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Many current computational models that aim to simulate cortical and hippocampal

modules of the brain depend on artificial neural networks. However, such classical or even

deep neural networks are very slow, sometimes taking thousands of trials to obtain the

final response with a considerable amount of error. The need for a large number of trials

at learning and the inaccurate output responses are due to the complexity of the input

cue and the biological processes being simulated. This article proposes a computational

model for an intact and a lesioned cortico-hippocampal system using quantum-inspired

neural networks. This cortico-hippocampal computational quantum-inspired (CHCQI)

model simulates cortical and hippocampal modules by using adaptively updated neural

networks entangled with quantum circuits. The proposed model is used to simulate

various classical conditioning tasks related to biological processes. The output of the

simulated tasks yielded the desired responses quickly and efficiently compared with other

computational models, including the recently published Green model.

Keywords: quantum-inspired neural network, computational modeling, classical conditioning, learning algorithm,

cortico-hippocampal

INTRODUCTION

Several researchers have proposed models that combine artificial neural networks (ANNs) or
quantum neural networks (QNNs) with various other ingredients. For example, Haykin (1999)
and Bishop (1995) developed multilevel activation function QNNs using the quantum linear
superposition feature (Bonnell and Papini, 1997).

The prime factorization algorithm of Shor was used to illustrate the basic workings of
QNNs (Shor, 1994). Shor’s algorithm uses quantum computations by quantum gates to provide
the potential power for quantum computers (Bocharov et al., 2017; Dridi and Alghassi, 2017;
Demirci et al., 2018; Jiang et al., 2018). Meanwhile, the work of Kak (1995) focused on the
relationship between quantum mechanics principles and ANNs. Kak introduced the first quantum
network based on the principles of neural networks, combining quantum computation with
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convolutional neural networks to produce quantum neural
computation (Kak, 1995; Zhou, 2010). Since then, a myriad of
QNN models have been proposed, such as those of Zhou (2010)
and Schuld et al. (2014).

From 1995 to 2005, many models were developed in the
QNN field. This development, and the scientific contributions
of the researchers, can be summarized into four main stages.
First, researchers attempted to determine the relationship
between the nonlinear activation function of neurons in
ANNs and the measurement process in quantum mechanics
(Schrödinger’s famous cat). Second, the concept of logic gates
made an appearance in many proposed quantum circuits in
the form of quantum gates. Third, researchers specified the
requirements and challenges of converting a single-layer ANN
to a QNN with the same dynamic features and properties
(Schuld et al., 2014). Finally, the first batch of QNNs was
introduced, which consisted of interacting quantum dots
(qudots); every qudot has two pairs of atoms with two
common electrons and interacts with other qudots to form a
network (Schuld et al., 2014).

Recently interest in quantum computing has grown
rapidly, which has led to increased interest in investigating
the applicability of quantum computing to various scientific
fields that make use of computational modeling and exhibit
certain fundamental characteristics, such as entanglement
and superposition. Entanglement is associated with correlated
neurons in the ANNs, and linear superposition refers to the
linear mathematical relationship. As a result, QNNs have
been used in the implementation of an associative memory
model (Ventura and Martinez, 2000; Gao et al., 2018), and
the US National Aeronautics and Space Administration
(NASA) and Google recently utilized QNNs for supervised
learning and big data classification in their projects,
such as D-Wave processors (Altaisky et al., 2016), and in
intelligent controller implementations, such as natural language
programming models and robotics (Abdulridha and Hassoun,
2018).

Relatedly, quantum-inspired neural networks (QINNs) (Li
and Xiao, 2013) are considered compelling models due to

A B C D

FIGURE 1 | (A) Bloch sphere representation of a qubit with real and imaginary probability amplitudes. Real number relative probabilities give the Bloch circle

representations for (B) a qubit |0〉, (C) a qubit |1〉, and (D) a 90◦-rotated qubit.

their combination of superposition-based quantum computing
and parallel-processed neural computing. QINNs use quantum
computation techniques, but these are implemented on classical
computers. In other words, a QINN is a classical neural
network inspired by quantum computation, just as particle
swarm optimization methods are inspired by swarming behavior
in organisms such as birds and fish (Kouda et al., 2005).
Although there is no experimental evidence that real neurons
have specific features in common with QNN models (that
are not already included in classical models), adding quantum
computing features to artificial neurons can significantly enhance
the computational capability of classical neural networks
(da Silva and de Oliveira, 2016). The addition of quantum
computing features to ANNs has been found to speed up the
learning process (Xu et al., 2011; Altaher and Taha, 2017;
Lukac et al., 2018). Thus, QINNs have greater computational
capability than classical networks (Zhou, 2010). Moreover,
the implementation of QINNs has helped us gain better
understanding of specific brain functions (Takahashi et al.,
2014).

Gluck and Myers (1993) used ANNs to construct a
primitive cortico-hippocampal model. The Gluck-Myers model
basically consists of two ANNs: an autoencoder and a single-
layer feedforward neural network. The autoencoder is an
unsupervised neural network that encodes and decodes the
input cue to generate internal representations. The single-
layer feedforward network is a supervised neural network that
processes the input cue along with the internally generated
representations to produce the output response, as used in
associative learning to simulate basic classical conditioning
tasks. These two networks are combined to simulate the intact
system of the cortico-hippocampal region. The lesioned system
is simulated by severing the link between the supervised and
unsupervised networks.

The Gluck-Myers model was improved by Moustafa et al.
(2009) to overcome its drawbacks. The Moustafa et al. model
is based on more plausible biological paradigms, and uses a
feedforward learning algorithm instead of a backpropagation
algorithm, which is considered to be an implausible learning
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FIGURE 2 | The quantum-inspired neuron model compared with the classical neuron model.

FIGURE 3 | The structure of CHCQI model.
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FIGURE 4 | The input data set for the CHCQI model.

rule in biological simulations. Our recent model, the Green
model (Khalid et al., 2020), overcomes the weaknesses of the
previous two models by using adaptive learning simulated by
instar-outstar learning rules.

However, the previously published computational models for
simulating cortical and hippocampal modules of the brain (Gluck
and Myers, 1993; Moustafa et al., 2009; Khalid et al., 2020) are all
based on ANNs. Although the Gluck-Myers and Moustafa et al.
models simulated some biological processes using classical neural
networks, these models are considered slow and inadequate
(Khalid et al., 2020). It is worth mentioning that some classical
neural network models do exist that can also learn very fast
(by employing one-shot-learning methods), possibly faster than
the QINN models proposed in the present paper (Rolls, 1996;
Knoblauch et al., 2010).

In this article we propose a cortico-hippocampal
computational quantum-inspired (CHCQI) neural network
model. Our CHCQI model outperforms the aforementioned
models by successfully simulating the same tasks with fewer
trials and more plausible output responses. Moreover, the
CHCQI model performs better than our previously published
Green model (Khalid et al., 2020) in terms of producing a
faster response.

MATERIALS AND METHODS

Qubit
A qubit is a quantum mechanical system that is considered
the fundamental unit of quantum information. The qubit in
quantum computing is regarded as the analog of the bit in
classical computing. Unlike the classical bit, which encodes
information with two possible states, logic 0 or 1, the qubit
uses its properties as a quantum two-level system to encode
quantum information as |0〉 and |1〉 states with different
probabilities. Accordingly, a qubit state φ can have quantum
superpositions or a linear combination of the two states
as follows:

|φ〉 = α |0〉 + β |1〉 {α,β ∈ R }, (1)

where α and β are real numbers that represent the relative
probabilities of the |0〉 and |1〉 states, respectively. A qubit in
a QNN can be visually represented as a Bloch sphere (Bloch,
1946), which has |0〉 and |1〉 states with real and imaginary
relative probabilities. However, in QINNs, α and β can each
be represented as a slice of a Bloch sphere, i.e., a Bloch circle,

TABLE 1 | Tasks simulated by the CHCQI model, where “A” and “B” are the two

input conditioned stimuli, “X” is the context of the cue, and the positive and

negative signs refer to the CS-US pairing status, with “+” meaning paired and “−”

unpaired.

No. Task name Phase 1 Phase 2 Phase 3

1 A+ AX+ — —

2 A− AX− — —

3 Blocking AX+ ABX+ BX−
4 Stimulus discrimination AX+, BX− — —

5 Discrimination reversal AX+, BX− AX−, BX+ —

6 Easy-hard transfer A1X+, A2X− A3X+, A4X− —

7 Context sensitivity (context shift) AX+ AY+ —

8 Context sensitivity of latent inhibition AX− AY+ —

9 Generic feedforward multilayer network AX− AX+ —

10 Sensory preconditioning ABX− AX+ BX−
11 Latent inhibition AX− AX+ —

12 Overshadowing ABX+ AX+, BX+ —

13 Compound preconditioning ABX− AX+, BX− —

as shown in Figure 1. According to Li et al. (2013), a Bloch
circle can represent the possible states of any qubit for which
the amplitudes of its relative probabilities are real numbers only.
Thus, the qubit state can be found in state |0〉 with amplitude
probability α and state |1〉 with amplitude probability β ,
such that

|α|2 + |β|2 = 1. (2)

In a general quantum-inspired system that has n qubits
with |φn〉 states, every single state is represented by
a unit vector in the Hilbert space. Thus, the general
linear superposition of all the unit vector states is
expressed as

|ψ〉 =
N
∑

n=1

An |φn〉 {An ∈ R }, (3)

where |ψ〉 is the general quantum state of all the
|φn〉 states and An is a real number that represents
the probability amplitude of the related state |n〉 for
2n or N states. When the sum of these real number
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A B

C D

E F

FIGURE 5 | Output responses of the (A) A+ and A− learning tasks, (B) stimulus discrimination task, (C) easy transfer task in the intact system, (D) hard transfer task

in the intact system, (E) easy transfer task in the lesioned system, and (F) hard transfer task in the lesioned system.

probabilities is equal to 1, as in (2), the sum of the N state
probabilities is,

∑

n∈{0,1}n
|An|2 = 1. (4)

Quantum Rotation Gate
In quantum computing, the input-output operations of any
circuit can be performed by quantum gates. Quantum gates
are similar to logic gates in classical computing but operate
with qubits rather than classical bits. We use the Hadamard
gate, H, which is also known as the Walsh transform, in this
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A B

C D

FIGURE 6 | Output responses of the (A) discrimination reversal task, (B) context sensitivity task, (C) blocking task, and (D) A+ lesioned system learning task in the

CHCQI model compared with the generic feedforward multilayer network.

study. According to Li et al. (2013), this gate performs qubit
superposition by generating equal relative probabilities for every
qubit to be either |0〉 or |1〉 as follows:

H =
1
√
2

[

1 1
1 −1

]

. (5)

In other words, the Hadamard gate maps the two states |0〉 and
|1〉 together according to the formula

H(α |0〉 + β |1〉) = α

(

|0〉 + |1〉
√
2

)

+ β
(

|0〉 − |1〉
√
2

)

. (6)

Quantum-Inspired Neuron Model
Every node in the CHCQI model has an input-output relation
that is represented in the quantum-inspired neuron model as

z = f (y), (7)

where

y =
1

nf

nf
∑

k

f
(

δ(o− ϑk)
)

, (8)

with

oj =
R
∑

i

wij · f (pi), (9)

and

f (x) =
1

1+ e−x
. (10)

Here f is the log-sigmoid activation function, nf is the number
of activation functions, δ is the steepness factor, ϑ represents the
quantum intervals, wij is the weight matrix of the links from the
ith node to the jth node with R qubits, and pi is the input to
the node.

As shown in Figure 2, the classical neuron model in
classical neural networks calculates the product of each input
to the neuron and its associated weight, sums all these
products, and then generates the output via an activation
function. On the other hand, the proposed qubit neuron
representation in the CHCQI model is the general representation
for every node in the network. The calculations follow the
same procedure as in a classical network; however, in QINNs
the output of a quantum neuron is affected by the values

Frontiers in Computational Neuroscience | www.frontiersin.org 6 November 2020 | Volume 14 | Article 80

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Khalid et al. CHCQI Model

A B

C D

FIGURE 7 | Output responses of the (A) sensory preconditioning task, (B) latent inhibition task, (C) overshadowing task, and (D) compound preconditioning task.

of quantum parameters such as the steepness factor and
quantum intervals.

Proposed Model
The CHCQI model computationally simulates the cortical and
hippocampal modules as shown in Figure 3. The cortical module
is represented by a single-hidden-layer feedforward QINN
(FFQINN), which updates its weight adaptively depending on
the hippocampal module. Meanwhile, the hippocampal module
is an autoencoder QINN (AQINN), which encodes the input cue
to generate the internal representations. These representations
are mapped to the nodes of the hidden layer in the cortical
module and are used to update the weights of the hidden
layers adaptively.

In the CHCQI model, the intact system comprises cortical
and hippocampal modules that connect to the same input
from the quantum circuit. The lesioned model has the same
structure, but the link that forwards the internal representations
from the AQINN to FFQINN is removed, which prevents the
adaptive learning.

Figure 4 illustrates the blocks of input to the CHCQI model.
Each input block comprises 10 input cues of binary data,
and every input cue consists of four bits. The first bit is
assigned to conditioned stimulus (CS) A and the second bit to
CS B. The third and fourth bits are assigned to two different
contexts, X and Y, with binary values distributed randomly.
Wherever one of the conditioned stimuli exists, the other CS
and the context values are taken to be zeros, followed by
a subsequent zero-padding row. The output response of the
network is considered a conditioned response (CR) regarding the
unconditioned stimulus (US) target. The CR takes values between
0 and 1. Throughout the learning trials, the value of the output
CR changes according to its related task. The learning ends when
the CR value reaches a desired unchanging state, which is the
steady state.

The biological processes simulated by the CHCQI
model are listed in Table 1. Here “A” and “B” refer to the
two input conditioned stimuli, while “X” is the context
of the cue. The positive and negative signs refer to the
CS-US pairing status, with “+” meaning paired and
“−” unpaired.
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Quantum-Input Module
The Hadamard gate initially rotates the phase of each input pi
to obtain a rotated-phase input p̃i. This gate is useful because it
can take a qubit into and out of superpositions. If the input is a
qubit 0, then |0〉 turns it into a qubit right. Qubit right is halfway
between |0〉 and |1〉 simultaneously, as can be seen by rewriting
(6) as

p̃i = H(pi) =
(

α + β
√
2

)

|0〉 +
(

α − β
√
2

)

|1〉 . (11)

Hippocampal Module
The weights and quantum circuit parameters in the input layer
of the AQINN are updated using the instar learning algorithm,
whereas the output layer uses the outstar algorithm to update
its weights. The instar and outstar learning algorithms were
developed by Grossberg (1967). Typically, these two learning
rules encode and decode the input cue to generate internal
representations with a plausible error for the updating of network
weights (Jain and Chakrawarty, 2017). The updating procedures
for the input and output layers are as follows:

Winstar
ij (n+ 1) = Winstar

ij (n)+ µah1j (n)
(

p̃Ti(n)−Wh1
ij (n)

)

,

(12)

Woutstar
ij (n+ 1) = Woutstar

ij (n)+ µ
(

ah2j (n)−Wh2
ij (n)

)

ah1Ti (n),

(13)

where µ is the learning rate, ah1j is the internal representation

output of the AQINN with Q qubits, ah2j is the actual output of

the AQINN with R outputs, p̃ is the rotated-phase input with
R inputs, the superscript T refers to matrix transpose, Wh1

ij is

the internal-layer weight matrix of the links from the ith input
node to the jth hidden qubit of the AQINN with R qubits and Q
hidden nodes, andWh2

ij is the weight matrix of the link from the

ith AQINN hidden qubit to the jth corresponding output. Note
that (n) refers to the current state and (n+1) is the succeeding or
new state.

Meanwhile, the quantum interval ϑk is randomly initialized
and updated using a gradient descent learning rule as follows:

v =
(

1− f (δ(o− ϑk))
)

· f (δ(o− ϑk)), (14)

ϑk
n+1 = ϑk

n − µ
(

−
δ

nf
(ȳ− y)(v̄− v)

)

, (15)

where ȳ and v̄ are the normalized vectors of y and v defined in (8)
and (14), respectively.

Cortical Module
The FFQINN uses two learning algorithms to update its weights,
the quantum instar algorithm for the hidden layer and the
Widrow-Hoff learning rule for the output layer:

Winstar
ij (n+ 1) = Winstar

ij (n)+ µac1j (n)
(

p̃Ti (n)−Wc1
ij (n)

)

, (16)

Wc2
ij (n+ 1) = Wc2

ij (n)+ µac1i (n)ej(n), (17)
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FIGURE 8 | Comparison of the three phases for the intact system in the CHCQI and Green models.

MAE =
1

2

iter
∑

j=1

ej =
1

2

iter
∑

j=1

(yj − dj), (18)

where µ is the learning rate, ac1j is the internal representation

of the output vector of the FFQINN with Q nodes, p̃i is the
rotated-phase input of the FFQINN with R inputs, Wc1

ij is the

internal-layer weight matrix of the links from the ith input node
to the jth hidden qubit of the FFQINN with R inputs and Q
qubits, Wc2

i,j is the upper-layer weight matrix of the FFQINN

from input pi to output node yj, dj is the desired jth output or
US, and MAE is the mean absolute error between the actual and
desired outputs.

The FFQINN uses (7), (8), (9), and (10) to estimate the
output CR, and uses (14) and (15) to update the quantum
interval value.

In the intact system, the generated internal representations
of the AQINN are fed into the hidden layer of the
FFQINN through a fully connected network. This linking
network adaptively updates its weights and quantum
parameters using the outstar learning algorithm as in
(13). In the lesioned system this linking network has
been removed.

The AQINN and the FFQINN each have one hidden
layer, with 1 and 16 hidden quantum neurons, respectively.

Accordingly, the numerical values of the different parameters
are estimated as follows: µ of the hippocampal module is 0.03,
while µ of the cortical module is 0.01; also, we assume that there
is only one activation function, i.e., nf = 1, and that δ = 1
and ϑ = 2.

RESULTS

The CHCQI model was used to simulate the tasks in
Table 1. The model estimated the number of trials needed
to obtain the exact desired output (either 0 or 1) in every
task. Most of the tasks comprised two learning phases to
complete their simulation, while some tasks had one or
three phases.

Tasks 1 and 2 are primitive tasks that were used to demonstrate
the basic responses of the intact and lesioned versions of the
CHCQI model. The A+ and A− tasks represent the CS-US
pairing and unpairing processes by using one input CS in only
one phase. Figure 5A shows that the CHCQImodel simulated the
A+ and A− tasks for the intact and lesioned systems successfully
with 26 and 18 trials, respectively. It clearly illustrates the
lesioning effect on the CHCQI model, which performed the two
tasks in the lesioned system faster than in the intact system. The
delayed response of the intact system is due to the forwarding of
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FIGURE 9 | Comparison of the three phases for the lesioned system in the CHCQI and Green models.

the generated internal representation from the internal network
of the hippocampal module to the internal network of the
cortical module adaptively through the learning process. This is
the likely cause of every delayed response of the intact system
compared with the lesioned system for the rest of the tasks
in Table 1.

The CHCQI model was then applied to discriminate two
conditioned stimuli within one phase only. The intact and
lesioned systems discriminated A+ and B−with a rapid response
that reached the final state successfully as shown in Figure 5B.
As with tasks 1 and 2, the lesioned system simulated the
stimulus discrimination task faster than the intact system, in
19 trials.

In addition, the CHCQI model was used to examine the
ability of the intact and lesioned systems to discriminate
the same two conditioned stimuli after reversing them in a
subsequent phase. Unlike in the first phase, the lesioned system
needed more trials than the intact system to discriminate
the two stimuli at the second phase, as shown in Figure 6A;
the lesioned system took 37 trials, approximately double the
number of trials in the first phase, while the intact system
showed only a slight increase, of two more trials, relative to
the first phase. This increased number of trials in the lesioned
system can be explained by the cortical module receiving no

internal representations forwarded by the hippocampal module,
whereas the intact system received internal representations
from the hippocampal side that had been trained during the
first phase.

Task 3 examines the blocking and unblocking effects of one
CS on another by using two stimuli due to a prior conditioning
phase. The third phase is the control CS, which can be blocked
by adding the response from the preceding phase to get the
experimental CS. As a result, the experimental B− in the third
phase obtained its response from the second phase. However, B−
was blocked by A+ in the first phase. The intact system displayed
the blocking effect, while the lesioned system was not affected by
the blocking, as shown in Figure 6C.

The CHCQI model simulated the overshadowing task in two
phases. In the first phase two conditioned stimuli were learned
together (AB+), and in the second phase these two stimuli
were learned simultaneously (A+, B+). The intact system’s
response showed overshadowing of B+ by A+, with both
subsequently reaching their final states as shown in Figure 7C.
The lesioned system eliminated the overshadowing effect of A+
on B+, which attained their final states together at around the
same time.

Task 6 involves stimulus discrimination with different
amplitude values of the CS. The easy transfer task was simulated
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TABLE 3 | Comparison of the Gluck-Myers and CHCQI models in terms of the number of trials needed to attain the final state of the CR.

No. Task name

Phase 1 Phase 2 Phase 3

(a) (b) (c) (d) Improvement (e) (f) (g) (h) Improvement (i) (j) (k) (l) Improvement

M1I CHCQII M1L CHCQIL (b) vs. (a) (d) vs. (c) M1I CHCQII M1L CHCQIL (f) vs. (e) (h) vs. (g) M1I CHCQII M1L CHCQIL (j) vs. (i) (l) vs. (k)

4 Stimulus discrimination >200 28 >200 19 86.0% 90.5% — — — — — — — — — — —

5 Discrimination reversal >200 28 >200 19 86.0% 90.5% >200 26 >400 37 87.0% 90.8% — — — — — —

6 Easy-hard transfer learning >200 30 >200 24 80.0% 88.0% >1000 37 >1000 26 96.3% 97.4% — — — — — —

7 Context sensitivity >200 29 >200 17 85.5% 91.5% >200 1 >200 1 99.5% 99.5% — — — — — —

9 Generic feedforward multilayer network — — 100 25 — 75.0% — — >200 20 — 90.0% — — — — — —

10 Sensory preconditioning 200 25 — — 87.5% — >100 34 — — 66.0% — 50 50 — — 00.0% —

11 Latent inhibition 50 25 50 25 50.0% 50.0% >100 35 >100 23 65.0% 77.0% — — — — — —

13 Compound preconditioning 20 10 — — 50.0% — >100 30 — — 70.0% — — — — — — —

Bold emphasis indicates significant variance in the numbers of trials.

TABLE 4 | Comparison of the Moustafa et al. and CHCQI models in terms of the number of trials needed to attain the final state of the CR.

No. Task name

Phase 1 Phase 2 Phase 3

(a) (b) (c) (d) Improvement (e) (f) (g) (h) Improvement (i) (j) (k) (l) Improvement

M2I CHCQII M2L CHCQIL (b) vs. (a) (d) vs. (c) M2I CHCQII M2L CHCQIL (f) vs. (e) (h) vs. (g) M2I CHCQII M2L CHCQIL (j) vs. (i) (l) vs. (k)

1 A− >100 2 >100 2 98.0% 98.0% — — — — — — — — — — — —

2 A+ >100 26 >100 18 74.0% 82.0% — — — — — — — — — — — —

3 Blocking >100 26 >100 18 74.0% 82.0% >100 27 >100 22 73.0% 78.0% >100 12 >100 3 88.0% 97.0%

6 Easy-hard transfer learning >100 30 — — 70.0% — >100 37 — — 63.0% — — — — — — —

7 Context shift 100 25 — — 75.0% — 1 1 — — 00.0% — — — — — — —

8 Context sensitivity of latent inhibition 100 25 — — 75.0% — 1 1 — — 00.0% — — — — — — —

10 Sensory preconditioning 100 25 — — 75.0% — >100 34 — — 66.0% — 50 50 — — 00.0% —

11 Latent inhibition 50 25 50 25 50.0% 50.0% >100 35 >100 23 65.0% 77.0% — — — — — —

12 Overshadowing 100 10 100 10 90.0% 90.0% >100 24 >100 19 76.0% 81.0% — — — — — —

13 Compound preconditioning 100 10 — — 90.0% — >200 30 — — 85.0% — — — — — — —

Bold emphasis indicates significant variance in the numbers of trials.
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FIGURE 10 | Comparison of the three phases for the intact system in the CHCQI, Gluck-Myers, and Moustafa et al. models. The red and cyan crosses represent

missed tasks that were not simulated by the Gluck-Myers and Moustafa et al. models. For better visualization of the comparison, the number of trials for task 6 in the

second phase of the Gluck-Myers model has been scaled to 200 from 1,000.

with A+ and A− equal to 0.9 and 0.1, respectively; the hard
transfer task reduced the gap between A+ and A−, which were
taken to be 0.6 and 0.4, respectively. Similar to tasks 1, 2, and
3, the CHCQI model simulated the easy and hard transfer tasks
successfully for the intact and lesioned systems. The lesioned
system took 24 trials for the easy transfer task and 26 for the
hard transfer task, as shown in Figures 5C–F. The intact system
took 30 and 37 trials for the easy transfer and hard transfer
tasks, respectively.

Figure 7B shows that the intact system produced its response
to the latent inhibition task after 35 trials. The successful
delayed response of the intact system is due to the generated
representation at the pre-exposure phase. The lesioned system,
on the other hand, did not show any response to the latent
inhibition task because of the lack of forwarded representations
from the hippocampal module.

Tasks 10 and 13 investigate the effects of related context
on CS-US conditioning in different situations. The intact
system successfully simulated the sensory and compound
preconditioning tasks within three and two phases, respectively.
Figure 7A shows the third-phase response of the sensory
preconditioning task, and Figure 7D shows the second-phase
response of the compound preconditioning task. It is clearly seen

that the discrimination response for the experimental CS A and
CS B took more trials than for the control stimuli.

The CHCQI model simulated the context sensitivity task in
the intact system by shifting the context of the relevant CS during
the second phase. Figure 6B shows the context shifting effect in
the intact system with and without the latent inhibition effect, by
comparing the response values of the last and first trials of the
first and second phases, respectively.

Moreover, Figure 6D shows the response of the lesioned
system to A+ learning after the pre-exposure phase,
demonstrating the similarity of the lesioned system’s response to
the supervised feedforward neural network response proposed
by Rumelhart et al. (1986).

DISCUSSION

The CHCQI model simulated all the biological process tasks
listed in Table 1 and estimated the number of trials needed to
obtain the exact desired output (either 0 or 1) in each task.
Most of the tasks required two learning phases to complete
their simulation, whereas some tasks comprised one phase or
three phases.
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FIGURE 11 | Comparison of the three phases for the lesioned system in the CHCQI, Gluck-Myers, and Moustafa et al. models. The red and cyan crosses represent

missed tasks that were not simulated by Gluck-Myers and Moustafa et al. models. For better visualization of the comparison, the numbers of trials for tasks 5 and 6 in

the second phase of the Gluck-Myers model have been scaled to 200 from 400 and 1,000, respectively.

The first two tasks are the CS-US pairing and unpairing
tasks using one input CS. Tasks 3 and 10 examined the
blocking and unblocking effects, respectively, of one CS
on another due to a prior conditioning phase. Tasks 4
and 5 pertain to the discrimination of two conditioned
stimuli and their reversed pair. Tasks 6, 7, 8, 9, and
11 investigated the effects of the related context on
the CS-US conditioning in different situations. Tasks
12 and 13 examined overshadowing and compound
preconditioning effects during simulation with two different
conditioned stimuli simultaneously according to the
preconditioning phase.

The CHCQI model successfully produced the desired
outputs of all the simulated tasks with a consistent CR for
intact and lesioned systems. All the output CRs reached
their final states (either 0 or 1) directly after a plausible
number of training trials, as shown in Figures 5–7. Moreover,
in nearly all the tasks, the lesioned system completed the
learning faster (i.e., with a fewer number of trials) than the
intact system. By contrast, the discrimination reversal task
took several more trials in the lesioned system. Although
the lesioned system learned faster than the intact system,
it has no link with the adaptively generated internal
representations. Thus, the lesioned system took a long time

to re-discriminate a reversed pair of conditioned stimuli
as new input.

As with the Green model (Khalid et al., 2020), in all the
simulated tasks the CHCQI model yielded results consistent with
the aforementioned experimental studies. However, the CHCQI
model produced output CRs faster than the Green model for all
the three-phase tasks in both the intact and the lesioned systems
as shown in Table 2. Figures 8, 9 plot the number of trials taken
to obtain the desired output in each task. The results indicate that
the CHCQI model is an improvement over the Green model in
the sense of obtaining the output CR faster in most tasks in the
three phases.

Also, Tables 3, 4 show the number of trials needed
to attain the final state of the CRs compared with the
Gluck-Myers and Moustafa et al. models respectively. The
CHCQI model also obtains output CRs more rapidly, as shown
in Figures 10, 11. Unlike the CHCQI model, the Gluck-Myers
and Moustafa et al. models are incapable of simulating
several tasks.

Finally, comparing the CHCQI model, which uses QINNs,
with models that use spiking neural networks (SNNs) to simulate
cortico-hippocampal regions, the CHCQI model relies mainly
on the Widrow-Hoff, instar, and outstar learning rules to
adaptively update the weights of the networks according to the
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internally generated representations, whereas the SNN-based
models depend on the adapted spiking time. Thus, updating the
weights of the network is processed by the phase of the theta
oscillation that is generated externally by a spiking modulator
(Tielin et al., 2016; Parish et al., 2018; Zhao et al., 2018).

CONCLUSIONS

This article has proposed the CHCQI model for cortico-
hippocampal regions, which outperforms several previously
published models, such as the Gluck-Myers, Moustafa et al.,
and Green models. Across a variety of simulated tasks, the
CHCQI model shows fast responses, requiring fewer trials to
reach the desired final states. In addition, the CHCQI model
is capable of simulating more biological processes than other
models. QINNs are used to build the CHCQI model because
quantum circuits afford computational speedup over ANNs for
certain multivariate problems. The powerful parallel-computing
aspect enables even better performance of QINNs than ANNs.

The use of quantum computation in the CHCQI
model makes the model more powerful at simulating the
cortico-hippocampal region than classical computational
models. Instead of simulating an n-bit information input
cue as in classical computation, a quantum computation
simulates the same cue as 2n possible states. The
quantum circuit (including quantum rotation gates) allows

computations to be speeded up relative to ANNs in classical
conditioning simulations. Such accelerated computation
enables the CHCQI model to simulate many biological
paradigms efficiently.
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