73,937 research outputs found

    Inferring Networks of Substitutable and Complementary Products

    Full text link
    In a modern recommender system, it is important to understand how products relate to each other. For example, while a user is looking for mobile phones, it might make sense to recommend other phones, but once they buy a phone, we might instead want to recommend batteries, cases, or chargers. These two types of recommendations are referred to as substitutes and complements: substitutes are products that can be purchased instead of each other, while complements are products that can be purchased in addition to each other. Here we develop a method to infer networks of substitutable and complementary products. We formulate this as a supervised link prediction task, where we learn the semantics of substitutes and complements from data associated with products. The primary source of data we use is the text of product reviews, though our method also makes use of features such as ratings, specifications, prices, and brands. Methodologically, we build topic models that are trained to automatically discover topics from text that are successful at predicting and explaining such relationships. Experimentally, we evaluate our system on the Amazon product catalog, a large dataset consisting of 9 million products, 237 million links, and 144 million reviews.Comment: 12 pages, 6 figure

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Reciprocal Recommendation System for Online Dating

    Full text link
    Online dating sites have become popular platforms for people to look for potential romantic partners. Different from traditional user-item recommendations where the goal is to match items (e.g., books, videos, etc) with a user's interests, a recommendation system for online dating aims to match people who are mutually interested in and likely to communicate with each other. We introduce similarity measures that capture the unique features and characteristics of the online dating network, for example, the interest similarity between two users if they send messages to same users, and attractiveness similarity if they receive messages from same users. A reciprocal score that measures the compatibility between a user and each potential dating candidate is computed and the recommendation list is generated to include users with top scores. The performance of our proposed recommendation system is evaluated on a real-world dataset from a major online dating site in China. The results show that our recommendation algorithms significantly outperform previously proposed approaches, and the collaborative filtering-based algorithms achieve much better performance than content-based algorithms in both precision and recall. Our results also reveal interesting behavioral difference between male and female users when it comes to looking for potential dates. In particular, males tend to be focused on their own interest and oblivious towards their attractiveness to potential dates, while females are more conscientious to their own attractiveness to the other side of the line

    Knowledge-aware Complementary Product Representation Learning

    Full text link
    Learning product representations that reflect complementary relationship plays a central role in e-commerce recommender system. In the absence of the product relationships graph, which existing methods rely on, there is a need to detect the complementary relationships directly from noisy and sparse customer purchase activities. Furthermore, unlike simple relationships such as similarity, complementariness is asymmetric and non-transitive. Standard usage of representation learning emphasizes on only one set of embedding, which is problematic for modelling such properties of complementariness. We propose using knowledge-aware learning with dual product embedding to solve the above challenges. We encode contextual knowledge into product representation by multi-task learning, to alleviate the sparsity issue. By explicitly modelling with user bias terms, we separate the noise of customer-specific preferences from the complementariness. Furthermore, we adopt the dual embedding framework to capture the intrinsic properties of complementariness and provide geometric interpretation motivated by the classic separating hyperplane theory. Finally, we propose a Bayesian network structure that unifies all the components, which also concludes several popular models as special cases. The proposed method compares favourably to state-of-art methods, in downstream classification and recommendation tasks. We also develop an implementation that scales efficiently to a dataset with millions of items and customers
    • …
    corecore