21,305 research outputs found

    Special Session on Industry 4.0

    Get PDF
    No abstract available

    Recommender Systems

    Get PDF
    The ongoing rapid expansion of the Internet greatly increases the necessity of effective recommender systems for filtering the abundant information. Extensive research for recommender systems is conducted by a broad range of communities including social and computer scientists, physicists, and interdisciplinary researchers. Despite substantial theoretical and practical achievements, unification and comparison of different approaches are lacking, which impedes further advances. In this article, we review recent developments in recommender systems and discuss the major challenges. We compare and evaluate available algorithms and examine their roles in the future developments. In addition to algorithms, physical aspects are described to illustrate macroscopic behavior of recommender systems. Potential impacts and future directions are discussed. We emphasize that recommendation has a great scientific depth and combines diverse research fields which makes it of interests for physicists as well as interdisciplinary researchers.Comment: 97 pages, 20 figures (To appear in Physics Reports

    Towards an Indexical Model of Situated Language Comprehension for Cognitive Agents in Physical Worlds

    Full text link
    We propose a computational model of situated language comprehension based on the Indexical Hypothesis that generates meaning representations by translating amodal linguistic symbols to modal representations of beliefs, knowledge, and experience external to the linguistic system. This Indexical Model incorporates multiple information sources, including perceptions, domain knowledge, and short-term and long-term experiences during comprehension. We show that exploiting diverse information sources can alleviate ambiguities that arise from contextual use of underspecific referring expressions and unexpressed argument alternations of verbs. The model is being used to support linguistic interactions in Rosie, an agent implemented in Soar that learns from instruction.Comment: Advances in Cognitive Systems 3 (2014

    Combining relevance information in a synchronous collaborative information retrieval environment

    Get PDF
    Traditionally information retrieval (IR) research has focussed on a single user interaction modality, where a user searches to satisfy an information need. Recent advances in both web technologies, such as the sociable web of Web 2.0, and computer hardware, such as tabletop interface devices, have enabled multiple users to collaborate on many computer-related tasks. Due to these advances there is an increasing need to support two or more users searching together at the same time, in order to satisfy a shared information need, which we refer to as Synchronous Collaborative Information Retrieval. Synchronous Collaborative Information Retrieval (SCIR) represents a significant paradigmatic shift from traditional IR systems. In order to support an effective SCIR search, new techniques are required to coordinate users' activities. In this chapter we explore the effectiveness of a sharing of knowledge policy on a collaborating group. Sharing of knowledge refers to the process of passing relevance information across users, if one user finds items of relevance to the search task then the group should benefit in the form of improved ranked lists returned to each searcher. In order to evaluate the proposed techniques we simulate two users searching together through an incremental feedback system. The simulation assumes that users decide on an initial query with which to begin the collaborative search and proceed through the search by providing relevance judgments to the system and receiving a new ranked list. In order to populate these simulations we extract data from the interaction logs of various experimental IR systems from previous Text REtrieval Conference (TREC) workshops
    • 

    corecore