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Abstract— This paper reviews the recent literature on
technologies and methodologies for quantitative human
gait analysis in the context of neurodegnerative diseases.
The use of technological instruments can be of great sup-
port in both clinical diagnosis and severity assessment
of these pathologies. In this paper, sensors, features and
processing methodologies have been reviewed in order to
provide a highly consistent work that explores the issues
related to gait analysis. First, the phases of the human
gait cycle are briefly explained, along with some non-
normal gait patterns (gait abnormalities) typical of some
neurodegenerative diseases. The work continues with a
survey on the publicly available datasets principally used
for comparing results. Then the paper reports the most
common processing techniques for both feature selection
and extraction and for classification and clustering. Finally,
a conclusive discussion on current open problems and
future directions is outlined.

Index Terms— Human gait analysis, Sensors, Fea-
tures, Classification Methodologies, Neurodegenerative
Diseases.

I. INTRODUCTION

In the last decades, the number of patients with neurodegen-
erative diseases (NDDs) has been growing rapidly, given the
remarkable improvements in life expectancy. Currently, neu-
rodegenerative diseases, such as Alzheimer’s Disease (AD),
Multiple Sclerosis (MS), Parkinson’s disease (PD), Hunt-
ington’s disease (HD), dementia, etc., are not curable. The
World Health Organization (WHO) predicted that within 2030,
neurological disorders will represent the second leading cause
of death, worldwide [1]. Currently available treatments can
only limit the rapid progression of the disease.

Neurodegenerative diseases share symptoms that involve
progressive cognitive decline, limiting everyday functional
abilities and leading to motor dysfunctions, including deficits
in gait and balance [2], [3]. The link between cognitive
impairment and altered mobility performance has been widely
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studied and recognized [4], [5]. The continuous and regular
monitoring of the mobility performance of elderly people
may help diagnosis and assessment of the severity of neuro-
logical disorders. Mobility tests are usually administrated by
physicians or specialized physiotherapists in order to measure
patients’ functional mobility and still rely on observation-
based assessment [6]. In the last years, technological and
methodological advances have opened up the potential to
provide objective measures of mobility performance in order
to aid understanding neurological conditions in an automatic
fashion [7].

Quantitative measurements of mobility performance have
major advantages from different perspectives: social, clinical
and patient-centered. It can provide clinicians with pivotal
information on health status and cognition informing about the
disease severity and progression; help to distinguish cognitive
impairments; help to timely intervene for maintenance and
promotion of self-independence of patients; help to capture
mobility variations during time (both improvements or degen-
erations); improve patients’ quality of life; be of support to
evaluate fall risk and so to prevent falls; reduce the heavy
burden of relatives and caregivers; reduce socio-economic
costs [7], [8], [9].

Fig. 1. Main steps of instrumented gait analysis.

Several fine reviews on instrumented gait performance eval-
uation have been published in the last years, demonstrating
considerable interest in this area [2], [3], [7], [10], [11],
[12], [13]. Many published reviews list plenty of works that
show the strict relationship between mobility deficits and
cognitive impairment for different purposes: differentiating
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Mild Cognitive Impairment (MCI) patients from cognitively
intact older adults [2], identifying MCI subtypes [3], [12],
[14] studying disease progression in PD, ataxia and dementia
[7], demonstrating the relationship between gait, emotions and
mood disorders [10], and so on. The previously mentioned
reviews are mostly related to medical and motor aspects of
diseases and do not contain specific aspects connected to
the methodologies that can be applied. Other reviews focus
only on technologies either investigating their usability and
acceptability by older adults with MCI and dementia [15] or
exploring ambient sensors for elderly care and independent
living [16] or exploring wearable sensors [11]. Few works exist
which explore the methodological approaches to gait analysis
by both computer vision and pattern recognition points of
view [17], [18]. However these last works address big data
issues related to gait [17] or methodologies for recognizing
an individual (i.e. biometric recognition) by his/her gait [18].

Differently from previous reviews, this article provides
a self-consistent overview of all the aspects related to the
instrumented evaluation of gait parameters in neurodegerative
diseases (see Figure 1). The article describes how the biometric
technologies and methodologies (data sensing, signal process-
ing, feature engineering, pattern recognition and Computer
Vision) can be used for the specific aim of neurodegerative
diseases evaluation. To this aim, referenced papers have been
selected by searching IEEE Xplore, ScienceDirect, Scopus,
PubMed and ACM scientific databases considering those pub-
lished in the last decade. The search terms used to categorize
articles were “gait analysis” joined with AND/OR connectives
with the key terms “neurodegenerative disease”, “Parkinson”,
“Alzheimer”, “Sclerosis”, “Huntigton” and “dementia”. As
this is not a systematic review, a screening method has been
applied for selecting studies that better covered the different
aspects of applied technologies and methodologies useful for
the discussion carried out. As a result, the work has been
organized taking into account the pipeline of a typical pattern
recognition system. The gait cycle is firstly introduced (section
II) along with most frequently abnormal patterns associated
with the most common neuromuscular diseases (section III).
Gait sensing technologies are reported in section IV organized
in terms of ambient sensors, wearable sensors and hybrid
approaches. Acquisition protocols and available datasets are
reported, respectively, in sections V and VI. Features and
classification techniques are described in sections VII and VIII.
Section IX summarizes the main findings along with related
open issues. Section X concludes the article.

II. THE GAIT CYCLE

Gait Analysis studies the ways both humans and animals
walk [20], [21]. A gait cycle is a succession of physical
actions performed during walking that involve the motion of
lower limbs. Formally, the gait cycle is defined as the interval
between two successive heel strikes of the same foot (step).
It is also known as stride and consists of two phases: the
stance phase and the swing phase which alternate for each
leg as shown in Fig. 2. The stance phase includes the heel-to-
toe contact sequence of the foot. The swing phase proceeds

Fig. 2. Gait Cycle phases and sub-phases according to [19].

with the foot suspended in the air. On average stance phase
accounts for 60% of the gait cycle, whereas the swing phase
for 40%. Furthermore, each phase includes a sequence of
Double Support (both feet are in contact with the ground) and
Single Support (only one foot is in contact with the ground)
sub-phases (see Figure 2). These definitions are valid for all
the studies on gait analysis. Many of the methods presented in
this article can be applied for gait analysis in several contexts
such as rehabilitation, neurological gait disorders, psychiatric
gait abnormalities, gait degradation due to aging, and so on.
Depending on the particular context, gait characteristics can
be different. This article focuses on the researches done in the
particular context of neurodegerative diseases, narrowing the
analysis to a subset of diseases as described in the following
section.

III. NEURODEGENERATIVE DISEASES AND GAIT
ABNORMALITIES

Neurodegenerative diseases result in progressive degenera-
tion of neuronal cells. This degeneration worsens over time
leading to the death of neurons. As a consequence, neuromus-
cular control is compromised causing problems with balance
and walking (ataxia) or with mental functioning (dementia)
[22], [23]. In the last years, a considerable research effort
has been devoted to the study of gait analysis in medicine.
Despite the wide spectrum of neurodegenerative diseases,
the majority of research attention has been focused on gait
pathologies related to Alzheimer’s disease (AD), Parkinson’s
disease (PD), Multiple Sclerosis (MS), Amyotrophic Lateral
Sclerosis (ALS), Huntington’s Diseases (HD), and various
forms of Dementia.

AD is the most common neurological disorder. On the early
disease stage, AD patients exhibit difficulties with memory
and comprehension. With time other cognitive domains are
affected including language and visual-spatial functions. As
a consequence gait deteriorates due to the strict association
between gait and cognition [12], [14]. AD patients show
hyperkinesia, apraxia, and abnormalities in walking and trunk
movements. Gait disturbances reported in early AD include
slower gait with shorter stride length, lower cadence (longer
stride time/gait cycle) and greater stride-to-stride variability
[24].
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PD is the second most common neurodegenerative disease
after AD. PD involves the primary type of hypokinetic move-
ment disorder resulting in slow movements (bradykinesia)
of PD patients. The most common symptoms include body
rigidity (hypertonia), tremor, flexed posture, loss of postural
reflexes and freezing, especially in the severe stage of the
disease. Primary gait disorders in PD patients are reduced gait
speed and step length, festination, impaired rhythmicity, and
increased axial rigidity [25].

MS is a disease that affects the central nervous system,
causing progressive disability in young adults and a wide
range of potential symptoms, including muscle weakness,
physical fatigue, lack of coordination, problems with arm or
leg movement and balance. Motor weakness, spasticity, ataxia
and sensory disturbance are common neurological deficits
even at the early stages of the disease, causing significant
impairment of gait [26].

ALS is a disorder primarily affected by the loss of the
motoneurons of the cerebral cortex and brainstem. ALS pa-
tients exhibit a deterioration of gait during the course of the
disease. Decreased walking velocity, stride-to-stride instability
and perturbations in the fluctuation dynamics (how the stride
time changes from one stride to the next) have been principally
observed in ALS patients [27].

HD is a result of a neurodegenerative process that causes
uncontrolled movements, emotional problems and loss of
cognitive abilities. As the disease progresses, uncoordinated
body movements and unsteady gait become more apparent.
HD patients show several changes in gait parameters such
as slow walking velocity, decreased step and stride length,
increased stance phase, and decreased swing phase [28].

In conclusion, it becomes apparent, from extant studies,
that gait dysfunction is prevalent in subjects with a cognitive
decline with respect to cognitively healthy subjects. So, gait
analysis can provide a concrete additional aid for dementia
diagnosis and then for distinguishing among different dementia
sub-types [3], [29]. In Table I a summary of relationships
among gait features and the above-listed diseases is given.

IV. SENSORS

Different types of sensors have been used in literature for
real-time data acquisition of human gait. They can be classified
into two main categories [32]: Wearable Sensors and Ambient
Sensors.

Wearable sensors are usually placed on different parts of the
patient’s body and the captured data are usually transmitted
through wireless connections or collected on on-board storage
devices. Ambient sensors, instead, are mounted in the envi-
ronment and do not require to be worn by elderly people. A
third category can be also obtained if a combination of both
the previous ones is considered. In this case, wearable and
ambient sensors are used together forming hybrid systems.

A. Wearable Sensors
The recent technological advances have led to the develop-

ment of miniaturized wearable sensors that can be easily as-
sembled and integrated into small cases for more comfortable

TABLE I
GAIT CHARACTERISTICS IN THE MOST COMMON NEURODEGENERATIVE

DISEASES

NDD Symptoms Gait Characteristics

Alzheimer’s
Disease (AD)
[24]

Hyperkinesia, apraxia,
abnormalities in walking
and trunk movements

Decreased walking speed
Decreased stride length
Increased support time
Greater stride-to-stride variability
Lower cadence

Parkinson’s
Disease (PD)
[30]

Hypokinetic movement,
bradykinesia, hypertonia,
tremor, flexed posture,
festination, loss of
postural reflexes and
freezing

Decreased walking speed
Increased cadence
Reduced stride length
Reduced swing time
Higher double support time

Multiple
Sclerosis (MS)
[31]

Motor weakness, spastic-
ity, ataxia and sensory
disturbance

Decreased walking speed
Shorter step length
Reduced cadence
Increased double support time

Amyotrophic
Lateral
Sclerosis (ALS)
[27]

Perturbations in the fluc-
tuation dynamics, altered
gait rhythm, weakness in
legs, feet or ankles

Decreased walking speed
Increased stride time variability
Increased stride time

Huntington’s
Diseases (HD)
[28]

Uncontrolled movements,
emotional problems, psy-
chiatric disorders and loss
of thinking abilities

Decreased walking speed
Decreased step/stride length
Increased stance/swing phase
Decreased single support time

and easy wearability [33]. The main wearable sensors used for
gait analysis are wearable inertial sensors [34]. These include
accelerometers, gyroscopes and magnetometers. Accelerome-
ters are used for measuring directly the linear acceleration of
the body or of the body segments they are attached to. Several
types of accelerometers are commercially available. Tri-axial
accelerometers are mainly used for body motion measurements
as they provide amplitude and direction of acceleration in
the three-dimensional space [35], [36], [37], [38], [39]. The
directions of the axes, X , Y , Z, of the accelerometer reference
system, depend on the sensor placement on the patient’s body.
This reference system, through an anatomical calibration, can
be used to extract respectively Antero-Posterior, Vertical and
Medio-Lateral directions of people movement [40].

Gyroscopes measure the angular velocity of body segments
around a predefined axis in an internal sensor reference
system. As in the case of tri-axial accelerometers, tri-axial
gyroscopes are more popular as they measure the speed of
rotation around all three axes of the reference frame. Gy-
roscopes and accelerometers are combined in single Inertial
Measurement Units (IMUs) that often are attached at the waist
level or at different segments of the lower limbs (thigh, shank,
ankle, foot, etc.) in order to reconstruct their attitude [41],
[42], [43], [44]. The location and orientation of placing an
IMU sensor are important as the output of the sensor depends
on the position at which it is placed, its orientation, posture
and activity being performed. In [45], investigations on the
optimal location and orientation of placing an IMU sensor on
the barefoot are carried out. This type of study is important as
the sensor placement can affect sensor output and inevitably
influences the subsequent phase of feature extraction.

IMU sensors can be further equipped with three-axis mag-
netometers that measure the earth’s magnetic field strength
and its direction. Magnetometers are usually included in IMUs
as they are used as the heading reference. The combination
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of accelerometers, gyroscopes, and magnetometers has given
rise to Inertial and Magnetic Measurement Systems (s) that
have open new perspectives for the measurements of kinematic
parameters such as the position, the acceleration and the
speed produced by the movement [46], [47], [48]. Sometimes
inertial systems are integrated with additional sensors such as
force and pressure sensors for building instrumented insoles or
instrumented shoes in order to obtain supplementary measures
as well as vertical ground reaction forces (VGRFs) [49], [50],
[51], [52], [53], [54].

B. Ambient Sensors

Contrarily to the wearable body sensors, non-wearable ones
are placed in the environment. Among the most commonly
used for gait analysis, there are force sensors, pressure sensors
and vision-based sensors. Force and pressure sensors are
usually deployed on the floor into platforms, mats, or instru-
mented walkways and capture data while patients walk across
them, so they are usually called floor sensors. Force sensors
measure Ground Reaction Forces associated with walking and
provide information about the Center of Pressure (CoP) of the
body. As force sensors can be placed in different orientations
inside the platforms, the direction and magnitude of ground
reaction forces can be measured in three-dimensional space.
So, different kinetic information can be derived, which are
necessary for a full understanding of gait dysfunctions [55],
[56], [57]. Analogously, instrumented walkways, based on
pressure sensors, give information about several temporal and
spatial gait measures. Differently from force plates, walkways
with embedded pressure sensors, have the ability to segment
different pressure regions of the foot, providing important
information such as contact and peak pressure around these
regions [58], [59], [60], [29].

Electronic walkways are often used in conjunction with a
Motion Capture System (MCS) for making a more complete
analysis of gait by merging the different information coming
from both types of systems. MCSs are also employed for
the validation of other sensory systems such as webcams
or walkways themselves due to their high level of accuracy
[61], [62]. Indeed, MCSs are optoelectronic marker-based
systems consisting of a number of cameras and a set of
retro-reflective markers that are attached to the body of the
monitored subjects. Spatio-temporal parameters of gait are
accurately measured as the 3D position of each marker is
estimated via time-of-flight triangulation [63], [64], [65], [66].

MCSs can be included in marker-based vision systems as
they use cameras and need markers in order to make easier hu-
man detection on images. They are principally used in research
laboratories or controlled environments where their installation
is possible. Marker-less vision-based systems, instead, are
characterized by cameras that acquire video information of
human gait, and then image processing methodologies are
applied in order to extract the relevant parameters useful for
gait analysis [67].

Among vision-based systems, the most commonly used for
gait analysis are RBG monocular cameras, stereo cameras,
thermal cameras and the most recently developed RGB-D

cameras such as Microsoft Kinect or Intel RealSense [68]. A
panoramic description of three-dimensional camera systems is
provided in [69] with a critical discussion about the validity
and clinical utility of these devices for assessing physical
dysfunctions. Actually, the literature on the use of vision-
based systems for the instrumented gait analysis of patients
with neurodegenerative diseases counts few works compared
to those based on wearable sensors or floor sensors. However,
in the last few years, the progress in new and low-cost
optical technologies together with the development of new and
accurate pattern recognition approaches has led to an increase
in vision-based research works [70], [71], [72], [73], [74], [75].

Recently, a novel and gradually emerging technology for
human activity recognition, including gait detection and analy-
sis, is wireless technology. The deployment of wireless sensing
technologies in many applications related to health care and
human daily activity recognition, is gaining attention as it
performs detection functions with common commercial Wi-
Fi devices in a passive manner without the need for users
to wear any devices [76], [77]. Wireless sensing systems base
on multi-path propagation (i.e. radiation, reflection, diffraction
and scattering) of wireless signals in indoor environments.
When signals are reflected by a human walking around, the
variations of channel state information are processed to obtain
gait information such as walking speed, stride length, stride
time, and so on [78].

C. Hybrid Systems
The interest in developing more and more efficient ob-

jective measurement systems, for providing specialists with
increasingly accurate and reliable information, has led to the
integration of the different types of sensors, both wearable and
ambient, in order to develop the so-called (hybrid systems).
The concurrent use of heterogeneous information acquired by
multiple sensors has demonstrated promising performance in
the identification of gait patterns associated with individual
disease. Various combinations of multiple sensors have been
used in the literature for gait analysis in the context of NDDs.

A pervasive context-aware home-based system for PD pa-
tients based on distributed sensing has been proposed incite-
Takac:2013 for detecting the freezing of gait. The system con-
sists of a network of Kinect cameras and a smartphone (includ-
ing a tri-axial accelerometer, a gyroscope and a magnetometer)
worn by the patient. These elements work independently, so
that freezing detection can be achieved using the wearable
sensor even when the patient is not in the field of view of the
camera. Furthermore, the fusion of both vision and inertial
information can provide the hybrid system with efficiency and
robustness.

In [79], an approach for combining data acquired from two
different sensor modalities is presented. Data from 5 IMU
sensors and an optoelectronic marker-based MCS are used for
accurate measurement of gait parameters. Similarly, in [80]
two sources of motion data, a 3D inertial sensing system and
a 3D optical MCS, are used for gait detection and analysis.
As the MCS system and inertial system have their respective
sampling rates and reference systems, the problem of data
synchronization is also addressed.
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A more recent work [81] proposes a novel hybrid model to
learn the gait differences between NDDs, between different
severity levels of Parkinson’s disease and between healthy
individuals and patients. Heterogeneous data acquired by mul-
tiple sensors are aggregated: VGRFs from force-sensors placed
inside the shoes; acceleration data from three accelerometers
attached to hips and legs of patients; 3D skeleton-joint po-
sitions and 2D gait silhouettes by two Kinect cameras. The
integration of multi-modal gait features shows the effective-
ness of the proposed model in better-discriminating NDDs and
detecting disease severity levels.

The use of hybrid systems can be very beneficial when
different gait characteristics need to be captured and jointly
exploited in order to produce a more consistent and reliable
output. However, fusing multiple resources bring complexities
based on the level at which the fusion is performed. If it is
performed at the sensor or raw data level, then data synchro-
nization, different sampling and transmission frequencies of
devices can result in data loss or drift errors. In addition, data
can greatly differ in forms and scales. So, these represent open
issues often overlooked, but they need to be addressed for
building robust integrated systems.

V. PROTOCOLS FOR GAIT ANALYSIS

Defining a protocol for gait analysis is fundamental for mak-
ing kinematic and kinetic measurements clinically comprehen-
sible and comparable. A protocol defines the biomechanical
model used during data collection that necessarily influences
the subsequent phase of data processing and analysis, so
affecting the clinical interpretation. Different walking tests
exist that are used in clinical contexts to evaluate the functional
capacity of patients. These tests differ mainly for the distances
walked during test performance: 4, 6 and 10 meters are the
most common distances used. Walking speed and walked
distance are the principal valid and sensitive measures that
are informative enough for their clinimetric properties [82].
However, many other spatio-temporal and dynamic features
(see section VII for a detailed description) are valid and
informative as well as gait speed and can provide useful
details regarding particular gait deficits. Measuring different
gait features involves the definition of different protocols as
what is acceptable for some characteristics is not valid for
others. Some clinimetric measures, in fact, are more reliable
over longer durations [83], [84]. Furthermore, in order to
infer information relative to specific neural areas and cognitive
functions, protocols involving the so-called brain stress tests
are employed [85]. These are the dual-task tests that are
composed of walking while performing an additional motor-
cognitive task such as calling a phone number [86], talking or
counting [87], or carrying a glass of water [88]. However, a
considerable number of works in the related literature do not
specify the testing protocol used to assess gait parameters, so
it is difficult to compare and assess the results.

Moreover, a final consideration must be done regarding clin-
ical and laboratory settings where walking tests are performed.
This regards the so-called Hawthorne effect or observer effect
that denotes behavior variations caused by the presence of

observers. Patients, in fact, could perform well because of the
awareness of being observed. This has led to the necessity of
developing systems for long-term gait monitoring, in particular
in free-living or home environments in order to reduce con-
textual factors and obtain more objective results with respect
to short-distance gait analysis [24], [72].

VI. DATASETS

The recent literature on gait analysis proves the large interest
in the use of public datasets as they allow the scientific
community to compare different approaches. Furthermore, in
the specific context of studying neurodegenerative diseases,
gait datasets can be very useful for further analyses and
investigations for both classifying different sub-types of gait
disorders or for improving and sharing statistical analyses.
Table II summarizes some details of the most used datasets
on gait.

The Gait in Neuro-Degenerative Disease Database [27] [89]
is a collection of 64 recordings of gait from 15 subjects with
PD (age ranging from 44 to 77); 20 with HD (age ranging
from 29 to 71); 13 with ALS (age ranging from 36 to 70);
and 16 healthy controls (age ranging from 22 to 74). The
raw data are obtained using force-sensitive resistors, sensitive
to pressure, placed inside the shoes of each individual. Time
series data have been derived from these raw signals. The same
sensors have been used for recording the data of Gait in Aging
and Disease Database [89] which contains the walking stride
interval time series. The data have been collected from 15
subjects: 5 healthy young adults (23-29 years old); 5 healthy
old adults (71-77 years old), and 5 older adults (60-77 years
old) with PD. In the above-listed datasets, subjects walk at
their usual pace, whereas different walking protocols have
been used as detailed in Table II. The Gait in Parkinson’s
Disease Database [89] is a collection of VGRFs from eight
force sensors placed beneath the feet of 93 patients with PD
(with a mean age of 66.3 years and with mild to moderate
disease severity) and 73 age- and gender-matched healthy
controls. The database includes the VGRF records of these
subjects as they walked at their usual, self-selected pace
for approximately 2 minutes on level ground. This database
also includes demographic information, measures of disease
severity and other related measures. Furthermore, subsets of
the database include measures recorded under three different
conditions: 1) considering the effect of Rhythmic Auditory
Stimulation (RAS) [90]; 2) walking while subjects perform a
second task [91] and 3) walking on a treadmill [92]. In the first
subset 29 patients with PD and 26 healthy controls participated
to the data acquisition while walking at a comfortable pace
for about 100m with and without RAS [90]. In the second
one, data from 30 patients with PD and 28 healthy controls
subjects were acquired under usual walking and different dual-
tasking conditions for better understanding the motor control
of gait and the relationship between cognitive function and gait
[91]. In the third subset, 36 patients with PD and 30 healthy
controls were studied under three walking conditions for 2
minutes each: 1) usual, unassisted walking on level ground at
each subject’s self-selected comfortable speed; (2) walking on
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TABLE II
DATASETS USED IN LITERATURE FOR GAIT ANALYSIS OF SUBJECTS SUFFERING FROM A NEURODEGENERATIVE DISEASE.

Dataset Name Data Acquisition Sensor Sensor
Type Data Type Data Acquisition Protocol

Gait in Neuro-Degenerative Disease Database
(https://physionet.org/content/gaitndd/1.0.0/)
(Hausdorff et al. 2000) [27]
(Goldberger et al. 2000) [89]

Ultra-thin force-sensitive resis-
tors placed inside the shoes Wearable

Left and Right foot signals and time
series from 15 subjects with PD,
20 with HD, 13 with ALS, and 16
healthy controls

Subjects walk for 5 minutes at
their usual pace

Gait in Aging and Disease Database
(https://physionet.org/content/gaitdb/1.0.0/)
(Goldberger et al. 2000) [89]

Ultra-thin force-sensitive resis-
tors placed inside the shoes Wearable

Walking stride interval time series
from 5 healthy young adults, 5
healthy old adults, and 5 older adults
with PD

Healthy subjects walk in a
roughly circular path for 15 min-
utes, subjects with PD walk for
6 minutes up and down a long
hallway

Gait in PD Database
(https://physionet.org/content/gaitpdb/1.0.0/
(Goldberger et al. 2000) [89]

Eight force sensors underneath
each foot Wearable

Force data as a function of time from
93 patients with PD and 73 healthy
controls

Subjects walk at their usual, self-
selected pace on flat ground for
2 minutes

Gait in PD with RAS Database
(https://physionet.org/content/gaitpdb/1.0.0/;
Filename convention: Ju )
(Hausdorff et al. 2007) [90]

Eight force sensors under the
feet Wearable

VGRFs measures from 29 patients
with PD and 26 healthy control sub-
jects

All subjects (with PD and
healthy) walk 100m at a com-
fortable pace with and without
RAS

Dual Tasking in PD Database
(https://physionet.org/content/gaitpdb/1.0.0/;
Filename convention: Ga)
(Yogev et al. 2005) [91]

Eight force sensors under the
feet Wearable

VGRFs measures from 30 patients
with PD and 28 healthy control sub-
jects

Subjects walk at their nor-
mal pace for 2 minutes under
usual walking and different dual-
tasking conditions

Gait in PD with Treadmill Database
(https://physionet.org/content/gaitpdb/1.0.0/;
Filename convention: Si)
(Frenkel-Toledo et al. 2005) [92]

Eight force sensors under the
feet Wearable VGRFs measures from 36 patients

with PD and 30 healthy controls

Subjects walk three times for
2 minutes each: (1) walking
on level ground (unassisted), (2)
walking on level ground while
using a walker, and (3) walking
on a treadmill.

Sensor-based Gait Analysis Validation Data
Database
(www.activitynet.org)
(Kluge et al. 2017) [93]

Two IMU sensors laterally at-
tached to the shoes Wearable Inertial data from 15 subjects: 11

healthy subjects and 4 PD patients

Subjects perform four times a
straight 10m distance with turn-
ing movements in between at
different walking speeds

IMU-based Gait Data
(Barth et al. 2015) [94]

Two IMU sensors laterally at-
tached to the shoes Wearable

Acceleration and orientation data
from 40 elderly controls, 15 patients
with PD and 15 geriatric patients

Subjects perform two protocols:
straight 40m walking test at a
comfortable self-selected speed
and 2 minutes free walk

Dataset on gait patterns in degenerative neu-
rological diseases
(Serrao et al. 2018) [95]

Optoelectronic motion analysis
system Ambient

Spatio-temporal parameters and
joint kinematics from 19 patients
with CA, 26 patients with HSP, 32
patients with PD and 65 healthy
subjects

Subjects walk barefoot at a
comfortable, self-selected speed
along a walkway approximately
10m in length while looking
forward

Dataset for gait analysis
(Schülein et al. 2017) [96]

Instrumented walkway system
and inertial sensors in the shoes

Ambient
Wearable

Spatio-Temporal parameters and
heel strike, toe off angles and foot
clearance from 126 patients

Subjects perform the gait test
with and without gait support
from a wheeled walker

Dataset for gait analysis
(Caicedo et al. 2020) [97] 3D MCS Ambient Spatio-temporal gait parameters

from 44 older adult population
Subjects perform ten times a
walking path of 120

Biomathics consortium, the “Gait, cOgnitiOn
& Decline” (GOOD) initiative
(Beauchet et al. 2014) [98]

Instrumented walkway system Ambient

Spatio-temporal parameters from
more than 2700 older adults with
different stages of dementia and
healthy individuals

Subjects walk at their usual
self-selected walking speed in a
quiet, well-lit environment on a
length ranging from 4.6m to
7.9m

Skeletal Information Database
(Romeo et al. 2020) [99] Three Monocular Cameras Ambient

Skeletal joints data from 27 healthy
people and 20 patients affected by
neurodegenerative diseases

Subjects walk at their usual self-
selected walking speed on a
length of 4m

level ground at each subject’s self-selected comfortable speed
while using a wheeled walker; and (3) walking on a motorized
medical treadmill [92].

The dataset presented in [93] contains data acquired by two
wearable IMUs laterally attached to the shoes of 15 subjects
(11 healthy subjects and 4 PD patients). The used sensors
contain a three-axis gyroscope and a three-axis accelerometer.
Spatio-temporal parameters have been calculated from the raw
signals and validated by using a reference camera-based mark-
erless motion capture system, opportunely synchronized with
the wearable sensor system. The same IMU sensors, mounted
laterally to the heel of the subject’s right and left shoes, have
been used in [94] for recording gait data (acceleration and
orientation data) from 40 elderly controls (age 50-75), 15
patients with PD (age 55-80) and 15 geriatric patients (age

75-85). Subjects perform 2 protocols: a straight 40m walking
test at self-selected speed and 2 minutes free walk containing
different walking conditions (stair climbing, straight walk,
walk in curves and so on).

Contrary to the previous datasets, an ambient system has
been used in [95] for deriving gait spatio-temporal parameters
and joint kinematics of 65 healthy subjects, 19 patients with
CA, 26 with HSP, and 32 with PD. The system is a frame-
by-frame MCS that has been used for recording 3D marker
trajectories. Marker position data have been processed for
calculating the spatio-temporal parameters and joint kinemat-
ics. These parameters as well as anthropometric and clinical
characteristics of subjects are listed in [95].

An instrumented walkway (GAITRite®) and inertial sensor-
equipped shoes have been used in [96] to measure spatio-
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temporal parameters and heel strike, toe off angles and foot
clearance. Hospitalized patients were included in an obser-
vational study and subjected to instrumented gait analysis
at the Geriatrics Centre of the Waldkrankenhaus St. Marien,
Erlangen, Germany. One hundred six patients (ages 68-95),
with signs of gait and balance impairment, performed the gait
test with and without gait support from a wheeled walker.

A further dataset for human gait analysis is presented in
[97], where a population of 44 older adults (ages 61-78) were
asked to walk ten times between two points at a distance of
12m apart and to perform additional mobility tests such as
the Short Physical Performance Battery. Kinematic data were
collected using a Vicon MCS. The spatial and temporal gait
parameters were calculated using the Nexus 2.9.3 software.

The GAITRite®walkway system has been used also by the
Biomathics consortium, in the so-called “Gait, cOgnitiOn &
Decline” (GOOD) initiative, to collect spatio-temporal gait
parameters [98], involving more than 2700 participants with
and without dementia. The consortium connects academic
research teams on aging and longevity for promoting health. It
shares knowledge and data collected by various international
clinical research groups, making available the largest database
in this field of research [100], [101].

To the best of the authors’ knowledge, vision-based datasets,
in the context of gait analysis of patients affected by NNDs,
are not publicly available. Researchers, usually, build their
own datasets based on video data that are private. Moreover,
privacy issues must be considered in this particular context. In
[99], a dataset built starting from video data is provided. In
order to preserve privacy, only skeletal information of people,
aged 60 years and older, is given, while they perform three
well-established mobility tests, including walking. Skeletal
data are obtained applying OpenPose library [102] to video
images acquired by using a setup of three monocular cameras.
Participants are 27 healthy people and 20 patients affected by
neurodegenerative diseases, housed at two different nursing
institutes.

Further datasets collecting data on gait, by using non-
wearable sensors, are available in the literature but do not
refer to people suffering from a neurodegenerative disease.
However, they are noteworthy as they can be used for deriv-
ing clinical endpoints that can potentially indicate the onset
of a disease. The most commonly used are: the CASIA
Gait Database [103], the Long Term Movement Monitoring
database [104], the Georgia Tech Database [105], the CVPR
Gait Dataset [106], the UTKinect-Action3D [107], the OU-
ISIR Gait Dataset [108], SDU-Gait Dataset [109]. These
datasets consist of various videos and data of subjects perform-
ing different actions, including walking, in indoor and outdoor
settings. These datasets provide the scientific community with
a test-bed for testing and improving algorithms in order to
extract and recognize features useful to study gait, stability,
and fall risk and to classify gait disorders [72].

VII. GAIT FEATURES

The goal of gait analysis in elderly people and in particular
in elderly people affected by neurodegenerative diseases is to

capture motion variations. These variations, such as postural
instability or slowness of movements, are very important
for evaluating the evolution of the disease. The aim is to
extrapolate the best features that characterize these variations
in order to detect gait abnormalities imputable to the disease
and contribute to timely diagnosis and clinical management.
So, gait analysis involves the measurements of several features
which can be defined as spatio-temporal, kinematic, and
kinetic features [110]. Spatio-temporal features are principally
related to distance measurements of various parts of the body
during the walk and to the duration of the different phases
of gait. Kinematic features refers to the angular excursions
formed at body joints caused by rotatory motions of body
segments. Kinetic features relate to the force causing the
motion of legs and feet during walking so they provide
information about joint moments and powers. In Table III
a more comprehensive description of these features is given
together with the typical sensors used for their measurement.
Indeed, different features can be measured by different sensors,
so their measurement and reliability are strictly related to the
used sensors. In the following subsections, the listed types of
features that have been studied over the years will be analyzed.

A. Spatio-Temporal Features

Spatio-temporal features are undoubtedly the most used for
gait analysis and have been extensively studied and tested
over the years [101], [65], [111], [66], [29]. As can be seen
in Table III, with spatio-temporal features we mean a set of
parameters that can be calculated starting from distance and
time measurements involved during the gait cycle: step length,
step width, times of stance, swing, single and double support,
step number, stride length and duration, times of heel strike,
toe strike, heel-off and toe-off, and so on. The great diffusion
of this typology of features resides in their elevated versatility:
it is possible to extrapolate spatio-temporal features in different
ways, giving therefore the possibility to exploit the application
of various types of technologies from wearable to ambient
sensors.

Wearable sensors, such as accelerometers or gyroscopes, are
the most used devices for capturing spatio-temporal features.
In [38], spatio-temporal features, measured from a single
accelerometer, are studied in order to identify the optimal
ones for aiding the diagnosis of PD. In particular, classifica-
tion experiments are carried out considering spatio-temporal
features alone (with an accuracy of 70.42%), spatio-temporal
features combined with signal-based ones (with an accuracy
of 86.65%), and with demographic data (with an accuracy of
88.73%). Signal-based features are estimated by using signal
processing techniques in time and frequency domain (signal
magnitude, regularity, complexity, smoothness and symmetry).
The study highlights how signal-based characteristics add
greater classification value to support early identification of
PD, compared to traditional spatio-temporal features alone.
Demographic data, such as aging height, body mass and
gender, also, affect gait variability and then intervene in dis-
cerning pathological anomalies, even if with a lower increase
in classification performance.
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TABLE III
LIST OF FUNDAMENTAL GAIT FEATURES.

Feature Type Sensors Feature Name Feature Definition

Spatio-Temporal
[29], [38], [65], [66],
[101], [111], [112],
[113], [114]

Accelerometer,
Vision, IMU, MCS

Step Length Distance between the heel contact of one foot and the heel contact of the other
foot

Stride Length Distance between two successive heel contacts of the same foot
Step Width Distance between feet, while walking
Step Time Time duration to complete one step
Stride Time Time duration to complete one gait cycle
Stance Time Time duration of stance phase
Swing Time Time duration of swing phase
Single Support Time Time duration of single support phase
Double Support Time Time duration of double support phase
Cadence (steps/min) Number of steps taken in one minute
Step Velocity (cm/sec) Ratio between distance and time (Step Length/Step Time)

Kinematic
[35], [36], [39], [65],
[115], [116]

Gyroscope, MCS, Vi-
sion

Hip Angle Angle between the thigh axis and the trunk axis (in sagittal plane)
Knee Angle Angle between the lower leg axis and the thigh axis (in the sagittal plane)
Ankle Angle Angle between the sole axis and the lower leg axis (in the sagittal plane)
Mean pelvic tilt Angle created by a line running from the sacral endplate midpoint to the center

of the bifemoral heads and the vertical axis.
Foot progression angle Angle between the line from the calcaneus to the second metatarsal and the

line of walking progression

Kinetic
[60], [117], [118],
[119]

Force Plates, Pressure
Insoles, Instrumented
Walkway

Hip Extension/Flexion Moment and
Power Joint moments used to obtain an estimate of total load on muscles, ligaments,

or bones around a jointKnee Extension/Flexion Moment and
Power
Ankle Dorsiflexion/Plantarflexion
Moment and Power

Investigations on the identification of the most valuable tem-
poral feature sets for the classification of neurodegenerative
patients and healthy control subjects are presented in [112].
Ten temporal features are extracted from patient gait cycles by
using the Gait in Neurodegenerative Disease Database. Four
feature selection methods (namely the maximum signal-to-
noise ratio based feature selection method, maximum signal-
to-noise ratio combined with minimum correlation-based fea-
ture selection method, maximum prediction power combined
with minimum correlation-based feature selection method and
principal component analysis) are proposed and tested achiev-
ing classification accuracy ranging from 79.04% to 93.96%.
Reducing the number of features to four (right stance, double
support, right swing, and left swing) continues to maintain
relatively high classification performance.

Also in [113], investigations about the search of the best
set of spatio-temporal features, in detecting the presence of a
gait disorder, are presented. Sixteen features are extrapolated
through the analysis of videos obtained with a system of eight
infrared cameras. These features are tested as a whole or are
reduced in as many subsets as possible (permuting the original
16 features), with the aim of identifying the best subset of
most informative features for each of the seven classifiers used.
Analyzing the features able to discriminate among diseased
and healthy subjects, it is found the importance of step length,
swing speed, and cadence in detecting the presence of a gait
disorder. Furthermore, reduced sets of 3, 4, or 5 features are
sufficient to achieve high classification accuracy ranging from
93.6% to 98%.

Spatio-temporal features can be, also, extrapolated from
pressure pads, usually used in hospital settings. In [114] a
set of 9 spatio-temporal features, extracted by using simulta-
neously two instrumented platforms and the Vicon MCS, has
been tested with the aim of highlighting which features are

the most significant for the classification of PD patients and
controls. Features have been analyzed in both raw and normal-
ized form with five machine learning classifiers. Two different
normalization approaches have been applied: Dimensionless
Equations and Multiple Regression. Classification accuracy of
PD is lowest when using raw data with a mean classification
accuracy of less than 80%, and highest in the case of Multiple
Regression normalization, with a mean classification accuracy
ranging from 82% and 92.6%. Significant differences in spatio-
temporal features between PD and controls have been observed
in stride length and double support time in the case of using
raw data; stride length, step length, and double support time
after normalization by using Dimensionless Equations; and
stride length, cadence, stance time, and double support time
when normalizing data using the Multiple Regression method.
Correlations of the spatio-temporal features (before and after
normalization) with speed, age, height, gender, and body
mass are also investigated. The study proves that Multiple
Regression normalization improves the performance of the
classification of PD.

A different way of analyzing pressure data returned by
an instrumented walkway for classifying HD severity (low
or high) is presented in [60]. Low-level pressure data are
transformed into Footprint image patterns. The goal of the
work is to show how the use of only low-level features can
reach a good level of classification performance with respect
to traditional high-level features, such as stride length or step
length and so on. The classification has been carried out by
using two different techniques and comparing the results when
only footprint image data or high-level features are used.
In the first case, the best accuracy is 89%. Considering the
difficulty of classifying different stages of a disease, this result
is noteworthy in the field of gait analysis, as it paves the way
for the use of easy-to-extrapolate features, which would allow
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a significant reduction in computational time.

B. Kinematic Features

Kinematic analysis of gait includes the study of joint angular
excursions. More specifically kinematic features are defined
as the magnitude of rotatory motions of body segments in the
sagittal plane, within a gait cycle [115], [65], [116].

Kinematic features include the so-called Range of Motions
(RoMs) which are usually calculated by using wearable IMU
sensors located in the lower and upper parts of the body or
MCS devices that allow for three-dimensional motion analysis.
From the perspective of gait analysis, the most significant
kinematic features are the angular values of the ankles, knees,
hips and chest. These are evaluated when the maximum
flexion/extension of these body parts happens, expressing the
real variation of joint functionality.

In [116] comparisons of RoMs with spatio-temporal features
are provided for the classification of PD patients and controls.
Eight IMU sensors, located on the lower parts of the body
are used for feature measurements. Different combinations of
features are tested: the entire set of 87 features (both RoMs
and spatio-temporal ones) and twelve subsets of different
combinations of them. Each of these feature sets has been
tested by using different classification algorithms obtaining
average classification accuracy ranging from 63% to 96%.
Furthermore, additional tests have been carried out reducing
the number of IMU sensors and considering only RoMs
features of the knees. In this case, more accurate results than
those obtained considering only spatio-temporal parameters,
have been achieved.

Interesting investigations and comparisons among spatio-
temporal and kinematic features are also presented in [65],
with the aim of studying the influence of specific cognition
aspects on gait patterns. A MCS has been used to measure
both spatio-temporal and kinematic features during walking
of a group of patients affected by different cognitive disorders
and a group of control subjects. The studies, carried out in
single- and dual-task paradigm, show that the kinematic data
relative to the angular excursion of thigh, knee and ankle, have
a leading role in revealing gait impairment than the spatio-
temporal parameters alone.

The kinematic study of gait involves further parameters,
namely body oscillation, gait symmetry, minimum and maxi-
mum acceleration of each stride, stride to stride variability, gait
smoothness, gait intensity [36], [35], [39]. These parameters
are usually measured by using IMU sensors. In [39] these sen-
sors are placed on the shoes of the subjects under examination.
The aim of the work is to select the most informative features
for differentiating between PD patients and healthy subjects.
Different classification algorithms are applied first on the
original set of 32 features thus on reduced feature sets obtained
by applying a feature selection technique called Maximum
Information Gain Minimum Correlation. The classification
accuracy improves from 96.7% achieved by using the original
feature set, to 100% in the case of using the reduced set of
only 8 features. This study proves that the different measures
of gait variability play a distinct role in discriminating the

groups under examination, and the search for an optimal set
of features (dimensionality reduction) can give better results
in terms of classification performance.

C. Kinetic Features
Space-time and kinematic features quantitatively describe

the abnormalities of gait and usually, are considered the
main outcome of gait analysis as they are directly related to
how the movements of body or body parts happen. Kinetics
adds essential information as it is related to the causes of
abnormal movements, namely the forces acting on the body
[117]. Indeed, kinetic features are essentially the moments and
powers of joints. In the context of gait analysis, the typical
joints considered for a kinetic study are those of the lower
limbs: ankle, knee and hip.

Kinetic data are usually evaluated by using force and pres-
sure sensors equipped in platforms, instrumented walkways,
shoes, or insoles. As described in section IV and VI, this
type of sensors measure ground reaction forces exerted by
the ground during walking.

In [118] VGRF measures, are used to classify PD patients
and healthy control subjects. Only four features are extracted
from the available set of measures provided for each foot.
The objective of the study is to prove the effectiveness of this
type of features in the field of gait analysis for the diagnosis
of neurodegenerative diseases. Two different classification
techniques are applied, obtaining an accuracy of about 96.39%.

A more recent study [119], extracts the features from the
VGRF signals, for the detection of various neurodegener-
ative diseases at different stages from early to advanced.
In particular four statistical moments, describing amplitude
distribution of the force under a foot during a complete
gait cycle, are evaluated as they better characterize abnormal
trembling movements in neurodegenerative diseases. These
include: mean, standard deviation, skewness and kurtosis.
Furthermore, approximate entropy is also extracted in order to
obtain a useful characterization of the irregularity of movement
and thus to enhance detection performance. A combination
of both statistical and entropic measures extracted from left
and right feet, as well as full feature sets, are considered as
input data to three different classification methods yielding
high average detection accuracy ranging from 93.89% to
100%. The results prove the validity of the proposed features
showing high range accuracy rates, achieved even by using
only one-foot VGRF signals. This is an important outcome that
provides a good trade-off between computational complexity
and detection performance.

VIII. CLASSIFICATION

In the last years, Machine Learning strategies in gait anal-
ysis have gained great popularity, as they offer the possibility
of building automatic systems able to distinguish healthy
subjects from patients affected by neurodegenerative diseases
or to detect the different levels of the disease from early to
severe stage. Once feature extraction and feature selection are
carried out, machine learning classification techniques can be
applied in order to automatically construct models and then
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to use them for predicting the likelihood that new data will
fall in pre-defined target classes. Plenty of literature works
aims to find the best combination of features and classifi-
cation methodologies for optimizing the process of disease
identification/evolution. To this aim, a variety of classification
approaches have been applied in literature, including k-Nearest
Neighbour (kNN), Naı̈ve Bayes (NB), Linear Discriminant
Analysis (LDA), Decision Tree (DT), Random Forest (RF),
Support Vector Machine (SVM), Neural Networks and Deep
Neural Networks, just to name a few. The main challenge is to
find the best combination of features and classifiers in order
to achieve the best classification rate. In the following, the
most widely used classification approaches will be analyzed
reviewing works that mainly address this issue. Table IV
summarizes these works, listing the classification task, the type
of sensors and features, the number of individuals involved in
the study, the used classifiers together with the best accuracy
obtained within the conducted study and some notes about the
used approach.

A. SVM

The Support Vector Machine (SVM) is one of the most
widely used supervised learning classifiers in the field of gait
analysis. Formally SVM constructs a hyperplane that best
separates the samples of the two classes under examination.
The aim is to find the maximum margin hyperplane, the one
that maximizes the distance between the so-called support
vectors, i.e. the samples closest to the hyperplane. The search
for this hyperplane can be performed both linearly or non-
linearly depending on the type of chosen kernel functions.
Kernel functions are, indeed, used to map the data into a
higher-dimensional feature space to find the best hyperplane
that better separates the two classes.

Non-linear SVM, based on Radial Basis Function (RBF)
kernel, is used in [120] for classifying PD patients from two
other NDDs (HD and ALS). Various tests applying SVM on
different sets of statistical features based on temporal gait
parameters are performed in order to achieve the best classifi-
cation accuracy. The final chosen classifier reaches an accuracy
of 83.3% on a set of 7 best features. Analogously, in [112],
non-linear SVM with RBF kernel is used to solve 7 binary
classification problems distinguishing among three different
NDD patients (PD, ALS, HD) and between NDD patients and
healthy subjects. Different feature selection and construction
methods are applied on a set of 10 temporal features, in order
to find the most valuable ones for improving classification
performance. SVM, in this case, provides a classification
accuracy ranging from 79.04% (case of PD vs. HD) to 93.96%
(case of ALS vs. Healthy controls). SVM has been also used
and compared to RF in [121] for classifying people with
moderate MS (MS-mod), people with mild MS (MS-mild)
and healthy controls. SVM performed best at distinguishing
healthy controls from subjects with MS-mild and MS-mod,
whereas the RF was marginally better at separating MS-mild
vs. MS-mod.

Linear and non-linear SVM with RBF kernels are used in
[116] on various groups of spatio-temporal and RoM features

for PD identification. Non-linear SVMs outperform the linear
ones obtaining a classification accuracy of 75.6%. The superi-
ority of non-linear SVM is also investigated considering other
types of classifiers on the same set of features obtaining lower
average accuracy: k-Nearest Neighbour (73%), Naı̈ve Bayes
(72.7%), Linear Discriminant Analysis (72.5%) and Decision
Trees (68.8%). In order to improve performances two meta-
classifiers are built as a weighted combination of the individual
classifiers, applying a Majority-vote approach. This provides
a significant improvement in obtaining an accuracy higher
than 80%. Additional tests are carried out using SVM RBF
for classifying three different stages of PD patients. Accuracy
higher than 90% is obtained depending on the specific group
of considered features.

Similarly in [52], non-linear SVM shows the best perfor-
mance with respect to linear SVM, RF, kNN, and DT. Different
kernels (linear, Gaussian, quadratic and cubic) are used to
train SVMs on Spatio-Temporal and Kinetic features obtained
from VGRF signals. Among kernels, the cubic one shows the
best accuracy of 95.7% in classifying PD patients and control
subjects, proving the important role of CoP as a discriminative
feature. Higher classification accuracy has been also obtained
in [75] by SVM (99.1%) with respect to RF, Ada Boost and
kNN. Kinematic features computed from joint coordinates of
human skeletons extracted from video captured by standard
RGB cameras have been used.

B. Instance-based methods
Instance-based learning methods base the classification pro-

cess directly on the training samples, instead of creating a
model from specific instances. They simply store all data and
each new sample is classified in relation to a predefined query
answer obtained from the examination of data. K-Nearest
Neighbour and Non-Negative Least Square (NNLS) belong
to this family of learning techniques. kNN is one of the
less complex classification algorithms as it is based on the
principle that instances with similar properties in a dataset
will remain in close proximity. So a test sample is classified
considering the most common class label among those of the
“k” neighbor instances. The choice of “k” is therefore very
important as if it is too small, the classification could be
“blind” in the sense that important instances could be not
considered in the classification process; on the other hand,
if “k” is too large very distant instances could be included
in the evaluation even if they are very dissimilar with respect
to the test sample. In [122], kNN are used for detecting the
presence of MCI in PD patient. Spatio-temporal features are
evaluated in three different conditions: normal gait, motor dual
task and cognitive dual task. kNN achieves the accuracy of
83.8% and a sensitivity of 88.2%, in identifying PD patients
with MCI during the gait task, supporting the existence of
specific connections between gait and cognition. Considering
the dual tasks, instead, kNN performance gets worse, whereas
DT reaches an accuracy of 86.8% in the case of motor dual
task and RF gets an accuracy of 85.3% in the cognitive
dual task, respectively. Similar comparison among different
classification techniques including kNN are shown in [116]
and [52].
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NNLS is a fast instance-based learning algorithm which
predicts the class label of unknown samples through a sparse
non-negative linear combination of few training samples [123].
After the computation of the coefficients of this combination,
class labels are assigned to new samples by using an inter-
preter. Commonly used interpreters for NNLS are the Max
rule and the Nearest-subspace rule. In [119] sparse NNLS,
with both aforementioned interpreter rules, has been tested
in combination with kinetic features extracted from VGRF
signals for distinguishing different NDDs (ALS, PD, and HD)
both at advanced and early stages. Tests have been carried out
considering three combinations of features extracted from the
left and right feet as well as the full feature set. The proposed
method recognizes accurately ALS, PD, and HD from healthy
controls, achieving 100%, 99.78%, and 99,9% classification
accuracy, respectively when considering the full feature set.
High accuracy rates (higher than 99%) are also obtained when
only the set of NDD patients is considered (PD vs. HD, PD
vs. ALS, and ALS vs. HD) and also when they are grouped
in early and advanced sets in relation to the disease severity.
Furthermore, the proposed method has been compared with
SVM and Multilayer Feed Forward Neural Network (MLFNN)
classification methods, proving its superiority. NNLS shows
its efficiency and robustness in NDDs detection over different
stages, combined with either left and right VGRF based
features. In Table IV, the accuracy rates regarding the case
of a full feature set are reported.

C. Naı̈ve Bayes
The Naı̈ve Bayesian classifier is a selective classifier based

on Bayes Theorem and theorem of total probabilities. A
complete Bayesian classifier requires knowledge of the a priori
and conditional probabilities related to the problem under
consideration. Naı̈ve Bayes is a simplified version compared
to a complete Bayesian classifier, as it is based on the as-
sumption of conditional independence among the features. The
algorithm would produce optimal results if the assumption of
independence of the features were actually verified, but it has
been shown that the algorithm produces good results even in
many practical problems. Naı̈ve Bayes has also been applied in
the field of recognition of neurodegenerative diseases through
gait analysis. In particular, it has been used in combination
with both kinematic features as in [39] or a combination of
space-time features and RoMs as in [116] obtaining accu-
racy values ranging from 83.1% to 90% and from 59.74%
and 78.02%, respectively. The obtained accuracy values are
lower than those obtained by other classifiers (see Table IV),
highlighting that the assumption of feature independence has a
strong impact on NB classifier performance. Both cited works,
indeed, consider different groups of features in order to find
those that better distinguish PD patients from healthy subjects.
The fluctuations of accuracy values can indicate a more or less
feature correlation within each considered group.

D. Decision Tree, Random Forest, Gradient Boosted
Tree

Decision Tree (DT), Random Forest (RF), and Gradient
Boosted Tree (GBT) are the so-called tree-based algorithms.

The Decision Tree is the simplest one that essentially resem-
bles a sort of decision-making diagram composed out of the
root-node, several tree-nodes and leaves. The classification of
a sample is accomplished starting from the root node and
following the tree-nodes on the basis of the truthfulness of
the condition expressed at each node. So a leaf node can be
reached to represent the prediction for the current sample.
RF and GBT are ensemble techniques that combine a large
number of trees, each trained on a randomly selected subset of
features. At the end of the process, an RF combines the results
by averaging or by using “majority rules”. The RF builds all
trees simultaneously and independently. GBT, instead, builds
one tree at a time incrementally using the information of the
previously built ones to improve the accuracy.

The RF method with the majority rule has been used in
[125] for classifying PD patients and healthy subjects. The al-
gorithm produced a very high classification accuracy of about
98.04% when the complete set of time and frequency domain
features, extracted from VGRF signals (Gait in Parkinson’s
Disease Database), are used. Similarly, RF and DT are used
in [52] for the recognition of PD patients, obtaining a relatively
high classification accuracy: 89.4% and 87.21%, respectively.
In this case, spatio-temporal and kinematic features are ex-
tracted from the VGRF signals from a subset of the Gait in
Parkinson’s Disease Database considering 28 PD patients and
18 age-matched controls during normal level ground walking
for two minutes [91].

RF and GBT have been also chosen in [66], to test a
problem more complex than the binary classification of PD
patients and healthy subjects. The aim is to recognize different
stages of PD disease, in order to optimize therapies. The
classifiers were tested in combination with spatio temporal
features measured by using a MCS and pressure platforms.
RF exhibits the overall highest accuracy of 86.4%, but also
GBT achieves an accuracy of 84% that can be considered a
good result especially considering the high level of complexity.
A similar complex problem is considered in [122], where the
aim is to differentiate between PD patients with and without
MCI. Furthermore, single gait task and dual task conditions
(motor and cognitive) are compared. Both RF and DT, trained
on spatio-temporal features obtained by using a MCS and
two force plates, exhibit comparable performance achieving
accuracy of 76.5% and 75%, respectively. Higher accuracy
rates are obtained in [39] by applying RF on kinematic
features for distinguishing PD patients from healthy controls
and geriatric subjects. The accuracy range from 83.3% and
100% depending on different groupings of features. The best
performance is achieved in the case of only 8 discriminative
features.

E. Multilayer Feed Forward Neural Networks

Multilayer Feed Forward Neural Networks (MLFNNs) are
artificial neural networks capable of identifying complex non-
linear relationships between input and output data. They are
composed of an input layer, one or more hidden layers, and
an output layer of nodes. Different activation functions can
be used at nodes (except for the input nodes) for mapping
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TABLE IV
LIST OF CLASSIFIERS WITH ACHIEVED ACCURACY.

Ref. Classification Task Feature Type
(Database)

Classification
Technique (Accuracy) Sensor Type Sample Size Notes

[112]

NDD vs. Healthy
ALS vs. PD
ALS vs. HD
ALS vs. Healthy
PD vs. HD
PD vs. Healthy
HD vs. Healthy

Temporal
(Gait in Neuro-
Degenerative Disease
Database)

SVM RBF (86.85%)
SVM RBF (85.47%)
SVM RBF (86.52%)
SVM RBF (93.96%)
SVM RBF (79.04%)
SVM RBF (86.43%)
SVM RBF (84.17%)

Force-
Sensitive
Resistors
(VGRFs)

PD=15;
HD=20;
ALS=13;
Healthy=16

Average computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[119]

NDD vs. Healthy
NDD vs. Healthy
NDD vs. Healthy
ALS vs. PD
ALS vs. HD
PD vs. HD

Kinetic
(Gait in Neuro-
Degenerative Disease
Database)

NNLS (96.57%)
SVM (80.20%)
MLFNN (93.53%)
NNLS (99.26%)
NNLS (99.06%)
NNLS (99.11%)

Force-
Sensitive
Resistors
(VGRFs)

PD=15;
HD=20;
ALS=13;
Healthy=16

Average to high computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[120] PD vs.NDD

Temporal
(Gait in Neuro-
Degenerative Disease
Database)

SVM RBF (83.3%)

Force-
Sensitive
Resistors
(VGRFs)

PD=15;
HD=20;
ALS=13;
Healthy=16

Low computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[124] PD vs. Healthy

Spatio-Temporal and Ki-
netic
(Gait in Parkinson’s Dis-
ease Database)

RBF-NN (98.8%)

Force-
Sensitive
Resistors
(VGRFs)

PD=92;
Healthy=73

Average computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[125] PD vs. Healthy
Spatio-Temporal
(Gait in Parkinson’s Dis-
ease Database)

RF (98.04%)

Force-
Sensitive
Resistors
(VGRFs)

PD=92;
Healthy=73

Average computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[52] PD vs. Healthy

Spatio-Temporal and Ki-
netic
(Subset of Gait in Parkin-
son’s Disease Database)

non-linear SVM (95.7%)
linear SVM (91.6%)
RF (89.4%)
kNN (85.1%)
DT (87.21%)

Force-
Sensitive
Resistors
(VGRFs)

PD=29;
Healthy=18

Average computational cost;
Need of instrumented shoes;
Lack of upper body movement analysis.

[116]

PD vs. Healthy
PD vs. Healthy
PD vs. Healthy
PD vs. Healthy
PD vs. Healthy
PD vs. Healthy

Spatio-Temporal and
RoMs
(Private Dataset)

SVM RBF (75.6%)
linear SVM (72%)
K-NN (73%)
NB (72.7%)
LDA (72.5%)
DT (68.9%)

IMU sensors
(accelerome-
ter, gyroscope
and magne-
tometer)

PD=27;
Healthy=27

Average computational cost;
Need of wearing IMU sensors;
Sensible to interferences.

PD severity SVM RBF (>90% )

[60] HD severity

Footfall pressure
Footfall and spatio-
temporal
Footfall pressure
Footfall and spatio-
temporal
(Private Dataset)

SVM (76.9%)

SVM (86.9%)
VGG16 (89%)

CNN (82%)

Walkway sys-
tem (Pressure
data converted
to RGB im-
ages of foot-
prints)

HD=6;
Healthy=6

Lack of upper body movement analysis;
High computational cost;
Limited dataset.

[66] PD severity Spatio-Temporal
(Private Dataset)

RF (86.4%)
GBT (84%) MCS PD=46

Need of the installation of MCS;
High cost of MCS;
Average to high computational cost.

[122] MCI in PD Spatio-Temporal
(Private Dataset)

K-NN (83.8%)
DT (75%)
RF (76.5%)

MCS PD=22;
PD with MCI=23

Need of the installation of MCS
High cost of MCS.

[39] PD vs. Healthy and
Geriatrics

Kinematic
(Dataset by Barth et al.
[94])

K-NN (83.8%)
NB (90%)
SVM (83.6%)
RF (100%)
AdaBoost (100%)
Bagging (96.7%)

Two IMU
sensors
laterally
attached to
the shoes

PD=10
Healthy=10;
Geriatric
Subjects=10

Limited dataset;
Average computational cost;
Need of wearing IMU sensor;
No inter-subject separation scheme;
Lack of upper body movement analysis

[126] AD severity Kinematic
(Private Dataset) CNN (91%) Three-axis ac-

celerometer AD=35
High computational cost;
Need of wearing IMU sensor;
Lack of upper body movement analysis

[127]

Fall Risk
Assessment
(NDD patients)

Kinematic
(Private Dataset)

LSTM (92.1%)
RF (84.3%)
MLFNN (90.3%)
SVM (83.3%)

IMU sensors
installed in
shoes

76 PD patients
divided into two
groups according
to their fall his-
tory

High computational cost;
Need of wearing instrumented shoes;
Lack of upper body movement analysis.

[121]

MS-mild vs. Healthy
MS-mild vs. Healthy
MS-mod vs. Healthy
MS-mod vs. Healthy
MS-mild vs. MS-mod
MS-mild vs. MS-mod

Spatio-Temporal
(Private dataset)

SVM (66.4%)
RF (63.2%)
SVM (82.2%)
RF (76.2%)
SVM (82.3%)
RF (84.0%)

Three-axis
accelerometer
and gyroscope
in smartphone
and
smartwatch

MS-mild=52;
MS-mod=21;
Healthy=24

Use of off-the-shelf hardware;
Limited computational cost;
Lack of upper body movement analysis.

[75] NDD vs. Healthy Kinematic
(Private Dataset)

SVM (99.1%)
RF (94.2%)
Ada Boost(93.2%)
kNN (94.9%)

Standard RGB
cameras

NDD=20;
Healthy=20

All body parts under analysis;
Low costs;
Need of installing ambient sensors.
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the weighted inputs to the output of the node. MLFNNs have
been tested for PD disease classification in [55] over different
types of input features: spatio-temporal, kinetic and kinematic
evaluated from VGRF signals. A deep analysis of the impact
of the different sets of features is carried out in order to find the
best subset of features that better differentiate PD patients from
healthy controls. The best classification accuracy of 95.63%
is obtained when four significant features are selected via
statistical analysis.

In [124] Radial Basis Function Neural Networks (RBF-
NNs) are used for the classification of gait patterns between
PD and healthy control subjects. RBF-NNs are a specific case
of MLFNNs, where the activation functions are represented
by the radial basis functions. In this case, data interpolation is
commonly done by means of Gaussian curves and therefore
tends to be more precise. The features used in [124] are
extracted by VGRFs from the Gait in Parkinson’s Disease
Database. In order to get a more efficient feature set, a
feature extraction scheme is proposed based on phase space
reconstruction and empirical mode decomposition preserving
differences in gait dynamics. Classification is then carried out
by applying RBF-NN on the obtained features and considering
three cross-validation methods. The classification accuracy
ranges from 91.46% and 98.8%. Other more recent works
apply MLFNN on a different type of input data prevalently
for comparison purposes with other state-of-the-art learning
methods [119], [127].

F. Deep Learning

Recently Deep Learning has received increasing attention
in several pattern recognition domains and so in gait analysis.
Deep learning techniques have the great advantage of avoiding
handcrafting feature extraction methods as they implicitly find
discriminating regularities in the raw data. The most popular
deep learning method is Convolutional Neural Network (CNN)
usually used to analyze imagery data, but suitable for different
data sequences. CNN consists of a fully connected neural
network structure with several hidden layers, pooling layers,
and normalization layers, with a set of filters and weights
shared among these layers. CNN can recognize hierarchies
of patterns from smaller and simpler ones without increasing
the model complexity.

In [60], two types of CNN architectures have been compared
for analyzing the footprint pressure images obtained from
an instrumented walkway for classifying HD patient disease
severity (high and low). The aim is to prove that the footprint
images hold rich features and can produce good classification
performance even without combining spatio-temporal features.
The proposed method combines a pre-trained VGG16 (which
is a type of CNN) for feature extraction and a grouping phase
based on a weighting procedure. This method applied to the
footprint images has revealed good performance obtaining a
classification accuracy of 89%. For comparisons, two addi-
tional tests have been carried out by applying SVM to both
footprint images only (76.9% classification accuracy) and a
combination of footprint images and spatio-temporal features
(86.9% classification accuracy). This proves that SVM does

not work properly with pressure frames, whereas it seems to
be more appropriate for working with high-level features. The
results show that CNN gets worse performance when high-
level features are fused with the image-based ones.

In [126], a CNN is used to classify AD severity stages
(early, middle, and late) by using records of accelerometer
data (acceleration changes in the three directions X, Y, Z along
time). Considering the complexity of the classification problem
and the presence of complex pattern sequences of mixed length
within the movement data, a deep learning method seems
suitable for managing this data as it takes advantage of the
internal structure of data sequences. Therefore CNN has been
chosen as a classification method obtaining high accuracy rates
for the three classes: 89% (early AD), 93% (middle AD), and
91% (late AD).

A more recent work [127] explores the applicability of deep
learning to the complex and challenging problem of fall risk
inference in patients with PD. In this case, the Long Short-
Term Memory (LSTM) deep neural network has been applied
on sequences of spatio-temporal gait parameters measured by
IMU sensors attached to the dorsum of both feet. Raw data
are properly pre-processed in order to construct sequences of
gait capturing both temporal variations and asymmetries in
gait. LSTM network has the advantage of remembering long-
term dependencies within the data. In this case, a bi-directional
LSTM has been used which is suitable for a sequence-to-label
classification mode of operation. Classification accuracy of
92.1% has been achieved by LSTM. Additional comparisons
with traditional classification methods (SVM, RF, MLFNN)
are also presented.

IX. DISCUSSION

Instrumented evaluations of gait parameters, thanks to the
accuracy, repeatability and reproducibility of the measure-
ments, can undoubtedly support specialists in making objective
diagnoses. The literature review, carried out in this article, has
revealed a number of problems and challenges.

A. Sensors and protocols
The first point concerns the selection of sensors, among the

large variety of possibilities, that depends on the specific aim
of the research task, the set of parameters to be monitored,
the physical and use-case constraints, the available budget,
the extension of monitoring in terms of space and time. At
the time of writing, there is not a technology able to meet
all the desired requirements. Reviewed papers reveal that an
accurate pose estimation requires, in general, expansive and
distributed sensors within a very controlled environment and
for a limited time. Accurate evaluations have been obtained
with ambient sensors such as floor sensors, force platforms,
electronic walkways or motion capture systems, while subjects
walk on clear and specific defined walkways under the real-
time control of specialists. The results are collections of data
linked to specific observation periods. If by the one hand these
sensors provide precise and in-depth studies, on the other hand
they cannot be applied to “into-the-wild” (or real-life) gait
analysis outside the instrumented environment.
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A recent trend deals with the investigation of gait analysis
with optical sensors. RBG, RGB-D, Stereo, Structured Light,
Infrared cameras can provide different types of images that
can be used to extract gait parameters. To date, vision-
based sensors are probably the most viable solution for wide
monitoring aims offering different solutions within multiple
budget ranges. Furthermore, the research in the image/video
processing field has led to an important improvement in
body tracking capabilities provided as comprehensive and
free tools in out-of-the-box software development kits. These
technological developments, difficult to foresee only one or
two years ago, will lead to results of sure significance for the
scientific advancement in the field of gait analysis. Moreover,
apart from controlled environments, these systems could be
easily installed in private environments and could capture
important and impactful data not only related to gait but also to
posture or daily activities in order to have a complete clinical
model of the person under analysis.

Regarding wearable sensors, overall results are interesting,
however, all the reviewed studies stressed the strict relation
between the quality of acquired data and the final accuracy
of the system. In other words, due to the body part on which
the sensor is worn and the kind of sensor, many calibration
steps are required. Of course, technology advancements will
improve performances and make it possible to build increas-
ingly miniaturized devices that can be placed into clothes
(smart garments) for uncontrolled and long-term observations
of individuals thus solving the problem of forgetting to wear
the device. In this case, combined systems based on wearable
sensors and additional Human Activity Recognition (HAR)
modules could be very helpful for a contextual study of gait.
If people walk while they are performing other tasks (e.g.
carrying objects), combined systems of gait analysis and HAR
would give the possibility to capture gait-related parameters
and other useful information in order to reveal specific events
such as fall, supine or sit position, and so on. Also energy
management in wearable devices, which had been considered
for a long time one of the main drawbacks of this technological
category, is in continuous improvement as a result of the
development of low power/energy demanding electronics. In
addition, new recharging capabilities offered by contactless
magnetic solutions can aid their implementation in an easier
way.

For target users confident with the daily use of technolo-
gies (in general expected to be younger than those typically
involved in many NDD studies) also smartphones or smart-
watches can play a crucial role since they include accelerom-
eters and gyroscopes. Therefore, gait analysis can benefit
from the large literature on well-tested approaches that use
IMU sensors. Finally, the gradually emerging wireless-based
devices for passive sensing can be a further future solution.
They have been used for gesture recognition, human activity
detection, human body tracking, human body localization, but
they have been only marginally investigated in the context of
gait analysis in neurodegenerative diseases. Future research
will certainly bring valuable results also for gait parameters
monitoring.

B. Methodologies, datasets and performances

The analysis of the reviewed articles has revealed that there
is not clear evidence on which system or approach is better
than the other because different studies have been performed
on different and/or limited datasets acquired with different
devices and by using different protocols. This prevents the
possibility of a clear and fair comparison, but only allows some
indications to be drawn. For instance, regarding features, the
spatio-temporal ones are the most used, but as can be seen
from table IV classification performance (in terms of accu-
racy) deteriorates compared to kinetic and kinematic features.
Undoubtedly, the joint use of multiple features, regardless of
the specific category, allows for better performance.

Regarding classification, known the relation between
methodology and data necessary to build the class model, it
is possible to draw some conclusions on which methodology
should be used according to the kind and quantity of available
data. Approaches such as instance-based or tree-based method-
ologies can provide good classification performance even with
little data available, as they base on rules or proximity levels of
data. Other methodologies, such as NNs, linear and non-linear
SVMs, need to build class separation models and both the
quality and the quantity of data can affect the results. However,
to date, SVM has been the most used approach to provide
medium to high accuracy (depending upon the specific task
and feature set). Furthermore, the appropriate combination of
feature selection and classification methods together with an
abundant quantity of labeled data are fundamental to extract
relevant information and train classifiers with generalization
abilities. The recent trend of using deep networks, such as
CNNs or LSTMs, has led to a new way of analyzing data:
classifiers are able to extract features directly from raw data,
however, they require a huge amount of data that cannot be al-
ways available. Although some evidence is at hand [127],there
is no proof that Deep Learning is able to outperform Shallow
Learning in this domain.

The availability of data is another important point on which
future efforts have to focus: there is an urgent need to
create large data sets for developing, testing and comparing
data processing approaches. The problem of generating new
datasets is related to the availability of a large number of
subjects, of proper equipment for data collection, of several
executions of the walk, and above all to the knowledge of the
disease severity of the subjects under observation. As detailed
in table II, available datasets are, in general, limited to few
patients and healthy controls while walking along predefined
paths for few minutes. These datasets are not sufficient to
train advanced machine learning models. In the last years,
the large availability in many application contexts of few
data, carefully labeled by humans, together with abundant
unlabelled data has given a great impulse to the research on
semi-supervised methodologies that make predictions on entire
datasets to generate pseudo-labels for unlabelled data and train
deep neural networks. In human gait analysis, also sharing few
available labeled data with the much more unlabelled data
would be of great utility for the machine learning scientific
community. Another point that emerges from the analysis
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of datasets is the scarcity of vision-based datasets. Many
vision-based datasets are available in the literature for activity
monitoring or gait analysis for biometric tasks, but only a
few collect data on the gait of individuals with NDDs. As
discussed above, the recent improvements of camera-based
systems together with the software tools for body tracking
will provide a huge quantity of gait data in the next future.
Therefore, there is the need to make this data available in order
to test methodologies and compare results by using common
evaluation metrics.

The rapid aging of the population, the need for home
assistance, the increasing demand for telemedicine services,
the progress of sensing technologies and the methodological
improvements suggest that the future direction of research will
be the long-term and free-living monitoring of subjects. This
task represents the challenging future direction of research
as it could be of fundamental help for revealing changes in
gait, postures and habits for several purposes: to detect disease
progression, to prevent falls, to improve quality of life, or to
prolong the independent living of elderly people. In this new
scenario, the long-term uncontrolled gait monitoring in free-
living environments yields new opportunities to monitor and
understand the mechanisms behind the NDDs. The observation
of gait changes while subjects perform their daily activities,
cannot replace instrumented evaluation in controlled labora-
tory environments, but can reveal several parameters extracted
by other behavioral observations (time spent in sedentary
behavior, standing, count of sit to stand transitions, the total
number of steps for a given period, and so on) that can be very
useful to interpret the evolution and the severity of diseases.

X. CONCLUSIONS

In this paper, the fundamental issues of gait analysis,
for supporting the diagnosis or the progression of neurode-
generative diseases, have been explored. The literature has
been reviewed following a sequential thread starting from a
panoramic survey of sensor modalities, mainly used for data
acquisition, opening a little window on protocols for gait
measurements and on the publicly available datasets, going
through the description of more significant features up to
the final high-level decision support phase, which essentially
involves the classification of available data. To date, a large
number of gait parameters have been measured by using var-
ious technologies and modelled by applying several method-
ologies in order to better understand impaired gait due to
different neurodegenerative conditions. However, the majority
of investigations based on studies in clinic environments, small
populations suffering from neurological disorders, pre-defined
and limited gait protocols. Free-living gait assessment is the
new study direction where the scientific communities are going
to focus their efforts as it reflects real-life settings, where
habitual and insightful gait data can be captured on observed
subjects. This is further favored by the continuous progress
of both miniaturized wearable technologies and commercial
high-resolution optical ambient sensors that will allow for
capturing different types of gait characteristics useful for
more in-depth free-living gait study. On the one hand, this

creates great opportunities in timely detecting gait disorders
on a wide range of neurological conditions for contributing
to the design of proper interventions. On the other hand,
it opens new challenges related to the need of developing
standardized approaches for quantifying gait and to the need
for synchronizing and fusing multi-sensor data. Furthermore,
it is also evident the need for developing fast procedures in
order to satisfy real-time requirements. Complex environment
management, execution time and complexity reduction, in
fact, represent additional challenging factors worthy of further
investigations in order to develop efficient, consistent and real-
time monitoring systems.

XI. APPENDIX

The list of abbreviations used in this manuscript.

AD Alzheimer’s Disease
ALS Amyotrophic Lateral Sclerosis
CA Cerebellar Ataxia
CoP Center of Pressure
CNN Convolutional Neural Network
DT Decision Tree
HAR Human Activity Recognition
HD Huntington’s disease
HSP Hereditary Spastic Paraplegia
kNN k-Nearest Neighbour
IMMS Inertial and Magnetic Measurement System
IMU Inertial Measurement Unit
LDA Linear Discriminant Analysis
LSTM Long Short-Term Memory
MCI Mild Cognitive Impairment
MCS Motion Capture System
MS Multiple Sclerosis
MLFNN Multilayer Feed Forward Neural Network
NB Naı̈ve Bayes
NDD NeuroDegenerative Disease
NNLS Non-Negative Least Square
PD Parkinson’s disease
RBF Radial Basis Function
RBF-NN Radial Basis Function Neural Network
RF Random Forest
RoM Range of Motion
SVM Support Vector Machine
VGRF Vertical Ground Reaction Force
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C. Mazzà, A. J. Yarnall, and L. Rochester, “The role of movement
analysis in diagnosing and monitoring neurodegenerative conditions:
Insights from gait and postural control,” Brain Sciences, vol. 9, no. 2,
Feb. 2019.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JBHI.2021.3092875, IEEE Journal of
Biomedical and Health Informatics

16 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2017

[8] P. Werner, G. Savva, I. Maidment, J. J.R. Thyrian, and C. Fox,
Dementia: Introduction, Epidemiology and Economic Impact. Cham:
Springer, 2016, pp. 197–209.

[9] G. Cicirelli, R. Marani, A. Petitti, A. Milella, and T. D’Orazio,
“Ambient Assisted Living: A Review of Technologies, Methodologies
and Future Perspectives for Healthy Aging of Population,” Sensors,
vol. 21, no. 10, 2021.

[10] F. Deligianni, Y. Guo, and G. Z. Yang, “From Emotions to Mood
Disorders: A Survey on Gait Analysis Methodology,” IEEE Journal of
Biomedical and Health Informatics, vol. 23, no. 6, Nov. 2019.

[11] S. Chen, J. Lach, B. Lo, and G. Z. Yang, “Toward Pervasive Gait
Analysis With Wearable Sensors: A Systematic Review,” IEEE Journal
of Biomedical and Health Informatics, vol. 20, no. 6, Nov. 2016.

[12] V. Valkanova and K. P. Ebmeier, “What can gait tell us about dementia?
Review of epidemiological and neuropsychological evidence,” Gait &
Posture, vol. 53, pp. 215–223, 2017.

[13] J. P. Singh, S. Jain1, S. Arora1, and U. P. Singh, “Vision-based gait
recognition: A survey,” IEEE Access, vol. 6, pp. 70 497–70 527, Nov.
2018.

[14] V. Valkanova et al., “Association between gait and cognition in an
elderly population based sample,” Gait & Posture, vol. 65, pp. 240–
245, 2018.

[15] T. Holthe, L. Halvorsrud, D. Karterud, K. Hoel, and A. Lund, “Usability
and acceptability of technology for community-dwelling older adults
with mild cognitive impairment and dementia: a systematic literature
review,” Clinical Interventions in Aging, vol. 13, pp. 863–886, 2018.

[16] M. Z. Uddin, W. Khaksar, and J. Torresen, “Ambient sensors for elderly
care and independent living: A survey,” Sensors, vol. 18, no. 7, Jun
2018.
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