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REVIEW ARTICLE

Synergy of physics-based reasoning and machine
learning in biomedical applications: towards unlimited
deep learning with limited data
Valeriy Gavrishchakaa, Olga Senyukovab and Mark Koepkea

aPhysics Department, West Virginia University, Morgantown, WV, USA; bFaculty of
Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow,
Russian Federation

ABSTRACT
Technological advancements enable collecting vast data, i.
e., Big Data, in science and industry including biomedical
field. Increased computational power allows expedient ana-
lysis of collected data using statistical and machine-learning
approaches. Historical data incompleteness problem and
curse of dimensionality diminish practical value of pure
data-driven approaches, especially in biomedicine.
Advancements in deep learning (DL) frameworks based on
deep neural networks (DNN) improved accuracy in image
recognition, natural language processing, and other applica-
tions yet severe data limitations and/or absence of transfer-
learning-relevant problems drastically reduce advantages of
DNN-based DL. Our earlier works demonstrate that hierarch-
ical data representation can be alternatively implemented
without NN, using boosting-like algorithms for utilization of
existing domain knowledge, tolerating significant data
incompleteness, and boosting accuracy of low-complexity
models within the classifier ensemble, as illustrated in phy-
siological-data analysis. Beyond obvious use in initial-factor
selection, existing simplified models are effectively
employed for generation of realistic synthetic data for later
DNN pre-training. We review existing machine learning
approaches, focusing on limitations caused by training-
data incompleteness. We outline our hybrid framework
that leverages existing domain-expert models/knowledge,
boosting-like model combination, DNN-based DL and
other machine learning algorithms for drastic reduction of
training-data requirements. Applying this framework is illu-
strated in context of analyzing physiological data.
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I. Introduction

Modern technological advancements made possible the collection of vast
amount of data, often called Big Data, in many areas of science and
industry including biomedical field [1–4]. A dramatic increase in compu-
tational power, including massively parallel computation and data retrieval
using multi-core CPU and GPU units (see www.nvidia.com), creates the
possibility of analyzing collected data in reasonable time using modern
statistical and machine learning (ML) approaches [3,5–8]. However, the
‘Big Data’ term could be misleading in many important applications.
While the amount of collected data rapidly increases with technological
progress, the high dimensionality and the multi-regime nature of many
problems still work against any resolution of long-standing problems of
data incompleteness and curse of dimensionality that diminish the prac-
tical value of pure data-driven approaches [9–11]. In the biomedicine
context, these challenges include the very high dimensionality of typical
bioinformatics and medical imaging problems, the multi-regime nature
and inter-personal diversity of physiological dynamics as well as the
serious data limitations in personalized medicine and in detection/treat-
ment of rare or complex abnormalities [11–14].

Increasing availability of multi-scale and multi-channel physiological data
opens new horizons for quantitative modeling and applications in decision-
support systems. However, practical limitations of existing approaches include
both (1) the low accuracy of the simplified analytical models and simplified
empirical expert-defined rules and (2) the insufficient interpretability and
insufficient stability of the pure data-driven models [11–14]. Such challenges
are typical for automated diagnostics from multi-channel, temporal,
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physiological information available in modern clinical settings. In addition, the
increasing number of portable and wearable systems for collection of physio-
logical data outside medical facilities provide an opportunity for ‘express’ and
‘remote’ diagnostics as well as early detection of irregular and transient patterns
caused by developing abnormalities or subtle initial effects of new treatments.
However, quantitative modeling in such applications is even more challenging
due to obvious limitations on the number of data channels, the increased noise,
and the non-stationary nature of considered tasks.

Methods from nonlinear dynamics (NLD), including NLD-inspired
complexity measures, are natural modeling tools for adaptive biological
systems with multiple feedback loops and are capable of inferring essential
dynamic properties from just one, or a small number of, data channels
[15–17]. However, most NLD indicators require large record lengths from
long durations of data acquisition to achieve calculation stability, which
significantly limits their practical value [11–17]. Many of these challenges
in biomedical modeling could be overcome by techniques of boosting and
similar ensemble learning that are capable of discovering robust multi-
component meta-models by employing existing simplified models and
other incomplete empirical knowledge [10,18,19]. We have previously
proposed such leveraging of physics-based reasoning (formalized as NLD-
inspired complexity measures) and boosting as well as demonstrated
potential benefits of this approach in express diagnostics and early detec-
tion of treatment responses from short beat-to-beat heart rate (RR) time
series [11–14] and gait data [20].

Recent advancements in deep learning (DL) frameworks based on deep
neural networks (DNN) drastically improved the accuracy of data-driven
approaches in image recognition, natural language processing, and other
applications. The key advantage of DL is its systematic approach for the
independent training of groups of DNN layers, including unsupervised
training of auto-encoders for the hierarchical representation of raw input
data (i.e. automatic feature selection and dimensionality reduction) and the
supervised re-training of several final layers in the transfer learning that
compensate for data incompleteness. However, severe data limitations and/
or absence of relevant problem for transfer learning can drastically reduce
the advantages of DNN-based DL. For example, pure data-driven auto-
encoders dealing with high-dimensional input data require a large amount
of data for effective operation [21–23].

Domain-expert models/rules obtained by a deeper understanding of the
considered application scope could play a key role in cases with severe
incompleteness of training data because of natural dimensionality reduction
and usage of domain-specific constraints [10–14,23]. However, such simpli-
fied models are often biased and not capable to cover all possible regimes. On
the other hand, comprehensive incorporation of this domain knowledge into
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standard DNN-based DL is problematic, except for straightforward guidance
in factor selection [23].

However, alternative machine learning algorithms, such as different fla-
vors of boosting, combine key advantages of DNNs such as hierarchical data
representations and iterative component-wise learning with operational
simplicity and the ability of direct incorporation of domain-expert knowl-
edge [10–14,18,19]. Also, the performance of boosting-based models is often
comparable to that of DNN [24,25]. Similarly, existing simplifiedmodels can
be used for the generation of a large amount of realistic synthetic data that
can be effectively used for DNN pre-training. Finally, recently we have
shown that the techniques of boosting and DNN can be effectively combined
within hybrid frameworks that allow the incorporation of existing domain-
expert knowledge [23]. Thus, in this review, we refer to DL paradigm not
only in the context of DNN-based implementation but in the wider scope.

Here, we start with a short review of existing machine learning approaches,
focusing on their limitations due to training-data incompleteness. Then, we
outline a hybrid framework that leverages the existing domain-expert knowl-
edge, boosting, DNN-based DL, and other machine learning algorithms to
achieve drastic alleviation of training-data requirements. Finally, the applica-
tion of this framework to the analysis of physiological and other biomedical
data analysis is discussed and illustrated.

II. Modern machine learning: advantages and limitations

1. Big data and limitation of standard statistical frameworks

The ongoing digital revolution has provided a relatively inexpensive means
to collect and store multi-scale, multi-channel, physiological data. Modern
hospitals and research centers are well-equipped with high-resolution
monitoring, diagnostic, and other data-collection devices. Moreover,
many portable systems for real-time collection and display of physiological
data have become affordable for individual use outside of specialized
medical facilities. These include Holter monitors and similar devices for
electrocardiogram (ECG) and heart-rate recording and specialized systems
for electroencephalogram (EEG), electromyogram (EMG), respiration, and
temperature. The increasing availability of high-quality data opens new
horizons for quantitative modeling in biomedical applications.

Rapid technological advancements also made possible the collection of
a vast amount of high-resolution 2D and 3D medical images for diagnos-
tics, monitoring, and research purposes [26]. Similarly, developments on
human genome project and other research efforts in microbiology and
bioinformatics resulted in the creation and continuous expansion of large
public databases with genomic, proteomic and other omics sequences,
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metabolic pathways and reactions: GenBank, REACTOME, KEGG, Human
Metabolic Atlas and many others. Besides known breakthroughs in genetics
and its practical value in medicine, such abundance of data creates possibilities
for the construction of a personalized genome-scale metabolic network (GEM)
(i.e. a highly structured map of processes controlling metabolism at different
levels via reactions, enzymes, transcripts, and genes) [27–29]. A personalized
GEM offers an objective, efficient framework for omics data integration, analy-
sis, and modeling.

Rapid accumulation of multi-dimensional and high-resolution data in bio-
medicine and other fields require advanced statistical and analytical techniques
to interpret and utilize important information hidden in these massive data sets
and to solve outstanding challenging problems of complex systems modeling.
While domain-expert knowledge, in the form of expert rules/constraints or
analytical and other parsimonious models, could be useful in certain regimes
(parameter ranges), they are often biased outside of their range of expertise.
Parsimonious data-driven models, based on linear regression/classification for-
mulations or their extensions, such as generalized linear models (GLM) and
generalized additive models (GAM) often have limited capacity for a robust
description of complex nonlinear dependencies [30]. Therefore, more advanced
machine-learning frameworks are required. However, the dimensionality of the
problem and data incompleteness creates significant challenges even for these
advanced approaches.

Although in the following sections we focus on modern machine learning
frameworks and their combination with domain-expert knowledge to alle-
viate or resolve challenges caused by the problem dimensionality and data
incompleteness, many existing techniques for dimensionality reduction and
regularization were originated as the main-stream statistical methods and
later adopted or generalized in machine learning. For example, ideas of
lasso regularization in sparse regression [30], dealing with the optimal selec-
tion of the compact subset of predictors, are also adopted in many machine
learning algorithms including neural networks. Similarly, auto-encoders
based on neural networks can be viewed as non-linear generalizations of
linear principal component analysis (PCA) [30]. Also, the Bayesian approach
incorporating prior information from the domain knowledge beyond just
available data is equally relevant for machine learning frameworks [30].
Moreover, our proposal of the direct incorporation of the existing physics-
based models and other known constraints into machine learning algorithms
also relies on the usage of prior information about the domain of interest.

2. Neural networks as universal data-driven framework

The human brain is one of the most fascinating complex natural systems
and is still far away from being fully understood, explained or replicated
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in-silico. Nevertheless, even our current knowledge about the brain and its
capabilities shows very attractive features such as an ability to effectively
learn complex patterns and events, to utilize distributed storage of knowl-
edge and memory, to process with intrinsic parallelization, etc [31].

However, attempts to mimic these features inevitably lead to severe
simplifications/approximations of the real brain and its functioning.
There are two, very distinct, research and engineering efforts: (1) perform
a realistic simulation of brain activity and of the interaction of its compo-
nents, and (2) mimic several key features, in a very simplistic way, to
achieve desired computational and representational characteristics in the
applied modeling framework. Simulation models in the neurosciences
attempt to capture the structure and dynamics of the real brain as accu-
rately as possible. The main objective of an artificial neural network (NN)
is not to replicate brain functioning, but rather to ‘borrow’ key ideas for
building much more simplified, but practical, machine-learning algorithms
[5,6,9]. In the following discussion, we consider only artificial NNs.

NN consists of a large collection of interconnected processing units,
neurons, as shown in Figure 1. Each neuron can receive inputs from one or
many other neurons via connections, known as synapses. If the sum of all
inputs becomes larger than a certain threshold, a neuron fires (i.e. the
neuron sends a signal to other neurons to which it is connected). In
general, this process is controlled by nonlinear activation, described by
a transfer function, where sigmoid and/or rectified linear functions are
often used in practice. NN learns by adjusting the strength of each con-
nection (synapse). Artificial NN ignores a huge fraction of the detailed
mechanisms operating in the real brain. One mechanism is thought to be
very important for information exchange and processing. A neuron not
just fires, but sends a train of electrical spikes [32]. However, this pulse-
train generation and other mechanisms of the real neural network are not
yet fully adopted into the mainstream models of NN architectures.

Figure 1. Schematic of a typical neuron-like computational unit used in NN architectures. Each
neuron can receive inputs from one or many other neurons via connections, known as
synapses. If the sum of all inputs becomes larger than a certain threshold, a neuron fires
(i.e. the neuron sends a signal to other neurons to which it is connected). In general, this
process is controlled by nonlinear activation, described by a transfer function, where sigmoid
(left panel) and/or rectified linear (right panel) functions are often used in practice.
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Over more than half a century, a large number of different NN configura-
tions with various training procedures and application areas have been pro-
posed. Classification of NN types includes supervised vs unsupervised, feed-
forward vs recurrent, as well as many hybrid architectures. Generic examples
of the most common practical types of NN are shown in Figures 2–4.
A Kohonen NN or Self-Organizing Map (SOM), trained by competitive
unsupervised learning algorithms, is successfully used in the clustering of
unlabeled data and in the discovery of low-dimensional representations
[9,30,33]. A Multi-Layer perceptron (MLP) is a feed-forward NN with at
least one hidden layer and supervised training procedure, which is usually
based on an error back-propagation (BP) algorithm [9,30,34]. MLP can be
effective for modeling complex static and time-series data in regression and
classification problems. Unlike MLP, a recurrent NN (RNN) can have feed-
back loops in different parts of the NN structure, including feedbacks skipping
one or more layers. RNN can build robust models of complex sequential data
(such as time series) using implicit representation in its internal memory.
However, training based on a Back-propagation Trough Time (BPTT) algo-
rithm is often problematic (e.g. it can often encounter vanishing- or explod-
ing-gradient problems) [35,36].

Most of the results in NN theory and applications are empirical, even
though rigorous mathematical results are often adopted in the training
algorithms and other considerations. The original interest in NN was still
due to biology and to the assumption that it is possible to adapt several
interesting ideas from the nature, even in largely reduced form. However,
at least two rigorous mathematical results fully support one’s original
intuition about NN as a universal approximation framework. First,
Kolmogorov’s theorem formulated in [37] states that every continuous
function of several variables (for a closed and bounded input domain)
can be represented as the superposition of a small number of functions of
one variable. Second, Cybenko’s theorem proves that one-hidden layer

Figure 2. Schematic of unsupervised Kohonen NN or self-organizing map (SOM) with 1D (left
panel) and 2D (right panel) architectures. These NNs are trained by competitive unsupervised
learning algorithms and used for clustering of unlabeled data and discovery of low-
dimensional representations.
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Figure 3. Schematic of a supervised feed-forward neural network also known as multi-layer
perceptron (MLP). MLP is a feed-forward NN with at least one hidden layer and supervised
training procedure, which is usually based on an error back-propagation (BP) algorithm. MLP
can be effective for capturing complex patterns in both regression and classification problems.

Figure 4. Schematic of the recurrent neural network (RNN) with several feedback loops. Unlike
MLP, RNN can have feedback loops in different parts of the NN structure, including feedbacks
skipping one or more layers. RNN can build robust models of complex sequential data using
implicit representation in its internal memory. However, training based on a Back-propagation
Trough Time (BPTT) algorithm could often encounter vanishing- or exploding-gradient pro-
blems in practice.
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feed-forward NN with sigmoid-type activation function is capable of
approximating uniformly any continuous multi-variate function to any
desired degree of accuracy [38].

However, these two rigorous results do not provide any generic proce-
dure of selecting the appropriate number of hidden-layer nodes and the
training of the NN (i.e. finding optimal weights) to achieve a claimed
universal approximation of any function. Moreover, the recent shift of
NN applications towards deep learning (DL) and deep NN (DNN) leads to
even more empirical systems. Namely, there are little to no rigorous
theoretical results proving convergence and other properties of the deep-
learning formulations [39].

The well-known problem of NN training is the curse of dimensionality
[9,30]. In particular, any increase in the number of factors (inputs) in any
NN-based or other data-driven model specification requires more training
data for the adequate estimation of the model: the number of data samples
per model parameter or factor should not dramatically decrease. In the
context of NN-based formulation, the dimensionality of the problem (i.e.
the number of features or the number of nodes in the input layer) directly
leads to an increase of NN weights that should be estimated using available
data. In practice, this could easily lead to severe data incompleteness. Also,
the error function in the high-dimensional space becomes more complex
with increasing number of hard-to-avoid local minima as shown in Figure 5.

The main supervised NN architecture, MLP, is trained using a back-
propagation algorithm (i.e. backward propagation of errors) [34]. The main
concept underlying this training algorithm is that, for a given observation, one
determines the degree of ‘responsibility’ that each network parameter has for
each wrong prediction of a target value; the parameters are changed

Figure 5. Schematic of error surfaces of low (left panel) and high (right panel) complexity
corresponding to problems of low and high dimensionality, respectively. The error function in
the high-dimensional space becomes more complex with increasing number of hard-to-avoid
local minima.
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accordingly to reduce NN error. NN training via back-propagation is forma-
lized as a stochastic gradient descent (SGD), as shown schematically in Figure 6
[9]. The iterative NN training is done by presenting known input-output pairs
(training samples), calculating the NN error E, and updating the weights wt as
follows:

wt ¼ wt�1 � η
@E
@w

þ αΔwt�1 (1)

Here, learning rate η and momentum α are user-defined parameters.
Updating weights after the introduction of each new sample could often
cause excessive noise in the training procedure and could result in much
slower convergence. Therefore, epoch (batch) training is frequently used in
practice, where error keeps accumulating but weight updating is done only
after an ‘epoch’ of N samples. The optimal value of epoch size N is problem
dependent (it could easily be several hundred or more).

Stochasticity, naturally introduced in SGD by considering errors from only
part of training samples at a time, helps escaping saddle points (see Figure 7),
which presents a real obstacle for regular gradient descent methods since the
gradient vanishes therein. However, finding the optimal SGD parameters that
avoid such problems, as ‘trap in local minima’ or ‘very noisy and slow con-
vergence (if any)’, could be challenging and application-dependent without any
single universal solution (see schematic in Figure 8).

3. Regularization, structural risk minimization and support vector machines

A regularization term always includes one or more parameters that have to
be chosen, based on the final objective of the estimated model. In most cases,
the objective is the achievement of optimal, or good, out-of-sample perfor-
mance of the model. The most direct way of estimating out-of-sample error
and choosing one or more regularization parameters is to use a validation

Figure 6. Schematic of classical gradient descent in 1D (left panel) and stochastic gradient
descent (SGD) in 2D (right panel) which is used in NN training with error back-propagation
algorithm.
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data set that is not dually used in model training/estimation. Typical bias-
variance tradeoff when choosing optimal model complexity is illustrated in
Figure 9. The model error on the training set will continue decreasing with
increasing model complexity. However, a minimum testing error will be
achieved at some optimal value of model complexity.

Figure 7. Schematic of saddle point with vanishing gradients. Stochasticity, naturally intro-
duced in SGD by considering errors from only part of training samples at a time, helps
escaping saddle points which presents a real obstacle for regular gradient descent methods
suffering from vanishing gradients.

Figure 8. Problems of sub-optimal learning rate (large and small). Finding the optimal SGD
parameters that avoid such problems, as ‘trap in local minima’ or ‘very noisy and slow
convergence (if any)’, could be challenging and application-dependent without any single
universal solution.
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For more efficient usage of often-incomplete data, one can re-use
a training set for out-of-sample error estimation by dividing N training
samples into K sets of equal size, training the model on a combination of
(K-1) sets, and estimating test error on the remaining sample not being
used in training. This procedure, called K-fold cross-validation, is repeated
K times; the final test error is an average of test errors for each of K hold-
out samples [9,30]. Cross-validation can be applied to any type of model
without any limitations. More computationally intensive, cross-validation
with N sets (i.e. when just one sample is held out each time) is called leave-
one-out cross-validation [9,30].

The cross-validation, or separate validation, set offers a direct way of
estimating test error and determining optimal regularization parameters.
However, test data used in these estimations is still incomplete and could
be biased, which makes test error estimation not very reliable. Also, these
estimations could be computationally expensive for some model formula-
tions. Various information criteria (IC) offer an approach for model
selection without direct calculation of the test error estimate [30,40]. All
these criteria (e.g. the Akaike information criterion (AIC), the Bayesian
information criterion (BIC), and their variations) use various penalty
terms for model complexity [30,40]. The important limitation of most IC
is that they are originally formulated for linear models based on maximum
likelihood estimations, and could become less informative or practical
where an extension to the more general models is possible. Also, all

Figure 9. Schematic of bias-variance tradeoff. Generic behavior of model error computed on
test and training samples for different degrees of model complexity. The model error on the
training set will continue decreasing with increasing model complexity. However, the mini-
mum testing error is achieved at some optimal value of model complexity.
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these measures are asymptotic (i.e. they are applicable only to large
samples (N → ∞)) and could often be misleading in real applications
with limited data [30,40].

The Vapnik-Chervonenkis (VC) dimension [41,42] offers an alternative
model-complexity measure that is fundamentally different from IC metrics
on several counts. First, the VC dimension applies to any finite size sample
(i.e. it is not an asymptotic measure). Second, the VC dimension applies to
any model, not just linear ones. Finally, based on the VC dimension,
generic upper bounds for the test (out-of-sample) error can be derived
and used in model selection.

Although it is hard to compute the VC dimension for an arbitrary set of
functions, simulations can be used for estimation. VC dimensions and
corresponding test-error bounds are the basis of the Structural Risk
Minimization (SRM) principle which is at the core of Support Vector
Machine (SVM) and other formulations of large-margin classifiers [41–44].

Test-error bounds, based on the VC dimension, are keys to the SRM
approach. Empirical Risk Minimization (ERM) used in most ML algo-
rithms is based on training (i.e. in-sample) error. SRM directly incorpo-
rates an upper-bound estimate of the out-of-sample error into the
estimation/training process. As illustrated in Figure 10, SRM fits a nested
sequence of models of increasing VC dimensions h1 < h2 < . . . < hn and
then chooses the model with the smallest value of the upper-bound
estimate. Algorithms (like SVM) that are based on the SRM principle
incorporate regularization that is aimed at better out-of-sample perfor-
mance, into the training procedure itself. However, even SRM-based algo-
rithms could benefit from additional regularizations. One example of such
regularization is the soft-margin parameter used in SVM which is critical
in practical classification problems having overlapping classes [41,42,44].

While algorithmic and theoretical details behind SVM formulation are
beyond the scope of this paper, Figure 11 provides a simple illustration of
the SRM result in the SVM context. First, the SVM algorithm involves
a kernel transform that casts the nonlinear classification problem to
a higher (or even infinite) dimensional space where this problem becomes
linearly separable. Next, support vectors define boundaries of the classes
and the decision hyperplane (or line in 2D) is specified to be equidistant
from the two support vectors. As shown in Figure 11, the SVM algorithm,
based on SRM principle, can find the optimal support vectors and the
corresponding decision boundary to ensure large separation (i.e. large
margin) between classes, ensuring good out-of-sample performance.

Even when the VC dimension is hard to compute, the main SRM
principle (i.e. ‘optimizing the worst case’) can be applied across a much
wider range and in different statistical and ML algorithms. This can be
done via the appropriate choice of challenging optimization objectives.
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However, in many cases with extreme data limitations, it is impossible
to find an adequate solution without the usage of domain knowledge and
other prior information. This is conceptually illustrated in Figure 12,
where available noisy data (red circles) for the unknown quadratic

Figure 10. Schematic of optimal model selection using the principle of structural risk minimiza-
tion (SRM). SRM fits a nested sequence of models of increasing VC dimensions h1 < h2 < . . . < hn
and then chooses the model with the smallest value of the upper-bound estimate. Algorithms
(like SVM) that are based on the SRM principle incorporate regularization that is aimed at better
out-of-sample performance, into the training procedure itself.

Figure 11. Schematic of larger margin classifier (a), compared to smaller margin classifier (b).
Support vectors (dashed lines) define boundaries of the classes and the decision hyperplane
(solid line) is specified to be equidistant from the two support vectors. SVM algorithm, based
on the SRM principle, can find the optimal support vectors and the corresponding decision
boundary to ensure large separation (i.e. large margin) between classes, ensuring good out-of
-sample performance.
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function y = ax2 (blue line) cover a very limited range. In this case, it is
impossible to choose the correct complexity of the fitting model (for
extrapolation) without incorporating any additional information.

Most statistical algorithms would choose just a linear regression in this
case (orange line), which would give large prediction errors outside of the
range of training data. However, if there is domain expert knowledge
indicating that the considered effect can be expressed by a quadratic
function, estimating the parameter a in y = ax2 from a few available data
points and obtaining a calibrated low-complexity model (grey line) having
very high out-of-sample accuracy and stability would be straightforward.

Optimal choice of the objectives (e.g. training-algorithm ‘loss’ function) to
find a solution with good generalization capabilities can also be considered
as a type of regularization. Often, direct usage of the final problem-specific
objective as an algorithm objective (the training-algorithm loss function)
may not be an optimal choice. As already mentioned, the broad interpreta-
tion of the SRM principle indicates that focusing on optimizing avoidance of
worst possible cases (e.g. minimizing tails of error distributions), may
provide a much more stable out-of-sample solution, according to the origi-
nal objective compared to directly employing the training-algorithm loss
function as the objective. This was earlier illustrated in the context of
discovering optimal boosting-based trading strategies [45] where, instead

Figure 12. Schematic of quadratic dependence estimation from a very limited data set with
and without domain knowledge about the estimated function. Available noisy data (red
circles) for the unknown quadratic function y = ax2 (blue line) cover a very limited range. It
is impossible to choose the correct complexity of the fitting model (for extrapolation) without
incorporating any additional information. Most statistical algorithms would choose linear
regression (orange line) with bad out-of-sample performance. However, if domain knowledge
hints to quadratic nature of the functional form, estimating the parameter a in y = ax2 from
a few available data points leads to low-complexity model (grey line) with very good out-of-
sample performance.
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of direct usage of obvious objectives such as strategy return at the horizon of
interest and/or the Sharpe ratio, much more stable out-of-sample solutions
are found by optimizing (i.e. minimizing) the lower tail of the distribution of
returns on much smaller horizons (i.e. worst results).

4. Ensemble learning, boosting, and generalized degrees of freedom

The practical value of the model combination is exploited by practitioners
and researchers in many different fields. The basic idea of ensemble learning
algorithms is to combine relatively simple base hypotheses (models) for the
final prediction. The important question is why and when an ensemble is
better than a single model. In machine learning literature, three broad
reasons for the possibility of good ensembles’ construction are often men-
tioned. First, there is a pure statistical reason. The amount of training data is
usually too small (data incompleteness) and learning algorithms can find
many different models (from model space) with comparable accuracy on the
training set. However, these models capture only certain regimes of the
whole dynamics or mapping that becomes evident in out-of-sample perfor-
mance. There is also a computational reason related to the learning algo-
rithm specifics such as multiple local minima on the error surface (e.g. NNs
and other adaptive techniques). Finally, there is a representational reason
when the true model cannot be effectively represented by a single model
from a given set even for the adequate amount of training data. Ensemble
methods have a promise of reducing these key shortcomings of standard
learning algorithms and statistical models.

The advantage of the ensemble learning approach is not only the possibility
of the accuracy and stability improvement of pure data-driven models, but
also its ability to combine best features of a variety of models: analytical,
simulation, and data-driven. This latter feature can significantly improve the
explanatory power of the combined model if building blocks are sufficiently
simple and based on well-understood models. However, ensemble learning
algorithms can be susceptible to the same problems and limitations as stan-
dard machine learning and statistical techniques. Therefore, the optimal
choice of both the base model pool and the ensemble-learning algorithms,
ideally having good generalization qualities and tolerance to data incomplete-
ness and dimensionality, is very important.

An ensemble-learning algorithm that combines many desirable features
is boosting [18,43]. Boosting and its specific implementations such as
AdaBoost [46] have been actively studied and successfully applied to
many challenging problems. One of the main features that set boosting
aside from other ensemble-learning frameworks is that it is a large-margin
classifier similar to SVM. This ensures superior generalization ability and
better tolerance to incomplete data compared to other ensemble-learning
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techniques. Statisticians consider boosting as a new class of learning algo-
rithms that Friedman named ‘gradient machines’ [7], since boosting per-
forms a stage-wise, greedy, gradient descent. This relates boosting to
particular additive models and to matching pursuit, known within the
statistics literature [19,30].

The main practical focus is on the ensemble-learning algorithms suited
for challenging problems dealing with a large amount of noise, limited
number of training data, and high-dimensional patterns [43]. Several mod-
ern ensemble learning techniques relevant for these types of applications are
based on training-data manipulation as a source of base models with
significant error diversity. These include such algorithms as bagging (‘“boot-
strap aggregation”’), cross-validating committees, and boosting [30,43].

Bagging is a typical representative of ‘“random sample”’ techniques in
ensemble construction. In bagging, instances are randomly sampled, with
replacement, from the original training dataset to create a bootstrap set
with the same size [30]. By repeating this procedure, multiple training-data
sets are obtained. The same learning algorithm is applied to each data set
and multiple models are generated. Finally, these models are linearly
combined (averaged) with equal weights. Such combination reduces the
variance part of the model error as well as the instability caused by the
training set incompleteness. Bagging exploits the instability inherent in
learning algorithms. For example, it can be successfully applied to the NN-
based models. However, bagging is not efficient for the algorithms that are
inherently stable, that is, whose output is not sensitive to small changes in
the input (e.g. parsimonious parametric models). Bagging is also not
suitable for a consistent bias reduction.

Intuitively, combining multiple models helps when these models are
significantly different from one another and each one treats a reasonable
portion of the data correctly. Ideally, the models should complement one
another, each being an expert in a part of the domain where the perfor-
mance of other models is not satisfactory. The boosting method for
combining multiple models exploits this insight by explicitly seeking
and/or building models that complement one another [18,43,47]. Unlike
bagging, boosting is iterative. Whereas in bagging, individual models are
built separately, in boosting, each new model is influenced by the perfor-
mance of those built previously. Boosting encourages new models to
become experts for instances handled incorrectly by earlier ones. The
final difference is that, in boosting, adjusted weights are assigned to models
by their performance (i.e. the weights are not equal as in bagging). Unlike
bagging and similar ‘“random sample”’ techniques, boosting can reduce
both bias and variance parts of the model error. Using probably-
approximately-correct (PAC) theory, it was shown that, if the base learner
is just slightly better than random guessing, AdaBoost is able to construct
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an ensemble with arbitrarily high accuracy [47]. Thus, boosting can be
effective for constructing a powerful ensemble from very simplistic ‘rules
of thumb’ known in the considered field (i.e. domain-expert knowledge).

Boosting-based models demonstrate very good out-of-sample accuracy
and stability, even in cases having limited training data due to any intrinsic
property of margin maximization during training. A typical boosting
algorithm such as AdaBoost [46] for the two-class classification problem
(+1 or −1) consists of the following steps:

for n: = 1,. . ., N

w1
n ¼ 1=N (2:1)

end
for t: = 1,. . ., T

εt ¼
XN
n¼1
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nIð�ynhtðxnÞÞ

� �
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and

HðxÞ ¼
XT
t¼1

αthtðxÞ=
XT
t¼1

αt: (2:5)

Here N is the number of training data points, xn is a model input value of
the n-th data point and yn is class label, T is the number of iterations, I(z) =
0 (z <0), I(z) =1 (z >0), wn

t is the weight of the n-th data point at t-th
iteration, Zt is normalization constant, ht(xn) is the best model at the t-th
iteration, ρ is a regularization constant, and H(x) is the final combined
model (meta-model).

Boosting starts with equal and normalized weights for all training samples
(step 2.1). Base classifiers ht(x) are trained using weighted error function εt (step
2.2). The best ht(x) is chosen at the current iteration. The adjusted data weights
for the next iteration are computed in steps (2.2)-(2.4). At each iteration, data
pointsmisclassified by the current bestmodel (i.e. yn ht(xn) < 0) are penalized by
the weight increase for the next iteration. AdaBoost constructs progressively
more difficult learning problems that are focused on hard-to-classify patterns
defined by the weighted error function (step 2.2). Steps (2.2)-(2.4) are repeated
at each iteration until stop criteria occur. The final meta-model (Equation (2.5))
classifies the unknown sample as class +1, whenH(x) > 0, and as −1, otherwise.
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From the above description, it is clear that a typical boosting algorithm
is based on the utilization of low-complexity base models estimated one at
a time and deterministic iterative approach where initial discovery of the
best-on-average model is followed by additions of models focused on more
challenging data patterns/regimes that were poorly modeled in previous
iterations [10,46]. Therefore, similar to DNN-based DL, discussed in the
next section, boosting takes advantage of hierarchical knowledge represen-
tation and independent training of the model components.

In pure data-driven approaches, a typical choice of the base model
represents a decision stump (i.e. one-level decision tree) as shown in
Figure 13 where the boosting procedure is diagrammed. In this case, just
one generic, application-independent, base model is used. The final model
is a multi-level tree constructed over many boosting iterations. However,
the out-of-sample performance of such large tree discovered by boosting is
much better than that of the same tree obtained by simultaneous global
optimization of the parameters of the multi-level tree [30].

Generic boosting and its various extensions, such as XGBoost [8], often
demonstrate superiority over other algorithms in many applications and
competitions. Its performance often approaches that of DNN. Since the
discovery of a boosting-based solution may often be operationally simpler,
there are legitimate arguments in favor of choosing boosting rather than
DNN in certain applications. However, as discussed in subsequent sec-
tions, many hybrid approaches try to combine the best features of boosting
and DNN rather than choose just one approach and discard the other.

Figure 13. Schematics of a generic boosting algorithm with decision stump (i.e. one-level
decision tree) as a base model. Such generic, application-independent, base model is a typical
choice in pure data-driven approaches.
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Generic boosting algorithms, such as shown in Figure 13, are flexible but
still require a significant amount of training data for the discovery of
accurate and stable models. Domain-expert models and other existing
knowledge obtained by a deeper understanding of the considered domain
could play a key role in applications with severe incompleteness of training
data due to natural dimensionality reduction and usage of domain-specific
constraints. However, such simplified models are often biased and incap-
able of covering all possible regimes. On the other hand, comprehensive
incorporation of this domain knowledge, such as analytical models, rules
or constraints, into a majority of machine learning algorithms, including
the generic boosting algorithm shown in Figure 13, is problematic, except
when providing straightforward guidance in factor selection. However,
boosting can be applied to the pool of the well-understood and low-
complexity domain-expert models to produce an interpretable ensemble
of complementary base models with significantly higher accuracy and
stability as suggested in [10–14]. A schematic of such an algorithm is
shown in Figure 14.

Unlike generic boosting algorithms (such as in Figure 13), the pool of
base models could include any number of parameterized domain-expert
and/or other low-complexity models (see Figure 14) [10–14]. At each
boosting iteration, all models from this pool are optimized, one at
a time, according to the weighted error function, and the best model is
added to the ensemble. Such a procedure can test and utilize the comple-
mentary value of any number of available domain-expert models without
overfitting. Also, proper parameterization could allow discovery of many
complementary models, even from a single domain-expert model. Unlike
boosting with generic and simple tree-based model, domain-expert base
models could already capture a significant number of regimes and impose
important application-specific constraints. This facilitates the discovery of
compact model ensembles that combine high accuracy with interpretability
since well-understood base models are used [10–14].

It may seem counter-intuitive that the final boosting ensemble with
potentially dozens or hundreds of base models demonstrates superior out-
of-sample performance. One can argue that the complexity of such an
ensemble is much higher than that of any single base model and one can
expect severe overfitting. However, complexity of boosting ensemble does
not scale up with the number of base models as would be the case in
a single linear model with increasing number of inputs (parameters). Due
to component-wise discovery of such ensemble (i.e. one model at a time is
estimated), the generalized degrees of freedom (GDF) measure [48] is
often just slightly above that of a single base model or could be even less
than GDF of the base model. This effect of low complexity of the boosting-
based ensemble is often referred to as ensemble paradox [48]. Similarly, for
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a nonlinear model, its GDF is not, in general, equal to the number of
adjustable parameters (such as weights in NN). As discussed in the next
section, the main difference and advantage of DL, compared to standard
NN, is component-wise (layer-by-layer) learning. Therefore, DNN trained
with DL approach may be very large; however, still it can show superior
out-of-sample performance. This means that the learning procedure itself
warrants the low GDF of the final NN-based model.

However, even though boosting seems to be more natural for incorpora-
tion and enhancement of the domain-expert knowledge, its flexibility is
still inferior to DNN-based DL. After all, boosting determines a weighted
linear combination of models. While such combination is capable of
representing very complicated (non-linear) decision boundaries in classi-
fication problems, it may still miss important mixed terms that could be
easily captured by flexible DNN representation. Also, in many modern
applications, performance of tree-based ensemble learning algorithms
[8,25] can be drastically increased by using feature engineering procedure
before the actual application of ensemble learning. The number of gener-
ated features could be significantly higher than the number of original
features. Similar to kernel-based techniques like SVM, this allows refor-
mulating the original classification problem in higher dimensional space

Figure 14. Schematics of boosting algorithm with multiple well-understood and low-
complexity domain-expert models as base models. Such a procedure can test and utilize
the complementary value of any number of available domain-expert models without over-
fitting. Proper parameterization could also allow discovery of many complementary models,
even from a single domain-expert model.
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with simpler and less nonlinear decision boundaries which helps classifica-
tion algorithm in constructing a more accurate model. However, unlike
almost analytical kernel-based approaches, general feature engineering is
often outside of ensemble learning algorithm itself and could be very
empirical without any warranty of out-of-sample stability. Therefore, typi-
cally, feature engineering process should be repeated when significant
amount of new data become available. On the other hand, unsupervised
part of DNN (auto-encoders), is an integral part of DL framework and
generated hierarchical representations (feature extraction) could be more
self-consistent and stable. Therefore, DNN-based DL and its combination
with boosting could offer many advantages in modeling complex data and
systems as discussed next.

5. Deep learning

Many properties of NN have been discovered well before the current
resurgence of interest in these algorithms in the form of DL and DNN.
For example, formal mathematical results of NN universality and their
capabilities have been proven by Kolmogorov and Cybenko [37,38].
Cybenko’s theorem states that feed-forward NN, with just one-hidden
layer and one sigmoid activation function, is capable of approximating
uniformly any continuous multivariate function to any desired degree of
accuracy [38]. However, these results do not provide any direct recipes for
determining the optimal NN for any given problem and training data.

Based on Cybenko’s theorem, the optimal NN having good approxima-
tion should exist for any problem that meets reasonable continuity require-
ments. However, the multi-factor nature of the majority of practical
problems leads to the set of challenges that are collectively called the
curse of dimensionality [9,30]. In the context of NN, the large number of
weights and complex error surface with many local minima is responsible
for this challenge [9]. A direct global optimization of NN weights for
avoiding local minima cannot solve the problem because of high-
dimensionality of the problem, which is prohibitive to any stochastic or
heuristic optimization algorithms, including Genetic Algorithms (GA).
Only after iterative back-propagation (BP) algorithm cycles for training
NN with any number of hidden layers, as proposed in [34], many practical
NN-based applications emerged.

However, while BP was routinely and successfully used for NN training
in many practical situations, discovery of optimal NN in each particular
application still faced many serious challenges without a single universal
solution. Many problems such as vanishing or exploding gradients are
limitations of BP algorithm and can be encountered in many NN archi-
tectures including well-known multi-layered perceptron (MLP) [34–36].
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Some NN types may provide a very powerful modeling framework but are
especially hard to train in practice. For example, while recurrent NN
(RNN) could potentially find the best solutions in problems dealing with
time series and general sequence forecasting, the training algorithm, back-
propagation through time (BPTT), could be notoriously unstable in prac-
tice [35,36].

Active research efforts to resolve or alleviate these limitations of NN-based
frameworks, and machine learning algorithms in general, resulted in the
development of modern DNN-based DL approaches [5,6]. Widespread adop-
tion of DL frameworks began after 2012 when AlexNet (convolutional DNN)
significantly outperformed other machine-learning approaches in the
ImageNet Large Scale Visual Recognition Challenge [49]. This result facili-
tated explosive growth of DNN-based applications in computer vision, bioin-
formatics, healthcare, fundamental sciences, business and other areas [5,6,24].

DNN are often regarded simply as multi-layered NN which were made
available for real-world applications because of the possibility to train them
with modern computing resources, such as massively parallel GPU-based
systems (www.nvidia.com). However, the main advantage of DL, capable
of alleviating many existed issues, comes from the structured approach to
DNN training and hierarchical representation which can be outlined as
follows [5,6].

DNN-based DL is not just NN with large number of hidden layers. It is an
important paradigm that realizes the importance of hierarchical representation
of data that have an increasing degree of abstraction [5,6,22]. This paradigm is
not new for fundamental sciences, where theoretical and simulation frame-
works are often focused on different spatiotemporal scales and account for
interaction (energy flow) across these scales. For example, the success of realistic
simulations of multi-scale spatiotemporal dynamics in plasma and space phy-
sics critically depend on proper formulation and coupling of physical models
that describe processes on micro- and macro scales, since it is infeasible to
model a wide range of scales from first principles because of computational
limitations and lack of detailed initial/boundary conditions [e.g. 50].

In the traditional machine learning (ML), the process of feature selec-
tion could often include such hierarchical representations without explicit
formalization. As already discussed, boosting-like ensemble learning is an
example of an intrinsically hierarchical algorithm. It starts from a global-
scale classification/regression model at the first iteration and focuses on
more detailed modeling of sub-populations and sub-regimes in subsequent
iterations [10].

Although NN-based implementation of DL paradigm is not the only
choice, DNN provides a universal framework for modeling complex and
high-dimensional data. An especially attractive feature of the DNN
approach is the capability of covering all stages of data-driven modeling
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(features selection, data transformation, and classification/regression)
within a single framework (i.e. ideally, the practitioner can start with raw
data in the domain of interest and obtain a ready-to-use solution) [5,6].

The key difference between standard multi-layered NN and DNN-based
DL is illustrated in Figure 15. As an example of a standard NN framework,
schematic MLP diagram is shown in Figure 3. In this case, input features/
factors presented to NN in the first layer are assumed to be already selected
outside NN by other means, ranging from simple correlation analysis, to
different flavors of principal component analysis (PCA), and to other
statistical and machine learning tools (e.g. [30]). Once inputs are chosen,
one can start supervised training of MLP using BP algorithm. In this
training procedure, all adjusted weights from all layers are updated at
each BP iteration or epoch [9,34].

The obvious limitation of this standard NN framework is the absence of
universal approaches to feature selection and dimensionality reduction that
would be a self-consistent part of the framework itself and applicable in
any domain of interest. Large dimensionality of inputs directly translates to
a large number of adjusted weights. Since the adjusted weights of all layers
are updated simultaneously, the already-mentioned problems of having
a large number of hard-to-avoid local minima on the multi-dimensional
error surface, vanishing and/or exploding gradients, and related problems
are easily encountered in many practical applications.

A DNN-based DL alternative to standard MLP is schematically shown
in Figure 15. The obvious difference from Figure 3 is an additional set of
layers before the actual MLP layers for classification/regression. These
additional layers effectively perform generic feature selection and dimen-
sionality reduction via unsupervised pre-training, filtering and input trans-
formations [5,21,22,51]. In some cases, this pre-processing may include

Figure 15. Schematics of DNN with stacked auto-encoders followed by supervised NN. First,
the auto-encoder layers are trained in unsupervised fashion using labeled and unlabeled data.
Then, the MLP classifier is trained on labeled data using usual supervised learning, while
weights from the first set of layers are kept constant. For further reduction of requirement on
training data size, single multi-layer auto-encoder is replaced by a stack of shallow auto-
encoders (e.g. each with only one hidden layer) that are trained one at a time.
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a domain-specific set of filters and transformations such as in CNN-based
DL for image recognition [49]. However, the most generic application-
independent approach is based on auto-encoders, as illustrated in
Figure 15.

Auto-encoder in its basic form is equivalent to MLP, with output layer
equal to the input layer [21,22,51]. The training is based on the standard
BP used in supervised MLP training. The only difference is that input
features are presented at both input and output layers during training, i.e.
NN builds representation of its input in hidden layer(s) (as part of the
encoding process) and then tries to recover the original input from this
representation (as part of the decoding process) as schematically shown in
Figure 15. Since only inputs are used in training, it is, effectively, unsu-
pervised learning. Typically, the number of nodes in the hidden layer(s) is
significantly less than the number of inputs. In this case, the auto-encoder
discovers a compact representation of the original input information (i.e.
performs generic dimensionality reduction). However, if the objective is to
discover sparse representations uncovering complex non-linear dependen-
cies (patterns), then the size of a hidden layer is made larger than the
number of inputs. In the final NN, only the encoding layers of auto-
encoders are used, as shown in Figure 15.

Unsupervised pre-training of DNN, using auto-encoders or other
approaches, is even more important in applications with a large amount
of unlabeled data but more limited availability of labeled data, which is
often the case. Indeed, standard supervised learning would use only labeled
data, while information contained in the unlabeled data is ignored.
Unsupervised pre-training is capable to discover rich set of patterns and
representations from unlabeled data. After that, DNN could be further
fine-tuned via supervised training using available labeled data.

Thus, while the NN structure in standard MLP and DL approaches may
look the same, the key difference of true DL is that NN is trained layer-by-
layer, which leads to much more robust results and alleviates potential
overfitting. First, the set of layers (e.g. auto-encoders) are trained in
unsupervised fashion with the ability to use most of the data (labeled
and unlabeled). Then, the MLP classifier is trained using usual supervised
learning, while weights from the first set of layers are kept constant.
Finally, one could choose to fine-tune all NN layers with supervised
training on labeled data.

Important concept of layer-by-layer learning in DNN goes well beyond
just two major groups of layers, that is, with unsupervised (e.g. auto-
encoders) and supervised (e.g. standard MLP) learning. This allows further
alleviation of often-encountered problems due to data incompleteness. For
example, while one can train single auto-encoder with multiple hidden
layers, this approach would have serious problems in practice, if the data is
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limited. Therefore, an often used alternative is a stack of shallow auto-
encoders (e.g. each with only one hidden layer) that are trained one at
a time [22]. The example in Figure 15 shows a stack with two such auto-
encoders.

Another robust technique of layer-by-layer training is transfer learning,
with many practical applications in image recognition and other fields [52–
54]. For example, millions of images in hundreds of categories are available
for DNN training. However, one may have just a few hundred images in
the domain of interest, such as medical imaging for a particular abnorm-
ality [52,53]. In this case, NN is first pre-trained on available categories not
directly related to the problem of interest. Then one could keep weights
constant in a majority of initial layers and train just a few last layers (in
MLP) on available medical images. This is transfer learning, since we
transfer majority of patterns learned in the domain with large data set
(i.e. abstract image descriptors) to a different domain with small data set.
Only a small fraction of final layers gets updated. Depending on the data
availability for the actual problem, one may increase or decrease the
number of updated layers (weights). In the extreme case of very limited
data set, one can even replace MLP layers with a simpler model (i.e. logit
regression or a support vector machine).

However, severe data limitations in the context of problem dimension-
ality and/or absence of relevant problem for transfer learning can still
drastically reduce key advantages of DNN-based DL. For example, pure
data-driven auto-encoders dealing with high-dimensional input data
require a large amount of data for effective operation.

Even when the problem with training-data completeness is not critical,
the other serious challenge is finding optimal hyper-parameters and NN
configurations. For every data set, there is a corresponding NN that per-
forms ideally with that data. However, there is no universal procedure for
the efficient and fast discovery of optimal hyper-parameters and DNN
configurations, due to too many possible combinations: learning and
momentum rates (see Equation (1)), regularization types and parameters
(e.g. weight decay constant), epoch/batch size, number of layers in unsu-
pervised and supervised parts, number of nodes in each layer, and others.
Hyper-parameter selection may be significantly accelerated if the existing
domain knowledge can be efficiently used as guidance. However, in gen-
eral, it is not warranted, and practitioners have to use a grid search, which
cannot be applied to high-dimensional hyper-parameter space due to
a combinatorial explosion of available combinations, requiring a random
search where no information from previously considered solutions are
used, and a true optimization with some heuristic algorithms, including
GA-based and other multi-objective optimization approaches. In any case,
if domain-expert guidance is absent, determining optimal hyper-
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parameters and DNN configurations become extremely time-consuming
and computationally intensive, even when each DNN configuration during
this optimization procedure is trained using a powerful GPU system.

6. Single-example learning and ensemble decomposition learning for
representation and prediction of complex and rare patterns

Rare and complex states, abnormalities or regimes cannot be adequately
quantified even by the most advanced machine-learning approaches that
are capable of minimizing requirements on calibration/training data. This
is because of the very nature of these states – they may have just a single or
a few training examples. However, the human brain is capable of classify-
ing objects from the novel class even after a single example from that class
is presented. Such capabilities of the human brain are explained by the
similarity representation of the novel class to many well-learned classes.
A similar approach is known in computer science as a representation by
similarity [13,55]. Novel class is represented as a vector of probabilities of
N well-known classes to which a novel example belongs. Schematic illus-
tration of such a representation is shown in Figure 16.

Representation by similarity allows Single-Example Learning (SEL) of
novel or rare classes/states/regimes. However, it still requires a significant
number of known classes with many examples. Nevertheless, boosting
applied even to a two-class problem (e.g. ‘normal’-'abnormal') produces
an ensemble of many complementary classifiers that represent many
implicit sub-classes or regimes within these two classes. A vector of these
complementary models could offer a universal representation, by similarity
for many rare and complex cases, with limited number of known

Figure 16. Schematic of representation by similarity. Novel class (llama) is represented as
a vector of probabilities of three well-known classes (giraffe, sheep, and dog) to which a novel
example belongs.
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examples. We called such decomposition of the boosted ensemble,
Ensemble Decomposition Learning (EDL) which can be interpreted as
follows [13].

Good performance of the final boosting-based ensemble model is
achieved by building and combining complementary models that are
experts in different regions of feature space or in regimes of the considered
complex system. Therefore, many unspecified regimes are learned impli-
citly. However, only the aggregated output of the ensemble is used in
standard approaches, while the rich internal structure of the meta-model
remains completely ignored. We proposed the methods for extraction of
that implicit knowledge and called this framework EDL [13].

If the final aggregated classifier H(x) is given by Equation (2.5), one can
introduce the ensemble decomposition feature vector as follows:

DðxÞ ¼ ½α1h1ðxÞ; α2h2ðxÞ; :::; αThTðxÞ� (3)

Here, we assume that αi are already normalized as explicitly specified in
Equation (2.5).

Each sample, after the ensemble classification procedure, can be repre-
sented by this EDL vector D(x). This vector can provide detailed and
informative state representation of the considered system which is not
accessible in the aggregated form H(x). The functions hi(x) are local
experts in different implicit regimes or domains of a whole feature space,
which ensures good global performance of the final ensemble. Therefore, it
is reasonable to assume that, for similar samples from the same regime, the
meta-classifier would give similar decomposition vectors.

Two samples x1 and x2 are considered to be similar if their ensemble
decomposition vectors D(x1) and D(x2) are close to each other in some
metric, for example, l2 norm, i.e.

Dðx1Þ � Dðx2Þk k< δ (4)

This approach can be especially useful in applications where the significant
limitation of data with clear class labels makes it impossible to provide an
adequate number of reference classes required for standard SEL techniques
[13,55].

The aggregated output of the boosted ensemble provides good separa-
tion of the considered classes (e.g. normal – abnormal). Sub-classes or sub-
states within these two classes are not well separated. It cannot be applied
to differentiate between other classes which were not used in training. The
EDL vector provides universal and fine-grain representation not only for
the two learned classes but also for sub-classes/sub-states within these two
classes, as diagrammed in Figure 17.

ADVANCES IN PHYSICS: X 231



It should be noted that DNN-based DL frameworks do not offer any
direct and generic means to handle SEL problems in a consistent and
universal manner. However, recently we have shown that standard results
of the aggregated ensemble can be enhanced by a combination of the best
features of boosting and DNN [23]. Similarly, our preliminary results
indicate that DNN is capable of enhancement of EDL effectiveness which
will be reported elsewhere.

III. Synergy of physics-based models and machine learning in
biomedical applications

Practical quantitative modeling of most adaptive complex systems with
many interacting components presents serious challenges [11–14].
Insufficient accuracy of both the simplified analytical, and other low-
complexity models, and the empirical expert-defined rules is a typical
limitation of existing domain-expert approaches. Also, even when the
problem can be fully described from the first principles and the computa-
tion power is abundant, very wide range of scales in realistic systems
(many orders of magnitude) could still make direct physical simulation
impossible, even for the most powerful multicore CPU/GPU architectures.
However, even more important is the fundamental restriction caused by
the lack of detailed initial/boundary conditions. Therefore, even when
a complex system of interest can be rigorously described by fundamental
physical equations, many practical constraints may force to reformulate
(‘regularize’) the original problem. Here we do not refer to physics-based
frameworks that are routinely used for direct interpretation of data in such

Normal

Abnormal

Boosting-Based
Ensemble 
Learning

Ensemble
Of

Complementary
Classifiers

(Local Experts)

Aggregated Ensemble Output

EDL-based Representation

Base Models, Indicators, and 
other Existing Expert Knowledge 

in the Considered Domain

Figure 17. Schematic of classical boosting-based ensemble learning and ensemble decom-
position learning (EDL) based on the boosting ensemble. The EDL vector provides universal
and fine-grain representation not only for the two learned classes but also for sub-classes/sub-
states within these two classes.
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diagnostic tools as X-Rays or MRI and where the key role of physics-based
frameworks is obvious.

For example, the important problem of space-weather forecasting (i.e.
prediction of storms and sub-storms in Earth’s magnetosphere) is very
challenging due to the interplay of physical processes of a vast range of
time and spatial scales [50]. Besides the obvious drastic limitation of
computing power, the fine-grain initial and boundary conditions are not
known; it is impossible to have a satellite in every spatial location simulta-
neously. Therefore, different kinds of model reformulations allow useful
practical results to be obtained. Often, small-scale kinetic effects are intro-
duced as anomalous coefficients into large-scale fluid simulations without
running small-scale simulations [50]. One can also approximate the whole
magnetosphere-ionosphere system as a giant, but a simple, electric circuit
with just a few main elements having characteristics inferred from deeper
physical models (analog models) [56]. Finally, we can use machine-
learning formulations including NN and SVM, where inputs, time-
delays, and other characteristics are guided by physics-based models and
intuition [57].

Similar challenges are also relevant for physics-based modeling of bio-
medical systems. For example, modern computers make possible 3D phy-
sical simulations of human physiology including the cardiovascular system.
While these models may already be useful in certain diseases and drug
effects simulations, the inability of precision specification of all required
details (system parameters, boundary conditions, etc.) limits the applic-
ability of these simulations to a large class of practical problems. On the
other hand, more coarse-grain dynamical models, such as cardiovascular
models, can be formulated as a system of ordinary differential equations
approximating cardiovascular dynamics by a small number of components
and their interactions without a more detailed description (see discussion
in section 2.4) [58]. For example, these physics-based approximations
allow the practical generation of a very realistic, synthetic, ECG time series
for normal and pathological conditions that can be used in various ways as
discussed later.

As follows from our short review of modern machine-learning approaches,
the main limitations of pure data-driven models come from data incomplete-
ness that prohibits the capturing of all complex patterns of the considered
dynamical systems and that still warrants stable out-of-sample performance.
Typical problems of complex system modeling, such as the ‘curse’ of dimen-
sionality and non-stationarity, lead to serious challenges in biomedical appli-
cations. For example, direct machine-learning models in bioinformatics have
very high-dimensional inputs causing training data incompleteness, even with
an apparent abundance of the microbiological data [44]. Indeed, training data
should include a sufficient part of all possible input combinations, which
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scales as ~M1M2. . .MN, where N is total number of inputs (basic features)
and Mi is typical number of different ranges/regimes for i-th feature. Similar
problems are also relevant for models based on multi-channel andmulti-scale
physiological data. Non-stationarity is even a more important challenge in
modeling physiological dynamics. It is usually impractical to find and cali-
brate a single global multi-dimensional model that reasonably covers all
different dynamical regimes. Also, model interpretability, which is critically
important especially in biomedical applications, is often lacking in pure data-
driven models.

All modern approaches such as SVM, boosting-based ensemble learning,
and DNN-based DL, try to alleviate the problem of data incompleteness
and improve out-of-sample performance even in the cases of very limited
test data. Even though these advanced frameworks look different, the
generic underlying ideas are often very similar. For example, both SVM
and boosting are large-margin classifiers even though SVM achieves this by
applying a kernel transform for problem linearization, followed by robust
classification according to the SRM principle, while boosting maximizes
the margin in functional space via a combination of simple complementary
models [10,18,30,43,46]. Similarly, component-wise learning and hierarch-
ical representation are key features of achieving superior out-of-sample
performance by combined boosting and DNN-based DL [23].

Modern machine-learning approaches are capable of significant allevia-
tion of the key limitation of data-driven models. For example, the kernel
transform in SVM decouples the dimensionality of the classification space
from the dimensionality of the original input, which made SVM the algo-
rithm of choice in bioinformatics problems having very high dimensionality
[44]. Similarly, financial problems (e.g. volatility forecasting) having multi-
scale dependencies could also benefit from this SVM feature [59,60]. Now,
these problems are also tackled by DNN-based DL frameworks.

Widespread adoption of DNN-based DL frameworks began after 2012
when AlexNet (convolutional DNN) significantly outperformed other
machine-learning approaches in the ImageNet Large Scale Visual
Recognition Challenge [49]. This success was an example of layer-by-
layer training (a distinct feature of DL not present in classical NNs),
where unsupervised pre-training module was able to discover many
important features from a large multi-million database of labeled and
unlabeled images that ensured accurate classification by the supervised
part of DNN. Although this success can be legitimately attributed to the
existence of a large image database, the obtained results can be further re-
used in other image recognition problems using transfer learning concept.
For example, if for a particular diagnostic problem, collection of medical
images is limited, one can re-use a large part of DNN trained for general

234 V. GAVRISHCHAKA ET AL.



image recognition problem and re-train only several last layers of DNN
[52,53].

However, severe data limitations in the context of problem dimensionality
and/or absence of relevant problem for transfer learning can still drastically
reduce key advantages of DNN-based DL. For example, even for an unsu-
pervised pre-training phase, auto-encoders dealing with high-dimensional
input data require a large amount of data for effective operation. Also, the
variability in physiological dynamics and other biomedical applications
could be much higher than in an image-recognition problem. Similar
challenges are also relevant for other data-driven frameworks including
rare pattern recognition in the context of SEL or EDL [13,55]. For example,
for SEL, there is a requirement of large data sets for base classes. In the EDL
approach, there is a requirement of large enough data sets for the small
number of classes (e.g. normal and abnormal) and a rich set of flexible base
models should be available [55]. Therefore, existing domain-expert models/
rules obtained by deeper understanding of the considered domain could play
a key role in applications with severe incompleteness of training data due to
natural dimensionality reduction and usage of domain-specific constraints.
In some sense, the usage of domain-expert knowledge could be considered
as the ultimate transfer of learning.

Thus, given limitations of both domain-expert models and pure data-
driven approaches, it is natural to find synergistic combinations of these
approaches where their best features can optimally complement each
other. This can be achieved in several different ways. The most open
framework for direct incorporation and testing of any complementary
value of existing domain-exert knowledge is the usage of existing and
properly parametrized analytical or other parsimonious models within
the boosting framework diagrammed in Figure 14. This approach allows
maximum extraction of any complementary value offered by existing
models and has no limitations on the number of the considered base
models. In the next section, this idea is illustrated in the context of
a boosting-based combination of complexity measures known from non-
linear dynamics (NLD) and spectral (frequency-domain) measures known
for their utility in science and technology for cardio diagnostics and
monitoring as well as detecting neurological abnormalities from gait time
series. This discussion summarizes our previously published results on the
subject [11–14,20]. However, utility of such multi-complexity measures is
not limited to physiological time series analysis and could be effective in
the important problem of differentiation between coding and non-coding
DNA sequences [61] and similar applications.

There are numerous examples of other important types of efficient
combination of domain-expert knowledge (including physics-based mod-
els and views) and modern machine learning techniques. For example, data
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augmentation, using synthetic data obtained from realistic physics-based
simulations, can be effectively used to compensate the lack or scarcity of
the real data for rare patterns/regimes in biomedical applications, complex
weather conditions, or dangerous situations in self-driving vehicle applica-
tions [62]. Such synthetic data can be very useful in the pre-training phase
of DNN-based DL frameworks, as well as in supervised training based on
different algorithms. Even in the cases of ultimate success of the advanced
data-driven approaches such as generative adversarial networks (GAN)
[63], one can still attribute part of the success to the guidance provided
by physics-based reasoning. One of the recent examples of this kind is the
successful application of GAN for in-silico drug discovery where novel
drug component is proposed by NN-based system without costly and very
lengthy lab experiments [64,65].

IV. Applications of hybrid discovery frameworks to real biomedical
data

1. Overview

The human organism is an example of a complex adaptive system. Signal-
variability analysis provides a generic non-invasive technology for evaluation
of the overall properties of the complex system. The association between
altered variability and illness is ubiquitous [15–17,61,66–73]. One of the
most common applications of this general principle is heart rate variability
(HRV) analysis. Compelling evidence from numerous research efforts and
clinical testing suggests that HRV analysis could play an important role in the
cardiac diagnostics [15,16,66–69]. HRV analysis relies only on the inter-beat
interval signal (RR data) which can be extracted with high accuracy from even
noisy ECG time series (e.g. from those collected by portable and wearable
devices). This significantly expands potential applications areas of HRV
diagnostics. For example, when high-quality, highly sampled, ECG time series
is available, subtle changes in the multi-scale dynamics of RR intervals could
provide important information, especially for cardiac abnormalities lacking
well-defined ECG signatures traditionally used by cardiologists. HRV sensi-
tivity to non-cardiac abnormalities, to emotions, and to other complex psy-
cho-physiological states significantly expands potential application areas of
HRV analysis. Variability analysis is not restricted to HRV, but also effectively
used in the analysis of other physiological time series, including EEG and
EMG (see references at www.physionet.org). Another example is non-invasive
diagnostics and monitoring of neurological abnormalities using variability
analysis of gait time series (i.e. step-by-step time intervals) [70–73].

The majority of HRV and other time series variability analysis tools,
currently used in practice, are based on time- and frequency-domain linear
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indicators [15,69]. However, methods from nonlinear dynamics (NLD)
provide a more natural modeling framework for adaptive biological sys-
tems with multiple feedback loops [15–17]. Compared to linear indicators,
many NLD-based measures are much less sensitive to data artifacts, to
non-stationarity, and to changes in patient activity [15]. However, many
NLD indicators require a long-duration time series for stable calculation
[15–17]. Similar restrictions also apply for linear indicators. This could
drastically limit practical usability of HRV analysis in such applications as
‘express’ diagnostics, an early indication of subtle directional changes
during personalization of medical treatment, and robust detection of
emerging or transient abnormalities.

Previously, we have demonstrated that these challenges could be overcome
by using classification framework based on boosting-like ensemble learning
techniques that are capable of discovering robust multi-component meta-
indicators from existing HRV measures and other incomplete empirical
knowledge [11–14]. Here we provide a short overview of the obtained results.

Examples presented here are mostly based on real-patient ECG data from
http://www.physionet.org. We used RR data from 52 subjects with normal
sinus rhythm, 27 subjects with congestive heart failure (CHF), 84 subjects with
long-term atrial fibrillation (LTAF), and 48 subjects with different types of
arrhythmia. Up to 24 hours of RR data for each normal, CHF, and LTAF
subjects are available. In addition, up to 30 min of RR data are available for
each subject with arrhythmia. We have also added 78 intervals (each of 30
min) from patients with supraventricular arrhythmias to expand the arrhyth-
mia data set. It should be noted that, while various cardiac abnormalities can
be accompanied by arrhythmia, a separate arrhythmia sample, considered
here, represents an arrhythmia-only condition. For illustrations of applicabil-
ity of our approach to gait time series analysis, we use gait data collected from
normal subjects and patients with amyotrophic lateral sclerosis (ALS),
Parkinson’s (PD) and Huntington’s (HD) diseases that are available at
http://www.physionet.org. This data set includes gait time series from 15
patients with PD, 20 patients with HD, 13 patients with ALS, and 16 healthy
subjects. Each time series consists of up to 300 stride intervals. We use
segments as short as 128 stride intervals. Several other data sets are available
at http://www.physionet.org and some privately collected data sets from
wearable devices are also used in the following examples.

2. Heart rate variability for ECG time series analysis

ECG-based, cardiac diagnostics combine several desirable features and are
widely used by medical practitioners and researchers. A typical diagnostic
procedure, performed by cardiologists, consists of finding certain patterns,
and other well-established signatures, in an ECG waveform (see Figure 18).
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Some of such routines could be automated to create computerized deci-
sion-support or to accommodate expert systems. However, traditional
cardiac diagnostics could often face significant challenges. These include
detection of pathologies without specific ECG signatures, as well as early
stages of any abnormality where well-known patterns are not yet formed
or remain transient. Traditional procedures might reveal only the well-
known localized patterns without detecting signatures of long-range multi-
scale correlations in the ECG dynamics. However, measures based on
subtle changes in ECG dynamics may serve as sensitive indicators of the
emerging abnormality or hard-to-detect cardiac pathology.

HRV analysis offers a set of measures that are sensitive to such non-
obvious changes in heart rate dynamics and can provide complemen-
tary insight into cardiac diagnostics [15–17,61,66–69]. HRV sensitivity
to non-cardiac abnormalities, emotions, and other complex psycho-
physiological states makes it also possible to use HRV analysis beyond
the detection of pure cardiac abnormalities. For example, HRV indica-
tors could be used in determining the severity of neurological insult
(brain damage) and a prognosis for recovery [74], in understanding
neurobiology of psychiatric disorders [75], monitoring of diabetic
patients [76], and an easy-to-use and sensitive measure of overtraining

Figure 18. Schematic of ECG waveform and its main elements: the P wave representing the
depolarization of the atria, the QRS complex representing the depolarization of the ventricles,
the T wave representing the repolarization of the ventricles and others. Inter-beat interval
signal (R-R time series) can be extracted with high accuracy even from noisy ECG waveform
recordings.
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in athletes [77], and in monitoring of driver alertness and other
changes in psycho-physiological state [78].

The most advanced analytical indicators used in HRV analysis are based
on NLD-inspired complexity measures (e.g. DFA, MSE and multifractal
extensions) and advanced linear indicators including spectral (frequency-
domain) measures. Detrended fluctuation analysis (DFA) was proven to be
useful in revealing the extent of long-range correlations in time series.
First, the investigated time series of length N is integrated. Next, the
integrated time series is divided into n boxes of equal length. In each
box, a least-square line is fit to the data with y coordinate denoted by yn(k)
(representing the trend in that box). Finally, the integrated time series, y(k),
is de-trended as follows:

FðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
k¼1

yðkÞ � ynðkÞ½ �2
vuut (5)

A linear relationship on the plot of log F(n) vs. log n indicates a power law
(fractal) scaling characterized by a scaling exponent β (slope of the fitted
straight line). Peng et al. found that F(n) computed from RR time series is
characterized by two scaling exponents β1 and β2 (cross-over phenomena)
computed over a smaller (4 < n < 16) interval and a larger (16 < n < 64)
interval, respectively [66]. The two scaling exponents are computed over
approximately 2-hour segments (8 × 103 beats) and presented in Figure 5
of ref [66]. It was shown that the two scaling exponents provide distinctive
clustering of the normal and pathological (CHF) cases, however, with
noticeable overlapping.

Themultiscale entropy (MSE)method [61,67] has been introduced to resolve
limitations of traditional single-scale entropy measures. First, a coarse-graining
process is applied to the original time series, xi. Multiple coarse-grained time
series are constructed by averaging the data points within non-overlapping
windows of increasing length, τ:

yðτÞj ¼ 1
τ

Xjτ
i¼ðj�1Þτþ1

xi (6)

where τ represents the scale factor and j = 1. . .N/τ. The length of the
coarse-grained time series is N/τ. Next, entropy is calculated for each time
series and plotted as a function of the scale factor. A preferable entropy
measure is sample entropy (SE) [61,67].

Typical types of MSE behavior have been summarized in Figure 5 of ref
[67]. For healthy subjects, the entropy measure increases on small-time
scales and then stabilizes to a relatively constant value. Entropy, for sub-
jects with CHF, markedly decreases on small-time scales and then
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gradually increases for longer time scales. The entropy measure for RR
time series, derived from subjects with atrial fibrillation, monotonically
decreases. Different features of the MSE curves could be used for separa-
tion of normal and pathological cases. One of the simplest features is the
slope β1 of the MSE curve for small-time scales (e.g. between scale factors 1
and 5) [67]. However, although these features could provide statistically
significant separation between different classes, the required long duration
(~2–4 hours) and significant overlapping of the classes pose the same
practical problems as with DFA measures.

In many practical applications, the ability to calculate HRV on short
segments of RR data is critical [11–14]. Our analysis indicates that the
well-known stylized facts of DFA and MSE measures persist even for
significantly shorter RR time series (down to ~5–15 min). However, their
abilities for discrimination between healthy and pathological cases could
dramatically deteriorate. The same is true for advanced linear measures.

2.1. Universal indicators for robust detection of complex, asymptomatic,
emerging and transient cardiac abnormalities
The hybrid boosting-based framework described earlier is generic and is
applicable in many different fields. Here we discuss the application of
the boosting-based classification framework to the discovery of robust
multi-component HRV indicators (i.e. multi-complexity measures) that
are capable of working with short RR time series. A natural choice of
base models could be low-complexity base classifiers where each of them
uses a small subset of the available measures β. Our empirical analysis
indicates practicality and robustness of base classifiers based on just
a single measure βi:

y ¼ hðβi½pi�; γÞ (7)

Here γ is a threshold level (decision boundary) and pi is a vector of
parameters of the chosen measure. Applying boosting steps (2.1)-(2.5) to
a set of such base classifiers with different measures βi and optimizing over
(pi,γ) at each boosting iteration, we obtain a multi-component meta-
classifier (Equation (2.5)).

The well-known NLD indicators applicable for HRV analysis are
based on DFA (see Equation (5)) [66], MSE (see Equation (6)) [61,67],
and multi-fractal analysis (MFA) including MFA extension of DFA [68].
The comparable performance is also demonstrated by advanced linear
indicators based on power spectrum analysis of the RR time series
[15,69]. One of the widely used indicators of this type is a power
spectrum ratio of the low-frequency band (0.04–0.15Hz) to the high-
frequency band (0.4–0.15 Hz). Results presented in this paper are based

240 V. GAVRISHCHAKA ET AL.



on indicators derived from the described families of HRV measures.
However, our framework is open to any other HRV metric that can offer
complementary value in cardiac state differentiation.

In general, HRV measures require long-duration time series for stable
calculation [11–14]. However, HRV indicators have to be computed on
short segments in order to capture early signs of developing and/or inter-
mittent abnormalities or to detect subtle initial effects of treatment proce-
dures. Otherwise, an indicator computed on a long-duration time series
will average out these short-lived effects and will fail to detect them. Unlike
traditional HRV measures, the proposed ensemble-based indicators are
suitable for short-duration, highly sampled, RR time series [11–14].

In all calculations presented in this section, the full data sets, described
above, are used. The training data set for ensemble learning algorithms
include no more than 50% of normal, CHF, and arrhythmia data combined.
LTAF data have not being used in the training phase. Since base classifiers
are low-complexity with a small number of adjustable parameters, we have
not observed any significant differences between in-sample and out-of-
sample results. Further significant reduction of the training data set without
performance deterioration is also possible. The number of boosting itera-
tions applied in the considered examples is 30, although the main effects are
already captured in 10–20 iterations. Typically, the best-on-average single
HRV indicators, which are also picked up at the 1st boosting iteration, are
DFA and power spectrum ratio, while MSE is a very important comple-
mentary component in the final ensemble and could be important in
differentiation of abnormality types.

Performance comparison of typical ensemble classifier with each of single
HRV measures in the context of normal/abnormal classification is demon-
strated in Figure 19. Since all measures are computed on short RR segments
of 256 beats, this analysis relates to an express test when only a short-
duration ECG time series is available. However, in cases of emerging and
transient abnormalities, the ability to work with short-duration segments is
very important, even when long-duration time series (e.g. collected by
Holter monitor) are available. As evident from Figure 19, ensemble-based
indicator shows significant improvement in all three cases [79].

2.2. Rare psycho-physiological states and pathologies: robust detection and
quantitative description
Even though the boosting-based approach could significantly improve the
accuracy of the normal-abnormal classifier, without re-training, such an
indicator may not be able to differentiate between abnormality types [13],
as illustrated in Figure 20. Here, the left panel depicts good normal-
abnormal classification for both CHF and arrhythmia. On the other
hand, the receiver operating characteristic (ROC) curve of the same
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Figure 19. Detection (i.e. true positive) rates of CHF, LTAF, and arrhythmia for different false
alarm (i.e. false positive) rates. All presented measures are computed on short RR segments of
256 beats which is relevant for express diagnostics or monitoring when only a short-duration
ECG time series is available. Ensemble-based indicator shows significant improvement over
single measures in all three cases of different abnormalities.

Figure 20. Receiver operating characteristic (ROC) curves of the ensemble indicator. Left: ROC
curves of the aggregated ensemble-based indicator. Right: ROC curves based on EDL metrics
of the same indicator using full ensemble (green) and MSE-only subset (dashed green). EDL-
based ROC curve is significantly better than that based on the aggregated value. By choosing
certain sub-components of the ensemble (e.g. only MSE), one can further improve differentia-
tion based on EDL metrics.
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indicator for CHF vs arrhythmia classification, shown on the right panel, is
just slightly better than random. ROC curve is a performance measure-
ment for classification problem at various thresholds settings where ROC
curve of the random model without any differentiation ability corresponds
to the diagonal line. However, besides aggregated value, the ensemble
classifier also offers an EDL vector that implicitly encodes many different
regimes/states. By choosing a single reference RR segment (and its EDL
vector) from arrhythmia sample (as in the single-example learning
approach) and computing distances from this vector to all EDL vectors
of arrhythmia and CHF samples, one can obtain the ROC curve for an
arrhythmia-CHF classification based on EDL metrics (see Figure 20).

We see that the EDL-based ROC curve is significantly better than that
based on the aggregated value. By choosing certain sub-components of the
ensemble (e.g. only MSE), one can further improve differentiation based
on EDL metrics. In a more generic context, this demonstrates SEL cap-
abilities of EDL-based approach that can be used for the analysis of rare
and/or complex abnormalities, where all standard approaches fail due to
data limitation [13].

2.3. Generic ensemble-based representation of global cardiovascular
dynamics for personalized treatment discovery and optimization
A proper representation of global cardio dynamics could be used for quick
and objective matching of the current patient to former cases with known
treatment plans and outcomes. Direct comparison of full ECG (RR) time
series from two individuals is not effective due to the high level of noise
and natural long-term variations of the ECG time series. Collection of
consecutive EDL vectors provides effectively filtered representation using
natural discretization (classification framework) that removes unimportant
variations but preserves differentiation among key micro-states [79]. By
calculating Euclidean distances between each EDL vector of one subject
with each EDL vector of another subject, the distance matrix is obtained.
However, we need the single-number distance measure between two sub-
jects that aggregates comparisons between all of these micro-states repre-
sented by EDL vectors. Large distance matrix could be noisy by itself, and
usage of simple averages or medians from all cross-EDL distances is not
optimal as illustrated later in this section.

The described challenge of handling the distance matrix is similar to
that encountered in financial applications dealing with quantification of
the market state using large and noisy correlation matrices of thousands of
stocks. It was shown that graph-based approaches such as Minimum
Spanning Tree (MST) could offer significant advantages over the more
traditional approaches based on random matrix theory [80]. MST repre-
sentation is motivated by the human perception, which organizes
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information having the most economical encoding. A spanning tree is
a connected graph containing all vertices of the original graph without
loops [81]. The spanning tree length is defined as the sum of the weights of
its edges. MST is a spanning tree with a minimal length among all
spanning trees connecting the nodes of the graph. MST of the graph can
be derived from Prim’s or Kruskal’s algorithms [81].

Representing long RR time series with a collection of consecutive EDL
vectors and using MST for computing aggregated distance between such
collections, one can obtain differentiation even within the same abnorm-
ality type as illustrated in Figure 21 [79]. Here we show MST-based
distances between each pair of 20 CHF patients using a collection of 50
consecutive EDL vectors obtained from the same normal-abnormal ensem-
ble indicator as in Figure 19. We see that the distance of the subject to
himself is either minimal or close to minimal. Therefore, since our repre-
sentation can be used for self-identification, it is natural to assume that
other subjects, close to the considered patient in terms of our metrics, have
very similar cardiac conditions and responses to personalized treatments.

The importance of (1) using ensemble measures, (2) MST for handling
cross-subject distance metrics, and (3) long-duration ECG time series, is
demonstrated in Figure 22 [79]. Here, we rank the distance of each CHF
subject to himself against distances to other subjects. Minimal distance

Figure 21. MST-based distances between each pair of 20 CHF patients using a collection of 50
consecutive EDL vectors computed on 256-beat RR segments. For each subject, distances to
all other subjects are represented by black circles. Distance to his own portion of RR time
series, not overlapping with the original one, is shown by a red circle. Distance of the subject
to himself is either minimal or close to minimal.
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corresponds to rank 1, next after minimal to rank 2, etc. In the case of ideal
self-identification, all ranking numbers would be 1.

While presented illustrations support the utility of our boosting-based
multi-complexity metrics (combined with MST-based aggregation) for
fine-grain characterization of the personal cardiac state, the ultimate test
of our metrics would consist of identification of subjects with close cardiac
states before treatment and establishing whether the same specialized
treatments produce similar outcomes. While we are still in the process of

Figure 22. Rank of the MST-based distance of each healthy, CHF, and LTAF subject to himself
against distances to other subjects within the same group. Rank 1 corresponds to minimal
distance. Ensemble-based rank (green) is compared to those based on single measures: DFA
(blue) and LFHF (yellow). Ensemble-based measure provides a significantly more accurate
ranking compared to any single measure.
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collecting such detailed test data, results of the application of our overall
framework to real clinical data are very encouraging [79].

2.4. Model-based generation of realistic ECG time series for the enhancement
of machine learning and hybrid systems
As already mentioned, data augmentation using synthetic data obtained
from realistic physics-based simulations can be effectively used to com-
pensate lack or scarcity of the real data for rare patterns/regimes in
biomedical applications. Such synthetic data can be very useful in the pre-
training phase of DNN-based DL frameworks as well as in other super-
vised training algorithms including boosting. Often, even when detailed
simulations based on fundamental physical equations are possible, much
more useful are coarse-grained proxy models with just a few macro
components and parameters characterizing living system state ranging
from normal (healthy) to different stages and types of abnormality.

In the context of cardiovascular applications, one such simplified model
based on the system of ordinary differential equations (ODE) was pro-
posed in [58] and schematically illustrated in Figure 23. This physiologi-
cally motivated, dynamical model of cardiovascular autonomic regulation
was shown to be capable of generating heart rate (RR) time series with
long-range correlations and multifractal properties very similar to those
observed in real RR data [58]. This model consists of a system of delay-
differential equations based on the one proposed by Seidel and Herzel and
later modified by Kotani et al. [58] to incorporate additional factors needed
to simulate synchronization between heartbeat and respiration. In short,
this model captures several main physiological factors including: (a) neural
afferents from blood pressure sensors (i.e. baroreceptors) to the central
nervous system; (b) autonomic sympathetic and parasympathetic neural
efferents from the brain stem cardiovascular centers; (c) mechanical signal
transduction within the cardiovascular system finally setting the arterial
blood pressures; and (d) the effect of the baroreceptor afferents on the
instantaneous phase of the respiratory oscillator [58].

The model has several parameters characterizing baroreceptor activity, the
efferent sympathetic neural activity, parasympathetic neural activity, etc. [58].
By varying these parameters one can generate any number of synthetic RR time
series for a wide range of normal and abnormal conditions, including those rare
and/or complex states that are not available in any databases of real cardiac data.
Therefore, real cardiac data can be augmented with these synthetic data for
significant enhancement of DNN-based DL (in both pre-training and super-
vised training stages) and boosting-based multi-complexity approaches.
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3. Gait time series analysis for diagnostics and monitoring of
neurodegenerative diseases

Variability metrics of gait stride intervals are known to be sensitive to
changes in neurological functions associated with aging and development
of certain neurological diseases [74–77]. Long-range correlation and other
measures of stride-interval dynamics could be effective in detecting neu-
rological abnormalities and in the quantification of their severity [74–77].
These include Parkinson’s (PD) and Huntington’s (HD) diseases, amyo-
trophic lateral sclerosis (ALS), and others.

The remaining challenges in treatment and diagnostics of ALS, PD, HD,
and other neurological abnormalities maintain the field’s significant interest
in unobtrusive modalities capable of early diagnostics and robust monitoring
of such abnormalities. Therefore, variability indicators computed from stride-

Figure 23. Schematic diagram of the cardiovascular/respiratory model proposed in [58]. The
diversity in the model is caused mainly by factors such as time delays in the neural
conduction, multiplications in neural and mechanical variables, and time-varying Windkessel
dynamics. The model consists of a system of delay-differential equations.
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interval time series could provide a convenient and robust tool for early
diagnostics and monitoring of neurological abnormalities. A generic set of
NLD complexity measures and linear indicators used in HRV analysis can be
directly applied to gait quantification after recalibration.

However, similar to HRV analysis, the accuracy of NLD measures and
advanced linear indicators could significantly deteriorate when applied to
shorter-duration segments of gait time series [20]. Nevertheless, the com-
bination of complementary complexity measures using boosting-like algo-
rithms can significantly increase the accuracy and stability of indicators
operating on short segments of gait time series. Such multi-complexity
measures could be effective for early detection and monitoring of a wide
range of neurological abnormalities. We provide a short summary of
results reported in our previous publications [20].

To illustrate the capabilities of our ensemble-based indicator, we use gait data
collected from normal subjects and patients with ALS, HD, and PD that are
available at http://www.physionet.org. We use segment durations as short as
128 stride intervals for calculation of DFA, MSE and power spectrummeasures
that were used as base classifiers in AdaBoost framework. Since low-complexity
base classifiers are used, we do not find any significant signs of overfitting on
out-of-sample data. In the following, performance metrics are computed on all
available data. The classifier from the first boosting iteration is the best single
classifier. In our case, it always happens to be a DFA-based classifier.

Figures 24 and 25 illustrate that, although the best single indicator
computed on short gait time series is still capable to provide some differ-
entiation between normal and abnormal states, boosting-based

Figure 24. Single DFA measure computed on each of 128-interval segments of stride data from
the normal control group and patient groups with ALS, HD, and PD (left panel). Aggregated
ensemble measure computed on each of 128-interval segments of stride data from the
normal control group and patient groups with ALS, HD, and PD (right panel). Although the
best single indicator computed on short gait time series is still capable to provide some
differentiation between normal and abnormal states, boosting-based combination signifi-
cantly improves such differentiation.
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combination drastically increases the detection rate (by 40–50%) for rea-
sonable false alarm rates.

4. Subtle psycho-physiological states differentiation based on ECG, gait and
other physiological time series

Besides pure medical applications, variability analysis of physiological time
series could be also used for detection and monitoring of psychological condi-
tions and abnormalities. For example, anxiety disorders, chronic stress condi-
tions, depression, and other psychological abnormalities are often associated
with the reduction of HRV [82 and references therein]. HRV is known as an
objective impact measure of the mainstream and alternative (e.g. meditation)

Figure 25. Abnormality detection rates for a given false alarm rate: The best single measure vs
ensemble of multi-complexity measures. Although the best single indicator computed on
short gait time series is still capable to provide some differentiation between normal and
abnormal states, boosting-based combination drastically increases the detection rate (by
40–50%) for reasonable false alarm rates.
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therapies in applied psychology [82 and references therein]. Gait is also known
to be a potential indicator of depression, autistic-spectrum disorders, and other
psychological and psychiatric conditions [82 and references therein]. Since
modern wearable technology (e.g. fitness wearable devices and smartphone
sensors) can be easily used for convenient collection of data required for
HRV and gait variability calculation, variability indicators could provide very
efficientmeans of continuousmonitoring of psychophysiological state and early
detection of developing abnormalities. This could also be used for objective
assessment of the therapy impact and its subsequent optimization.

It turns out that our ensemble-based HRV indicators could be effectively
used in detecting general changes in psychophysiological states [82]. This
capability is illustrated in Figure 26, where psychophysiological states before
and during Chi meditation are quantified (data from http://www.physionet.
org are used). Our ensemble-based measure clearly shows the expected
improvement of the psychophysiological state, quantified by HRV metrics,
in meditation compared to the pre-meditation period. Overall, single HRV
indicators also indicate the correct direction. However, there is significant
overlapping between pre-meditation and meditation states, which indicates
excessive noise compared to any ensemble-based measure. This could make
the distinction between two states much less reliable. Similarly, the ensemble-
based measure could be much more robust in early detection of subtle
changes in psychological conditions and in their monitoring for an objective
choice of optimal therapy and its further fine-tuning [82].

While we are not aware of any large open-access databases capturing slow
development of neurological abnormalities, other gait databases can be used
for illustration of slow physiological regime changes that can be captured by
gait time-series analysis. One of them is the gait maturation database, first

Figure 26. 10-th percentile of the distribution of ensemble (left panel) and single indicators (two
right panels) computed on the consecutive 256-beat RR segments of 1 hour Holter monitor
recordings before (green) and during (blue) Chi meditation for 7 subjects. Ensemble-based
measure clearly shows the expected improvement of the psychophysiological state in meditation
compared to the pre-meditation period. Although single measures also indicate the correct
direction, there is significant overlapping between pre-meditation and meditation states.
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analyzed byHausdorff et al. [83] and now available at http://www.physionet.org.
The gait-maturation database is a collection of gait time series from 50 children
of various age groups: from 3 to 14 years old. For each subject, a time series is up
to 500 stride intervals long. It is known that in very young children, immature
control of posture and gait results in unsteady locomotion. In children 3 years
old, gait appears relatively mature. However, as suggested in [83], the dynamics
of walking changes continues beyond this age. This was confirmed by quanti-
tative analysis of 50 children from the gait-maturity database [84]. Single time-
and frequency-domainmeasures aswell asDFA-basedmeasures have been used
in that study. It was demonstrated that, while gait in younger age groups
resembles that of adults with neurological abnormality, it continuously matures
and approaches the dynamical range of healthy young adults as age increases.
Hausdorff et al. [84] calculated the indicators using significantly long-duration
segments (at least 256 stride intervals), and there was still a wide overlap of
indicator values among different age groups. Such overlap could only increase
for shorter segments.

This overlap is not critical for the main objective of the analysis presented in
[84]. However, for early detection of any slow regime change due to developing
abnormality or initial treatment effects, insufficient discrimination capabilities
of single indicators could make them useless in practice. Thus, gait maturation
database offers convenient real-life data to demonstrate the advantages of our
ensemble measures. For this purpose, we compare the best single indicator
(DFA) and ensemble-based metrics discovered in the normal/abnormal classi-
fication scope.

We applied these indicators to short (128-interval) segments from different
age groups and summarized the results as box plots in Figure 27, which

Figure 27. Single DFA measure computed on each of 128-interval segments of stride data
from three different age groups of healthy subjects (upper panel). Aggregated ensemble
measure computed on each of 128-interval segments of stride data from three different age
groups of healthy subjects (bottom panel). A single DFA indicator is not capable to detect any
clear trend in gait dynamics with respect to the short-intervals evolution as child age
increases, while the multi-complexity ensemble indicator shows a clear trend towards gait
dynamics of healthy adults as age increases.
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demonstrates that a single DFA indicator is not capable to detect any clear
trend in gait dynamics with respect to the short-intervals evolution as child
age increases. On the other hand, the multi-complexity ensemble indicator
shows a clear trend towards gait dynamics of healthy adults as age increases.

V. Summary

Limitations of modern machine learning approaches caused by training-data
incompleteness have been reviewed. Hybrid learning framework that
leverages existing domain-expert knowledge, including physics-basedmodels,
boosting-like model combination, DNN-based DL, and other machine learn-
ing algorithms for drastic reduction of training-data requirements have been
proposed. Application of the framework to physiological data analysis is
illustrated using real data from http://www.physionet.org. Utility of the pro-
posed synergetic combination of physics-based reasoning and machine learn-
ing to other biomedical applications has also been discussed.
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