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Abstract7

Computational models of classical conditioning have made significant8

contributions to the theoretic understanding of associative learning, yet9

they still struggle when the temporal aspects of conditioning are taken10

into account. Interval timing models have contributed a rich variety of11

time representations and provided accurate predictions for the timing of12

responses, but they usually have little to say about associative learning.13

In this article we present a unified model of conditioning and timing that14

is based on the influential Rescorla-Wagner conditioning model and the15

more recently developed Timing Drift-Diffusion model. We test the model16

by simulating 10 experimental phenomena and show that it can provide17

an adequate account for 8, and a partial account for the other 2. We argue18

that the model can account for more phenomena in the chosen set than19

these other similar in scope models: CSC-TD, MS-TD, Learning to Time20

and Modular Theory. A comparison and analysis of the mechanisms in21
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these models is provided, with a focus on the types of time representation22

and associative learning rule used.23

Author Summary24

How does the time of events affect the way we learn about associations between25

these events? Computational models have made great contributions to our26

understanding of associative learning, but they usually do not perform very27

well when time is taken into account. Models of timing have reached high levels28

of accuracy in describing timed behaviour, but they usually do not have much to29

say about associations. A unified approach would involve combining associative30

learning and timing models into a single framework. This article takes just this31

approach. It combines the influential Rescorla-Wagner associative model with a32

timing model based on the Drift-Diffusion process, and shows how the resultant33

model can account for a number of learning and timing phenomena. The article34

also compares the new model to others that are similar in scope.35

1 Introduction36

Classical conditioning theories aim to understand how associations between37

stimuli are learned. Ever since Pavlov (1927) the process of association forma-38

tion has been understood to depend crucially on the temporal relations between39

stimuli (Savastano and Miller, 1998; Balsam et al., 2006; Kirkpatrick, 2013).40

Yet, classical conditioning theories have so far struggled to work when time is41

taken into account as an attribute of the stimulus representation. The study of42

time as a mental representation is the object of a separate area of study known43

as interval timing. Interval timing theories have produced a rich variety of time44

representations (Gibbon et al., 1984; Killeen and Fetterman, 1988; Machado,45
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1997; Staddon and Higa, 1999; Matell and Meck, 2004), and therefore are a46

natural place to look for ways to integrate time into classical conditioning. In47

this paper we first analyse previous efforts in this direction before introducing48

a new hybrid classical conditioning and timing model.49

The process of association formation is understood to be of fundamental sur-50

vival value for both human and non-human animals. Prediction, which forms51

the core of classical conditioning, allows the organism to adapt to significant52

events in its surroundings. A prototypical experiment in classical conditioning,53

a type of associative learning, involves a neutral stimulus and an unconditioned54

stimulus (US) which is capable of eliciting an unconditioned response (UR).55

After repeated pairings of both stimuli in a specified order and temporal dis-56

tance, the neutral stimulus comes to elicit a response similar to the UR. This57

response is called the conditioned response (CR) and the neutral stimulus is58

said to have become a conditioned stimulus (CS). Classical conditioning theo-59

ries typically conceptualize this process as the formation of a link (association)60

between the internal representations of CS and US. Their basic building blocks61

are (Pearce and Bouton, 2001; Brandon et al., 2002): (a) the representations62

of stimuli, and (b) a learning rule to update the association weights between63

these representations. Although most theories do not attempt to find neuro-64

physiological correlates, these constructs are nonetheless commonly assumed to65

be instantiated by (a) neural activity in the form of spike rates, and (b) synaptic66

plasticity (Moore, 2002; Klopf, 1988; Gallistel and Matzel, 2013). These have67

found some support in the neuroscientific literature, particularly studies of the68

role of dopamine in reward prediction (Schultz et al., 1997; Dayan and Niv,69

2008; Niv, 2009; Eshel, 2016). However it is important to note that there is still70

no widely accepted complete neural mechanism for classical conditioning and71

that most theories stay at the computational level of explanation.72
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Stimulus representations are generally thought of as neural activation that73

is elicited by the stimulus, which may linger for a short time as a ‘trace’ af-74

ter stimulus offset. Representations are commonly one of two types: molar or75

componential. Molar (or elemental) trace theories treat the stimulus as a single76

conceptualized unit whose activity is usually assumed to peak quite early fol-77

lowing stimulus onset, and then gradually decrease (Hull, 1943; Wagner, 1981;78

Sutton and Barto, 1981; Schmajuk and Moore, 1988; McLaren and Mackintosh,79

2000; Harris and Livesey, 2010). In contrast, componential trace theories break80

down the CS representation into smaller units, each capable of being associated81

with the US, with some units more active early during the CS and others late,82

but all leaving a trace after activation (Desmond and Moore, 1988; Grossberg83

and Schmajuk, 1989; Vogel et al., 2003; Ludvig et al., 2008).84

Learning rules may be classified according to different criteria. An important85

period in the recent history of the field gave rise to one of these criteria. Prior to86

1970’s conditioning used to be rooted in the stimulus-response tradition, which87

attributed crucial importance to the temporal pairing, or contiguity, of stimuli88

for the development of associations. The linear operator learning rule (Hull,89

1943) is one of the products of that period. In the late 1960’s and early 1970’s90

important experimental discoveries using compound stimuli, that is, a stimulus91

formed by combining other individual stimuli, showed the contiguity view to92

be incomplete (Rescorla, 1988; Gallistel and Gibbon, 2001). These compound93

experiments indicated that the formation of associations also depended on the94

reinforcement history of the individual elements forming the compound stimu-95

lus. This led to the development of new learning rules (Rescorla and Wagner,96

1972; Mackintosh, 1975; Pearce and Hall, 1980) capable of combining individual97

reinforcement histories in compounds, which the linear operator rule cannot.98

The first, and arguably still the most influential, of these learning rules is the99
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Rescorla-Wagner (RW, Rescorla and Wagner, 1972). It has become famous for100

being the first model able to provide an account for the blocking effect (Kamin,101

1968), where a novel CS does not become associated with the US if it is rein-102

forced only in compound with a previously conditioned CS.103

The CR is usually not a single event. Organisms time their responses so104

that they emerge gradually during the duration of the CS and reach maximum105

frequency or intensity around the time of reinforcement. Interval timing theories106

have attempted to provide an account for this timing of the CR. One of the107

fundamental properties of timing behaviour is that it is approximately timescale108

invariant, i.e. the whole response distribution scales with the interval being109

timed (Gibbon, 1977; Allman et al., 2014).One of the consequences of timescale110

invariance is that the coefficient of variation, that is the standard deviation111

divided by the mean, of the dependent measure of timing is approximately112

constant. A number of timing models have put forth explanations for timescale113

invariance and other timing properties (how time is encoded, how it is stored in114

memory and how it gets translated into behaviour) by recourse to an internal115

pacemaker. The most influential pacemaker-based timing theory to date is116

Scalar Expectancy Theory (SET, Gibbon et al., 1984; Gibbon and Church,117

1984). The pacemaker is supposed to mark the passage of time by emitting118

pulses. These pulses can be gated to an accumulator via a switch which closes119

at the start of a relevant interval and opens when the interval is finished. The120

accumulator count is kept in working memory. At the end of the interval the121

current count is transferred to a long-term reference memory. Behaviour is122

guided by the action of a comparator which actively compares the count in123

working memory to the one retrieved from reference memory.124

In spite of the considerable overlap, interval timing and classical conditioning125

are not easily integrated. Most conditioning theories are trial-based, that is they126
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consider the trial as the unit of time. A trial is generally taken to be the state127

where a CS is present (or CSs in compound) and which may or may not contain128

a US (or USs). The most influential model in this category is the Rescorla-129

Wagner (RW, Rescorla and Wagner, 1972). In order to account for different130

stimulus durations, trial-based theories like RW must resort to some sort of131

time discretization, usually by subdividing the trial into ‘mini-trials’. Each132

mini-trial is treated as a trial in its own right, which are then used to update133

associative links. This gives rise to the problem of deciding on a particular134

discretization. Also, given that humans experience time passing as a continuous135

flow, it is unlikely that animals discretize their conditioning experience in such136

a way. A more realistic approach to timing is taken by real-time theories. These137

theories attempt to formalize the concept of a continuous flow of time.138

The Temporal Difference model (TD, Sutton and Barto, 1990,9) was one139

of the earliest and still most influential real-time classical conditioning model.140

It may be thought of as a real-time version of RW. When used with stimulus141

representations such as the Complete Serial Compound (CSC, Moore et al.,142

1998), Microstimuli (MS, Ludvig et al., 2008,0) and the Simultaneous and Se-143

rial Configural-cue Compound (SSCC, Mondragón et al., 2014) it is capable of144

reproducing some timing phenomena like the gradual increase in anticipatory145

responding that occurs before a signalled reinforcer, and the lower response rates146

observed during longer CSs. However, only MS-TD has a time representation147

capable of approximating the most fundamental property of timing, timescale148

invariance. Another issue with the stimulus representations for TD is that their149

approach to timing resembles the strategy used by trial-based models, i.e. they150

all split the stimulus into a number of smaller units or states, the number of151

which being directly proportional to the duration of the stimulus. Given that152

conditioning is observed in a timescale that ranges from milliseconds to hours153
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(Kehoe and Macrae, 2002, p. 189) this can lead to a very high number of units154

being required. The stimulus as a whole no doubt is a complex entity, and the155

brain may be employing a large number of neurons to represent it, but to ded-156

icate so many resources only for timing might not be the most energy-efficient157

strategy. Also, TD and its stimulus representations do not usually account for a158

change in timing that is not tied to reinforcement. Animals time the occurrence159

of different events, such as onset and offset of stimuli (see for example Meck and160

Church, 1984), but TD usually only allows for the timing of rewards.161

On the other hand, timing models have made even fewer attempts at inte-162

grating aspects of classical conditioning. A notable exception is the Learning163

to Time (LeT, Machado, 1997; Machado et al., 2009) model. It represents the164

passage of time by transitioning between internal states according to a stochas-165

tic pacemaker, an idea borrowed from an earlier timing model called the Be-166

havioural Theory of Time (Killeen and Fetterman, 1988). Learning takes place167

by associating reinforcement presentation with the current internal state accord-168

ing to the linear operator, a standard classical conditioning rule. LeT offers an169

account of the basic dynamics of association formation, but it cannot explain170

cue-competition phenomena like blocking. In a blocking procedure, a CS is first171

paired with a US until a CR is acquired. The same CS is then presented together172

with a novel CS and both are paired with the US for a few trials. If the novel173

CS is now presented alone it elicits little or no responding, and so it is said to be174

blocked by the first CS. LeT’s learning rule, the linear operator, has largely been175

supplanted by RW in classical conditioning modelling because it cannot explain176

cue-competition phenomena. Like TD, LeT also employs a representation that177

requires as many units as time-steps, making it a resource-intense model.178

Modular Theory (MoT, Guilhardi et al., 2007; Kirkpatrick, 2002) is a timing179

model which because of its explicit goal of integrating timing and learning may180
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be called a hybrid theory. MoT has introduced novelties that allow it to account181

for some aspects of the dynamics of classical conditioning that LeT cannot. Its182

architecture is different than the connectionist one (states or units connected183

by modifiable links) assumed by RW, TD and LeT. Instead, it uses a more cog-184

nitive architecture, with separate information processing stages that deal with185

perception, memory and decision. It postulates two separate memories: a pat-186

tern memory which stores CS durations, and a strength memory which stores187

the associative strength between each pattern memory and the US. This sepa-188

ration allows MoT to deal with more complex situations involving the dynamics189

of learning during acquisition and extinction. However, MoT also relies on the190

linear operator to update its strength memory, which, like LeT, prevents it from191

accounting for cue-competition phenomena.192

Although the models mentioned above, namely TD, LeT and MoT, have193

accomplished a great deal in terms of bringing together timing and conditioning,194

they each have their different strengths and weaknesses as we have touched195

above. In this paper we introduce a model that tries to address some of these196

weaknesses while preserving the strengths. More specifically, the model has the197

following strengths. It represents time in real-time. Like MoT and unlike LeT198

and TD, its time representation does not require an arbitrary large number of199

units or states. Similarly to TD but unlike LeT and MoT, it uses a learning rule200

that preserves the main features of RW which allow it to account for compound201

phenomena. It can time the onset and offset of all stimuli, not only of rewards,202

and store a memory for each. It includes two update rules: one for timing that203

is updated by time-markers, and another for associations that is updated by204

the US. Hence, simple stimulus exposure causes the model to learn and store205

its duration. This capability is not present in models that depend only on an206

associative learning rule to also learn about time, such as TD and LeT.207
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This new model is essentially a way to connect one of the most influen-208

tial classical conditioning theories, the Rescorla-Wagner model (Rescorla and209

Wagner, 1972), with a recently developed timing theory called Timing Drift-210

Diffusion Model (TDDM, Rivest and Bengio, 2011; Simen et al., 2011). The211

TDDM is based on the drift-diffusion model, widely used in decision making212

theory, and it provides an adaptive time representation that has commonalities213

with pacemaker-based models like SET and LeT (Simen et al., 2013). These214

models postulate the existence of a pacemaker that emits pulses at a regular215

rate, which are then counted to mark the passage of time. To preserve timescale216

invariance they either postulate a specific type of noise in the memory saved for217

intervals and a ratio-based decision process (SET) or adapt the rate of pulses218

(LeT). The TDDM takes the latter route but sets a fixed threshold on pulse219

counting. To emphasize the unification of these two theories we call our pro-220

posal the Rescorla-Wagner Drift-Diffusion Model (RWDDM).221

We evaluate RWDDM based on how well it can simulate the behaviour of222

animals in a number of experimental procedures. Many classical conditioning223

phenomena have been identified which collectively represent a significant chal-224

lenge for any single model to explain. A recent list (Alonso and Schmajuk, 2012)225

has compiled 12 categories, which include acquisition, extinction, conditioned in-226

hibition, stimulus competition, preexposure effects, temporal properties, among227

others. Of particular interest to a theory of timing and conditioning are phe-228

nomena that involve elements of both timing and conditioning. As we detail229

later, we have searched the literature for documented effects that can challenge230

the main mechanisms embodied in RWDDM.231

We proceed by first introducing the new model. We compare its formalism232

with four models that have similar scope, namely CSC-TD, MS-TD, MoT and233

LeT. In the results section we present the phenomena we will simulate, followed234
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by the results of our simulations, and compare them to the current explanations235

given by LeT, MoT and TD.236

2 Model237

We follow most classical conditioning theories in conceptualizing the condition-238

ing process as the formation of an association between the internal representa-239

tions of CS and US. Arguably, one of the most influential rules describing the240

evolution of this association through training is the Rescorla-Wagner (Rescorla241

and Wagner, 1972) rule. As mentioned previously, other models exist which242

have a similar scope to RW, both trial based (Mackintosh, 1975; Pearce and243

Hall, 1980) and real-time (Buhusi and Schmajuk, 1999; McLaren and Mack-244

intosh, 2000,0). However, our goal was to take advantage of TDDM’s time245

representation, so we sought a theoretical associative framework that could in-246

corporate such a representation. Since trial-based conditioning theories lack247

any time representation, they are a natural place to start. Out of those theories248

the RW is perhaps the simplest whilst also retaining the greatest possible ex-249

planatory power. Its basic formalism consists of the following rule for updating250

associative strength:251

∆Vi(n) = αβ

λ− l∑
j=1

Vj(n)xj(n)

xi(n) (1)

where Vi(n) denotes associative strength for CSi at trial n, λ the asymptote of252

learning which is set by the US representation, xi(n) which marks the presence253

(xi = 1) or absence (xi = 0) of the i-th CS representation at trial n, 0 <254

α < 1 a learning rate set by the CS and 0 < β < 1 a learning rate set by255

the US. The summation term in the equation (1) sums over all CSs present256

in the trial. The top panel of figure 1 shows a diagram of a basic neural net257

10



for classical conditioning which serves as the architectural framework for both258

RW and RWDDM. The RW rule is used to update the links V1, ..., Vl that259

connect the CS input nodes CS1,...,CSl. The summation term in the RW rule260

is represented in the diagram as a summation unit or junction Σ, that sums261

the inputs it receives from the CSs j = 1, ..., l present in the trial. This sum262

allows RW to combine (additively) the reinforcement history of each individual263

CS present in a compound trial. In the neural network literature, equation (1)264

is also referred to as the Widrow-Hoff rule (Widrow and Hoff, 1960) and the265

Least-Means-Square (LMS; Sutton, 1992). The relationship to the LMS rule266

is easier to see if we let y(n) =
∑l
j=1 Vj(n)xj(n) be the output of a learning267

unit that aims to predict a target λ given inputs xi by adapting the weights268

Vi. In classical conditioning, λ represents the maximum learning driven by a269

given outcome (the US), xi is the CS and Vi the associative strength. If we270

let δ(n) = λ − y(n) be the error between output and US, equation (1) can be271

obtained with the method of gradient descent by minimizing the squared error272

δ2(n) with respect to the weight Vi.273

In spite of the relative success in explaining a wide range of conditioning274

phenomena (for a list of successes, and failures, see Miller et al., 1995), the275

Rescorla-Wagner rule lacks a mechanism to account for the microstructure of276

real-time responding during conditioning procedures. In terms of the order of277

CS-US presentation conditioning procedures may be either forward (CS followed278

by US) or backward (US followed by CS). Two common types of forward condi-279

tioning are delay and trace. In delay conditioning the US always occurs a fixed280

time after CS onset. In trace conditioning the US occurs at a fixed duration after281

CS offset. After sufficient training with delay or trace conditioning, responding282

begins some time after CS onset, increases rapidly in frequency until it reaches283

a maximum level where it stays until US onset (Gormezano et al., 1983). The284

11



Figure 1: Connectionist diagram of RWDDM. Each CS unit is connected to
a summing junction (labelled Σ) via a modifiable link V . The output of the
summing junction is the CR. The US is represented as a teaching signal with a
fixed weight H. Each CS unit has its own timer Ψ and representation x. The
bottom panel shows a zoomed-in view of the timer Ψl and CS representation xl
associated with CSl. The timer slope Al is tuned to a 5-second CS duration.

RW rule alone does not account for CR level as a function of time. This role285

is usually fulfilled by the choice of CS representation. We base our choice on a286

timing model called Timing Drift-Diffusion Model (TDDM, Simen et al., 2011;287

Rivest and Bengio, 2011; Luzardo et al., 2013; Balcı and Simen, 2016). We chose288

the TDDM because it possesses a number of interesting features. It is part of a289

family of pacemaker based models like SET and LeT (Simen et al., 2013) which290

are arguably two of the most successful timing theories to date. The TDDM291

is a modified version of the drift-diffusion models that have been extremely292
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successful at modelling reaction time in decision making tasks (Ratcliff, 1978;293

Voss et al., 2013). Evidence of climbing neural activity related to timing that294

resembles the TDDM has been extensively reported (Komura et al., 2001; Leon295

and Shadlen, 2003; Brody et al., 2003; Wittmann, 2013; Jazayeri and Shadlen,296

2015). The TDDM consists of a drift-diffusion process with an adaptive drift or297

rate. The drift-diffusion process is defined by a continuous random walk called298

Wiener diffusion process. The two main components of Wiener diffusion are299

the drift and the normally distributed noise. The Wiener diffusion process may300

be visualized by imagining a two-dimensional grid with time in the horizontal301

axis and displacement on the vertical axis. If we imagine a purely linear and302

non-random walk that starts at the origin and moves up at a constant rate then303

the resulting walk would be a straight line and the drift would be equal to the304

slope of the line. With normally distributed noise, the walk becomes a random305

walk and it looks like a jagged curve, since at each time step there is now only306

a probability that the displacement will be up or down. For the purposes of307

timing, the slope is always positive and the random walk can be interpreted as308

a noisy accumulator (or timer) Ψ(t), which starts at the beginning of a salient309

stimulus and stops (and resets) at the end. In a conditioning experiment the CS310

is usually the most salient stimulus in the uneventful context of the conditioning311

chamber, so it is well placed to serve as a time marker. When timing starts,312

accumulator increments are performed at each time-step according to313

∆Ψi(t) = Ai(n) ·∆t+m ·
√
Ai(n) ·∆t · N (0, 1), (2)

where Ai(n) is the rate (slope) of accumulation for CSi in trial n, m is a noise314

factor, ∆t is the time-step size andN (0, 1) denotes a sampling from the standard315

normal distribution. An interval is timed by the rise in the accumulator to a316

certain fixed threshold, say Ψi(t) = θ. The TDDM adjusts to new intervals by317
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keeping the threshold fixed but adapting the rate of accumulation Ai(n). The318

bottom left panel of figure 1 shows a typical trajectory (or realization) of a CS’s319

TDDM timer after one 5-second trial.320

In its original formulation (Rivest and Bengio, 2011; Simen et al., 2011) the321

accumulation process was not allowed to continue beyond the threshold value θ,322

a constraint that gave rise to two distinct rules for rate adaptation, one for when323

the US arrived earlier than expected and another for when it arrived later. The324

constraint fixing a maximum level of accumulation was driven by the neurophys-325

iological assumption that a linear neural accumulator is not likely to continue326

to perform effectively beyond a certain level. The neural implementation so far327

proposed for TDDM’s linear accumulator (Simen et al., 2011) is based on a feed-328

back control mechanism that is tuned to balance excitation and inhibition in a329

neuron population. Tuning of this kind requires great computational precision,330

which may not be easily kept for very long in a biological system. Neurophysiol-331

ogy notwithstanding, we will drop that requirement here for simplicity and use332

instead only one update rule. We demonstrate how this single update rule can333

be derived by the method of gradient descent. The model learns a new interval334

by adapting its slope Ai so that the accumulator Ψi reaches the threshold value335

θ at the target time t∗, which may be the time of reinforcement for example.336

The target slope will therefore be θ/t∗. The error δ(n) between the target slope337

and the current slope is δ(n) = θ/t∗ − Ai(n). By minimizing the squared error338

δ2(n) using gradient descent we can derive the slope update rule. The squared339

error as a function of Ai forms a curve. Moving in the direction opposite the340

slope of this curve and taking a step of size αt/2 we form the equation:341

Ai(n+ 1) = Ai(n)− αt
2

dδ2(n)

dAi(n)
. (3)
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Solving the derivative yields342

Ai(n+ 1) = Ai(n)− αt
2

2δ(n)(−1)

= Ai(n) + αt (θ/t∗ −Ai(n)) . (4)

Since the organism only has access to the psychological time given by its internal343

timing mechanism, and not the physical time t, we assume that an internal344

estimate for t is formed by dividing the current pacemaker count by the current345

slope, t = Ψi(t)/Ai(n). Substituting this estimate into equation (4) we get:346

Ai(n+ 1) = Ai(n) + αt

(
θAi(n)

Ψi(t∗)
−Ai(n)

)
= Ai(n) + αtAi(n)

(
θ

Ψi(t∗)
− 1

)
= Ai(n) + αtAi(n)

(θ −Ψi(t
∗))

Ψi(t∗)
. (5)

Hence, the update rule for slope Ai to be applied at target time t∗ (the end of347

the trial or of the interval being timed) is348

∆Ai(n) = αtAi(n)
(θ −Ψi(t

∗))

Ψi(t∗)
. (6)

Equation (6) is the slope update rule we use. Note that n above is indexing349

the number of occurrences of a specific interval that the timer is timing. These350

intervals may be the duration between CS onset and US onset (the usual ‘trial’ in351

delay conditioning for example), but they may be any other salient time interval352

such as CS or intertrial duration. Figure 2 shows timer slope adaptation during353

three timing scenarios: timing a novel stimulus (row 1), timing a long-short354

change in stimulus duration (row 3), and timing a short-long change in stimulus355

duration (row 5).356
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Figure 2: RWDDM timer and CS representation during three 12-trial timing
scenarios. Top two rows: timing a novel 6 second stimulus. Timer starts with
a low baseline slope (A = 0.001) on trial 1 and gradually adapts over training
to reach approximately the required slope. Middle two rows: stimulus duration
change from 6 to 3 seconds. Bottom two rows: stimulus duration change from
6 to 12 seconds. Parameters: αt = 0.215, θ = 1, σ = 0.25, m = 0.15.

In the top row of figure 2 and throughout the paper we assume that the initial357

value of slope A for a novel stimulus is so low as to overestimate the stimulus358

duration. This overestimation will only last for a few trials, the number of359

which can be made arbitrarily small by choosing a high adaptation rate αt.360

Alternatively, it would be possible to use a very high initial value for A so as to361

underestimate the stimulus duration. However this alternative does not seem362

neurophysiologically plausible as the brain would need to keep a pool of neurons363

firing very rapidly as its ‘standby’ timer.364
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In TDDM, timescale invariance arises from the nature of the noise in the365

accumulator. After repeated training, say in delay conditioning with a CS of366

fixed duration, equation (6) will converge to a value of Ai which will make the367

accumulator reach the threshold value θ at the time of stimulus offset, but only368

on average. In some trials the accumulator will reach the threshold sooner, in369

which case the organism will underestimate the stimulus duration. In other trials370

the accumulator will reach the threshold later, causing overestimation. The371

variability of this time estimate relative to the mean is given by the coefficient372

of variation (CV). It has been well established experimentally that the CV of373

time estimates in humans and other animals is approximately constant over a374

wide timescale (Gibbon, 1977; Gallistel and Gibbon, 2000; Allman et al., 2014).375

The CV of TDDM’s time estimate is (see equation 3 in Luzardo et al., 2017)376

CV =
m√
θ
, (7)

which depends only on the choice of threshold θ and noise factor m. As these377

are constant, the CV of TDDM’s time estimate is also constant. Note that378

because the timer adapts its slope gradually, if the duration of a CS is changed,379

CV measurements will only match the one given by equation (7) after the slope380

has finished adapting. The number of trials to adaptation will vary depending381

on the adaptation rate αt.382

We substitute the presence representation used in the original RW model by a383

Gaussian radial basis function. Its input is provided by the TDDM accumulator:384

xi(Ψi) = exp

(
− (Ψi(t)− θ)2

2σ2

)
. (8)

This representation may be interpreted as the receptive field of time-sensitive385

neurons that read the signal coming from the accumulator neurons. Their re-386
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ceptive fields are tuned to the accumulator threshold value θ. The bottom right387

panel in figure 1 shows the representation for CSl generated from the input388

provided by the timer on the left. Note how xl reaches its maximum value at389

the same time that Ψl crosses the threshold at 1. Figure 2 shows x(Ψ) adapting390

in the three different timing scenarios explained previously. As can be seen,391

xi is a dynamic representation of CSi that adapts to the temporal information392

conveyed by the stimulus. Other representation shapes could be used, like a393

sigmoid for example, but a Gaussian is mathematically simple and has been394

used before by at least one other timing model (MS-TD, Ludvig et al., 2008).395

We follow Gibbon (1977) and Gibbon and Balsam (1981) in assuming that396

time sets the asymptote of learning, λ, in equation (1). They were led to this397

hypothesis by investigating CR timing in fixed interval conditioning schedules,398

a type of delay conditioning. After enough training in this procedure, subjects399

begin responding some time after CS onset, with a slow rate at first which then400

increases rapidly until it reaches asymptotic level some time before reinforcement401

delivery. Gibbon (1977) proposed that subjects make an estimate of time to402

reinforcement which is used to generate an expectancy of reinforcement. The403

expectancy for a particular CSi with duration t∗, hi, was hypothesised to be404

hi = H/t∗, whereH was a motivational parameter which was assumed to depend405

on the reinforcing properties of the US. The reinforcing value of the US is406

thus spread evenly over the CS length. It was assumed that this expectancy407

would be updated as time elapsed during the CS, such that hi(t) = H/(t∗ −408

t). Hence, expectancy would increase hyperbolically until the estimated time409

to reinforcement t = t∗. Responding would reach asymptotic level when the410

expectancy crossed a threshold value hi(t) = b.411

Here we will not use Gibbon’s concept of expectancy update. A similar role412

is fulfilled by the TDDM accumulator in our formalization. But we hold on to413
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his argument that the reinforcing value of the US is spread over the CS length.414

Within the Rescorla-Wagner modelling framework, Gibbon’s expectancy value415

may be interpreted as setting the asymptotic level of learning in equation (1),416

namely λ = H/t∗. Under this interpretation, λ may be said to implement417

hyperbolic delay discounting of rewards. Similarly to the argument used above418

in the derivation of the slope update rule, we use the psychological time estimate419

from TDDM in place of the physical time t∗, such that t∗ = Ψi(t
∗)/Ai(n).420

The value we use is then λ = HAi(n)
Ψi(t∗) . Another possibility would be simply421

λ = HAi(n). Both alternatives yield the same asymptotic value, but HAi(n)422

converges gradually (with the rate set by αt) whilst HAi(n)
Ψi(t∗) immediately. Our423

version of equation (1) for updating associative strength then becomes:424

∆Vi(n) = αV

HAi(n)

Ψi(t∗)
−

l∑
j=1

Vj(n)xj(Ψj)

xi(Ψi). (9)

In the trial-based RW model, equation (1) is applied at the end of a ‘trial’, which425

is usually taken to be the event starting at CS onset and ending at US delivery.426

We follow the same practice here and apply equation (9) at the end of a trial,427

i.e. at US delivery. Note that because xi(Ψi) is a dynamic CS representation,428

its activation (or strength) level at the end of the trial will vary from trial to429

trial, as can be seen in figure 2. Equation (9) is applied using the activation430

level of xi(Ψi) current at the end of the trial.431

We assume that real-time responses to a CSi are emitted according to the432

product of its associative strength Vi(n) and representation xi(Ψi), that is, it is433

the output of the summing junction in figure 1:434

CRi(t) = Vi(n)xi(Ψi). (10)

Equations (2), (6), (8), (9), (10) fully define the basic model. Its six free435
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parameters are: m, αt, θ, σ, αV , H.436

2.1 Relationship with Other Models437

Among the theories capable of providing an account of both timing and condi-438

tioning, arguably four stand out for their scope or influence. They are CSC-TD,439

MS-TD, LeT and MoT.440

TD has been developed primarily as a learning model, without the explicit441

intention of addressing timing. It may be visualized as a real-time rendition of442

the RW rule. Its basic learning algorithm, is given by:443

Vt(xt) =
∑
i

wt(i)xt(i), (11)

δt = λt − (Vt(xt−1)− γVt(xt)), (12)

wt+1 = wt + αδtet (13)

where Vt is the US prediction at time t, formed by a linear combination of444

the weights w(i) and the CS representation values x(i). This update algorithm445

is performed at each time step, and not only at the end of a trial like RW446

and RWDDM. Another important difference is that equation (12) computes a447

difference between the current US value and the temporal difference between448

predictions. Hence, δt > 0 if the US is higher than this temporal difference in449

prediction, and δt < 0 if the US is lower. The constant 0 < γ < 1 is termed a450

discount factor. Equation (13) updates the weights for the next time step. The451

vector et stores eligibility traces, which are functions describing the activation452

and decay of representations xt. The three most common eligibility traces used453

are: accumulating traces, bounded accumulating and replacing traces. These454

three types accumulate activation in the presence of the CS and discharge slowly455

in its absence, the first accumulates with no upper bound, the second only until456
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the upper bound and the third is always at the upper bound whilst the CS is457

present (Sutton and Barto, 1998, pp. 162-192).458

The richness of TD’s timing account relies on the choice of CS representation459

x. The Complete Serial Compound representation (CSC, Moore et al., 1998)460

postulates one CS element x(i) per time unit of CS duration. Each element is461

only switched on at its activation time unit, and then decays afterwards following462

its choice of eligibility trace e(i) (usually an exponential decay function). This463

componential representation, which increases in size linearly with CS duration,464

should be contrasted with RWDDM’s molar representation (equation (8)) which465

requires only one element. CSC may be called a time-static representation,466

whilst RWDDM is a time-adaptive representation, with a rule to change its467

structure based on a change in time (equations (6) and (8)). CSC-TD also lacks468

any mechanism to explain timescale invariance of the response curve, which is469

present in RWDDM. A modification of CSC has recently been developed, the470

Simultaneous and Serial Configural-Cue Compound (SSCC, Mondragón et al.,471

2014). SSCC-TD formalizes the idea that when multiple stimuli are presented472

together in time, a configural cue–a novel stimulus that is unique to the current473

set of present stimuli–is formed. SSCC follows on the CSC representation, but,474

unlike any other TD model, it allows for the representation of compounds and475

configurations of stimuli. Because SSCC-TD is a real-time model, it also allows476

for the simulation of CR timing during compounds and configurations. However,477

its approach to timing is still the same as CSC, i.e. it breaks down the stimuli478

into a series of elemental units which are activated in series. Therefore, with479

respect to timing only we will consider SSCC to belong to the family of CSC480

representations.481

The Microstimuli representation (Ludvig et al., 2008,0) introduced a more482

realistic description of time. Unlike CSC, it uses a fixed number of elements483
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x(i) per stimulus. The ith microstimulus is given by:484

xt(i) =
1√
2π

exp

(
− (yt − i/m)2

2σ2

)
· yt (14)

where m is the total number of microstimuli, y is an exponentially decaying time485

trace set at 1 at CS onset. It will be noted that a microstimulus is a Gaussian486

curve modulated by the decaying trace yt. The set of microstimuli generated by487

the CS will then give rise to partially overlapping Gaussians, with decreasing488

heights and increasing widths across time. The fact that only a fixed number489

of microstimuli are required per CS is an improvement to the potentially large490

numbers of elements in CSC. The MS representation tries to capture the idea491

that as time elapses, the stimulus leaves a more diffuse and faint impression.492

However, even though it is more realistic than CSC, it still lacks a mechanism493

to produce exact timescale invariance.494

Learning to Time is primarily a theory of interval timing which can also495

account for some aspects of conditioning. Here we will deal with its most recent496

version in Machado et al. (2009), which differs somewhat from the earlier version497

in Machado (1997). Its CS representation resembles CSC in postulating a long498

series of elements (or states) that span the whole stimulus duration. Unlike499

CSC, it transitions from state to state at a rate that varies from trial to trial,500

and that is normally distributed. Hence, time during a trial is represented as501

a noiseless linear increase from states n = 1, 2, 3, ... (one per time-step) at a502

fixed rate. This linear time representation resembles the linear accumulator in503

RWDDM, except that the latter has noise built into the linear accumulator,504

whilst LeT assumes noise only at the intertrial level. Each state n is associated505

with the US via an associative link. At the end of a trial, the strength w of506

these links are updated as follows:507
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• For the active state at reinforcement, n∗, the update rule is508

∆w(n∗) = β(1− w(n∗)), (15)

where β is a constant.509

• For inactive states, n < n∗, the update rule is510

∆w(n) = − α

n∗
w(n), (16)

where α is a constant.511

• For states that did not become active during the trial, n > n∗, the rule is512

∆w(n) = 0. (17)

Note that unlike RWDDM’s associative update rule, equations (15) to (17) do513

not include a summation term. This places a severe limitation on the ability514

of LeT to deal with compound conditioned stimuli. LeT’s strength lies on its515

being able to explain timescale invariance of the response curve. Machado et al.516

(2009) showed that it is possible to derive timescale invariance using only the517

assumption of intertrial normality of state transition rate. Finally, LeT assumes518

that responses are emitted at a constant rate if the current active state has519

associative strength w(n) greater than a threshold θ. The fact that responding520

depends on the associative strength of the current state, and that this strength521

only changes with US associations, prevents LeT from accounting for changes522

in timing that are not related to US occurrence. For example, there is evidence523

that animals learn the timing of a preexposed CS (Bonardi et al., 2016) and are524

sensitive to changes in timing during extinction (Guilhardi and Church, 2006),525

two situations that do not involve the occurrence of a US.526
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Modular Theory is another primarily timing theory that can also deal with527

some aspects of conditioning. It treats the onset of a stimulus as signalling a528

time expectation to reinforcement. Its time representation T is, like LeT, an529

accumulator that increases linearly with time t, T = ct, where c is a constant.530

When reinforcement is delivered the current reading from the accumulator is531

stored in what is called pattern memory. Pattern memory is updated at each532

trial n according to533

m(n) = m(n− 1) + α(T ∗ −m(n− 1)) (18)

where α is a learning rate and T ∗ is reinforcement time. Equation (18) may be534

contrasted to (6) from RWDDM. The main difference is that pattern memory535

in MoT stores a moving exponential average of intervals, whilst the slope in536

RWDDM stores a moving exponential harmonic average of intervals. However,537

both models are similar in that they can potentially time the occurrence of any538

event, not only rewards. MoT’s pattern memory and RWDDM’s slope can be539

made, for example, to adapt to mark the end of stimuli that are not necessarily540

paired with a reward.541

A stochastic threshold b is used to mark response initiation. The threshold542

distribution is set so as to yield timescale invariance of the response curve.543

Its mean, B, is a fixed proportion of the value in pattern memory, B = km(n),544

where k is the proportionality constant, and its standard deviation is γB, where545

γ is the coefficient of variation of B. Hence, the coefficient of variation of546

the threshold, i.e. of response initiation, is constant for all intervals, which547

is the timescale invariance of the response curve. RWDDM derives timescale548

invariance of response curve from noise in the accumulator (equation (2), not549

from the threshold.550

This account of time from MoT is an instantiation of Scalar Expectancy551
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Theory, arguably one of the most successful timing models to date. Being a552

purely timing theory, SET does not address associative learning directly, so it553

does not have a rule for changes in association between stimuli. MoT bridges this554

gap by adding a rule to update what is termed strength memory, w(n). Strength555

memory holds the associative strength between stimulus and reinforcement. The556

rule consists of a linear operator:557

∆w(n) =


βe(0− w(n− 1)) if US is absent,

βr(1− w(n− 1)) if US is present,

(19)

with β a constant that can determine different rates of update for acquisition558

(βr) and extinction (βe). Equation (19) may be compared with (9). Note that,559

unlike RWDDM, equation (19) does not contain the summation term from RW560

based rules.561

MoT also includes a rule for response rate that is more realistic than RWDDM’s562

given by (10). It is partly derived from an empirical analysis of real-time re-563

sponding in animals. We refer the interested reader to Guilhardi et al. (2007) for564

a fuller description. We will only mention here that MoT generates a two-state565

response pattern, low and high. The transition between states is determined566

by the crossing of threshold B, and the high state is proportional to strength567

memory w(n).568

Other theories exist which are similar in scope to CSC-TD, MS-TD, LeT and569

MoT. Two notable examples are the Componential version of the Sometimes570

Opponent Process model (C-SOP, Brandon et al., 2003) and the Adaptive Res-571

onance Theory - Spectral Timing Model (ART-STM Grossberg and Schmajuk,572

1989). C-SOP builds a CS representation based on two sets of elements, or com-573

ponents, one that includes elements activated as a function of time and another574

whose elements are randomly activated. Associative strength for each element is575
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updated using the standard trial-based RW rule. Simulations in Brandon et al.576

(2003) have demonstrated that C-SOP can produce some degree of timescale577

invariance. ART-STM is a neural net with an input layer and one hidden layer,578

which allows it to explain nonlinear conditioning phenomena (such as negative579

pattern) that a single-layer RW neural net cannot. It employs a CS represen-580

tation that is very similar to the microstimuli used in MS-TD, so it also shows581

a degree of timescale invariance. Other theories could be mentioned (for two582

influential examples see Buhusi and Schmajuk, 1999; McLaren and Mackintosh,583

2000,0) but we will limit the analysis to CSC-TD, MS-TD, LeT and MoT for584

two reasons: a) these four models collectively embody most of the conditioning585

and timing mechanisms used in modelling these areas, and b) our goal here is586

not to provide a comprehensive review, but rather focus on the mechanisms that587

are shared by our proposed model and the others.588

Table 1 summarizes the main mechanisms/features of the models described589

above. In terms of the type of time representation, it may be observed that590

the models fall roughly into two categories: (a) those that employ a chain of591

units or states activated sequentially (CSC-TD, MS-TD, LeT), and (b) those592

that employ an accumulator (MoT and RWDDM). Those in category (b) may593

be considered more economical both computationally and biologically, as they594

don’t require a number of units that increase with time. In terms of what595

the representations can time, two categories may be discerned: (a) those that596

time only rewards (CSC-TD, MS-TD and LeT), and (b) those that can time597

any stimuli (MoT and RWDDM). Models in category (b) have more flexibil-598

ity to create a temporal map involving all stimuli present, including those not599

signalling reward. In terms of timescale invariance, the models are basically di-600

vided between those that can account for it (MS-TD, LeT, MoT and RWDDM)601

and the one that cannot (CSC-TD). Finally, in terms of the type of associative602
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Table 1: Summary of the main features of the models.

model type of time
representation

what it can
time

timescale in-
variant

associative
learning rule

CSC-TD units/states,
one per time
step

only rewards no TD/RW, cue
competition

MS-TD units/states,
fewer than one
per time step

only rewards approximately TD/RW, cue
competition

LeT units/states,
one per time
step

only rewards yes linear operator,
no cue competi-
tion

MoT linear accumu-
lator

any stimuli,
not only re-
wards

yes linear operator,
no cue competi-
tion

RWDDM noisy linear ac-
cumulator

any stimuli,
not only re-
wards

yes RW, cue com-
petition

learning rule used, models are divided between those that use a RW-type rule603

(CSC-TD, MS-TD, RWDDM) and those that use the linear operator (LeT and604

MoT). The ones that use RW are wider in scope, being able to account for605

cue-competition phenomena, which form the core of classical conditioning.606

The main innovation of RWDDM over its predecessors is the combination of607

a noisy linear accumulator for timing with the RW rule for associative learning.608

As table 1 shows, linear accumulator theories are the only ones in our sample609

of the models that can fully account for timescale invariance. But because610

they rely on the linear operator rule, they cannot account for cue-competition611

and other compound stimuli phenomena in conditioning. Therefore RWDDM612

extends the application of the linear accumulator to compound stimuli, covering613

a wider range of conditioning phenomena.614

In summary, the model we propose is, to the best of our knowledge, the only615

one that unites the flexibility, computational economy and timescale invari-616

ance of the linear accumulator as a time representation, to the RW associative617
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Table 2: Model features and the experimental findings they can explain.

RWDDM feature phenomenon for which it can ac-
count

independent update rules for time and
associative strength

faster reacquisition, time change
in extinction, latent inhibition and
timing

RW rule for associative strength blocking with different durations,
time specificity of conditioned inhi-
bition

intertrial variability in time estimation compound peak procedure
asymptote of associative strength set by
time

ISI effect, mixed FI

a memory that learns the rate of rein-
forcement

VI and FI, temporal averaging

learning rule, which accounts for many more conditioning phenomena than the618

linear operator. In the next section we evaluate the models against a number619

of phenomena in conditioning and timing.620

3 Results621

The long history of experimental work in classical conditioning has allowed the622

discovery of a rich variety of phenomena–a recent review (Alonso and Schma-623

juk, 2012) has catalogued approximately 87. This forces theorists to be selective624

when deciding which phenomena to simulate when presenting a new model. We625

searched the literature for phenomena that could test each feature of the model.626

Table 2 lists the main RWDDM features, together with the corresponding phe-627

nomena found in the literature that can test each.628

Table 3 contains the design for each simulation performed with the model.629

The model parameters used in all simulations were kept almost constant but in630

some cases a few adjustments were found necessary to obtain a better agreement631

between model and data. We report their values in each simulation below. The632
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time-step was the same for all simulations: ∆t = 10 msec. Simulations were633

performed using MATLAB version R2016b. The code to generate the figures in634

each result section is available as supplementary material.635

3.1 Faster reacquisition636

A conditioned response emerges gradually over the course of several trials where637

the CS signals the arrival of a US. If a measure of CR strength (such as rate or638

magnitude) is plotted against the number of trials, the shape and rate of this639

acquisition curve will depend largely on the CR and organism, but it usually640

follows a negatively accelerated curve (Pavlov, 1927; Kehoe and Macrae, 2002).641

Pavlov (1927) believed timing of the CR would emerge only later in acquisition,642

through a process he described as inhibition of delay whereby the initial part643

of the CS would become inhibitory. Recent and more detailed analyses suggest644

that an estimate for the time to reinforcement is acquired very early in training,645

possibly even after one or two trials, although the expression of such estimation646

may not be observable until later in training (Holland, 2000; Ohyama and Mauk,647

2001; Balsam et al., 2002; Drew et al., 2005).648

If the CS no longer signals reinforcement, CR strength gradually decreases649

over the course of these extinction trials, until it finally disappears. If the CS650

is made to signal the US again, the CR returns, a process that is called reac-651

quisition. It is a consistent finding that reacquisition is faster than acquisition652

(Ricker and Bouton, 1996; Guilhardi et al., 2007; Kehoe and Macrae, 2002, p.653

185).654

Learning is loosely defined as an enduring change in behaviour as a result of655

experience. Acquisition of a CR is the most basic demonstration that classical656

conditioning is a form of learning. As such, all classical conditioning models657

provide an account of it.658
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3.1.1 Simulations659

Figure 3 (top left panel) shows a plot of RWDDM’s associative strength as660

given by equation (9), in a simulation of acquisition and extinction. Acquisition661

consisted of 80 presentations of a 5-sec CS followed by reinforcement, after which662

there were 100 extinction trials where H was set to zero. The simulations match663

with experimental data from acquisition and extinction (bottom left panel of664

figure 3). The simulated acquisition curve asymptotes around the theoretical665

value given by setting ∆V (n) = 0 in equation (9) and solving for V , yielding666

V∞ =
HA∞

x(Ψt∗)Ψ(t∗)
, (20)

which in this particular case is V∞ ≈ 1, since H = 5, A∞ ≈ 1/5, Ψt∗ = Ψ(t∗) ≈667

1, x(Ψt∗) ≈ 1, where t∗ is the time of reinforcement. Because Ψ(t∗) is a random668

variable, x(Ψt∗) and V∞ are also random variables and their values are reported669

as approximations to their expected values (but not the actual expected values).670

Figure 3 (top middle panel) shows the adaptation of timer slope A given by671

equation (6). This equation precludes the initial value of A from being zero,672

so we set it to the very low value of A(1) = 10−6. We also set the threshold673

θ = 1, which by equation (6) means that Ai(n) encodes the exponential moving674

average of the rate of reinforcement signalled by CSi. Or, equivalently, 1/Ai(n)675

encodes the moving harmonic average of the intervals since last reinforcement676

during CSi. In this simulation, since there is only one US which is delivered677

always at the same time at CS offset (5000 msec), A converges to A∞ = 1/5000.678

Note that the value of A does not decline after extinction begins at trial 80. It679

continues to be updated since the stimulus is still present, even if its presence680

no longer signals reinforcement.681

The top right panel of figure 3 shows the acquisition and reacquisition curves682

using RWDDM. Reacquisition produced by the model is evidently faster than683
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Figure 3: Acquisition and reacquisition. Top left: simulated associative strength
V in acquisition and extinction. Top middle: adaptation of RWDDM slope A.
CR extinction began at trial 80 but has no effect on the RWDDM slope. Top
right panel: simulated V curves in acquisition and reacquisition. Bottom left
panel: response strength data from an experiment in acquisition and extinction,
redrawn from figure 1 in Ricker and Bouton (1996). Bottom right panel: data
from an experiment in acquisition and reacquisition, redrawn from the top panel
of figure 3 in Ricker and Bouton (1996). Model parameters: m = 0.15, θ = 1,
σ = 0.3, αt = 0.1, αV = 0.1, H = 4 in acquisition and H = 0 in extinction.

the simulated acquisition, but not as fast as the reacquisition seen in the data684

on the bottom left of figure 3.685

3.1.2 Discussion686

In RWDDM acquisition and extinction of associative strength follow from the687

same mechanism as RW. The only difference is the noisy stimulus representation688

x(Ψt∗), which induces noise into the acquisition curve. Changes in associative689

strength and timing are treated independently. In particular, the memory for690

time encoded by the slope A is not affected by extinction. This leads to a faster691

reacquisition following extinction. This is because RWDDM’s time-adaptive692
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CS representation x(Ψt∗) reaches its maximum activation value right from the693

beginning of reacquisition, since the timer slope A is already tuned to the current694

CS duration (see equation (8)).695

Modular theory (Guilhardi et al., 2007) is another model that treats timing696

and associative strength separately. It postulates two memories, one for the697

pattern of reinforcement and another for the strength of the association between698

CS and US. The pattern memory stores an exponential moving average of the699

intervals to reinforcement which, like RWDDM, does not change with extinction.700

However, its strength memory w(n) is updated according to the linear operator701

rule,702

w(n+ 1) = w(n) + β(λ− w(n)) (21)

which, unlike RWDDM, does not include a term for a time-adaptive CS rep-703

resentation. Thus, the way MoT accounts for rapid reacquisition is by using704

different learning rates β for acquisition and reacquisition. The same strategy705

may be employed with the TD and LeT models.706

In summary, RWDDM explains reacquisition as the persistence of a memory707

for time, whilst TD, LeT and MoT explain it as a permanent change in the708

learning rate for associative strength.709

3.2 Time change in extinction710

When a previously conditioned stimulus is no longer followed by reinforcement,711

the conditioned response gradually decreases. An important theoretical question712

for hybrid timing/conditioning models concerns what happens to the timing of713

responses in extinction. Using the peak procedure Ohyama et al. (1999) found714

that although the maximum (peak) response rate decreased in extinction, peak715

time and sensitivity (measured by the coefficient of variation) remained virtu-716
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ally unchanged. Drew et al. (2004) investigated the behaviour on extinction by717

changing CS duration between acquisition and extinction. Groups where the718

CS changed to a shorter or longer duration were compared to another where719

the duration did not change. They found that CS duration had little effect on720

the rate of extinction, with all groups taking about the same number of tri-721

als to achieve CR extinction. However, when the CS used in extinction was722

considerably longer (4 times) than the one acquired, extinction was facilitated.723

Guilhardi and Church (2006) performed a similar experiment (experiment 2)724

and observed that when stimulus duration is changed from acquisition to ex-725

tinction, the pattern of responding during extinction gradually shifts to the new726

duration over extinction trials. Following the same procedure, Drew et al. (2017)727

also used partial reinforcement to slow down the rate of acquisition, and thus728

observe if response patterns really do shift gradually to the new duration. They729

confirmed that when CS duration was increased from acquisition to extinction,730

the within-trial response peak shifted gradually to the right over the course of731

extinction. When the CS was shortened, the results were not conclusive. Also,732

when CS duration was changed from training to extinction, the speed of extinc-733

tion increased, but this appeared to be explained at least in part by the shifting734

of response patterns.735

In summary: a) peak timing and CV are not altered in extinction when using736

a peak procedure, b) changing the CS duration from training to extinction causes737

the within-trial response peak to shift to the new duration, and c) changing the738

CS duration in extinction can speed up extinction, but this may be due to the739

shifting of the response peak and not to changes in associative strength. These740

results pose a challenge to the models analysed here. Out of CSC-TD, MS-TD,741

LeT and MoT, only MoT has a mechanism that would allow it to account for742

time change in extinction.743
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3.2.1 Simulations744

RWDDM provides an account for these findings as follows. In the case of the745

peak procedure, the occurrence of the longer peak trials may be considered too746

infrequent to cause a shift to the longer time. In this case, equation (6) is not747

applied in peak trials so RWDDM predicts that both slope A and CV will remain748

unaltered in extinction. In the case of a permanent change in CS duration from749

acquisition to extinction, the slope update rule is applied and the response peak750

will shift gradually to the new duration.751

We have simulated RWDDM in two extinction conditions, one where the752

CS presented in extinction was longer than the one acquired (20 sec to 40 sec,753

short-long) and another where the extinction CS was shorter than the acquired754

CS (20 sec to 10 sec, long-short). Figure 4 summarizes the main results.755

The panels on the left column show response strength during a trial in condi-756

tions short-long (top) and long-short (bottom). In the early stages of extinction757

(early) the response curves peak around the time of US arrival in acquisition758

(20 sec). This is more evident in the condition short-long (top left) because in759

the other condition (bottom left) the trial ends 10 seconds before the peak at 20760

seconds occurs. Had the stimulus remained on for a full 20 seconds, the response761

curve in the early stages of long-short would have continued to increase until the762

20 second mark. In middle and late extinction the response peak slowly shifts763

to the new duration in both conditions, and their heights decrease. Compare764

the simulated curves in the left column of figure 4 to the actual experimental765

data in the right column. The panels on the middle row of figure 4 show the766

adaptation of time estimate 1/A in conditions short-long (top) and long-short767

(bottom). They demonstrate that RWDDM adapts exactly to time change in768

extinction.769

To investigate if the rate of acquisition changes with CS duration, we have770
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Figure 4: Time change in extinction. Left column: simulated response strength
averaged over trials in extinction short-long (top) and long-short (bottom). Mid-
dle column: time estimate adaptation of the model during extinction short-long
(top) and long-short (bottom). Right column: experimental data from an ex-
periment where the CS duration changed from 12-sec in acquisition to either
24-sec (top) or 6-sec (bottom) in extinction. Data plots redrawn from figure 10
in Drew et al. (2017). Model parameters: m = 0.25, θ = 1, σ = 0.35, αt = 0.08,
αV = 0.09, H = 30.

plotted the extinction curves for each CS duration in the left panel of figure771

5. Decreasing CS duration from acquisition to extinction slightly facilitates772

extinction, but increasing CS duration markedly delays extinction. However,773

these are only the V values, a theoretical construct that accounts for the as-774

sociative strength of the stimulus as a whole. Actual behaviour measurements775

of extinction are based on how much response frequency changes from trial to776

trial. But response frequency also changes within the trial. As pointed out by777

Drew et al. (2017), the value obtained for the rate of extinction may be affected778

by which portion of the CS was measured. To analyse this, Drew et al. (2017)779

measured response frequency only during the first 6-sec (half the duration of780

the CS in acquisition) of each CS duration in extinction. We have followed the781
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same procedure and the results can be seen on the middle panel of figure 5.782

They show a marked delay on extinction when the CS duration was shortened,783

but not when it was lengthened. Compare these curves with the actual data784

analysed by Drew et al. (2017) and displayed in the rightmost panel of figure 5.785

The simulations conflict in part with the same analysis in Drew et al. (2017),786

which showed no delay on extinction, only facilitation in the case of extending787

CS duration.788

Figure 5: Extinction curves. Left panel: model V values for each CS duration
in extinction. Middle panel: simulated CR values calculated only for the first
10 seconds of the CS. Each data point is calculated by summing the output of
equation (10) over the first 10 sec of each trial, then averaging these trial values
two by two, and dividing by 100 to rescale. Right panel: actual CR data for
the first 6 sec of the CS in extinction, redrawn from figure 8 (C) in Drew et al.
(2017)

3.2.2 Discussion789

RWDDM predicts that a change in CS duration from acquisition to extinction790

will always cause a rescaling of the response curves in extinction. This is largely791

in agreement with the data. However, RWDDM seems to predict a degree of792

delay on extinction, whilst the data seems to point to a facilitation of extinction793

when the CS changes duration. When only the first half of the CS response794

curves are analysed, the data suggests that extending CS duration in extinction795

can speed up extinction, whilst RWDDM predicts that shortening CS duration796

will delay extinction.797
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RWDDM’s prediction for a delay in extinction following a change in CS798

duration is due to the shifting of the response curve. At the beginning of799

extinction, a trial ends either before the CS representation has reached its peak800

(CS shortening) or after its peak (CS lengthening). This makes equation (9)801

update with a small value for x(Ψ), resulting in a smaller update than with the802

higher x(Ψ) value of the unchanged CS.803

As mentioned above, time change in extinction is a difficult phenomenon for804

the current models to explain. CSC-TD does not have a mechanism to change805

the peak of responding when a US is not present. Neither does MS-TD or LeT.806

These models assume that extinction can only weaken existing links between CS807

and US representations. Because in these models timing usually depends on the808

sequential activation of these links, changing the CS duration in extinction would809

not alter the timing but only the magnitude of responding. RWDDM explains810

time change in extinction because its rule for time adaptation is independent of a811

change in associative strength. Thus, when the duration changes in extinction,812

RWDDM’s accumulator slope tracks this change, whilst associative strength813

decays as a function of US absence. Regarding the extinction facilitation caused814

by a change in CS duration, none of the models analysed here currently have a815

mechanism to explain this either.816

It would be possible to allow the average rate of state transition in LeT817

to vary as a function of CS duration, which would cause timing to adapt to818

the new time in extinction. However, in its latest formulation (Machado et al.,819

2009) LeT relies on a fixed average rate of state transition to explain timescale820

invariance. Thus, if the rate is made to change as a function of CS duration,821

this would break timescale invariance.822

As for MS-TD, one interesting modification that would likely allow it to823

explain time change in extinction is to make the microstimuli themselves time-824
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adaptive. Like RWDDM’s time-adaptive CS representation, the microstimuli825

could be made to ‘stretch’ or ‘compress’ when stimulus duration shortens or826

lengthens.827

Modular Theory is likely to account for time change in extinction, since828

its pattern memory for time could be made to update even in extinction. That829

would shift the response pattern to the new time whilst strength memory, which830

depends only on US presentation, would decay.831

3.3 Latent inhibition and timing832

When a subject is exposed to repeated and non-reinforced presentations of a833

stimulus it has never encountered before, this procedure is called preexposure.834

If reinforcement is subsequently paired with the preexposed CS, the initial rate835

of CR acquisition is usually lower compared to acquisition to a nonpreexposed836

stimulus, a phenomenon called latent inhibition (Lubow and Moore, 1959). The837

asymptotic level of conditioning, however, is not normally affected by preexpo-838

sure (Lubow, 1989). Latent inhibition is an important representative of a class839

of phenomena involving latent effects. Collectively, these phenomena demon-840

strate that something is learned about the stimulus even when it does not sig-841

nal reinforcement. Therefore, latent inhibition cannot be accounted by the842

Rescorla-Wagner model, since the theory only applies when there are changes843

in associative strength.844

A question relevant for real-time conditioning models is what happens to845

timing when a preexposed stimulus is conditioned. To answer this question,846

Bonardi et al. (2016) used CSs of variable and fixed durations (the variable847

duration CS had the same mean as the duration of the fixed CS) to vary the848

temporal conditions between preexposure and conditioning phases. Latent in-849

hibition was observed even when the temporal information from the two phases850
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was different. Crucially, timing, as measured by the response gradient within851

a trial, appeared to improve in the preexposed CS even when the temporal852

information was different between the two phases.853

As alluded to above, latent inhibition cannot be accounted by the associative854

learning update rule used in RWDDM, the Rescorla-Wagner. However, we show855

here that RWDDM is compatible with the Pearce-Hall rule (Pearce and Hall,856

1980; Pearce et al., 1982), one of the most widely used models for explaining857

latent inhibition and other latent learning effects. We demonstrate that this858

modification maintains the basic framework of the RWDDM, and that it can859

account for latent inhibition and improved timing with preexposure. None of860

the other models analysed here can account for latent inhibition without mod-861

ifications. Improved timing with preexposure could be accounted by Modular862

Theory, but not by the the current version of the other models.863

3.3.1 Simulations864

The Pearce-Hall model is basically a rule for adapting the learning rate αV based865

on the error δ between the predicted US outcome and the actual US outcome.866

It was originally formulated by Pearce and Hall (1980) and updated by Pearce867

et al. (1982). We have maintained equation (9) for associative strength, but868

changed αV on every trial n according to869

αV (n+ 1) = αV (n) + γ(|δ| − αV (n)), (22)

δ =

(
HA(n)

Ψ(t∗)
− V (n)x(Ψ)

)
(23)

where 0 < γ < 1 is a parameter that sets the rate of learning rate adaptation.870

Equation (22) is basically the Pearce-Hall rule, except that instead of using 1871

as the asymptote of learning we use HA(n)
Ψ(t∗) .872

We simulated latent inhibition with a 5-sec CS. Preexposure consisted of873
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80 trials of the CS without reinforcement (H = 0). The preexposed CS was874

then reinforced for 250 trials. Figure 6 (top left panel) compares the acquisition875

curves for the preexposed CS and a control CS in the reinforced trials. The876

preexposed CS acquisition curve increases at a lower rate than the control CS,877

the latent inhibition effect (see data from a corresponding experiment at the878

bottom left panel of figure 6).879

Figure 6: Latent Inhibition. Top row: simulated associative strength in latent
inhibition (left), simulated CR averaged over the first 30 trials of conditioning
phase (middle), and simulated CR averaged over the last 30 trials of conditioning
phase (right). Bottom row: acquisition curves from an actual experiment in
latent inhibition (left), and response rate data during the CS (right). Data
plots redrawn from figures 1 and 2 respectively in Bonardi et al. (2016). Model
parameters: αt = 0.1, αV = 0.08, µ = 1, σ = [0.6 − 0.35], m = 0.2, H = 4,
αPH = 0.4, γ = 0.03.

Improved timing with preexposure follows directly from the fact that RWDDM880

adapts its accumulator slope A to the CS duration during preexposure. How-881

ever, our choice of a Gaussian for stimulus representation does not allow for this882

change to become visible. Bonardi et al. (2016) demonstrated improved timing883

by showing that the slope of the response curve from the preexposed CS was884
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higher in the first few trials of acquisition than the one from the control CS885

(see bottom right panel of figure 6). In general, animal response curves tend886

to be quite flat during the beginning of acquisition. There is evidence that the887

response curves appear to change from negatively accelerated to a sigmoidal888

shape over the course of training (see figure 1 in Meck and Church, 1984, for889

an example). This means that in the early stages of acquisition, within-trial890

response frequency increases very early in the trial and then stays at a constant891

level until the end. As training progresses, the increase in frequency moves892

slowly to the right, giving rise to the sigmoidal shape that peaks just before893

the end of the trial. In these cases a higher slope of the response curve would894

indicate improved timing. But in our model the curves are sigmoidal from start895

of acquisition, so they will always peak at the end of the trial, even if the timer896

slope has not adapted to the interval yet, as is the case with a novel stimulus.897

Therefore, during the acquisition phase of latent inhibition, RWDDM predicts898

that only the peaks of the response curves will gradually increase over the tri-899

als. Because of the learning decrement caused by preexposure, the peak of the900

control CS will increase faster than the preexposed CS, as the top middle panel901

of figure 6 demonstrates. The response curve of the control CS will have a902

higher slope than the preexposed CS, even though the preexposed CS’s timer903

rate has been adapted to its duration. Hence, the improved timing found in the904

data is explained by adaptation of RWDDM’s timer slope, but RWDDM’s CS905

representation cannot make this visible.906

We have tried adding an adaptable σ in equation (8) so as to decrease the907

width of the gaussian curve gradually over trials. We chose a simple linear908

operator rule to adapt the Gaussian width:909

σ(n+ 1) = σ(n) + ασ(0.35− σ(n)), (24)
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and set σ(1) = 0.6 and ασ = 0.025.910

Figure 6 (top middle panel) shows response strength of control and preex-911

posed CSs averaged over the first 30 trials of the conditioning phase. The pre-912

exposed CS already shows a clear sigmoidal shape, whilst the control is slightly913

wider and linear. But the effect is too small to be able to account for the one914

seen in the data from Bonardi et al. (2016). Towards the end of the conditioning915

phase the two curves converge (figure 6, top right panel).916

3.3.2 Discussion917

The simulations show that the model can account for latent inhibition ade-918

quately if the Pearce-Hall rule is used (in which case the model would be more919

appropriately named PHDDM). The PH rule adapts the learning rate αV based920

on the level of associative learning between stimulus and reward. When the921

subject encounters a novel stimulus, it is assumed that αV has some non-zero922

starting value αnovel
V , which allows learning in equation (9) to take place. If this923

novel stimulus does not signal reward, as is the case in the preexposure phase924

of latent inhibition, σ = 0 and equation (22) will simply decay the value of the925

learning rate across trials until it reaches zero. If at this point the stimulus926

begins to be followed by reward, σ > 0 and equation (22) will begin to raise927

the value of the learning rate, which in turn will allow equation (9) to begin928

increasing the value of V . Since the increase in the value of the learning rate929

is gradual, determined by the rate γ, there will be a number of trials in the930

beginning of the conditioning phase where αV < αnovel
V , which leads to the ini-931

tial impairment in the learning curve when compared to the learning curve of a932

non-preexposed CS, as seen in the top left panel of figure 6.933

The separate rule for time adaptation allows the model to account for im-934

proved timing after preexposure, but the model cannot make this effect visible935

even if we allow for Gaussian width adaptation. In view of this it seems more936
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likely that a two-state CS representation may be a better solution. As men-937

tioned above, figure 1 in Meck and Church (1984) suggests that during the938

initial stages of training a CS representation may be modelled by the following939

leaky integrator940

xi(t+ 1) = xi(t) +
1

τ
(Ii − xi(t)) (25)

where Ii is the indicator function marking the presence of CSi, and τ a time941

constant. In the latter stages of training, when timing is expressed, the organism942

switches to the Gaussian representation given by equation (8). When the switch943

between representations is made and how abruptly remains to be investigated.944

Latent inhibition cannot be accounted by any of the other models analysed945

here without modifications. Also, models that rely on the US for time adap-946

tation, like CSC-TD, MS-TD and LeT, cannot account for improved timing by947

preexposure. Modular Theory is the only one that can time any stimulus like948

RWDDM, so it could account for the improved timing. But it would also need a949

modification like (22) to adapt its learning rate to account for latent inhibition.950

3.4 Blocking with different durations951

Arguably, the most important compound conditioning phenomenon is blocking.952

It is part of a class of cue competition and compound phenomena discovered in953

the late 1960s which challenged the view that conditioning was driven by the954

pairing, or contiguity, of CS-US. These results suggested that conditioning with955

compound stimuli was influenced by the reinforcement histories of the elements956

forming the compound (Rescorla, 1988; Gallistel and Gibbon, 2001). This led957

to the development of a new generation of models that could account for those958

findings (Rescorla and Wagner, 1972; Mackintosh, 1975; Pearce and Hall, 1980).959

The rule we use, the Rescorla-Wagner, provides an explanation for blocking that960
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is based on the summation term in equation (1).961

In a blocking procedure a CS is first paired with a US in phase 1 of training.962

During phase 2 a novel CS is presented in compound with phase 1 CS and paired963

with the US for just a few trials. Subsequently, when tested alone the novel CS964

elicits less responding than if it had been trained in compound with another965

novel stimulus (Kamin, 1968). The previously reinforced CS is said to block966

the novel CS. The temporal information encoded by each CS has an effect on967

the amount of blocking observed. Schreurs and Westbrook (1982) varied the ISI968

in the pre-training and compound phases, and observed less blocking when the969

durations were different in both phases than when they were the same. Barnet970

et al. (1993) performed a similar experiment but with forward and simultaneous971

conditioning varying between phases, and also found that blocking was stronger972

when blocked and blocking CSs had the same temporal history. Jennings and973

Kirkpatrick (2006) used compounds where the elements had different durations.974

They observed that a long blocking CS could block a co-terminating short Cs,975

but a short blocking CS failed to block a co-terminating long CS (see rows 1 and976

3 in figure 7). Amundson and Miller (2008) performed four blocking experiments977

using trace conditioning. In two of them the blocking CS trace duration changed978

between phases, and blocking was not observed. In the other two experiments979

the trace duration was held fixed between phases, and the blocking and blocked980

CSs were presented serially and not in a compound (see rows 2 and 4 of figure981

7). Blocking was observed when the blocking CS followed the blocked CS, but982

not in the reverse condition.983

The studies reviewed above appear to show that changing the ISI of the984

blocking CS between phases may attenuate blocking. Another finding is the985

apparent asymmetry of blocking when the ISI of the blocking CS is kept constant986

between phases. Rows 1 and 2 of figure 7 suggest that a long blocking ISI can987
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Figure 7: Experimental designs from two blocking experiments. CS X was
blocked (B) in rows 1 and 2, and not blocked (NB) in rows 3 and 4. Blue bar
indicates US presence.

block a short blocked ISI. Rows 3 and 4 suggest that a short blocking ISI does988

not block a long blocked ISI.989

As mentioned above, RWDDM can account for blocking because it uses the990

RW rule. The summation term in equation (1) formalizes the widely held view991

that a given US can only confer a limited amount of associative strength which992

CSs must compete for. Different theories exist that take other approaches to993

blocking (see for example Mackintosh, 1975; Harris, 2006; Stout and Miller,994

2007) but among the ones analysed here (for their ability to handle timing also)995

only CSC-TD and MS-TD are equipped to deal with it. We show next that996

RWDDM can account for the blocking of a short CS by a long CS, and that997

by making the reasonable assumption of second-order conditioning it can also998

account for the lack of blocking of a long CS by a short CS. CSC-TD and MS-TD999

are also capable of providing an account of both blocking conditions.1000
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3.4.1 Simulations1001

Because RWDDM is based on the RW rule, it produces virtually the same results1002

as the latter when the CSs have the same duration. Our interest here is to test1003

whether it can reproduce the finding that a long CS can block a shorter CS but1004

a shorter CS does not block a longer one. We performed a simulation following1005

the design in rows 1 and 3 of figure 7. In the first phase a CSA (blocking1006

CS) of duration either 10 or 15 seconds was followed by reinforcement until its1007

associative strength V reached asymptote. In phase 2 CSA was joined with a1008

CSX (blocked CS), of either 15 or 10 seconds, in a coterminating compound and1009

followed by US. The top left panel of figure 8 shows the acquisition of associative1010

strength for CSX and its control during phase 2 for the condition CSA-15sec1011

and CSX-10sec. A considerable amount of blocking is observed, matching with1012

the data (bottom left panel).1013

The top right panel of figure 8 shows the results for condition CSA-10sec1014

and CSX-15sec. In this condition the model diverges considerably from the data1015

(bottom right panel) and predicts that CSX should actually become inhibitory.1016

3.4.2 Discussion1017

The blocking and inhibition seen in figure 8 is a result of a discrepancy in the1018

asymptote of learning between the CSs. After phase 1, CSA has associative1019

strength VA ≈ HAA. During phase 2, CSX’s associative strength changes ac-1020

cording to:1021

∆VX ≈ α(HAX − (VA + VX))

= α(HAX − (HAA + VX))

= α(H(AX −AA)− VX)
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Figure 8: Blocking with different durations. Left column: simulation (top) with
a 15 sec blocking CS and 10 sec blocked CS, and animal data (bottom) from
an experiment with the same design. Right column: simulation (top) with a
10 sec blocking CS and 15 sec blocked CS, and animal data (bottom) from an
experiment with the same design. Data panels redrawn from the top right panel
in figure 5 in Jennings and Kirkpatrick (2006). Model parameters: αt = 0.2,
αV = 0.1, µ = 1, σ = 0.35, m = 0.2, H = 10.

and since (AX −AA) < 0, VX becomes negative.1022

However, it could be argued that the short CSA becomes a secondary rein-1023

forcer which is signalled by the onset of the long CSX. In this case, the onset of1024

CSX would serve as the time marker for the onset of CSA, and not for the onset1025

of US. Hence, during the first 5 seconds of CSX responding would be under1026

the control of this 5-sec stimulus representation which would not overlap, thus1027

not compete, with CSA’s later representation. It would follow from this account1028
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that no blocking would be observed, and that responding during test phase with1029

CSX would peak at the 5-sec mark. This is a testable prediction that, if shown1030

to be the case, could validate RWDDM’s account.1031

Also note that the time-dependent associative strength asymptote assumed1032

by RWDDM implies that learning during a compound where the elements are1033

of different durations is not stable. In particular, if CSA and CSX are the1034

two elements of the compound phase of blocking, their associative strengths are1035

updated by RWDDM as1036

∆VA = αV (HAA − (VA + VB))

∆VB = αV (HAB − (VA + VB)),

which in the steady state form an inconsistent system of linear equations,1037

VA + VB = HAA

VA + VB = HAB .

Since the compound phase of blocking only lasts for a few trials, RWDDM1038

could produce the blocking seen on the left panel of figure 8. But if training1039

with the compound was carried out for longer, the V values would grow without1040

bound. However, there is evidence that in compounds formed by elements with1041

asynchronous onsets, like in the compound phase of the blocking experiments1042

here, the shorter stimulus comes to control CR timing and there is no summation1043

of associative strengths (Fairhurst et al., 2003). Hence, it appears that with1044

compounded asynchronous CSs, the shorter CS, more proximal relative to the1045

US, comes to dominate and a summation rule like RW would not be applicable1046

beyond the first few trials of training.1047

A model that is well placed to explain these results is CSC-TD. A long1048
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blocking CS will completely overlap a short blocked CS, blocking all units in the1049

blocked CS. But in the case of a short blocking CS, there will be free units in the1050

beginning of the blocked CS which will acquire associative strength, attenuating1051

blocking. Given its similarity, MS-TD would likely produce comparable results.1052

MoT and Let would not be able to account for any type of blocking given their1053

current choice of rule for associative strength. Unlike RWDDM and the TD1054

models, they both rely on the linear operator rule, which antedates the transition1055

to the rules that sum associative strengths in the compounds as mentioned1056

previously. MoT and LeT would need, at the very least, to replace the linear1057

operator by the RW or other equivalent rule to be able to account for blocking1058

and other compound phenomena.1059

3.5 Time specificity of conditioned inhibition1060

Learning occurs not only when a CS signals the occurrence of a US, but also1061

when a CS signals the omission of a US. It is commonly assumed that the ex-1062

citation caused by the former is counteracted by an inhibition produced by the1063

latter. This is again formalized by the summation term in the RW rule. Con-1064

ditioned inhibition is thus one of the phenomena that, together with blocking1065

and other compound phenomena, challenged the contiguity interpretation of1066

classical conditioning.1067

A conditioned inhibition procedure involves reinforced trials with a CS, say1068

A+, intermixed with non-reinforced trials with a compound AB-. Conditioned1069

responding develops during A+ trials but not during AB-. Hence, conditioned1070

inhibition is a key conditioning phenomenon since it is also a form of discrimi-1071

nation learning.1072

Conditioned inhibition poses higher technical challenges for a model of learn-1073

ing and timing as responses cannot be directly observed. To assess conditioned1074
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inhibition two types of measures are used (Denniston and Miller, 2007): sum-1075

mation and retardation tests. There are different procedures that can generate1076

inhibition, so we refer here specifically to the inhibition produced by alternating1077

A+ with AB- trials. CSA is called a training excitor, and CSB an inhibitor.1078

In summation tests, this inhibitor is then presented together with a different1079

excitor, and the inhibitor is said to pass the test if there is a decrement in re-1080

sponding compared to the excitor alone. In retardation tests, the inhibitor by1081

itself is now paired with the US, and it is said to pass the test if acquisition1082

is slower than with a neutral stimulus. Denniston and Miller (2007) reviewed1083

a series of studies that varied the durations of the training excitor and that1084

between the inhibitor and the training excitor. The studies showed that condi-1085

tioned inhibition is observed when the temporal relations between training and1086

testing are preserved, and not otherwise.1087

However, the studies reviewed by Denniston and Miller (2007) used as mea-1088

sure of conditioned inhibition the time to resume drinking (licking suppression)1089

when presented with the inhibitor. Williams et al. (2008) investigated inhibi-1090

tion caused by reinforcement omission in excitatory conditioning, a more direct1091

measure than licking suppression. In their experiments the inhibitor stimulus1092

signalled the omission of one of two USs (at 10 or 30 seconds) that had been as-1093

sociated with the excitor stimulus. Using summation tests they found that the1094

inhibitor would suppress responding only at the specific time of predicted US1095

omission. Retardation tests confirmed that the time of US omission is encoded1096

by the inhibitor.1097

We show here that RWDDM can account for inhibition and its time speci-1098

ficity. CSC-TD and MS-TD are also equipped to deal with these results. MoT1099

and LeT do not currently have the necessary mechanisms to explain inhibition.1100
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3.5.1 Simulations1101

We demonstrate time specificity of inhibition with simulations of Williams et al.1102

(2008) experiment. Excitors E1 and E2 signalled reinforcement after 10 and 301103

seconds respectively, and inhibitors I1 and I2 signalled US omission after 101104

and 30 seconds respectively. During phase 1, E1 and E2 were always reinforced,1105

whilst the compounds E1I1 and E2I2 were never reinforced (see table 3). In1106

phase 2 a transfer excitor E3 was trained on a mixed FI schedule, where in1107

half the trials E3 lasted 10 seconds and in the other half 30 seconds. Phase 31108

consisted of nonreinforced peak trials that lasted 90 seconds, a third with E31109

compounded with I1, a third with E3I2, and a third with E3 alone. Figure 91110

summarizes the results. Responding during E3 alone shows the two peaks char-1111

acteristic of mixed FIs. As figure 9 shows, the compound excitor and inhibitor1112

inhibits responding only at the time encoded by the inhibitor.1113

3.5.2 Discussion1114

The account provided of inhibition by RWDDM relies on the traditional summa-1115

tion term inherited from the RW rule. Time specificity comes from the inhibitor1116

CS timer being treated just like any other CS timer, except that instead of tim-1117

ing the arrival of the US it times the arrival of US omission.1118

RWDDM predicts that the representation of an inhibitor CS has the same1119

shape as of an excitor CS. This implies that inhibition is the exact opposite1120

of excitation. This is a testable prediction which the empirical results above1121

provide some validation.1122

The TD models provide a similar account of these data. Both CSC and1123

MS TD have CS representations that allow for time specificity of US omission.1124

Because the TD relies on the RW summation term, they can account for inhi-1125

bition. LeT and MoT can also represent such time specificity, but because they1126
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Figure 9: Conditioned inhibition. Left column: simulation (top) and data (bot-
tom) from conditioned inhibition with a long inhibitor. Right column: simula-
tion (top) and data (bottom) from conditioned inhibition with a short inhibitor.
Data plots redrawn from figure 4 Williams et al. (2008). Model parameters:
αt = 0.09, αV = 0.06, µ = 1, σ = 0.35, m = 0.16, H = 30.

rely on the older linear operator rule, they do not have a mechanism to account1127

for inhibition.1128

3.6 Disinhibition of delay and compound peak procedure1129

The two related phenomena described here are important in that they appear1130

to challenge the summation effect. A common observation is that a compound1131

of two previously conditioned CSs usually produces more responding than its1132

individual components (Rescorla, 1997; Kehoe and Macrae, 2002, p. 204). How-1133
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ever, failure to obtain summation is also common (Rescorla and Coldwell, 1995;1134

Pearce et al., 2002), and the precise conditions when it is observed or not is still1135

a current topic of debate (see Harris and Livesey, 2010, for a discussion). Here1136

we consider two cases in which summation was not observed and that RWDDM1137

can offer a possible explanation.1138

Aydin and Pearce (1995) used an autoshaping procedure to condition pigeons1139

to stimuli of 30 second duration. They observed little or no summation in1140

compound trials, but a response curve with a consistent shift to the left. This1141

earlier start of responding was observed even when one of the components was1142

a neutral preexposed CS. The shift of the response curve to the left was termed1143

disinhibition of delay.1144

Meck and Church (1984) performed an analogue experiment using the peak1145

procedure. They trained rats to associate a light and a sound (both of 50 second1146

duration) individually to a reinforcement, and then used a peak procedure to1147

investigate what happens to timing in their compound. Like Aydin and Pearce1148

(1995) they also found no summation and a shift to the left in the compound.1149

Furthermore, rats also stopped responding earlier in the compound peak trials.1150

Taken together, these results appear to show that in some cases summation1151

is not observed, and responding in the compound starts earlier than in the com-1152

ponent CSs. One possible explanation for this effect is that the subject fails1153

to recognize the two individual components of the compound, what is known1154

as generalisation decrement. If this is the case then it would be a performance1155

effect, and not a learning phenomenon. We cannot rule this out, but we show1156

that RWDDM’s trial variability in time estimation provides a plausible mecha-1157

nism to explain this effect. The only other models in our analysis set that can1158

account for this are MoT and LeT.1159
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3.6.1 Simulations1160

RWDDM is capable of accounting for the earlier responding in compounds by1161

noise in the timer. When a compound formed by CSA and CSB is presented,1162

its two timers ΨA(t) and ΨB(t) will run in parallel. However, their rates AA1163

and AB will have slightly different values due to noise. This implies that on1164

every compound trial, one timer will be running slightly faster than the other.1165

In contrast, on trials where only one CS is present, the timer will run faster in1166

some trials and slower in others. Therefore, if on compound trials responding1167

is guided by the faster timer, the average response curve for compounds will be1168

shifted to the left when compared to the averaged response curve for a single1169

CS.1170

Figure 10 shows simulations of disinhibition of delay and compound peak1171

procedure. The figures were constructed by averaging the responses produced1172

by equation (10) over 50 trials. The simulations reproduce in part the an-1173

ticipation in responding during the compound that is observed in the data in1174

both experiments (see top right and bottom left panels of figure 10). Meck and1175

Church (1984) reported a median peak time of 40±4 seconds for the response1176

curves in compound trials, and 50±3.5 seconds in the individual trials. We ran1177

15 simulations as the one shown at the bottom row of figure 10, and analysed1178

the peak times produced by each. We found an average peak time of 42±3 sec-1179

onds in the compound trials, and 47±4 in the individual trials. Both results are1180

within the error bounds in Meck and Church (1984). Aydin and Pearce (1995)1181

did not analyse peak times or shift in the response curves, so we cannot make1182

a quantitative comparison with our simulations.1183
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Figure 10: Disinhibition of delay and compound peak procedure. Top row: sim-
ulation (left) and data (right) of disinhibition of delay. Bottom row: simulation
(left and middle) and data (right) of a compound peak procedure. The middle
panel is a normalized (proportion of maximum response strength) version of the
left panel. Data plot redrawn from figure 13 in Meck and Church (1984). Model
parameters: m = 0.25, θ = 1, σ = 0.18, αt = 0.75, αV = 0.1, H = 5.

3.6.2 Discussion1184

RWDDM can offer a good account for the lack of summation and earlier re-1185

sponding in compound trials in the two cases analysed here. It does so by1186

having trial to trial variability in time estimation. However, the model shows a1187

slightly higher maximum response frequency in compounds than in their com-1188

ponents (top and bottom left of figure 10) something not observed in the data.1189

This is not the product of summation, but of the slightly different asymptotes of1190

learning in the faster and slower timers in the reinforced trial immediately pre-1191

ceding the peak trial. Our assumption was that in compound trials the timer1192

running faster, with a higher slope A, would be the one guiding responding.1193

When timing adaptation has reached asymptotic levels, the updates on slope1194

A are due to noise in the value of the timer at reinforcement time, Ψ(t∗). The1195
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two slopes, AA and AB , will have very similar values. In the reinforced trial1196

preceding the compound peak trial, whichever timer produces a value of Ψ(t∗)1197

lower than the threshold will have its slope A adjusted up by the the slope1198

update rule, likely causing it to overtake the other slope. This slightly higher1199

slope will then be chosen in the peak trial that follows. But the corresponding1200

V associated with that timer will have been updated on the previous reinforced1201

trial based on the lower Ψ(t∗) < θ value. Because that is the denominator in1202

HA/Ψ(t∗), the V value of the chosen timer will be consistently slightly higher1203

on the compound peak trials.1204

Other theories that might account for the data in this phenomenon are LeT1205

and MoT. Both theories postulate intertrial variability in timer rate, the same1206

mechanism used by RWDDM to explain this data. TD in any of its current1207

versions lacks a mechanism to explain these data.1208

3.7 ISI effect1209

The interval between CS onset and US onset is called Inter Stimulus Interval1210

(ISI). In general, measures of CR strength such as response frequency and ampli-1211

tude decrease with longer ISIs (Smith, 1968; Gormezano et al., 1983; Kehoe and1212

Macrae, 2002). Response timing is commonly analysed by using fixed interval1213

(FI) schedules of reinforcement, which rely on a fixed ISI. It is a well established1214

result that the peak in the response curve decreases with longer FIs (Catania1215

and Reynolds, 1968; Gibbon et al., 1997). However, the entire response curve1216

approximately scales with FI. This is obtained by plotting different FI response1217

curves as the proportion of maximum response strength versus the proportion1218

to FI, a normalization procedure. The resultant normalized curves roughly su-1219

perimpose (Rakitin et al., 1998; Matell and Meck, 2000,0; Allman et al., 2014).1220

This is sometimes called scalar timing, and it is one of the manifestations of the1221
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more general property of timescale invariance.1222

CSC-TD does not have a mechanism to explain either timescale invariance1223

or the ISI effect. Its more recent development, MS-TD, can approximately1224

reproduce both timescale invariance and the ISI effect. LeT is also a timescale1225

invariant model, but does not appear to show the decrease in response peak as1226

a function of FI. MoT, at least in its earlier version (Kirkpatrick, 2002), can1227

reproduce both the ISI effect and timescale invariance.1228

3.7.1 Simulations1229

To demonstrate how RWDDM can reproduce the ISI effect we have simulated a1230

delay conditioning procedure using three fixed interval stimuli. Figure 11 shows1231

RWDDM simulations with FIs 5, 10 and 20 seconds. The top left panel shows1232

within-trial response rate (given by equation (10)) averaged over 50 trials for1233

each FI. The response curves show the same pattern as the data (bottom panel)1234

from the ISI effect: a sigmoidal shape with a maximum that decreases as a1235

function of FI duration. Note that because the curves are averages of 50 trials,1236

the noise is averaged out.1237

The top middle panel of figure 11 shows the associative strength acquisition1238

curves for each FI. Their asymptotic levels are given by equation (20). V∞ is ap-1239

proximately a linear function of A∞, the TDDM slope. The different asymptotic1240

levels of associative strength are responsible for the different response peaks in1241

the left panel of figure 11.1242

RWDDM also reproduces the superposition observed when FI response curves1243

are normalized by maximum response rate and time to reinforcement (top right1244

panel of figure 11).1245

3.7.2 Discussion1246

Gibbon and Balsam (1981) attributed the ISI effect to the expectancy to re-1247
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Figure 11: ISI effect. Top row: simulated average response rate during CSs
(left), associative strength over trials (middle), and superimposition of response
curves (right). Bottom row: average response rate data from an FI experiment,
redrawn from bottom right panel of figure 4 in Kirkpatrick and Church (2000).
Model parameters: m = 0.15, θ = 1, σ = 0.3, αt = 0.2, αV = 0.1, H = 5.

inforcement. A specific reinforcer carries, according to their view, an amount1248

of expectancy H. This expectancy is spread back in time over the stimulus1249

that signals US occurrence. Hence, for a CS of fixed duration T and US with1250

expectancy amount H, the total expectancy during the CS is hT = H/T . Our1251

RWDDM account follows the same principles. The time to reinforcement T is1252

computed by the ratio between the accumulation height at time of reinforcement1253

Ψ(t∗) and the timer slope at the current trial A(n). This leads to the asymptote1254

of learning in equation 9 being set to HAi(n)/Ψi(t
∗). Superimposition of the1255

response curves follows directly in RWDDM from the nature of noise in the1256

linear accumulator. This noise guarantees that the time estimate produced by1257

the model is timescale invariant (Simen et al., 2013).1258

The ISI effect can also be explained by the TD model with the Presence1259

representation (Sutton and Barto, 1990) and with the more recently developed1260
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Microstimuli representation (Ludvig et al., 2012). The Presence representation1261

consists of a single element x which has the value 1 when the CS is present,1262

and 0 otherwise. Its associative strength V is updated by the TD rule at every1263

time step within a trial. In longer trials (longer FIs) the strength V will decay1264

more, since it is updated more times in the absence of the US. This will lead to1265

a lower asymptotic value for V . However, Presence TD cannot account for the1266

superimposition of intratrial response curves. The CSC-TD fares even worse,1267

unable to account for either ISI effect or superimposition (see Ludvig et al.,1268

2012, for a comparison between MS, CSC and Presence TD). The Microstimuli1269

representation treats the stimulus as if it were composed of many units activated1270

in sequence. Their activations follow a Gaussian shape which partially overlap.1271

Later units have lower peaks and are wider than earlier ones. Because the1272

number of Microstimuli are fixed, in longer FIs there is less temporal resolution1273

which causes the US prediction to be lower than in shorter FIs, so it can explain1274

the ISI effect. MS-TD’s account of superimposition is only partial, although1275

clearly better than CSC and Presence-TD.1276

LeT in its current version lacks a mechanism to produce decreasing response1277

peaks with increasing FIs. But it can account very well for superimposition,1278

since its time representation is timescale invariant. The earlier version of Mod-1279

ular Theory, called Packet Theory, has been shown to produce the ISI effect (see1280

top row of figure 3 in Kirkpatrick, 2002). This prediction comes from longer in-1281

terval durations decreasing the probability of response packet generation in the1282

model. MoT is also timescale invariant, so it generates superimposition quite1283

easily.1284

To summarise, the ISI effect is explained either by time setting the asymptote1285

of learning (RWDDM) or by a time representation that gets more diffuse with1286

time, lowering the US prediction (MS-TD). Superimposition is explained either1287
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by the type of noise in the linear accumulator (RWDDM, LeT) or by stimulus1288

units which have an approximately timescale invariant activation profile (MS-1289

TD).1290

3.8 Mixed FI1291

Procedures where a stimulus signals reinforcement at more than one location in1292

time are called mixed FI or two-valued interval schedules. A mixed FI involves1293

only one CS which could be of short or long duration, and the subject has no way1294

of knowing which duration it is currently experiencing until the US is delivered.1295

Catania and Reynolds (1968) conditioned pigeons in a mixed FI and reported1296

a pattern of responding during the long CS that resembles a combination of1297

two distinct FIs (with two peaks) when the separation between the intervals1298

was in the ratio 8:1 but not at smaller proportions. Cheng et al. (1993) found1299

a similar result (experiment 2) when the intervals were in 5:1 proportion and1300

Leak and Gibbon (1995) showed that with intervals in the 8:1 proportion the1301

scalar property (measured by the CV) holds approximately even for three-valued1302

interval schedules. Whitaker et al. (2003) ran three experiments with Mixed FIs1303

in rats and found two peaks with the same CV when the proportion between1304

the durations was greater than 4:1, but not for smaller proportions. They also1305

found that the peak height at the short duration was higher than at the long1306

duration in most cases. Whitaker et al. (2008) used intervals in the very small1307

proportion 2:1 and still found two peaks that became more distinct when the1308

short interval was presented more often than the long.1309

These results are interesting because they challenge in particular models of1310

timing. They have served to provide evidence in favour of SET, and against1311

BeT and the first version of LeT (Leak and Gibbon, 1995). Subsequently, they1312

provided motivation for the development of the current version of LeT Machado1313
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et al. (2009). LeT can now account for the multiple response peaks in Mixed FIs,1314

and their superimposition, but it cannot produce peaks with decreasing heights.1315

Modular Theory has the necessary mechanisms to account for all the features of1316

the data above. The TD models, MS and CSC, could both account for multiple1317

peaks, but their account of superimposition would vary, with MS being superior1318

than CSC. We show next that RWDDM can account for all features of the data1319

in Mixed FIs.1320

3.8.1 Simulations1321

In this simulation one CS was used which was followed by reinforcement either1322

after 15 or 75 seconds randomly chosen, a proportion of 5:1. Our assumption1323

was that in Mixed FI experiments subjects form two independent stimulus rep-1324

resentations, one for the short interval xS , and another for the long interval xL,1325

each with its respective associative strength (VS , VL) and timer (ΨS , ΨL). At1326

CS onset, both timers begin timing, generating the two representations xS and1327

xL, and at each point in time behaviour is guided by the representation with the1328

highest activation value. When a reinforcement occurs, the CS representation1329

with the highest activation value is the one to which credit is assigned.1330

The left panel of figure 12 shows the simulated responses averaged over 501331

trials of the long 75-second duration. Two peaks, centred roughly at 15 and 751332

seconds, of decreasing heights and increasing widths are clearly seen, matching1333

roughly with the data (right panel).1334

3.8.2 Discussion1335

RWDDM’s mechanism for dealing with mixed FIs is in essence the same as for1336

single FIs. The only difference is that instead of only one timer (and CS repre-1337

sentation) in Mixed FIs RWDDM uses as many timers (and CS representations)1338

as rewards. We have not however addressed explicitly how one CS can give rise1339
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Figure 12: Mixed FI. Left: simulated response strength during long trials.
Right: response strength data from a mixed FI experiment, redrawn from figure
3 in Leak and Gibbon (1995). Model parameters: αt = 0.2, αV = 0.1, µ = 1,
σ = 0.425, m = 0.2, H = 30.

to two distinct representations. One possible explanation is that the slope adap-1340

tation rule (equation (6)) is only applied when the difference between the two1341

intervals is below a certain amount. If the difference is above this amount, then1342

the model would create a new representation. In fact, the data reviewed here1343

suggests that animals may not be able to distinguish two intervals if they are1344

in proportion below 2:1.1345

To the best of our knowledge, the only other model from our analysis set1346

that has tried to address the behaviour in mixed FIs is LeT. Machado et al.1347

(2009) have succeeded in obtaining the two peaks with the same CV using LeT.1348

Their account relies on a single accumulator in the form of a series of states1349

activated at a fixed rate. This rate is fixed within a trial, but varies from1350

trial to trial. After repeated training with a mixed FI, the states around the1351

reinforced times receive on average more associative strength than the ones away1352

from them. This activation pattern generates the response peaks seen in the1353

data. However, as the authors note, ‘in mixed-FI schedules, the response rate1354

[produced by LeT] at the first peak is equal to or lower than the response rate1355
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at the second peak, but never higher,’ which is the opposite of what the data1356

shows. The authors suggest that a decaying arousal function might need to be1357

added to the model so as to allow response rate to decay with interval duration.1358

Modular Theory is capable of accounting for the behaviour in Mixed FIs1359

since its pattern memory for time is based on SET, which has been shown to1360

account for these data (Leak and Gibbon, 1995). MoT’s account is similar to1361

RWDDM’s in that both rely on a separate accumulator (and memory) for each1362

time of reinforcement. CSC-TD would likely produce two peaks, since it relies1363

on a perfect discretization of time into as many units as time-steps. But the1364

curves would not superimpose when scaled as there is no mechanism to account1365

for timescale invariance. MS-TD would also account for the two peaks but1366

superimposition would likely not be fully obtained as its simulations of the ISI1367

effect have only partially reproduced it (see section 3.7 and Ludvig et al., 2012).1368

3.9 VI and FI1369

Schedules of reinforcement specify the conditions of reinforcement delivery. There1370

are a number of different types of schedules, some are based on the time elapsed1371

between reinforcements, some on the number of responses emitted between re-1372

inforcements, but there can be other possibilities. Of particular interest for a1373

timing and conditioning model are the two most commonly used time-based1374

schedules: variable and fixed interval. Variable Interval schedules of reinforce-1375

ment (VI) consist in the delivery of a US following a CS that varies in duration1376

from trial to trial. The CS durations are usually derived from an arithmetic or1377

geometric sequence. In contrast, Fixed Interval schedules of reinforcement (FI)1378

use a CS of fixed duration in all trials. Skinner and Ferster (2015) reported that1379

VIs tend to produce behaviour with a constant rate throughout the trial, whilst1380

FIs produce scalloped curves with a pause following each reinforcement and a1381
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rapid increase in rate until the next reinforcement.1382

Catania and Reynolds (1968) performed a detailed analysis of behaviour un-1383

der VIs and found that response rate declined with the average reinforcement1384

rate. Within a trial response frequency increased with time, following approxi-1385

mately a negatively accelerated curve. When normalized by maximum response1386

rate and time to reinforcement, these curves showed a considerable degree of1387

superimposition.1388

Matell et al. (2014) trained rats on a VI in which intervals were sampled from1389

an uniform distribution U(15, 45), and then tested using a peak procedure. They1390

compared the VI response peak curve to the peak curve from a control group1391

trained on an FI 30 (the mean of the VI distribution). Although the two curves1392

were not significantly different statistically, the VI response peak curve peaked1393

slightly earlier and was slightly higher than the control group.1394

Jennings et al. (2013) compared timing performance between VI and FI in1395

three experiments, but found VI timing only in a VI where the average interval1396

was 30 seconds. The other experiments from the same paper produced results1397

more in agreement with the earlier work by Skinner and Ferster (2015) showing1398

a constant rate of responding during VI trials.1399

Taken together, these studies appear to show that timing may sometimes1400

be present during VI schedules. In this case, animals appear to be learning the1401

average of the interval distribution. Here we demonstrate with simulations that1402

RWDDM can account for such findings. The only other model in our analysis1403

set that can account for this result is Modular Theory.1404

3.9.1 Simulations1405

In this simulation a random VI was produced by sampling intervals from a1406

discrete uniform distribution U(15, 45). Non-reinforced peak trials of duration1407

135 seconds were interspersed during the VI, with a probability of 0.25. Our1408
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assumption here is that subjects will keep adapting the timer rate A over trials.1409

In this case, equation (6) calculates the exponential moving harmonic average1410

of the CS durations. Since it is a moving average, the predicted peak time will1411

depend on the actual intervals used and their presentation order, but the non-1412

moving harmonic average of all intervals is 27.1 seconds. This is earlier than1413

the arithmetic average (30 seconds), which is in line with the trend observed in1414

the data by Matell et al. (2014).1415

Figure 13 (top left panel) compares the response strength averaged over peak1416

trials in the VI and in a regular peak procedure with FI 30. The VI peak is1417

higher and slightly earlier (at roughly 29.68 sec) than the FI peak, matching1418

roughly with the data (bottom row). When normalized both by peak height1419

and time the curves show the superimposition (top right panel) also seen in the1420

data.1421

3.9.2 Discussion1422

The model predicts a harmonic mean value for the position of the response peak,1423

which is always less than the arithmetic mean, but because it is a weighted1424

moving average the actual value may vary. As we saw in the simulations, the VI1425

response curve peaked at a value (29.68 sec) very near the arithmetic mean of the1426

intervals (30 sec). This may explain the trend observed in the data by Matell1427

et al. (2014). However, because that trend was not statistically significant,1428

further experiments would be needed to establish if the response peak during1429

VIs is nearer to the harmonic or the arithmetic mean.1430

Taken together, these results are more easily accommodated by theories that1431

can store an average of CS durations like RWDDM. Modular Theory is such1432

an example, since it also stores an average of intervals in its pattern memory.1433

Other models such as LeT and MS or CSC-TD would struggle with this result.1434

The CS representation in these models break down the CS into a sequence of1435
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Figure 13: VI and FI. Top row: simulated average response strength during
peak trials (left), and the same data plotted after both axes are normalized
(right). Bottom row: average response strength data from an experiment in
VI and FI, redrawn from figure 1 in Matell et al. (2014). Model parameters:
αt = 0.1, αV = 0.1, µ = 1, σ = 0.3, m = 0.2, H = 40.

units activated serially in time. With a uniform distribution of CS durations1436

associative strength would likely be spread broadly over the weights that cover1437

the interval, generating a broader pattern of responses that would not be centred1438

on the mean.1439

3.10 Temporal Averaging1440

Although animals are able to time different durations simultaneously, as seen1441

in mixed FIs, paradoxically under certain circumstances a type of temporal1442
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averaging can be observed. This is a relatively new and important phenomenon,1443

which challenges in particular theories of timing to propose a mechanism that1444

can explain such averaging.1445

When rats are trained using two distinct stimulus modalities, a visual stimu-1446

lus (a light) and an auditory (a tone), each signalling reinforcement at a different1447

time, responding during compound presentations of both stimuli peaks roughly1448

in the middle of both durations (Swanton et al., 2009). This intermediate re-1449

sponse curve to the compound superimposes with the two other single stimulus1450

curves when normalized, suggesting that the animal is timing only one aver-1451

age duration. The type of average being computed appears to be modulated by1452

the reinforcement probabilities associated with each stimulus duration, with the1453

weighted geometric average fitting the data better than a weighted arithmetic1454

average or a non-weighted average (Swanton and Matell, 2011; Matell and Hen-1455

ning, 2013; Matell and Kurti, 2014). Significantly, temporal averaging in rats1456

is only consistently observed when the auditory stimulus signals the short in-1457

terval and the visual stimulus signals the long interval (Swanton and Matell,1458

2011; Delamater and Nicolas, 2015). Even when each stimulus is associated1459

with a different response option (light reinforced with a left nosepoke, tone with1460

a right) rats still tend to mix the temporal information during compound trials1461

(De Corte and Matell, 2016).1462

We do not make a strong claim about RWDDM’s ability to explain this data.1463

Rather, we show that it has the necessary elements from which an account can1464

begin to be formulated. MoT also has similar elements from which an account1465

can be built. CSC-TD, MS-TD and LeT do not appear to be equipped to deal1466

with this phenomenon.1467
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3.10.1 Simulations1468

In RWDDM the accumulator is the mechanism that marks the passage of time.1469

The temporal proximity to an event is determined by how close the level of1470

accumulation is to a fixed threshold value. A CS that signals reward later than1471

another CS, will have a lower rate (Alow) of accumulation than the shorter CS1472

(Ahigh). Because in RWDDM associative strength is set by time to reward, the1473

two CSs will also have different associative strengths, Vlow and Vhigh respectively.1474

We may assume that under temporal averaging circumstances the stimuli are1475

of such nature that they cause the subject to integrate their information. At1476

the start of the compound trials, the ambiguity presented by the compound1477

stimulus may cause the representations of the two component stimuli to be only1478

partially retrieved. If the subject fails to represent the two stimuli separately,1479

the result may be the formation of a single representation composed by only1480

a fraction of the timing rate A and associative strength V of each individual1481

stimulus. The fractions are then added into one single rate and one single1482

associative strength, and processed as if they were the components of a single1483

stimulus representation. For the simulation below, we assume that the fractions1484

added are exactly half of their individual values: Acompound = Alow/2+Ahigh/2,1485

and Vcompound = Vlow/2 + Vhigh/2.1486

We used a long CS of duration 20 seconds and a short CS of duration 10.1487

We simulated a peak procedure with each CS and with the compound. A plot1488

of the response strength averaged over peak trials is shown in the top left panel1489

of figure 14. The three peaks scale when normalized (top right panel).1490

The peak of the compound is roughly at 13.33 sec, which would be the1491

expected value for an averaged rate A = (1/10 + 1/20)/2, the harmonic average1492

of the intervals. The height of the compound peak is also at an intermediate1493

level between the two end peaks. The simulations match roughly with the data1494
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Figure 14: Temporal averaging. Top row: simulated response strength averaged
over peak trials in temporal averaging (left), and the same data normalized by
maximum response strength and peak time (right). Bottom row: peak trial
response strength data from an experiment in temporal averaging, redrawn from
figure 1 in Swanton et al. (2009). Model parameters: αt = 0.2, αV = 0.1, µ = 1,
σ = 0.35, m = 0.2, H = 30.

(bottom row of figure 14)1495

3.10.2 Discussion1496

The assumption we made here, that temporal averaging is the result of only1497

one accumulator being active during the compounds and fed with half the rate1498

for each of the stimuli, is plausible and can accommodate the main features of1499

the data. However, given the evidence from mixed FIs it seems animals are1500
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capable of keeping multiple timers running in parallel, without averaging their1501

rates. Also, if averaging of rates always happened during compounds, then1502

the explanation provided by RWDDM for the left shift in the response curve1503

in the compound peak procedure would not hold. We suggest one possible1504

way of interpreting these three phenomena based on a failure of representation1505

selection caused by the ambiguity of the signal. In mixed FIs there is one1506

single CS that signals two rewards at very different times. There is not much1507

ambiguity in how to interpret the signal, so the subject keeps two timers running1508

in parallel. In the case of compounds formed by individual CSs that signal1509

reward at the same time, as in the compound peak procedure, there is also1510

not much ambiguity. There’s very little difference between the time memories1511

evoked by the CSs, so choosing only one, the faster one, leaves no ambiguity as1512

to which CS is signalling reward. In the case of compounds formed by individual1513

CSs of different modalities that signal reward at different times, the ambiguity1514

might be such that cannot be resolved easily. The information from each CS1515

may then be only partially retrieved and added into one representation, resulting1516

in temporal averaging.1517

As mentioned previously, this is not a strong account of the conditions that1518

generate temporal averaging. But whatever the final word on this may be,1519

RWDDM has components that allow it to generate averaging and timescale1520

invariance. However, RWDDM predicts this average to be the harmonic mean,1521

and not the geometric mean weighted by reinforcement probabilities that has1522

been frequently found (Swanton and Matell, 2011; Matell and Henning, 2013;1523

Matell and Kurti, 2014). Also, Matell and Henning (2013) reported evidence1524

of summation of response rates during the compound trials. In our simulations1525

here we assumed that equal fractions were taken of the rates of each CS, resulting1526

in a combined non-weighted harmonic average of rates, but different fractions1527
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(or weights) may be taken. In particular, the data indicates that the weights1528

are set by the reinforcement probabilities of each individual stimulus. Since this1529

information is stored in the associative strength V , we could assume the subject1530

integrates the two timer rates as follows:1531

Acompound =

(
Vlow

Vlow + Vhigh

)
Alow +

(
Vhigh

Vlow + Vhigh

)
Ahigh.

Although this would produce a weighted average, it is still a weighted harmonic1532

average of the intervals and not a weighted geometric average found in the data,1533

so the account given by RWDDM would still be partial. As for the summation1534

of response rates observed in the compound trials, this could be explained by1535

RWDDM if instead of taking a fraction of the V values for each stimulus to1536

form the V compound, the subject simply summed, or partially summed, both1537

V values.1538

Another model that is equipped to deal with averaging is Modular Theory.1539

If we allow for one single accumulator fed by one half of each time memory,1540

then MoT would predict a peak of responding at the arithmetic mean of the two1541

intervals. A weighted average could also be obtained following the procedure we1542

sketched above for RWDDM. However, this would yield a weighted arithmetic1543

mean, and not the weighted geometric mean obtained in the data. As for1544

timescale invariance, MoT relies on a noisy timer threshold whose mean is always1545

a fixed proportion of the time memory, with a standard deviation proportional to1546

this mean. Therefore, timescale invariance is guaranteed for all time memories,1547

averaged or not.1548

LeT would not be able to explain temporal averaging without modifications.1549

It cannot change its average transition rate between states without compromis-1550

ing timescale invariance. Without changing the transition rate it is difficult to1551

see how else LeT could account for a different timing in the presence of the1552

71



compound. CSC-TD and MS-TD also lack any mechanism that could be used1553

to account for temporal averaging.1554

3.11 Summary of Results and Analysis1555

Table 4 summarizes the results from the simulations. RWDDM was able to1556

reproduce the main features of the data in 8 out of the 10 experiments. In the1557

other 2 the model was able to partially account for the data.1558

To allow for comparison we have offered qualitative predictions for the other1559

4 models in table 4. It is important to note that for most of the 10 phenomena1560

analysed here simulations using these models are not available in the literature.1561

Although we have tried our best to provide predictions based on our under-1562

standing of these models, we have not actually simulated them. Therefore it is1563

possible that in some cases a model may produce results that we did not foresee1564

if the right set of parameters is found or some of the assumptions are relaxed.1565

It is also possible that some simple modifications might allow the models to1566

explain the data. We endeavoured to point out some such modifications that1567

seem likely to work when discussing the simulation results above, but we do not1568

make predictions based on them because the purpose here is only to provide a1569

comparison of the current mechanisms of each model and therefore encourage1570

future work on model improvement. With that in mind, Modular Theory has1571

fared best after RWDDM, being able to account for 7 out of the 10 experiments.1572

MS-TD and CSC-TD shared the second place with 3 out of 10. LeT came in1573

last, able to account for 2 experiments. The last column of table 4 identifies the1574

main mechanisms responsible for successfully accounting for each phenomenon.1575
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4 General Discussion1576

RWDDM was able to reproduce faster reacquisition due to its memory for time1577

being conserved during extinction. This memory is used to activate the stimulus1578

representation. Learning is slower in acquisition because RWDDM increases the1579

activation in the stimulus representation gradually over the trials. The stimulus1580

representation needs to be ‘built up’ first, and this process depends on learning1581

the timing of the US. Extinction eliminates associative strength but leaves the1582

time memory, hence the stimulus representation, intact. Reacquisition proceeds1583

faster because the stimulus representation does not need to be built up again.1584

Other models explain this by allowing the associative strength learning rate to1585

be faster in reacquisition.1586

Time change in extinction was accounted for because of RWDDM’s ability to1587

time CS duration independently from US associations. Time is learned entirely1588

by time markers. The TD models and LeT do not make this separation. These1589

models do not have a mechanism to time stimuli without the US stamping in1590

the changes.1591

Improved timing in latent inhibition was also accounted by RWDDM’s abil-1592

ity to learn timing independently of associations. Preexposure allows the model1593

to build its time representation, which is later expressed by behaviour during1594

the acquisition phase. The only other model that learns to time independently1595

of associations is MoT, but it does not have a mechanism to explain the latent1596

inhibition effect. The latent inhibition effect alone, i.e. the initial decrement in1597

the acquisition curve of a preexposed stimulus, was made possible in RWDDM1598

by using the P-H rule to change the learning rate for associative strength. The1599

use of the P-H rule instead of the RW would certainly have other theoretical1600

implications for the general theory we are introducing in this paper, but we1601

have used it only in this case. We will make further comments in the conclu-1602
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sion. Blocking with different durations was easily accounted in one condition,1603

the short blocked and long blocking CS. The blocking effect in this condition1604

followed from the summation term in the RW rule. For the other condition, long1605

blocked and short blocking CS, a straight application of the model did not yield1606

the results expected. But the experimental results leave open the possibility1607

that this might be a case of second-order conditioning, where the summation1608

term in RW does not play a role. In this case, RWDDM is well placed to ex-1609

plain the results, since it can time the whole sequence of stimuli. The only other1610

models capable of explaining these results were the TD models.1611

The time specificity in conditioned inhibition was very well accounted for1612

by the combination of the summation term in the RW rule, which allowed for1613

inhibition to develop, and the independent timing mechanism in RWDDM that1614

allowed it to time US omission. However, the alternative account provided by1615

the different time representation in the TD models was also successful. The1616

other theories failed here for the same reason as in blocking, they lack a rule1617

like RW that can deal with compound stimuli effects.1618

The response curves centred at the mean of intervals in the VI procedure1619

was well accounted by the ability of RWDDM to learn the average of intervals.1620

This ability is only present in Modular Theory, making it the only other model1621

able to account for the results here.1622

In the case of temporal averaging, RWDDM was able to account for the1623

general features of the phenomenon, namely a response curve that peaks at the1624

average of the intervals signalled by the compound stimulus. However, RWDDM1625

predicts the peak to be at the harmonic mean, whilst some experimental results1626

suggest it happens at the geometric mean. RWDDM’s account of temporal1627

averaging was hypothesised as the result of ambiguity in the signal. In trying1628

to resolve whether the compound should be treated as a single stimulus or as1629
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two separate stimuli, the subject settles on using one accumulator that is fed1630

partial timing information from both stimuli. Other hypothesis might turn out1631

to be more adequate, but this is one possibility that fits well with the RWDDM1632

framework. The only other model that would produce averaging under the same1633

hypothesis is MoT.1634

The classic ISI effect followed from two mechanisms in RWDDM. The lower1635

response curves during longer stimuli were explained by time setting the asymp-1636

tote of associative learning by hyperbolic delay discounting. The larger spread1637

of response curves during longer stimuli and the superimposition of normalised1638

curves follows from RWDDM’s timescale invariant time representation. The1639

noise in RWDDM’s accumulator decreases with the interval being timed in such1640

a way that it results in timescale invariance of the response curves. Modular1641

Theory can also reproduce all features in the data. This is because it relies on1642

a timescale invariant response rule function that generates less responding in1643

longer intervals. LeT can account for superimposition, but it does not have a1644

mechanism to account for the lower curves in longer stimuli. MS-TD can ac-1645

count for both elements because of the form of its microstimuli representation.1646

The double peaks observed in the response curves during mixed FIs is ex-1647

plained by RWDDM using simultaneous timing. It generates two different repre-1648

sentations, one for each reward. Thus, it can account for mixed FIs by the same1649

principles used to account for the ISI effect and simple FI schedules. Modular1650

Theory takes the same approach of simultaneous timing and is also successful.1651

The TD models and LeT can provide a partial account due to their distributed1652

time representation. But timescale invariance of the peaks is not observed in1653

CSC-TD and only approximately in MS-TD. LeT produces the timescale invari-1654

ance but not the decrease in peak height with time.1655

The left shift of response curves seen in compound peak procedure and dis-1656
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inhibition of delay was well accounted for by RWDDM. It did so because of1657

intertrial variability in noise estimation. By choosing in every compound trial1658

the time memory that predicts reward sooner, RWDDM produces the left shift1659

in response. The only other models that can appeal to the same principle to1660

explain it are LeT and MoT.1661

The superiority of RWDDM and MoT in explaining the majority of the phe-1662

nomena analysed highlights the importance of some of their shared mechanisms.1663

Both models have separate rules for updating time and associative strength.1664

This makes them capable of timing any stimuli, independent of changes in asso-1665

ciative strength. Both models represent psychological time as linearly related to1666

physical time through the theoretical construct of the accumulator. Their mem-1667

ory for time stores a moving average of the experienced intervals. They both1668

allow for intertrial variability in time estimation. Among their differences, only1669

one proved crucial in discriminating the two models in the experiments anal-1670

ysed here: the lack of a mechanism in MoT to account for stimulus compounds.1671

RWDDM uses the RW rule, which was developed to deal with phenomena such1672

as blocking and inhibition, whilst MoT uses the linear operator, a historically1673

earlier association rule that cannot handle compounds. This was the single dif-1674

ference that caused the difference between MoT and RWDDM in number of1675

phenomena explained.1676

MS-TD came in third place in number of phenomena successfully explained,1677

but the gap between it and MoT was comparatively high, with MoT being1678

almost twice more successful than MS-TD. CSC-TD came just half a point be-1679

low MS-TD. This is certainly a result of their similarities. The only difference1680

between these two TD models is in their time representation. However, this1681

different representation allowed MS-TD to explain only one more phenomenon1682

than CSC-TD, the ISI effect. Therefore, in the set of experiments analysed1683
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here MS-TD did not show a significant improvement on CSC-TD. This does1684

not mean that MS-TD is not a significant improvement on CSC-TD overall.1685

Its superior account of timing is significant. But the set of experiments chosen1686

here are particularly challenging even for a dedicated timing theory, so they1687

raise the bar even higher. The strength of the TD models was in account-1688

ing for compound phenomena of blocking and inhibition, due to their RW rule1689

for association. Their weaknesses was that they rely on changes in associative1690

strength to express changes in timing. This prevented them from explaining1691

time change in extinction and improved timing in latent inhibition. They both1692

lack a memory to store the average of intervals, so they could not explain be-1693

haviour in VI schedules. Finally, their lack of trial to trial variability in time1694

estimation prevented them from accounting for the left-shift in the compound1695

peak procedure.1696

With respect to the number of successes only, LeT came in last. The results1697

allowed us to identify at least four limitations in LeT’s current formulation. The1698

first is that it ties its time representation to changes in associative strength.1699

This prevented it to explain time change in extinction and improved timing in1700

latent inhibition. The second limitation is that it relies on the linear operator1701

rule for associative strength, which prevented it from accounting for blocking1702

and time specificity in conditioned inhibition. Thirdly, its distributed memory1703

for time does not store the average of the intervals seen. This prevented it1704

from accounting for the behaviour in VI. Lastly, it doesn’t have a mechanism1705

to explain the decrease in peak height of the response curves with longer ISIs.1706

However, as a timing model, LeT’s strength is in explaining timescale invariance.1707

If it can be made to overcome at least the weakness of its associative learning1708

rule, for example by also adopting the RW to update associative strength, LeT1709

could be on a par with the TD models.1710
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RWDDM faced a few problems in explaining the set of phenomena analysed1711

here. In latent inhibition the model was able to learn the timing for the pre-1712

exposed CS, but our choice of CS representation translates this into a response1713

curve that does not fully match the data. A better solution might involve a1714

two-state CS representation, one state for the early stages of training and the1715

other for the latter stages. RWDDM could not account for the lack of blocking1716

with a long blocked CS and a short blocking CS. One possible solution that1717

does not require changing the model is to treat the blocking CS as a secondary1718

reinforcer. A more difficult problem related to asynchronous co-terminating1719

CSs such as the ones used in the blocking experiment analysed here, is that1720

in its current formulation RWDDM cannot produce a stable solution. Because1721

RWDDM assigns a different learning asymptote for each CS in the compound,1722

it generates an inconsistent system of equations for V . How to fix this remains1723

an open problem. Finally, in temporal averaging RWDDM predicts a peak in1724

CR at the harmonic mean of the intervals, not at the geometric mean as has1725

been observed in the data. More experiments might help to determine if the1726

harmonic average should indeed be ruled out as an explanation.1727

One relevant phenomenon that we did not explore here is the peak procedure.1728

In particular, Balci et al. (2009) have produced evidence that in the long peak1729

trials animals don’t stop responding immediately after the expected reward1730

time, but instead take a number of peak trials to learn to stop. The Gaussian1731

function xi(Ψi) used as the CS representation in RWDDM ensures that CR1732

levels will begin to decrease after Ψi(t) crosses threshold θ without any learning.1733

To address the findings in Balci et al. (2009) the RWDDM CS representation1734

could be changed to a sigmoid, saturating after the timer Ψ(t) crosses a first1735

threshold. A second threshold could then be introduced to mark the time to stop1736

responding. When the timer crosses this stop threshold the saturation process1737
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in the CS representation would stop and a decay process would begin. This1738

however would still be an incomplete account, as a mechanism would be needed1739

to explain the learning of the second threshold. But if such a CS representation1740

was used, the model would also fit a larger body of data coming from studies that1741

analyse responding during individual trials of the peak procedure. Schneider1742

(1969) and subsequently Gibbon and Church (1990) and others (Cheng and1743

Westwood, 1993; Matell et al., 2006) have argued that the pattern of responding1744

is better characterized not by a Gaussian but instead by an approximate square-1745

wave function, with a low-high-low response frequency pattern. It can be shown1746

that by introducing a stop threshold to the timer Ψi(t), the TDDM timer (used1747

in RWDDM) can fit the data on times of start and stop responding (Luzardo1748

et al., 2017). Alternatively, the accumulator Ψi(t) itself could be used as the1749

CS representation, replacing xi in equations (9) and (10). In this case, an1750

upper absorbing boundary would need to be set on the accumulator to prevent1751

response strength increasing considerably in the first few trials following a CS1752

duration increase for example. Also, such a choice of CS representation would1753

cause within-trial responding to become linear, rather than the more commonly1754

observed sigmoidal pattern. If a sigmoidal response curve is to be preserved, a1755

different choice of response function would be required.1756

Another phenomenon that we did not address but deserves mention is the1757

timescale invariance of the acquisition process (Gallistel and Gibbon, 2000). It1758

refers to the general finding that the number of trials required until an acqui-1759

sition criterion is met depends on the ratio of intertrial (or context) and trial1760

durations, the I/T ratio (Gibbon, 1977; Lattal, 1999; Holland, 2000). Gibbon1761

and Balsam (1981) provided an account for this that postulates a decision pro-1762

cess based on the reward expectancy signalled by the stimulus versus the one1763

signalled by the context. A ratio between the two expectancies is calculated, and1764
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once the ratio exceeds a certain value, acquisition starts. If the same postulate1765

of a decision ratio of reward expectancies is made, RWDDM may account for1766

the I/T ratio in a similar manner. If we assume that animals time the interval1767

between USs (the context or I duration) with rate AI(n) and also the CS dura-1768

tion as usual with rate AT (n), then we can form the ratio r(n) = AT (n)/AI(n).1769

As the number of trials n increases, the A rates converge to their asymptotic1770

values, and the ratio r will converge to AT /AI = (1/T )/(1/I) = I/T . This1771

is essentially the same account given by Gibbon and Balsam (1981), with the1772

timer rates AT and AI substituting Gibbon and Balsam’s expectancies H/T1773

and H/C.1774

At least three testable RWDDM predictions came out from the simulations1775

reported here. The first concerns blocking with different durations. A long1776

blocked CS will not be blocked by a short co-terminating blocking CS, and two1777

peaks in responding will be observed during test trials with the blocked CS: one1778

at the time the short blocking CS would normally start, and another at the end of1779

the blocked CS. The second prediction is that conditioned inhibition is the exact1780

opposite of excitation. This means that the behaviour produced by inhibition is1781

timed in the same manner as in excitation. Finally, in temporal averaging the1782

response peak in the compound stimulus should be at the harmonic average,1783

or weighted harmonic average. One prediction that did not come out of the1784

simulations but that is worth mentioning concerns time estimation during very1785

early trials. Our assumption of a low initial value for the accumulator rate1786

A implies that in the initial trials durations will be overestimated. A new1787

experiment testing this prediction could help validate, or invalidate, the model.1788

RWDDM is, to the best of our knowledge, the first time the RW associative1789

learning rule is coupled with a accumulator-based timing theory. An important1790

implication of this effort for associative learning is that it allows for a richer1791
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analysis of the effects of timing in compound stimuli experiments. Here we have1792

analysed blocking and conditioned inhibition, but there is evidence suggesting1793

time may have important effects in other cue-competition phenomena such as1794

overshadowing (Kehoe and James, 1983; Jennings et al., 2007). Timing effects1795

in compounds has until now received somewhat little attention, with many pub-1796

lished experimental studies reporting only aggregate response measures. This is1797

perhaps to be expected, since most associative learning models that can handle1798

compounds do not have any, or a rich enough, time representation. RWDDM1799

is an attempt at filling this theoretical gap.1800

Another limitation of associative learning models is that they tend to simply1801

postulate the timing features of the stimulus representation, without a detailed1802

account of how these can mechanistically arise and evolve. This is the case with1803

the CS representations of CSC-TD, MS-TD and others like C-SOP (Brandon1804

et al., 2003). RWDDM’s adaptive timer and time-adaptive CS representation1805

provide a fuller account of the timing mechanism and its dynamics. Another1806

recent model that provides this level of detail is the Timing from Inverse Laplace1807

Transform (TILT, Shankar and Howard, 2012; Howard et al., 2015). It can1808

dynamically develop a timescale invariant representation of stimulus history1809

using a two-layer neural network. It can also reproduce the important I/T ratio1810

conditioning phenomenon, but so far it has only been implemented with the1811

linear operator rule for associative learning, which precludes it from accounting1812

for cue competition phenomena.1813

The RWDDM architecture suggests that timing is largely independent of1814

the process of association formation and maintenance. Associations however,1815

according to RWDDM, depend on timing both to set the asymptote of asso-1816

ciative strength and to build the CS representation so that it can enter into1817

association with the US. Thus, RWDDM implies that interactions between tim-1818
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ing and associative learning are mainly one-directional. This appears to match1819

roughly with experimental findings. In a review Kirkpatrick (2013) found that1820

prediction error influenced measures of time estimation only through changes in1821

reward magnitude and devaluation, whilst effects in the other direction included1822

the appropriate timing of CRs from start of conditioning, trial and intertrial1823

durations affecting strength and probability of CR occurrence, and cues with1824

different temporal information affecting cue competition.1825

5 Conclusion1826

In this paper we introduced a new real-time model for classical conditioning and1827

timing. The model combines elements from two theories, the Rescorla-Wagner1828

conditioning model and the TDDM interval timing theory.1829

We have simulated the model on 10 conditioning phenomena selected from1830

the literature, which collectively represent a particular challenge for any single1831

model to explain. The model was successful in accounting for 9, and can be1832

made to account for the rest if simple modifications are made. The mechanisms1833

used by other models of similar scope were evaluated to see if they could also1834

account for the data. The model that got closer to this level of success in this set1835

of phenomena was Modular Theory. This was due to MoT and RWDDM having1836

a significant overlap in terms of mechanisms. Both models use an accumulator1837

to mark the passage of time. Both models require only a single associative1838

unit per stimulus that adapts to the temporal information conveyed by the1839

stimulus. Their main difference is that MoT still uses the linear operator rule1840

which precludes it from explaining blocking and other compound phenomena,1841

whilst RWDDM uses the RW which can account for those phenomena. The1842

same limitation is faced by TILT, a recent model that we did not analyse but1843

that shows promising results and has desirable timing properties.1844
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RWDDM may be improved in several ways. It is quite likely that the asymp-1845

tote of learning may not be described by the simple inverse relationship to re-1846

inforcement time that we assumed. In some of the experiments modelled here,1847

response peak seemed to decrease slower with ISI than our inverse relation-1848

ship predicted. Functions other than Gaussians might be used to represent the1849

CS, which could better fit the data in the case of latent inhibition for example.1850

These and other theoretical issues may be better elucidated by new experiments1851

involving compound stimuli and a manipulation of their durations, such as the1852

experiments with blocking, compound peak procedure and temporal averaging1853

analysed here.1854

We have also adopted the P-H rule in one experiment, but have not explored1855

its application in the others. Making the P-H rule an integral part of RWDDM1856

would add one more parameter but it would also allow RWDDM to account for1857

other preexposure and attentional effects that the rule is designed to account.1858

This is not a difficult modification, and we have already shown it to be feasible.1859

RWDDM may be regarded, like TD, as a real-time extension of RW. Unlike1860

TD and LeT, it does not require a number of associative units that grows linearly1861

with time. It adds to RW the powerful timing mechanism of TDDM. But also,1862

by making a link with a version of DDM, it shows that it may be possible to1863

arrive at a unified account of timing, conditioning and decision making.1864
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Table 4: Summary of main simulation results and comparison with other models.
Notes: (1) if learning rate is allowed to vary.

phenomenon RWDDM CSC-TD MS-TD LeT MoT explaining mechanism

faster reac-
quisition

yes yes1 yes1 yes1 yes1 time-adaptive stimu-
lus representation or
changes in learning
rate

time change
in extinction

yes no no no yes separate rules for time
adaptation and asso-
ciative strength

latent inhibi-
tion and tim-
ing

part. no no no no PH rule and separate
rules for time adap-
tation and associative
strength

blocking with
diff. dura-
tions

part. yes yes no no RW rule and ability to
time any stimulus or
distributed time rep-
resentation

time spec. of
conditioned
inhibition

yes yes yes no no RW rule and con-
centrated memory for
time or distributed
time representation

compound
peak proce-
dure

yes no no yes yes intertrial variability in
time estimation

ISI effect and
superimposi-
tion

yes no part. part. yes asymptote of assoc.
strength set by time
and accumulator noise
or time representation
that gets diffuse with
longer time

mixed FI yes part. part. part. yes ability to generate
multiple time rep-
resentations or a
single distributed
time representation

VI and FI yes no no no yes memory that stores
average of intervals

temporal av-
eraging

yes no no no yes memory that stores
average of intervals
and the accumulator
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