditioning (6), 

combination of separately trained CSs (3), stimulus 

competition/potentiation in training (11), CS/US 

preexposure effects (11), transfer (4), recovery (8), 

higher-order conditioning (5), and temporal 

properties (9). Phenomena were characterised as 

“General”, meaning that results had been 

demonstrated in a wide variety of 

procedures/organisms, or “Some Data” otherwise.  

Regardless of the advances reported, (Schmajuk 

and Alonso, 2012) demontrated that models in the 

area are still partial (no model covers all the 

phenomena under investigation), incomplete (there 

are phenomena unaccounted for) and to some extent 

inconsistent (different models make contradictory 

predictions). (Schmajuk and Alonso, 2012) 

represents the vanguard in computational models of 

classical conditioning and, at the same time, 

provides us with the appropriate tools to evaluate 

and compare them. 

2 EVALUATION 

The over-reaching goal of this position paper is to 

diagnose the state of the art in computational 

modelling of classical conditioning, explain 

divergences and convergences, and identify those 

models that seem more promising in the search for a 

standard model of classical conditioning. 

The evalution consists of two phases: a 

preliminary analysis of the software used in each 

case. Additionally, we are also considering how 

intuitive the underlying psychological assumptions 

of each model are, and other factors such as how 

many domains of phenomena each model crosses, 

that is, their generality, and whether they account for 

critical phenomena (for instance, latent inhibition or 

spontaneous recovery). Before proceeding, it should 

be noted that by a “computational model” we mean 

an implementation of a (pre-existing) psychological 

model, that is, we don’t consider computational 

models as formal models that act as psychological 

models by proxy. Also, we do not enter into the 

philosophical debate about the different levels at 

which psychological phenomena can be interpreted 

and about the relationship between the so-called 

computational level and other levels, algorithmic or 

physical (see, (Alonso and Mondragón, 2012) for a 

review on the uses, abuses and misuses of the 

concept “computational” in psychology). 

2.1 Software  

It is beyond the purpose of this paper to carry out 

validation and verification tests on the simulators in 

wich the computational models in (Schmajuk and 

Alonso, 2012) were run. We are not checking the 

replicability of the results reported either. Instead, 

we are summarizing, Table 1, which programming 

language was used in each case, whether it was 

documented (including a user’s guide), and whether 

the code was made available.  

Table 1: Software. 

Model Language Document Code Guide

SLGK C Y Y Y 

AMAN MATLAB Y Y Y 

GP MATLAB Y Y Y 

PKH+ Visual 

Basic 

Y Y Y 

TD MATLAB N Y N 

LCT MATLAB N Y N 

MKM/AMEC MATLAB N N N 

SOCR MATLAB N N N 

It is up to the reader to decide whether, given the 

resources made available to them by the authors, the 

results reported are trustworthy. We are only 

commenting on the programming language used and 

on the software development characteristics that 

underlies all simulators. Regarding the former, 

MATLAB was the preferred choice. From the point 
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of view of a programmer, MATLAB is relatively 

easy to learn and to use (at least, for simple 

applications). Speed-wise MATLAB is rather 

similar to alternatives like C, no matter whether they 

compile or interpret. One of MATLAB’s 

disadvantages is that it is not a fully bodied 

programming language, and the user is not able to 

create modular programs and reusable code with it.  

In addition, MATLAB is proprietary software 

and a proprietary language. MATLAB works only 

with MathWork’s MATLAB software – meaning 

that if you have created programs in MATLAB, you 

will generally only be able to use those programs in 

MATLAB, and would need to do extensive porting 

to move to a different platform.  MATLAB is not a 

platform-independent language.  
More generally, most simulators are not 

professionally developed, failing to address the 

following issues: 

 Inputting data is cumbersome.  The system must be run afresh each time the 

input parameters are changed.  Outputs cannot be directly exported and 

manipulated in widespread data processors such 

as, for example, excel.  Interfaces and visualization of data are poor.  Simulators are not portable across platforms.  Simulators cannot be scaled up to accommodate 

new parameters and/or models. 

Although classical conditioning software has been 

recently described in the literature (Schultheis et al., 

2008a; 2008b; Thorwart et al., 2009; Alonso et al., 

2012; Mondragón et al., 2013a; 2013b), it is still the 

case that most psychologists in the area view 

simulations as mere tools rather than as an integral 

part of experimental methodology. Software is 

developed, implemented and documented in an ad 

hoc manner, raising serious concerns about its 

reliability, usability and scalability.  

2.2 Qualitative Analysis 

The very essence of a model refers to the choices 

scientists make –choices that reflect what they 

consider relevant– and thus evaluating a model 

requires careful consideration of many factors, both 

technical and formal (Baum, 1983). However, in 

assessing and selecting models (and in identifying 

which features a good model should show) it is 

critical that we use measurable criteria (see (Shiffrin 

et al., 2008) for a recent survey). Typically, the 

behaviour of a model is considered locally, that is, at 

its best fitting parameter values. This approach is 

problematic, since best fits leave us with snapshots 

of the model’s performance that are difficult to piece 

together into a comprehensive, global understanding 

of the model. In addition, quantitative analysis based 

on goodness-to-fit criteria can result in selecting 

overly complex models that generalize poorly. 

Finally, comparing models is even more difficult 

with local quantitative methods. On these grounds 

we will prioritize global qualitative analysis over 

local quantitative analysis.  

(Wills and Pothos, 2012a; 2012b) have 

convincingly argued that relative adequacy, defined 

in terms of the number and proportion of 

irreversible, ordinal successes, might be a useful 

metrics for model evaluation and comparison. 

Central to their approach is the concept of 

irreversible success, that is, success in the absence 

of arbitrarily variable free parameters. In addition, 

parameters should be determined at the level of the 

domain of phenomena that the model is intended to 

address, not at the level of individual experiments. 

This seemingly uncontroversial proposal, that a 

model that accommodates more successes is, other 

things being equal, a better model, contrasts sharply 

with current practice in classical conditioning 

research, which is to examine in depth the results of 

a single or a handful of experiments, rather than to 

seek breadth. Moreover, some researchers insist that 

model parameters should be derived independently 

on each occasion. These practices make the 

evaluation and comparison of computational models 

of classiscal conditioning harder. To circumvent the 

difficulties posed by using arbitrary free parameters, 

(Schmajuk and Alonso, 2012) required the authors 

to use fixed parameters across all simulations 

(notice, however, that we didn’t penalize the number 

of parameters à la BIC). However, the fact that most 

models were tested against small datasets remains an 

issue. The results in terms of numer of parameters 

and number of phenomena replicated are shown in 

Table 2. We are not disputing that the models in 

(Schmajuk and Alonso, 2012) may account for more 

results than those explictely reported. However we 

can only evaluate the models in the light of the 

evidence provided.  

Of course, the meaning of these results is 

debatable. Nevertheless, it gives researchers in the 

area a guide of the predictive power of the models. 

In terms of the number of phenomena replicated, it 

seems that SLGK is the most comprehensible model. 

On the other hand, LCT uses only one parameter –

which makes us wonder about its real value. It is 

preferable to endorse models whose verbal 

description    allows    some    understanding  of   the 
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Table 2: Qualitative analysis results. 

Model Number of 

parameters 

Number of 

phenomena 

replicated 

SLGK 11 82 

GP 7 39 

AMAN 16 38 

SOCR 5 38 

TD 11 10 

LCT 1 16 

PHK+ 5 5 

MKM/APECS Unclear Not fixed 

model’s processes in psychological terms. This 

property, that Willis and Pothos call penetrability is 

important, particularly in cases where computational 

models are taken as psychological models by proxy 

rather than as formal expressions of psychological 

models (see, Alonso and Mondragón, 2012). 
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