15,629 research outputs found

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation

    Single conjugate adaptive optics for the ELT instrument METIS

    Get PDF
    The ELT is a 39m large, ground-based optical and near- to mid-infrared telescope under construction in the Chilean Atacama desert. Operation is planned to start around the middle of the next decade. All first light instruments will come with wavefront sensing devices that allow control of the ELT's intrinsic M4 and M5 wavefront correction units, thus building an adaptive optics (AO) system. To take advantage of the ELT's optical performance, full diffraction-limited operation is required and only a high performance AO system can deliver this. Further technically challenging requirements for the AO come from the exoplanet research field, where the task to resolve the very small angular separations between host star and planet, has also to take into account the high-contrast ratio between the two objects. We present in detail the results of our simulations and their impact on high-contrast imaging in order to find the optimal wavefront sensing device for the METIS instrument. METIS is the mid-infrared imager and spectrograph for the ELT with specialised high-contrast, coronagraphic imaging capabilities, whose performance strongly depends on the AO residual wavefront errors. We examined the sky and target sample coverage of a generic wavefront sensor in two spectral regimes, visible and near-infrared, to pre-select the spectral range for the more detailed wavefront sensor type analysis. We find that the near-infrared regime is the most suitable for METIS. We then analysed the performance of Shack-Hartmann and pyramid wavefront sensors under realistic conditions at the ELT, did a balancing with our scientific requirements, and concluded that a pyramid wavefront sensor is the best choice for METIS. For this choice we additionally examined the impact of non-common path aberrations, of vibrations, and the long-term stability of the SCAO system including high-contrast imaging performance.Comment: 37 pages, 27 figures, accepted for publication in Experimental Astronom

    Optical techniques for 3D surface reconstruction in computer-assisted laparoscopic surgery

    Get PDF
    One of the main challenges for computer-assisted surgery (CAS) is to determine the intra-opera- tive morphology and motion of soft-tissues. This information is prerequisite to the registration of multi-modal patient-specific data for enhancing the surgeon’s navigation capabilites by observ- ing beyond exposed tissue surfaces and for providing intelligent control of robotic-assisted in- struments. In minimally invasive surgery (MIS), optical techniques are an increasingly attractive approach for in vivo 3D reconstruction of the soft-tissue surface geometry. This paper reviews the state-of-the-art methods for optical intra-operative 3D reconstruction in laparoscopic surgery and discusses the technical challenges and future perspectives towards clinical translation. With the recent paradigm shift of surgical practice towards MIS and new developments in 3D opti- cal imaging, this is a timely discussion about technologies that could facilitate complex CAS procedures in dynamic and deformable anatomical regions

    GRAVITY: The AO-Assisted, Two-Object Beam-Combiner Instrument

    Full text link
    We present the proposal for the infrared adaptive optics (AO) assisted, two-object, high-throughput, multiple-beam-combiner GRAVITY for the VLTI. This instrument will be optimized for phase-referenced interferometric imaging and narrow-angle astrometry of faint, red objects. Following the scientific drivers, we analyze the VLTI infrastructure, and subsequently derive the requirements and concept for the optimum instrument. The analysis can be summarized with the need for highest sensitivity, phase referenced imaging and astrometry of two objects in the VLTI beam, and infrared wavefront-sensing. Consequently our proposed instrument allows the observations of faint, red objects with its internal infrared wavefront sensor, pushes the optical throughput by restricting observations to K-band at low and medium spectral resolution, and is fully enclosed in a cryostat for optimum background suppression and stability. Our instrument will thus increase the sensitivity of the VLTI significantly beyond the present capabilities. With its two fibers per telescope beam, GRAVITY will not only allow the simultaneous observations of two objects, but will also push the astrometric accuracy for UTs to 10 micro-arcsec, and provide simultaneous astrometry for up to six baselines.Comment: 12 pages, to be published in the Proceedings of the ESO Workshop on "The Power of Optical/IR Interferometry: Recent Scientific Results and 2nd Generation VLTI Instrumentation", eds. F. Paresce, A. Richichi, A. Chelli and F. Delplancke, held in Garching, Germany, 4-8 April 200

    Robust Intrinsic and Extrinsic Calibration of RGB-D Cameras

    Get PDF
    Color-depth cameras (RGB-D cameras) have become the primary sensors in most robotics systems, from service robotics to industrial robotics applications. Typical consumer-grade RGB-D cameras are provided with a coarse intrinsic and extrinsic calibration that generally does not meet the accuracy requirements needed by many robotics applications (e.g., highly accurate 3D environment reconstruction and mapping, high precision object recognition and localization, ...). In this paper, we propose a human-friendly, reliable and accurate calibration framework that enables to easily estimate both the intrinsic and extrinsic parameters of a general color-depth sensor couple. Our approach is based on a novel two components error model. This model unifies the error sources of RGB-D pairs based on different technologies, such as structured-light 3D cameras and time-of-flight cameras. Our method provides some important advantages compared to other state-of-the-art systems: it is general (i.e., well suited for different types of sensors), based on an easy and stable calibration protocol, provides a greater calibration accuracy, and has been implemented within the ROS robotics framework. We report detailed experimental validations and performance comparisons to support our statements

    Surface-wave-enabled darkfield aperture for background suppression during weak signal detection

    Get PDF
    Sensitive optical signal detection can often be confounded by the presence of a significant background, and, as such, predetection background suppression is substantively important for weak signal detection. In this paper, we present a novel optical structure design, termed surface-wave-enabled darkfield aperture (SWEDA), which can be directly incorporated onto optical sensors to accomplish predetection background suppression. This SWEDA structure consists of a central hole and a set of groove pattern that channels incident light to the central hole via surface plasmon wave and surface-scattered wave coupling. We show that the surface wave component can mutually cancel the direct transmission component, resulting in near-zero net transmission under uniform normal incidence illumination. Here, we report the implementation of two SWEDA structures. The first structure, circular-groove-based SWEDA, is able to provide polarization-independent suppression of uniform illumination with a suppression factor of 1230. The second structure, linear-groove-based SWEDA, is able to provide a suppression factor of 5080 for transverse-magnetic wave and can serve as a highly compact (5.5 micrometer length) polarization sensor (the measured transmission ratio of two orthogonal polarizations is 6100). Because the exact destructive interference balance is highly delicate and can be easily disrupted by the nonuniformity of the localized light field or light field deviation from normal incidence, the SWEDA can therefore be used to suppress a bright background and allow for sensitive darkfield sensing and imaging (observed image contrast enhancement of 27 dB for the first SWEDA)
    • …
    corecore