246 research outputs found

    Stability and bifurcation in plant-pathogens interactions

    Get PDF
    We consider a plant–pathogen interaction model and perform a bifurcation analysis at the threshold where the pathogen-free equilibrium loses its hyperbolicity. We show that a stimulatory–inhibitory host response to infection load may be responsible for the occurrence of multiple steady states via backward bifurcations. We also find sufficient conditions for the global stability of the pathogen-present equilibrium in case of null or linear inhibitory host response. The results are discussed in the framework of the recent literature on the subject

    A food chain ecoepidemic model: infection at the bottom trophic level

    Get PDF
    In this paper we consider a three level food web subject to a disease affecting the bottom prey. The resulting dynamics is much richer with respect to the purely demographic model, in that it contains more transcritical bifurcations, gluing together the various equilibria, as well as persistent limit cycles, which are shown to be absent in the classical case. Finally, bistability is discovered among some equilibria, leading to situations in which the computation of their basins of attraction is relevant for the system outcome in terms of its biological implications

    Theoretical conditions for the coexistence of viral strains with differences in phenotypic traits : A bifurcation analysis

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de CatalunyaWe investigate the dynamics of a wild-type viral strain which generates mutant strains differing in phenotypic properties for infectivity, virulence and mutation rates. We study, by means of a mathematical model and bifurcation analysis, conditions under which the wild-type and mutant viruses, which compete for the same host cells, can coexist. The coexistence conditions are formulated in terms of the basic reproductive numbers of the strains, a maximum value of the mutation rate and the virulence of the pathogens. The analysis reveals that parameter space can be divided into five regions, each with distinct dynamics, that are organized around degenerate Bogdanov-Takens and zero- Hopf bifurcations, the latter of which gives rise to a curve of transcritical bifurcations of periodic orbits. These results provide new insights into the conditions by which viral populations may contain multiple coexisting strains in a stable manner

    Modeling and analysis of bilharzia disease

    Get PDF
    In this paper the dynamics of bilharazia disease in the humans, which represents its main host, is formulated mathematically. The proposed system is studied analytically. The local stability is investigated for all possible equilibrium points.  Using suitable Lyapunov functions the basin of attraction of each point is specified. The conditions of occurring local bifurcation in the system are established. Numerical simulations are performed to study the global dynamics of the system and specify the set of control parameters. It is observed that the system has no periodic dynamics and the disease is controlled under some conditions on the parameters. Keywords: Bilharzia; Parasite disease; Stability; Local bifurcation

    A predator-prey model with disease in prey

    Get PDF
    . The present investigation deals with the disease in the prey population having significant role in curbing the dynamical behaviour of the system of prey-predator interactions from both ecological and mathematical point of view. The predator-prey model introduced by Cosner et al. [1] has been wisely modified in the present work based on the biological point of considerations. Here one introduces the disease which may spread among the prey species only. Following the formulation of the model, all the equilibria are systematically analyzed and the existence of a Hopf bifurcation at the interior equilibrium has been duly carried out through their graphical representations with appropriate discussion in order to validate the applicability of the system under consideratio

    Dynamic behavior of a parasite–host model with general incidence

    Get PDF
    AbstractIn this paper, we consider the global dynamics of a microparasite model with more general incidences. For the model with the bilinear incidence, Ebert et al. [D. Ebert, M. Lipsitch, K.L. Mangin, The effect of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six microparasites, American Naturalist 156 (2000) 459–477] observed that parasites can reduce host density, but the extinction of both host population and parasite population occurs only under stochastic perturbations. Hwang and Kuang [T.W. Hwang, Y. Kuang, Deterministic extinction effect of parasites on host populations, J. Math. Biol. 46 (2003) 17–30] studied the model with the standard incidence and found that the host population may be extinct in the absence of random disturbance. We consider more general incidences that characterize transitions from the bilinear incidence to the standard incidence to simulate behavior changes of populations from random mobility in a fixed area to the mobility with a fixed population density. Using the techniques of Xiao and Ruan [D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator–prey system, J. Math. Biol. 43 (2001) 268–290], it is shown that parasites can drive the host to extinction only by the standard incidence. The complete classifications of dynamical behaviors of the model are obtained by a qualitative analysis

    Immune Response in the Study of Infectious Diseases (Co-Infection) in an Endemic Region

    Get PDF
    abstract: Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.Dissertation/ThesisPh.D. Applied Mathematics for the Life and Social Sciences 201
    • …
    corecore