385 research outputs found

    Human Gait Analysis in Neurodegenerative Diseases: a Review

    Get PDF
    This paper reviews the recent literature on technologies and methodologies for quantitative human gait analysis in the context of neurodegnerative diseases. The use of technological instruments can be of great support in both clinical diagnosis and severity assessment of these pathologies. In this paper, sensors, features and processing methodologies have been reviewed in order to provide a highly consistent work that explores the issues related to gait analysis. First, the phases of the human gait cycle are briefly explained, along with some non-normal gait patterns (gait abnormalities) typical of some neurodegenerative diseases. The work continues with a survey on the publicly available datasets principally used for comparing results. Then the paper reports the most common processing techniques for both feature selection and extraction and for classification and clustering. Finally, a conclusive discussion on current open problems and future directions is outlined

    Inertial sensor based full body 3D kinematics in the differential diagnosis between Parkinson’s Disease and mimics

    Get PDF
    The differential diagnosis of Parkinson’s Disease (PD) remains challenging with frequent mis and underdiagnosis. DAT-Scan has been a useful technique for assessing the lost integrity of the nigrostriatal pathway in PD and differentiating true parkinsonism from mimics. However, DAT-Scan remains unavailable in most non-specialized clinical centres, making imperative the search for other easy and low-cost solutions. This dissertation aimed to investigate the role of inertial sensors in distinguishing between the denervated and the non-denervated individuals. In this dissertation, we've used Inertial Sensor Based 3D Full Body Kinematics (FBK) and tested if this technique was able to distinguish between patients with changes in the DAT-Scan from those without. This was divided into two parts, being that firstly, a group of individuals was referred by the attending physician for DAT-Scan (123I-FP-CIT SPECT) to be able to compare FBK in those with and without evidence of dopaminergic depletion. Second, it was tested whether FBK could be used as a metric for the severity of dopaminergic depletion. Twenty-one patients participated in this study, being recruited from the Nuclear Medicine Unit in the Champalimaud Clinical Centre (CCC), Lisbon. Within these 21 patients, 10 of them had denervation (mean age, 68.4 ± 7.8 years) and the remaining 11 (mean age, 66.6 ± 7.4 years) did not present denervation. The analysis between the worst uptake ratio features and dimensional features, as well as the asymmetry indexes in the striatum revealed significant differences between denervated and non-denervated individuals. On the contrary, the kinematics did not do it. Overall, based on the collected kinematics data, it was identified that there was not any significant correlation between the kinematics and the DAT-Scan. What means that these kinematics variables were not able to explain the DAT-Scan. On the other hand, it was also checked that the kinematics data were strongly correlated to the motor symptoms (MDS-UPDRS III). This way, it was concluded that the classical biomechanics did not distinguish denervated from non-denervated individuals. Therefore, the kinematics could not give the same answer as the DAT-Scan. In spite of these results it would be relevant to keep researching other methods in order to find out the distinction between the denervation and no denervation in a low-cost way

    Synergy of Physics-based Reasoning and Machine Learning in Biomedical Applications: Towards Unlimited Deep Learning with Limited Data

    Get PDF
    Technological advancements enable collecting vast data, i.e., Big Data, in science and industry including biomedical field. Increased computational power allows expedient analysis of collected data using statistical and machine-learning approaches. Historical data incompleteness problem and curse of dimensionality diminish practical value of pure data-driven approaches, especially in biomedicine. Advancements in deep learning (DL) frameworks based on deep neural networks (DNN) improved accuracy in image recognition, natural language processing, and other applications yet severe data limitations and/or absence of transfer-learning-relevant problems drastically reduce advantages of DNN-based DL. Our earlier works demonstrate that hierarchical data representation can be alternatively implemented without NN, using boosting-like algorithms for utilization of existing domain knowledge, tolerating significant data incompleteness, and boosting accuracy of low-complexity models within the classifier ensemble, as illustrated in physiological-data analysis. Beyond obvious use in initial-factor selection, existing simplified models are effectively employed for generation of realistic synthetic data for later DNN pre-training. We review existing machine learning approaches, focusing on limitations caused by training-data incompleteness. We outline our hybrid framework that leverages existing domain-expert models/knowledge, boosting-like model combination, DNN-based DL and other machine learning algorithms for drastic reduction of training-data requirements. Applying this framework is illustrated in context of analyzing physiological data

    A deep learning approach for parkinson’s disease severity assessment

    Get PDF
    Purpose: Parkinson’s Disease comes on top among neurodegenerative diseases affecting 10 million worldwide. To detect Parkinson’s Disease in a prior state, gait analysis is an effective choice. However, monitoring of Parkinson’s Disease using gait analysis is time consuming and exhaustive for patients and physicians. To assess severity of symptoms, a rating scale called Unified Parkinson's Disease Rating Scale is used. It determines mild and severe cases. Today, Parkinson’s Disease severity assessment is made in gait laboratories and by manual examination. These are time consuming and it is costly for health institutions to build and maintain laboratories. By using low-cost wearables and an effective model, aforementioned problems can be solved. Methods: We provide a computerized solution for quantifiable assessment of Parkinson’s Disease symptoms severity. By using wearable sensors, our framework can predict exact symptom values to assess Parkinson’s Disease severity. We propose a deep learning approach that utilizes Ground Reaction Force sensors. From sensor signals, features are extracted and fed to a hybrid deep learning model. This model is the combination of Convolutional Neural Networks and Locally Weighted Random Forest. Results: Proposed framework achieved 0.897, 3.009, 4.556 in terms of Correlation Coefficient, Mean Absolute Error and Root Mean Square Error, respectively. Proposed framework outperformed other machine and deep learning models. We also evaluated classification performance for disease detection. We outperformed most of the previous studies, achieving 99.5% accuracy, 98.7% sensitivity and 99.1% specificity. Conclusion: This is the first study to use a deep learning regression approach to predict exact symptom value of Parkinson’s Disease patients. Results show that this approach can be effectively employed as a disease severity assessment tool using wearable sensors.publishedVersionPeer reviewe

    Etude expérimentale des dynamiques temporelles du comportement normal et pathologique chez le rat et la souris

    Get PDF
    155 p.Modern neuroscience highlights the need for designing sophisticated behavioral readout of internal cognitive states. From a thorough analysis of classical behavioral test, my results supports the hypothesis that sensory ypersensitivity might be the cause of other behavioural deficits, and confirm the potassium channel BKCa as a potentially relevant molecular target for the development of drug medication against Fragile X Syndrome/Autism Spectrum Disorders. I have also used an innovative device, based on pressure sensors that can non-invasively detect the slightest animal movement with unprecedented sensitivity and time resolution, during spontaneous behaviour. Analysing this signal with sophisticated computational tools, I could demonstrate the outstanding potential of this methodology for behavioural phenotyping in general, and more specifically for the investigation of pain, fear or locomotion in normal mice and models of neurodevelopmental and neurodegenerative disorders

    Machine Learning for Gait Classification

    Get PDF
    Machine learning is a powerful tool for making predictions and has been widely used for solving various classification problems in last decades. As one of important applications of machine learning, gait classification focuses on distinguishing different gait patterns by investigating the quality of gait of individuals and categorizing them as belonging to particular classes. The most studied gait pattern classes are the normal gait patterns of healthy people, i.e., gait of people who do not have any gait disability caused by an illness or an injury, and the pathological gait of patients suffering from illnesses which cause gait disorders such as neurodegenerative diseases (NDDs). There has been significant research work trying to solve the gait classification problems using advanced machine learning techniques, as the results may be beneficial for the early detection of underlined NDDs and for the monitoring of the gait rehabilitation progress. Despite the huge development in the field of gait analysis and classification, there are still a number of challenges open to further research. One challenge is the optimization of applied machine learning strategies to achieve better classification results. Another challenge is to solve gait classification problems even in the case when only limited amount of data are available. Further, a challenge is the development of machine learning-based methods that could provide more precise results to evaluate the level of gait quality or gait disorder, in contrast of just classifying gait pattern as belonging to healthy or pathological gait. The focus of this thesis is on the development, implementation and evaluation of a novel and reliable solution for the complex gait classification problems by addressing the current challenges. This solution is presented as a classification framework that can be applied to different types of gait signals, such as lower-limbs joint angle signals, trunk acceleration signals, and stride interval signals. Developed framework incorporates a hybrid solution which combines two models to enhance the classification performance. In order to provide a large number of samples for training the models, a sample generation method is developed which could segments the gait signals into smaller fragments. Classification is firstly performed on the data sample level, and then the results are utilized to generate the subject-level results using a majority voting scheme. Besides the class labels, a confidence score is computed to interpret the level of gait quality. In order to significantly improve the gait classification performances, in this thesis a novel feature extraction methods are also proposed using statistical methods, as well as machine learning approaches. Gaussian mixture model (GMM), least square regression, and k-nearest neighbors (kNN) are employed to provide additional significant features. Promising classification results are achieved using the proposed framework and the extracted features. The framework is ultimately applied to the management of patients and their rehabilitation, and is proved to be feasible in many clinical scenarios, such as the evaluation of medication effect on Parkinsona s disease (PD) patientsa gait, the long-term gait monitoring of the hereditary spastic paraplegia (HSP) patient under physical therapy

    Locomotion Traces Data Mining for Supporting Frail People with Cognitive Impairment

    Get PDF
    The rapid increase in the senior population is posing serious challenges to national healthcare systems. Hence, innovative tools are needed to early detect health issues, including cognitive decline. Several clinical studies show that it is possible to identify cognitive impairment based on the locomotion patterns of older people. Thus, this thesis at first focused on providing a systematic literature review of locomotion data mining systems for supporting Neuro-Degenerative Diseases (NDD) diagnosis, identifying locomotion anomaly indicators and movement patterns for discovering low-level locomotion indicators, sensor data acquisition, and processing methods, as well as NDD detection algorithms considering their pros and cons. Then, we investigated the use of sensor data and Deep Learning (DL) to recognize abnormal movement patterns in instrumented smart-homes. In order to get rid of the noise introduced by indoor constraints and activity execution, we introduced novel visual feature extraction methods for locomotion data. Our solutions rely on locomotion traces segmentation, image-based extraction of salient features from locomotion segments, and vision-based DL. Furthermore, we proposed a data augmentation strategy to increase the volume of collected data and generalize the solution to different smart-homes with different layouts. We carried out extensive experiments with a large real-world dataset acquired in a smart-home test-bed from older people, including people with cognitive diseases. Experimental comparisons show that our system outperforms state-of-the-art methods
    • …
    corecore