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Abstract
Purpose Parkinson’s Disease comes on top among neurodegenerative diseases affecting 10 million worldwide. To detect 
Parkinson’s Disease in a prior state, gait analysis is an effective choice. However, monitoring of Parkinson’s Disease using 
gait analysis is time consuming and exhaustive for patients and physicians. To assess severity of symptoms, a rating scale 
called Unified Parkinson's Disease Rating Scale is used. It determines mild and severe cases. Today, Parkinson’s Disease 
severity assessment is made in gait laboratories and by manual examination. These are time consuming and it is costly for 
health institutions to build and maintain laboratories. By using low-cost wearables and an effective model, aforementioned 
problems can be solved.
Methods We provide a computerized solution for quantifiable assessment of Parkinson’s Disease symptoms severity. By 
using wearable sensors, our framework can predict exact symptom values to assess Parkinson’s Disease severity. We propose 
a deep learning approach that utilizes Ground Reaction Force sensors. From sensor signals, features are extracted and fed 
to a hybrid deep learning model. This model is the combination of Convolutional Neural Networks and Locally Weighted 
Random Forest.
Results Proposed framework achieved 0.897, 3.009, 4.556 in terms of Correlation Coefficient, Mean Absolute Error and 
Root Mean Square Error, respectively. Proposed framework outperformed other machine and deep learning models. We also 
evaluated classification performance for disease detection. We outperformed most of the previous studies, achieving 99.5% 
accuracy, 98.7% sensitivity and 99.1% specificity.
Conclusion This is the first study to use a deep learning regression approach to predict exact symptom value of Parkinson’s 
Disease patients. Results show that this approach can be effectively employed as a disease severity assessment tool using 
wearable sensors.
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1 Introduction

First mentioned by James Parkinson, Parkinson’s Disease 
(PD) is a neurodegenerative disorder [1]. It is believed that in 
the future, PD will be the second most prevalent neurological 
disease after Alzheimer’s disease. According to the United 
States Parkinson’s Disease foundation, there are at least 10 
million people affected by PD worldwide [2, 3]. Age is the 

ultimate risk factor for developing PD. The reason behind 
the disease is the loss of dopamine levels in substantia nigra 
region of the brain and dopamine level diminishment in stria-
tum [4]. These dopamine level diminishments lead to loss 
of dopaminergic neurons in the substantia nigra region [5]. 
Hence, medical treatments on PD patients aim to stimulate 
these dopaminergic neurons [6]. Unfortunately, there is no 
cure for PD. Furthermore, available treatments reduce dis-
ease motor symptoms just for a short while. These motor 
symptoms are tremor, rigidity, bradykinesia, freezing of gait, 
micrographia [7]. Because of these aforementioned symptoms 
patients become vulnerable to high-risk injuries or inability to 
move which leads to other health complications [8]. PD can 
get progressively worse as brain tissue damage increases. For 
this reason, since there is no permanent treatment, treatments 
and drugs aim to reduce the speed of PD progression [9].
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Medical treatments aim to increase and maintain the life 
quality of patients. Assessment of motor impairments of PD 
patients is done via several neurological examinations at 
doctor’s office or at home using home diaries that is written 
by patients or caregivers [10]. But these short-term assess-
ments cannot address enough and home diaries can be sub-
jective due to its nature. Therefore, medical societies came 
up with several rating scales to efficiently address the sever-
ity of motor symptom impairments [10]. Most popular and 
extensive one is Unified Parkinson's Disease Rating Scale 
(UPDRS). UPDRS is a rating tool to assess the progres-
sion of PD in patients. It has benefits in distinguishing the 
presence of postural instability, mild and severe Parkinson's 
disease, and determining the life quality in moderate and 
severe Parkinson's disease [11]

In literature, tremor and gait abnormalities are reported 
as prior symptoms of PD [12]. So, in order to detect PD in 
a prior state, gait movement analysis is an effective choice. 
Because of gait movements include periodic and rhythmic 
foot movement patterns, these patterns emerge as an impor-
tant biomarkers that not only to determine the presence of 
PD, but also measuring disease severity and progression 
[13]. Performing gait analysis is a tiresome, costly process. 
The analysis is conducted on hospitals or health centers 
that have gait laboratory infrastructure. This infrastructure 
mainly consists of a multi camera motion capture system to 
track limb movements, multiple force plates replaced over 
laboratory floor and muscle activity recording system [14]. 
With the development of wearable system technology, gait 
analysis has become a popular tool to assess and detect pres-
ence of PD [15]. Because the need for lab infrastructure and 
professional assistance can be reduced to minimum using 
wearable gait sensors. Ground Reaction Force (GRF) sen-
sors are the most common sensor type for PD assessment 
[10]. GRF sensors can map joint movements and muscle 
activities effectively and it can outline characteristics of 
abnormal gait behavior using wearable pad sensors [15]. 
These gait sensors have many advantages like small size, 
noninvasive nature and low cost which makes them the most 
popular in gait analysis studies. With the advancements in 
machine learning, automated gait analysis can reduce time 
and work force problems of traditional gait analysis tech-
nologies. Also, it can solve PD severity assessment which 
is time consuming and exhaustive for patients and medical 
staff. So, with wearable sensors and machine learning, PD 
patients and medical staff can monitor PD symptoms in a 
noninvasive way with quickly and effectively.

Our motivation on this study is to provide a prognosis 
solution for PD patients by using easily acquirable wear-
able sensor data. To this end, we opt to provide a computer-
ized solution for quantifiable assessment of PD symptoms 
and disease severity. By using wearable GRF sensors, our 
framework can forecast exact UPDRS values to assess PD 

severity. We propose a multistage deep learning approach 
for this manner. For the first stage, several frequency and 
time domain features are extracted from GRF signals. After 
that, we utilized Convolutional Neural Networks (CNN) 
deep learning architecture and combine them to a Locally 
Weighted Random Forest (LWRF) architecture to predict 
UPDRS values. LWRF architecture is a local weighted 
Random Forest approach to reduce interpatient variability 
in GRF signals [10]. Our regression-based approach has 
two main contributions. First, by using UPDRS values our 
approach aims to prognose PD using a deep learning model. 
In our knowledge, our approach is the first study that uses 
deep learning regression architectures to predict exact val-
ues of PD symptom severities. Second, with our model we 
outperformed the previous study that use LWRF model to 
predict UPDRS values. In addition, we evaluated classifica-
tion performance of our framework for detection of PD. To 
this end, several experiments are conducted to benchmark 
our model with previous studies on predicting PD.

The paper is structured as follows; Sect. 2 explains sev-
eral related works on the same domain, Sect. 3 explains 
feature extraction mechanisms, our proposed deep learning 
approach and also dataset description. Section 4 summarizes 
our experimental setup and our findings. Section 5 explains 
advantages and disadvantages of our proposed approach.

2  Related work

Although there are many studies that use gait signals to ana-
lyze PD, these studies only focus on diagnostic conclusions 
about disease presence. Many studies employed traditional 
machine learning methods, but in recent years deep learning 
architectures emerge to provide further insight on disease 
characteristics.

Aşuroğlu et al. [10] conducted a prior study on the same 
problem. It is the first and only study that focuses on pre-
dicting PD symptom severity instead of binary diagnosis 
decisions. In this study they proposed a Locally Weighted 
Random Forest (LWRF) to exploit relationships between 
gait signals. Time and frequency features are extracted from 
gait signals to feed LWRF model. They reported Correlation 
Coefficient (CC), Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE) values of symptom severity 
predictions and outperform previous studies on binary clas-
sification schemes. Lee and Lim [16] analyzed gait patterns 
to detect PD. In order to classify patients, they used wavelet 
functions to extract features from gait patterns. A fuzzy neu-
ral network is employed to conduct experiments. Daliri [17] 
used frequency domain features to extract meaningful infor-
mation from gait signals. SVM (Support Vector Machine) 
model is selected as base classifier in experiments. Ertuğrul 
et al. [18] extracted one dimensional Local Binary Pattern 
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(LBP) features to classify gait signals. In their experiments 
they benchmarked several classifier models and features. 
They achieved highest accuracy with Multi-Layer Percep-
tron (MLP) model. Acici et al. [19] studied Random Forest 
(RF) architecture on classification of PD patients. Time and 
frequency features are extracted from multiple GRF sen-
sors. Their approach outperformed previous studies based 
on classification accuracy. Zeng et al. [20] created a multi-
phase classifier based on gait signals to predict PD. Feature 
extraction phase involves raw features such as sensor value 
differences between left and right foot and aggregation of 
left / right foot sensor output. These feature vectors are fed 
to a radial based neural network.

Zhao et al. [21] proposed a deep learning architecture 
consisting of CNN and LSTM (Long short-term memory) 
models. They are aimed to diagnose PD using gait signals. 
They reshaped gait signals in order to feed properly to CNN 
architecture. In their experiments, they compared their pro-
posed model with other machine learning models and stud-
ies. In terms of accuracy, they outperformed other previ-
ous studies and machine learning models. Abdulhay et al. 
[22] investigated PD and tremor characteristics with gait 
analysis and machine learning. They extracted several fea-
tures using peak detection and pulse duration measurement 
methods. They compared Decision Tree and SVM models 
for classification of PD patients. Noella et al. [23] proposed 
PARAFAC (Parallel Factor Analysis) and Tucker Decompo-
sition algorithm to detect PD from multi-channel gait data. 
In their studies they compared their proposed model with 
Wavelet Transform-Multilayer Perceptron Neural Network 
and Hidden Markov Model-Gaussian Mixture. Their pro-
posed framework outperformed aforementioned frameworks 
in terms of accuracy.

Ghaderyan and Fathi [8] proposed a new feature extrac-
tion procedure for classifying PD using gait signals. They 
employed singular value decomposition (SVD) model for 
extraction of features from multi-channel gait data. They 
investigated inter-limb time varying singular value (ITSV) 
and point out that this could be a biomarker for PD. They 
investigated effects of different feature spaces and sparse 
non-negative least-squares (NNLS) parameters on classifica-
tion performance. They also investigated different PD stage 
classification schemes. Veeraragavan et al. [24] studied PD 
prediction with gait signals. They extracted multiple fea-
tures including gait and statistical features. They fed these 
extracted features to an Artificial Neural Network (ANN) 
classification model. They compared performance of differ-
ent cross validation and minority sampling methods. They 
also reported PD stage classification results for their pro-
posed model. Xia et al. [9] proposed a deep learning-based 
approach for classifying PD using gait sensor data. They 
combined CNN and LSTM architectures to extract local 

deep features from gait signals. They compared different 
feature extraction schemes and machine learning models in 
their experiments. Their approach outperformed previous 
studies and other models in terms of accuracy, sensitivity 
and specificity.

Priya et al. [25] explored effects of different local binary 
pattern techniques on PD diagnosis. They transformed 
gait data using LBP algorithms. After transformation they 
extracted statistical features from these patterns. In their 
experiments, they compared classifier performances of 
KNN, SVM and Logistic Regression models. They reported 
that Logistic regression model with LBP patterns achieved 
highest accuracy, precision and recall. Liu et al. [26] con-
ducted studies on PD diagnosis using a dual branch deep 
learning model. In this model they combined CNN and 
Bi-LSTM architectures for each foot’s gait signal. They 
extracted features from each gait cycle. Comparison of their 
proposed model with other models such as KNN, RF and 
CNN stated that their method outperformed others in terms 
of accuracy, sensitivity and specificity. Tong et al. [15] con-
ducted studies using permutation-variable importance and 
persistent entropy to classify different PD severity levels. 
They used aforementioned feature extraction scheme with 
RF to get gait features. After that they used SVM model 
to classify these gait features. A summarization of related 
works that includes features and classifiers are given in 
Table 1.

3  Materials & methods

Gait signal processing is done using multiple gait sensors 
that measures GRF value. GRF value is a force that floor 
applies when walking. This force can have different val-
ues for different walking activities and thus it is a popular 
tool for personal gait analysis research [17]. Our proposed 
machine learning framework takes multi-channel GRF sig-
nal values from wearable sensors and utilize a deep regres-
sor model for finding relationships between walking pat-
terns and motor symptom severities. We employed a simple 
learning model that includes training and testing. Firstly, 
frequency and time domain features of annotated sensor sig-
nals are constructed from dataset. In our framework, con-
structed feature vectors depict PD or healthy participants in 
the dataset. Secondly, a deep regressor/classifier is trained 
using these feature vectors. Every signal sample has an exact 
UPDRS scale value and a class label (PD, Healthy). Thirdly, 
regressor/classifier predicts symptom severity or class value 
of a test sample. As final step, evaluation of trained model 
is done via several metrics. Workflow of proposed approach 
is summarized in Fig. 1.
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3.1  Feature extraction

It is not suitable to feed GRF signals to our regression frame-
work directly. First of all, many regressor models require 
equal input length, which is not the case for GRF signals. 
GRF signals have varying input lengths. Second, GRF sig-
nals are not in the same time scale even if they have equal 
length. Hence, finding similar local patterns is hard. Third, 
temporal characteristics sometimes cannot be able to reflect 

motion of the signal in terms of UPDRS values that the 
regressor is asked to find. For this reason, when analyzing 
such time series signal data, a common approach is to con-
struct a feature vector from raw signal samples.

We applied same feature extraction procedure from a 
previous study [10] in order to establish the same experi-
mental setup for data analysis. For this end, two type of 
features are selected to represent raw signal values: time 
and frequency domain features. Sixteen time and seven 

Table 1  Features and classifier 
models of previous studies on 
PD classification

Authors Feature Classifier

Lee and Lim [16] Wavelet based features A fuzzy neural network
Daliri [17] Frequency features SVM
Ertuğrul et al. [18] LBP MLP
Açici et al. [19] Time and frequency features RF
Aşuroğlu et al. [10] Time and frequency features LWRF
Zeng et al. [20] Gait raw data Radial based neural network
Zhao et al. [21] Gait raw data Combination of CNN and LSTM
Abdulhay et al. [22] Kinetic and temporal features SVM
Noella et al. [23] Gait raw data PARAFAC and Tucker decomposition 

algorithm
Ghaderyan and Fathi [8] Inter-limb time-varying singular value sparse non-negative least-squares
Veeraragavan et al. [24] Gait and statistical features ANN
Xia et al. [9] Gait raw data Combination of CNN and LSTM
Priya et al. [25] LBP Logistic regression
Liu et al. [26] Gait raw data Combination of CNN and LSTM
Tong et al. [15] Gait characteristic features SVM

Fig. 1  Workflow of proposed 
approach
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frequency domain features are extracted for each GRF sig-
nal [10, 27]. In the literature, time and frequency features 
of a time series signal is proved to bring out important 
characteristics of a signal [10, 17, 27–29]. Extracted fea-
tures are given in Table 2.

3.2  Dataset

For this study, we used “Physionet Gait in Parkinson's Dis-
ease” public access dataset that is comprised of gait data 
[30]. The dataset consists of gait signal measurements 
for a control group and PD patients. PD patients average 
age is 66.3 and 37% of patients are women. Control group 
average age is 63.7 years and 45% of control group are 
women. There are 93 PD patients and 73 control subjects 
are included in experiments. Gait signal measurement tests 
were conducted during walking for 2 min. In order to record 
gait signal measurements dual-task and usual walking pro-
cedures are applied [31]. In usual walking procedure, sub-
jects were asked to walk at their normal walking speed on a 
level ground for 20 m and go back to their starting location. 
In dual tasking procedure, subjects were asked to walk the 
same path at their normal walking speed while being asked 
to continuously extract number 7 from a pre-defined number 
(e.g., 300, 293, 286, 279) [31].

Gait phase inspection before and post rehabilitation, provides 
a potent treatment. Gait signal stages can be defined by pressure 
measurements because foot pressure distributions are repetitive 
and unique for each phase [32]. Force sensitive sensors (FSR) 
are often employed to evaluate these distributions. The main 
drawback of these systems is their limited detection area and 
reach. For this reason, FSR sensors do not reflect accurate foot 
pressure measurements. GRF measuring wearable smart shoes 
become popular due to negative sides of FSR sensors [33].

To measure gait signals, eight sensors are appended to 
each foot. Force value (Newton) for each sensor is measured 
as a function of time. GRF sensor positions can be seen in 
Fig. 2.

All GRF sensor measurements have a 100 Hz sampling 
rate. In order to reduce starting and ending effect of measure-
ments, 20 s from beginning and 10 s from end were deleted. 
To remove outlier values, a median filter was applied. This 
preprocess step diminishes the fluctuations of gait motion, 
therefore achieving an accurate representation of gait char-
acteristic for every subject.

Gait dataset also has several demographic data for each 
subject. Also, it has severity of PD values as Unified Parkin-
son's Disease Rating Scale (UPDRS), a measure that is used 
to monitor quantitative symptoms. UPDRS is widely used as 
an evaluation tool for patients. It is made of several parts: (a) 
motor examination; (b) daily living activities (c) the compli-
cations of therapy; (d) mentation, behavior, and mood [11]. 
UPDRS has values 0 to 199. UPDRS value distribution of PD 
patient data cohort is as follows; minimum UPDRS value is 
13, average is 32 and maximum is 70.

3.3  Proposed deep learning approach

Our proposed framework is a hybrid deep learning approach 
that consists of CNN and LWRF architectures to utilize data 
relations. Our main objective consists of extracting local CNN 
features from gait signals with convolutional layers and combine 
them with LWRF architecture to find local relations between 
features. LWRF model is a locally weighted Random Forest 

Table 2  Extracted features from 
each sample in dataset

Feature Domain Features

Frequency mean, minimum and maximum value normalized value, energy, power and phase
Time mean, minimum/maximum value and their index, range, mean absolute deviation, 

median, interquartile range (IQR), harmonic mean, kurtosis, root mean square 
(RMS), energy, power and entropy, skewness

Fig. 2  GRF sensor placements for each foot
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approach that utilizes local relationships between neighboring 
data [10]. With the combination of machine and deep learning 
models, data relationships can be mapped more efficiently [34].

Random Forest is a member of ensemble learning models. 
Random Forest does ensemble learning using an approach 
called Bootstrap Aggregation (Bagging). In Bagging, a ran-
dom bootstrap sample is used to construct decision trees [19]. 
Then, model forms a collection of decision trees with train-
ing dataset variables. These trees are called Random Trees. 
While forming new branches in a tree, algorithm selects vari-
ables randomly instead of exploring best branches in all of the 
variables. This approach helps reducing correlation between 
random trees. If there is a high correlation between trees, trees 
can converge to same output and thus reduce prediction accu-
racy. Random tree collections produce class or numeric values 
depending on machine learning task. Last step in Random 
Forest algorithm is majority voting process on decisions.

LWRF depends on a learning process that is locally 
weighted [35]. LWRF model exploits local relationships that 
only utilize sub datasets. In locally weighted learning process, 
when creating a model, a local model is constructed from 
nearest to the query point instead of building a globalized 
model for functional space. Every data point has assigned a 
weighted value. Weight values influence predictor approach 
when estimating a target value [36]. Closest data points to 
query have bigger weighted values comparing with far points. 
Adaptation of this approach is applied to Random Forest 
model via locally weight each data point in computing split 
points and selecting bootstrap samples for decision trees [10].

Although CNN-based deep learning models are often used 
in image and video domains [37, 38], in recent years several 
applications of them have emerged in other signal process-
ing studies [39, 40]. CNN layers expose local relationships in 
data. CNN neurons split a given image to many local regions 
and construct features from these regions. A CNN architecture 
consists of a layer of input, a layer of output and numerous 
hidden layers [40]. Convolutional layers can be transformed 
to a feature extractor or a classification/regression tool. Our 
proposed model employs CNN model as tool for deep fea-
ture extraction. We used CNN to extract deep local features 
of stacked sensor signal channels. The reason behind this is 
to utilize CNN as a deep local relationship feature extractor 
instead of just using hand crafted signal features.

By constructing this hybrid deep learning model with 
deep local features and LWRF, our approach aims to capture 
the important descriptors of GRF signals using Convolu-
tional layers, represent them by collection of random trees 
in a locally weighted approach that utilizes valuable local 
descriptors that represent data.

All gait samples in the dataset have one dimension after 
time and frequency features are extracted. Each sample 
has a total length of 368 (23 features × 16 sensors). In our 
proposed approach, we first convert these gait samples to 

multi-channel samples so that we can process them with 
CNN architecture. Each gait sample is converted to a six-
teen-channel sample. Constructed multichannel samples 
have 23 values along x axis, which represents seven fre-
quency and sixteen time-domain features and have 16 chan-
nels which corresponds to gait sensors on each foot. Multi-
channel conversion of gait samples is shown in Fig. 3.

After all samples are converted to multi-channel samples, 
they are ready to be fed to a hybrid model. This hybrid model 
is made of a layer of input, convolution layer blocks and LWRF 
algorithm to predict UPDRS values of extracted local deep fea-
tures. Our proposed model can be seen in Fig. 4. In CNN part 
of our model, there are four convolution layers which have 40 
filters. These filters vary in filter sizes which are 1 × 6 and 7 × 1. 
To extract vertical and horizontal local features of gait signals 
we selected these filter sizes. Horizontal local features exploit 
relationship between time and frequency domain features 
whereas vertical local features exploit relationship between 
multiple GRF sensors. Therefore, combination of these valu-
able local features could ensure a better representation than just 
hand-crafted time and frequency domain features. A normaliza-
tion layer, a max pooling and a ReLU layer is added in CNN 
architecture. Deep features that are extracted from last convolu-
tion layer are fed as an input for LWRF model.

4  Results

4.1  Implementation

MathWorks MATLAB 2020a tool is selected for model imple-
mentation. GeForce CUDA library is employed as a booster for 
deep learning architecture speed. Experiments implemented on 
a computer with a computer that has 16 GBs of RAM, Intel Core 
i7 2.2 GHz Processor and GeForce GTX 1060 graphics card.

Fig. 3  Conversion process of GRF signals
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4.2  Evaluation

Experiments are conducted using a tenfold cross validation 
(CV) approach. For tenfold CV approach, dataset is split to 
ten parts and then a single part is reserved for testing while 
other parts are act as training set. CV stops to function when 
testing phase is done with all parts.

In order to evaluate our hybrid deep learning model per-
formance, we used Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE) and Correlation Coefficient (CC)). In 
order to achieve good performance, our model should have low 
error rate in terms of MAE and RMSE and also high CC value.

Calculation of CC value depends on several variables, n 
corresponding to size of sample, pi and ai are estimated and 
real values, p and a are mean values. Relationship between 
estimated and real values are calculated via CC value. It can 
have values that range between 1 and -1. Full negative cor-
relation is represented as -1 while full positive correlation 
is represented as + 1. Formulation of CC:

(1)CC =
SPA

√

SPSA

SPA =

∑

i

�

pi − p
��

ai − a
�

n − 1
,

SP =

∑

i

�

pi − p
�2

n − 1
, and

SA =

∑

i

�

ai − a
�2

n − 1
.

MAE is a measure of the difference between two con-
tinuous variable:

RMSE is a quadratic metric that measures the magni-
tude of error of a machine learning model, which is often 
used to find the distance between the predicted values of 
the estimator and the real values.:

To study our model’s classification capability, we used 
well known classifier evaluation metrics: Accuracy (Acc.), 
Sensitivity (Sn.), Specificity (Sp.) and F-Score (4). TP, TN, 
FP, FN correspond to True Positive, True Negative, False 
Positive and False Negative respectively.

Hyper-parameter settings of deep learning model 
are implemented by a tuning approach. Optimization of 
parameters are evaluated by error for predictions. We first 
begin by roughly estimate of parameters aiming to achieve 
lowest error and highest correlation. We then select hyper-
parameters for our deep learning model that give lowest 
prediction error in experiments. Epoch is selected as 50 

(2)MAE =
|p1 − a1| +⋯ + |pn − an|

n

(3)RMSE =

√

(|p1 − a1)
2
+⋯ + (|pn − an)

2

n

(4)

Acc =
TP + TN

(TP + TN + FP + FN)
, Sn =

TP

TP + FN
,

Sp =
TN

TN + FP
,F − Score =

TP

TP +
1

2
(FP + FN)

Fig. 4  Proposed model for PD 
severity prediction
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and Adam optimization algorithm selected for training the 
model. Same value padding is done in convolution layers. 
For normalization layer, local response normalization for 
each channel is employed. Loss function is selected as 
Mean squared error for deep learning model.

4.3  Empirical results

We employed two basic comparison approaches in experi-
ments, one is for regression setup and the other one is for 
classification setup. Since our main goal is to assess model 
performance on predicting real symptom values, regression 
based experimental setup is used. The reason for selecting 
classification setup is to further assess our model’s ability 
to detect PD. In order to compare our model’s performance, 
we conducted experiments on several selected models. 
Selected deep learning models are LSTM [41], CNN [40], 
CNN + LSTM [42, 43] and CNN + RF [44, 45] architectures. 
Selected machine learning models are LWRF [10], Random 
Forest (RF) [46], Support Vector Regression (SVR) [47], 
J48 decision tree [48], Linear regression (LIR), Regression 
by Discretization (RBD) [49] and k-NN [50]. Selected CNN 
model for experiments consists of four convolutional layer 
blocks (Convolution, Normalization, ReLu layers), two pool-
ing layers and a regression output layer. This model uses the 
same hyper-parameter setup as proposed model. 128 neuron 
Bi-LSTM architecture is selected as LSTM architecture and 
He optimizer selected as weight initializer and soft sign is 
assigned as activation function. For combined deep learn-
ing models, we employed same CNN model architecture for 
deep feature extraction.

Experimental results for regression models to predict 
UPDRS values is given in Table 3. Proposed deep learning 
model achieved 0.897, 3.009, 4.556 in terms of Correlation 
Coefficient (CC), Mean Absolute Error (MAE) and Root 
Mean Square Error (RMSE), respectively. Our model comes 
on top among other regressor models considering all met-
rics. CNN architecture comes as second. Linear regression 

and LSTM algorithms performed poorly for predicting 
UPDRS values.

Another conclusion is that our hybrid model outper-
formed base model (LWRF) considering all of the metrics. 
Also, CNN architecture performed better than LWRF. Our 
experiments point out that learned deep features have more 
representative information than hand crafted ones when pre-
dicting UPDRS value of samples. We can come to a conclu-
sion that LWRF model can handle CNN features very well 
for PD symptom monitoring.

LWRF learning model considers one parameter when 
making a prediction. It is the number of nearest neighbors 
(k). k value is selected as 27 in experiments. The reason for 
this selection can be seen in Fig. 5, highest recorded CC 
value is around 27 and decreases after this value.

Although our approach looks through a regression win-
dow, we also wanted to validate our approach from a classi-
fication perspective. To this end, a classification experiment 
setup was created and our proposed model were compared 
with previous PD detection studies. For this purpose, our 

Table 3  UPDRS value prediction performance of regression models

Model Name CC MAE RMSE

k-NN (k = 1) 0.873 4.703 8.113
k-NN (k = 27) 0.765 8.564 10.896
RF 0.876 5.678 8.124
RBD (RF) 0.878 5.763 8.072
LWRF [10] 0.895 4.462 7.382
SVR 0.867 5.308 8.298
J48 0.754 6.609 11.439
LIR 0.679 11.649 15.194
CNN 0.884 3.267 4.689
LSTM 0.624 10.371 13.303
CNN + LSTM 0.730 8.72 10.31
CNN + RF 0.874 4.577 5.758
Proposed Model 0.897 3.009 4.556

Fig. 5  Effect of k value on 
UPDRS prediction
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model was transformed in a way to do PD diagnosis. Same 
feature set and data samples from regression setup are used 
in classification scheme, but sample labels are replaced with 
PD class (0 for control, 1 for disease) instead of real UPDRS 
values. Table 4. shows this comparison between other stud-
ies. According to Table 4, our model which CNN attrib-
utes are fed as input to the LWRF algorithm, shows the best 
performance with an accuracy (Acc.) of 99.5%. Our model 
outperforms most of the studies in terms of Sensitivity (Sn.) 
and Specificity (Sp.). Finally, our model achieves a higher 
rate than most of the available studies in terms of F-score. 
(NR: shows results that have not been reported).

5  Conclusion & discussion

Our approach aims to facilitate remote monitoring of motor 
symptoms of PD patients by predicting UPDRS values. 
Monitoring PD patients remotely has an essential role for 
providing a satisfied clinical and home care. Gait signal 
measurements play another essential role for predicting PD 
severity because most of these patients lost their basic motor 
abilities such as walking. Today, assessment of PD severity 
is made in a specialized gait laboratories and sometimes by 
manual examination of clinicians. These processes are time 
consuming for patients and clinicians. In another perspec-
tive, it is costly for health institutions to maintain and build 
such sophisticated lab infrastructures. With the development 
of wearable system technologies gait analysis has become 
popular tool to assess and detect presence of PD. One of 
the most popular one is GRF sensor. These wearable GRF 
sensors can be used easily to detect and assess PD severity. 

As can be seen from our results, by using wearable GRF sen-
sors, disease progress can be continually monitored without 
a lab infrastructure. So, by using low-cost wearable sen-
sors and effective machine learning model, our solution can 
overcome aforementioned problems. Our regression-based 
approach has two main contributions. First, by using UPDRS 
values our approach aims to prognose PD using a deep learn-
ing model. In our knowledge, our approach is the first study 
that uses deep learning architectures to predict exact values 
of PD symptom severities. Second, with our model we out-
performed previous study that use LWRF model to predict 
UPDRS values.

A hybrid deep learning model is proposed in this study. 
In this hybrid deep learning model, converting time and 
frequency features of GRF sensors and gave as input to 
CNN + LWRF architecture performed better than other 
regressor models. More specifically, our proposed model 
outperformed previous study that used LWRF model in all 
of the evaluation metrics. Conducted experiments stated that 
learned deep features have more representative information 
than hand crafted ones when predicting UPDRS value of 
samples. Another conclusion from our experiments is that 
layers of CNN utilize relationships between multiple GRF 
sensors and LWRF model can learn these relationships 
well with its locally weighted structure. To take further our 
research we also modified our regressor model to classifier 
to detect the presence of PD. Our algorithm performed better 
in terms of accuracy than all of the previous studies. This 
result points out that our model can also be used to detect 
presence of PD from gait signals.

Our proposed framework has some limitations. The gait 
dataset that we used in our studies has limited PD patient 
population. This is a known issue in PD studies since it’s 
hard to find PD patients and convince them to participate 
in such research. But ongoing studies aim to add more PD 
patient data in relevant datasets. Another solution to this 
problem is using resampling algorithms to increase PD sam-
ple size. ADASYN or SMOTE algorithms can be used in this 
manner. By resampling, performance of our deep learning 
framework can be increased. Because deep learning models 
require a lot of data to perform better in all terms. Another 
issue is the heterogeneous property of dataset in terms of 
disease severity values. Patients with higher UPDRS values 
usually have big problems with walking and dual tasking. 
Therefore, to preserve safety of these patients they are not 
included in the dataset [7]. This leads to higher number of 
low and medium UPDRS values.

In the future, we opt to compare our model’s performance 
with different gait datasets. In addition, benchmarking our 
model with different neurological disorders such as Hunting-
ton disease and Alzheimer’s can confirm our model’s validity. 
Also, these comparisons can validate our model’s generaliza-
tion capability. In the future, we also aim to test our model with 

Table 4  Comparison with previous studies on PD classification

Authors Acc. (%) Sn. (%) Sp. (%) F Score

Lee and Lim [16] 74.3 81.6 73.8 NR
Daliri [17] 91.2 91.71 89.92 NR
Ertuğrul et al. [18] 88.8 88.9 82.2 NR
Açici et al. [19] 98 99.1 95.7 0.98
Aşuroğlu et al. [10] 99 97.8 99.5 NR
Zeng et al. [20] 98.80 98.92 98.63 NR
Zhao et al. [21] 98.61 NR NR NR
Abdulhay et al. [22] 94.8 NR NR NR
Noella et al. [23] 97.0 NR NR NR
Ghaderyan and Fathi [8] 97.22 98.22 95.86 NR
Veeraragavan et al. [24] 97.7 97.05 97.41 0.97
Xia et al. [9] 99.07 99.1 99.01 NR
Priya et al. [25] 98.82 NR NR NR
Liu et al. [26] 99.22 98.04 100 0.99
Tong et al. [15] 99.23 NR NR NR
Present method 99.5 98.7 99.1 0.99
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other PD severity rating scales such as PDQ-39, MDS-UPDRS. 
Another future direction for this study is, utilizing hyper param-
eter estimation methods such as grid search and meta-heuristic 
approaches to further decrease prediction error. By analyzing 
hyper parameters thoroughly, proposed approach can increase its 
robustness. Finally, other available hybrid deep learning archi-
tectures [51] and deep auto-encoders [38] can be integrated into 
our model to increase prediction performance.
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