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Abstract

The performance of gait disturbances differ in various Neurodegenerative

diseases (NDs), which is an important basis for the diagnosis of NDs. In the

diagnosis, doctors can judge disease state by observing patients’ gait features

without quantification, such a subjective diagnosis has been seen as a problem

because diagnostic results may differ among doctors. Moreover, there are some

irresistible factors such as fatigue may effects diagnostic procedure. To make

use of these observations, we build an automatic deep model based on Long

Short-Term Memory (LSTM) for the gait recognition problem. In our model,

a dual channel LSTM model is designed to combine time series and force series

recorded from NDs patients for whole gait understanding. Experimental results

demonstrate that our proposed model improves gait recognition performance

compared to baseline methods. We believe the quantitative evaluation provided

by our method will assist clinical diagnosis of Neurodegenerative diseases.

Keywords: Neurodegenerative diseases, diagnosis, gait disorders, time series,

force series, dual channel LSTM.

1. Introduction

Neurodegenerative diseases(NDs), including Parkinsons disease (PD), Hunt-

ingtons disease (HD), and amyotrophic lateral sclerosis (ALS), produce lesions in
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the central nervous system that controls the motions of two lower limbs causing

gait disorders. Studies assert that every individual has unique gait pattern [1]

indicating that gait disorder is recognized as a contributing diagnostic criterion

for NDs.

Additionally, gait performance varies among the three diseases. HD is an

dominant genetic disease with nervous system gradually degenerated resulting

in abnormal body movements, which may present as involuntary movements,

walking and balance disorders, dance like movements, twisting, rolling, and un-

stable gait in middle stage[2]. Gait disturbance occurs in PD patients’ early

stage, such as festinating gait, short gait and freezing gait may make PD diag-

nosis easier[3]. The clinical features of ALS are indicative of the loss of neurons

at all levels of the motor system - from the cortex to the anterior horn of the

spinal cord. Physical signs of this disorder thus encompass both upper motor

neuron and lower motor neuron findings, which causes the movement disorder

of the limbs, for example, scissors gait and spastic gait[4].

By employing these motor symptoms, we are committed to optimizing the

existing disease diagnosis system which is one of the more labor-intensive tasks

in medical procedure. Despite advances in medical care, gait disturbances are

known to worsen as the disease progresses, contributing to loss of independence,

falls, and poor quality of life. Moreover, gait disorder based diagnosis can not

provide quantitative data of diseases leading to a subjective and inefficient di-

agnosis process, besides, general health care systems seem not always maintain

accurate and rapid diagnosis. Machine learning methods have gained popularity

as they offer an objective approach to identifying or differentiating subgroups

of individuals with movement disorders and quantifying outcomes of gait clas-

sification in low cost. In many cases, these methods can provide more accurate

diagnosis than experienced nerve physicians so that it facilitates auxiliary diag-

nosis.

Recently, machine learning technologies have been effectively applied to

study the gait variability in neurological diseases including the kernel Fisher dis-

criminant (KFD), the naive Bayesian approach (NB), support vector machine
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(SVM) and nearest neighbor (NN) [5–8], neural networks [9, 10]. However, these

researches are not specifically designed to cope with temporal data, whereas the

gait recorded by devices (cameras, force sensors) contains important temporal

information which is significant for NDs diagnosis.

Long Short-Term Memory (LSTM) has done a good job on this issue in

various fields including action recognition and gait recognition owing to the

ability of processing and forecasting the time series with very long interval and

delay [11–17]. Although these work can effectively extract the single gait feature,

it is insufficient for representing the details of gait changes. We propose a dual

channel LSTM model to fuse two gait features including time series and force

series to learn gait pattern of the patient. Experiment on a public NDs gait data

set, our method is testified to outperform other popular algorithms in solving

this problem.

In addition, the two gait data were measured by a foot-switch system simul-

taneously that provides accurate estimates of the start and end of stance phase

for sequential steps based on a commercially available transducer and can be

readily reproduced for use in a laboratory setting. Specifically, it contained two

1.5 in2 force sensitive resistors and a 390Ω measuring resistor, which can obtain

the stride time intervals according to the variation tendency of force changing

in gait. In order to comprehensively capture the gait changes in time and space,

we combine these two features to obtain better diagnostic results[18].

The rest of this paper is organized as follows. Section 2 explores the related

work. Section 3 introduces the proposed dual channel LSTM network. Section

4 describes the used public data set and provides our experimental results, and

Section 5 is a discussion for NDs diagnosis. Section 6 concludes the paper.

2. Related Work

It is generally known that the medical institutions produce a large number

of data, different features are extracted from these data, which can help doctors

and patients understand the state of illness and select the proper treatment.
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This section introduces the related work for NDs diagnosis by using data with

different features, such as skeleton feature, time feature, and force feature.

Skeleton feature is an influential reference of gait recognition, which elim-

inates some interference characteristics and retains only the joint point coor-

dinate of human bones to identify gait difference. Torres et al. presented an

approach of recording the posture of PD with a Kinect sensor, which can cap-

ture the changes of joint points in order to assist physicians in PD diagnosis

[19]. Galna et al. established a system to measure clinically relevant move-

ments in people with PD using skeleton data, which calculated temporal and

spatial features of skeleton joints [20]. Oskarsson et al. proposed a method to

determine the spectrum of 3-dimensional reachable workspace encountered in a

cross-sectional cohort of individuals with ALS applying skeleton data aiming to

assess the difference between healthy controls and ALS patients [21].

Gait is a time-dependent process, in which the time features of lower limb

movements are also essential for gait recognition. Sarbaz et al. designed a feed-

forward artificial perceptron neural network with a hidden layer as the classifier

that took frequency features extracted from time intervals with a power spec-

trum as the input [22]. Moreover, Zeng et al. demonstrated that the proposed

Radial Basis Function (RBF) neural networks model and deterministic learning

fusion method can effectively separate the gait time series between the groups of

healthy controls and neurodegenerative patients (ALS, HD and PD) [9]. In ad-

dition, an artificial neural network were constructed to model healthy behavior

and train gait time interval series data of patients with HD [10].

Another feature obtained by force sensors (such as force-sensitive resistors

with the output roughly proportional to the force under the foot) can represent

more subtle changes in lower limb movements. Manap et al. proposed the

feed-forward multilayer perceptron neural network to identify PD patients from

normal people with gait patterns extracted from Ground Reaction Force (GRF,

in Newton) recordings [23]. Jane et al. built a Q-backpropagated time delay

neural network in predicting PD severity of gait disorders using GRF [24].

Based on these temporal data in gait, finer pattern of dynamic gait details
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can be effectively distinguished by LSTM. We proposed a dual channel LSTM

model that combining two types of features including time data and force data

to model the gait dynamics of patients in NDs, which can improve the diag-

nostic process for objectively analyzing the changes in motor behaviors. Our

experiment demonstrates that using fusion feature is more effective than that

of single feature.

3. Methods

3.1. Introduction to RNN and LSTM

To be self-explanatory, the basic theory of RNN and LSTM will be briefly

introduced before describing the structure of our proposed dual channel LSTM

model in NDs classification.

RNN is a special artificial neural network where connections between units

form a directed cycle, which can exhibit dynamic timing behavior. Unlike the

feed-forward neural networks, the internal memory cell in RNN makes it nat-

urally adept in handling sequential data such as connected handwriting recog-

nition, speech recognition, and activity recognition. The RNN is a chainlike

structure comprised of repeating modules that allows for information retention

by combining previous states with current input [25]. This repetitive module

has a simple formation (“tanh” function) in a basic RNN. For a given input

series xt (t = 1, 2..., T ), the hidden state of a recurrent module ht is calculated

using Eq.1. The output of the module yt is calculated as in Eq.2. Figure 1

shows a typical structure of RNN with 3 modules.

ht = tanh(Wxhxt +Whhht−1 + bh) (1)

yt = softmax(Whoht + bo) (2)

where Wxh, Whh, Who indicate the connection weights from the input x to the

hidden state h, the hidden state h to itself and the hidden state to the output
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Figure 1: A typical RNN model. Every RNN module represents a RNN cell at a time, there

is an activation function “tanh” in it, and each module has two inputs and two outputs.

y respectively. bh and bo are bias vectors, tanh and softmax are the activation

functions in the hidden layer and the output layer.

However, the memory ability of RNN is weak for long time steps because of

its limited function, to solve this problem, LSTM has complicated dynamics that

allow it to easily memorize information for an extended number of timesteps,

which has similar repetitive module to RNN and can learn long-term dependency

information from the input data [26]. The internal organization of repetitive

module in LSTM has four interactive operations (3 sigmoid and 1 tanh), which

enables it by extracting valid information from dynamic data.

There are three gates (input, forget and output) in the basic cell of LSTM,

each gate has a sigmoid activation function and a pointwise multiplication oper-

ation. We choose a variant of LSTM called the Gated Recurrent Unit (GRU) as

learning model, which combines the input gate and forgot gate into an update

gate and mixes cell state and hidden state. Figure 2 shows the structure of a

GRU cell and illustrates the operations of the gates. The basic cell of the GRU

is defined as the following equations:

zt = σ(Wz · [ht−1, xt]) (3)
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Figure 2: The GRU model.

rt = σ(Wr · [ht−1, xt]) (4)

h̃t = tanh(W · [rt � ht−1, xt]) (5)

ht = (1− zt)� ht−1 + zt � h̃t (6)

where zt denotes the output of update gate to the network at time step t, where

σ is the logistic sigmoid function. xt and ht1 are the input and the previous

hidden state, respectively. Wr and Wz are weight matrices which are learned.

rt denotes the reset gate and the actual activation of the proposed unit ht is

then computed by Eq.(6).The update gate z selects whether the hidden state is

to be updated with a new hidden state h̃. The reset gate r decides whether the

previous hidden state is ignored.
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Figure 3: The dual channel LSTM model.

3.2. The Dual Channel LSTM

In this paper, we propose a dual channel LSTM for diagnosis of NDs, each

channel is composed of two layers of LSTM each of which consists of the same

number of expanded nodes (time steps, cells) according to the input data. After

calculation of the LSTM memory cells, outputs of the two channels are concate-

nated into a feature vector (256D) with a 128-dimensional vector generated

in one channel, as the fusion feature that is input into the softmax classifier

for NDs classification. According to each training accuracy, the dual channel

LSTM model minimizes the loss to obtain the optimum weights and biases. The

proposed dual channel LSTM model is illustrated in Figure 3.

The dual channel LSTM model is divided into two channels taking time data

and force data as input in batches, each channel determines different number

of LSTM cells in terms of the number and time variation of the input (M and

N). By synchronous training, the output feature of the last cell from the second

layer of LSTM (OM ,ON ) is extracted to connect into a feature vector that can

predict the probability of each class. Taking the maximum probability value, the

model can eventually achieve the accuracy of disease classification. Taking force

channel for example, the internal composition of two-layer LSTM is introduced

in detail.

In the force channel, we design a two-layer LSTM for obtaining deeper fea-

ture, each LSTM layer has N(N = 100) cells with the last output ON . The
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Figure 4: The structure of the two-layer LSTM. The input of the LSTM is xN , xN ∈ Rf (f =

12), which from different time periods are entered into N (N = 100) LSTM cell. The output

of Nth time point is used for feature fusion.

binary force data will be fed into the LSTM after converted into decimal and

normalized, which makes the data fixed in length in terms of the time steps.

The gait cycle of the participant is nearly 1 second with enough foot changing

information for time steps (10 ms each time step). After calculating the data

in the LSTM cell, a feature vector is obtained to represent the changing force

information. Through repeatedly training and learning, connection weights be-

tween each cell can be optimized. Figure 4 depicts the structure of the used

two-layer LSTM.

The only difference between the time channel and the force channel is that

it has M(M = 20) cells in each LSTM layer due to a small amount of data that

excludes erroneous data.

Each training sample is a reshaped sequence of N f -dimensional force feature

vector. Suppose that K (batch size) training samples are fed into the first

LSTM layer, the size of the input is N × K × f . LSTM will be expanded

by time steps and every sample in one training sample can be input to one

LSTM cell respectively. One LSTM cell takes K × f data as the input, the

output of which is an h-dimensional feature vector (hidden layer output) that

can be adjusted to an appropriate value. These settings are also applicable
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to the second layer of LSTM. The output at time N contains information of

all the previous nodes, so we just choose the last output (O100 ∈ Rh) as the

basis for the classification. After merging with the output of time channel, a

g-dimensional(g classes) vector is generated based on the weights and biases,

which are classified using a multi-class classifier softmax to map the output of

the LSTM to a probability distribution and diagnose whether the patient suffer

from certain NDs.

4. Experiment

4.1. Datasets Description

In this study, we used predetermined data taken from PhysioNet[27]. The

dataset contained gait signal of 48 patients with NDs and 16 healthy persons.

Participants were walking at their usual pace along a 77-m-long hallway for

5 minutes in each sample including recorded signal of stride, swing, and stand

times for each leg and double support signal for both legs, the specific attributes

we used are shown in Table2. An expert physician labeled patients states from

0 to 13 (0 equal to the most severe state and 13 for a healthy one). To measure

time intervals, a 12-bit on-board analog-to-digital converter sampled the output

of foot switches at 300 Hz. First 20 seconds of records were excluded to reduce

initial oversight and median filter was used to remove data points (outliers) that

were far away from the median value. These outliers were mainly due to the

turns at the end of the hallway [28].

The raw data were obtained using force-sensitive resistors, with the output

roughly proportional to the force under the foot. Stride-to-stride measures of

footfall contact times were derived from these signals. In addition, the force

data was placed in binary files distinguishing left and right feet. Each of the

64 records was identified by the name of the subject group (hunt, park, als, or

control) followed by an arbitrary ID number.

The dataset had also explained clinical information for each subject including

age, gender, height, weight, walking speed, and a measure of disease severity or
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duration. Table 1 describes the information of subjects.

Table 1: The basic information of the subjects in the dataset.

Subjects Total Number Male Female
Age

(<50)

Age

(50 ∼70)

Age

(>=70)

Healthy Controls 16 2 14 11 4 1

ALS 13 10 3 4 7 2

PD 15 10 5 1 7 7

HD 20 6 14 13 5 2

Table 2: The stride-to-stride measures of the subjects.

Column Contents

1 Elapsed Time (sec)

2 Left Stride Interval (sec)

3 Right Stride Interval (sec)

4 Left Swing Interval (sec)

5 Right Swing Interval (sec)

6 Left Swing Interval (% of stride)

7 Right Swing Interval (% of stride)

8 Left Stance Interval (sec)

9 Right Stance Interval (sec)

10 Left Stance Interval (% of stride)

11 Right Stance Interval (% of stride)

12 Double Support Interval (sec)

13 Double Support Interval (% of stride)

14 Left Force Signal (extracted from binary file)

15 Right Force Signal (extracted from binary file)

We randomly selected the time stride interval data of 4 subjects (‘control1’,

‘als10’, ‘park6’, ‘hunt9’) as the example, the difference between NDs can be
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illustrated in Fig.5, and the corresponding force data is shown in Fig.6. We can

see that the range of fluctuation of time is smaller than that of fluctuation.

Figure 5: Comparison of the performance of subjects for different NDs. And the stride interval

data of the left and right foot has been displayed.

Figure 6: Comparison of the performance of subjects for different NDs. And the force data

of the left and right foot has been displayed.
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4.2. Experimental Results

Experiments were implemented using Tensorflow library and tested on an

Intel Core i5 computer with 31.3 GB RAM. The computation time was related

to the number of the LSTM cells and the size of the feature data employed.

We assigned feature vector sequences for all the 64 healthy controls and NDs

subjects. The time series and force series for each subject were divided into

two subseries, one for training and the other for test. Based on the method

described in Section 3, we extracted all the 64 subjects gait features through

time and force data, which meant the input of the LSTM networks is x=[left

swing interval, right swing interval,..., left stance interval, right stance interval]T

and y=[force signal]P . In order to eliminate the data difference between different

gait features, all the gait feature data are normalized to [0,1].

We conducted three experiments. First, we detected ND patients from the

healthy one, the dataset was divided into two classes, ND patients and normal

people; second, the participants was classified into 3 classes in accordance with

different diseases (ALS, PD, and HD); and the above two diagnostic approaches

covered comparison of various machine learning methods; finally, the parame-

ters of dual channel LSTM were transformed to reach the optimum results of

classification. We also showed the classification results of the original LSTM and

our proposed model. Before the experiment, we removed some bad data that

had abnormal fluctuations impacting on the implementation of the experiment.

The classification results of the NDs in the all-training-all-test and leave-one-out

trainingtesting styles are presented in the following tables.

4.2.1. Classification for NDs and Healthy Controls

In the first experiment, NDs patients and healthy persons were classified

including 16 healthy controls, 13 ALS patients, 15 PD patients and 20 HD

patients. Performance of the proposed classification approach was evaluated by

the all-training-all testing and leave-one-out cross-validation methods using the

strategy explained above. The results have been shown in Table 3.

We respectively fed the force and time series into the two LSTM channels
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with different settings of time steps and input dimension. The time channel

got 20 time steps and 13 dimensional input, and the force channel obtained

100 and 2 (every force sample had only 2 decimal digits, left and right feet

force data), the number of training iterations and batch size can be changed

according to the practical demand. Table 4 illustrates the classification results

compared with other studies according to their different training settings. The

average result would be used if the research had several experimental results in

one classification task. In this work, we took 80% percent data as the training

set, 20% as testing sets.

Table 3: Performance of diagnosing NDs (two groups) evaluated by the all-training-all-testing

and leave-one-out cross-validation methods. ”-” denotes that the study did not deal with.

Evaluation methods Subjects Zeng et al.,[9] Original LSTM The proposed method

All-training-all-testing ALS vs. CO 93.10% 98.36% 99.57%

PD vs. CO 100% 100% 100%

HD vs. CO 100% 100% 100%

NDs vs. CO 93.75% 95.48% 97.88%

Leave-one-out ALS vs. CO 89.66% 93.28% 97.43%

PD vs. CO 87.10% 90.69% 97.33%

HD vs. CO 83.33% 87.45% 94.96%

NDs vs. CO - - 96.42%

4.2.2. Classification of NDs

In the second experiment, NDs (ALS, HD and PD) were identified. The

difference between three diseases has been displayed in Fig.5 and Fig.6. It can

be seen that fluctuation ranges of ALS and PD data were similar. We used

the confusion matrix to represent the classification accuracy of the three NDs.

We choose the best test result that has been shown in Fig.7. We can see that

the HD obtains highest identifying rate employing our experiment setting (20%

testing, because the work we want to contrast adopted it). And the results were

compared with one research in Table 4.
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Table 4: Performance of diagnosing NDs (two groups) compared with other studies. ”-”

denotes that the study did not deal with.

Studies ALS vs. CO PD vs. CO HD vs. CO

Athisakthi et al.,[29] 56.66% 51.00% 54.28%

Our Method 91.23% 90.34% 99.88%

Banaie et al.,[8] 100% 80.00% 71.43%

Our Method 100% 92.45% 92.10%

Sánchez-Delacruz et al.,[6] 96.13% 90.36% 88.67%

Our Method 97.43% 97.33% 94.96%

khorasani et al.,[30] - 90.32% -

Our Method - 97.33% -

Xia et al.,[31] - 96.77% -

Our Method - 97.33% -

Xia et al.,[32] 92.86% - -

Our Method 97.43% - -

Table 5: Performance of diagnosing NDs (3 groups).

Banaie et al.,[8] Original LSTM The proposed method

86.96% 89.58% 95.67%

4.2.3. Parameter Transformation

In the last experiment, we changed vital parameters of the LSTM model

that was superior to the basic LSTM model including model layer and feature

dimension for every sample. We set up some variables in advance in order to

reach the best results. The dropout was set to 0.5 to prevent over-fitting with

the learning rate of 0.001 and 128-dimensional hidden layer output.

The number of time steps in time channel can be set to 20, since every 20

samples contained enough gait information. With this setting we adjusted the

steps of force channel and LSTM layer of the two channels to achieve the best

classification accuracy. We showed the optimal values of the parameters in Table
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Figure 7: Performance of diagnosing NDs.

6 and Table 7. For the two classification tasks above, our design was preferable

to other model transformations.

Table 6: Experimental results for classification of NDs patients and healthy controls with

different parameters using leave-one-out cross-validation methods.

time:20 steps time:20 steps time:20 steps time:20 steps

Data force:100 steps force:50 steps force:100 steps force:50 steps

2 layers LSTM 2 layers LSTM 1 layer LSTM 1 layer LSTM

ALS vs. CO 97.43% 97.25% 94.03% 93.58%

PD vs. CO 97.33% 96.47% 95.43% 93.45%

HD vs. CO 94.96% 92.11% 92.10% 92.66%

NDs vs. CO 96.42% 96.14% 95.04% 95.23%
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Table 7: Experimental results for classification of 3 groups of NDs patients with different

parameters using leave-one-out cross-validation methods.

time:20 steps time:20 steps time:20 steps time:20 steps

force:100 steps force:50 steps force:100 steps force:50 steps

2 layers LSTM 2 layers LSTM 1 layer LSTM 1 layer LSTM

95.67% 95.38% 93.44% 93.25%

5. Discussion

Automated methods for classifying gait disorders prior to further assessment

and diagnosis of the severity of diseases may help nerve physicians to focus on

the correct information of diseases and to choose better health treatment. We

suggest to use the proposed dual channel LSTM model to diagnose different

NDs achieving better results than the popular classification methods, which

can not only simplify complicated pre-diagnosis process, but also assist doctors

to diagnose diseases effectively. It can also quantify gait data characteristics and

provide a detailed objective description of diseases. We implement our archi-

tecture on the computer with NVIDIA Tesla K40c GPU, it takes 23.45 minutes

for training and 2.66 ms for testing of one testing sample on average. Moreover,

our model achieves higher accuracy among the state-of-the-art studies (Zeng et

al. [9], Banaie et al.[8], Sánchez-Delacruz et al.,[6] etc.) as we mentioned above.

On the basis of these methods, we can present new viewpoints to help solve the

problem of NDs diagnosis.

According to the survey, there are most researches related to NDs is based

on data processing and feature recognition before disease identification, only a

few focus on treatment or rehabilitation period after the diagnosis. In addition,

patient data is not public which is difficult to acquisition limiting the application

of excellent algorithms in medical diagnosis. Equipments for monitoring and

collecting patient’s action clinical signs and symptoms should be developed to

obtain more disease information. We will request for a large amount of daily

data from NDs patients to produce data sets utilizing more features to describe
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and analyze NDs diseases.

6. Conclusion

In this paper, we reported our study of predicting the neurodegenerative dis-

eases using state-of-the-art machine learning techniques. A dual channel LSTM

was proposed to model the gait data (time intervals and force binary data)

recorded by force-sensitive sensors representing features of gait dynamics over

a long period. Once the model is well trained, it can directly diagnose disease

from sensor data to avoid the subjectivity concerns. The provided experimental

results can show the availability of gait data enables the data-driven learning

frameworks to outperform hand-crafted features. They also show the effec-

tiveness of the proposed dual channel LSTM model over traditional recurrent

models.

Our work is a preliminary research in diagnosing NDs. As future work, we

intend to provide more comprehensive gait disorder diagnostic tools for more

complex gait disorders that are difficult for the clinicians to detect. We plan

to assist their assessment process in the clinic, evaluate these analytic systems

with properly designed clinical studies, and design new methods for diagno-

sis, rehabilitation evaluation and treatment plan development. Moreover, more

kinds of diseases and higher prediction accuracy can be achieved by using fused

features from multiple data sources, such as skeleton data, fMRI and CT image,

RGB image and biochemical data. Our model will be also applied in the mo-

bile devices for routine monitoring of patients, which can be a baseline and the

proposed approach is expected to inspire more applications of machine learning

techniques in computer-aided diagnosis system.
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