The ELT is a 39m large, ground-based optical and near- to mid-infrared
telescope under construction in the Chilean Atacama desert. Operation is
planned to start around the middle of the next decade. All first light
instruments will come with wavefront sensing devices that allow control of the
ELT's intrinsic M4 and M5 wavefront correction units, thus building an adaptive
optics (AO) system. To take advantage of the ELT's optical performance, full
diffraction-limited operation is required and only a high performance AO system
can deliver this. Further technically challenging requirements for the AO come
from the exoplanet research field, where the task to resolve the very small
angular separations between host star and planet, has also to take into account
the high-contrast ratio between the two objects. We present in detail the
results of our simulations and their impact on high-contrast imaging in order
to find the optimal wavefront sensing device for the METIS instrument. METIS is
the mid-infrared imager and spectrograph for the ELT with specialised
high-contrast, coronagraphic imaging capabilities, whose performance strongly
depends on the AO residual wavefront errors. We examined the sky and target
sample coverage of a generic wavefront sensor in two spectral regimes, visible
and near-infrared, to pre-select the spectral range for the more detailed
wavefront sensor type analysis. We find that the near-infrared regime is the
most suitable for METIS. We then analysed the performance of Shack-Hartmann and
pyramid wavefront sensors under realistic conditions at the ELT, did a
balancing with our scientific requirements, and concluded that a pyramid
wavefront sensor is the best choice for METIS. For this choice we additionally
examined the impact of non-common path aberrations, of vibrations, and the
long-term stability of the SCAO system including high-contrast imaging
performance.Comment: 37 pages, 27 figures, accepted for publication in Experimental
Astronom