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Edmé L. Soho

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved November 2011 by the
Graduate Supervisory Committee:

Stephen A. Wirkus, Co-Chair
Carlos Castillo-Chavez, Co-Chair

Gerardo Chowell-Puente

ARIZONA STATE UNIVERSITY

December 2011



c©2011 Edmé L. Soho
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ABSTRACT

Diseases have been part of human life for generations and evolve within the pop-

ulation, sometimes dying out while other times becoming endemic or the cause

of recurrent outbreaks. The long term influence of a disease stems from differ-

ent dynamics within or between pathogen-host, that have been analyzed and stud-

ied by many researchers using mathematical models. Co-infection with different

pathogens is common, yet little is known about how infection with one pathogen

affects the host’s immunological response to another. Moreover, no work has been

found in the literature that considers the variability of the host immune health or that

examines a disease at the population level and its corresponding interconnectedness

with the host immune system.

Knowing that the spread of the disease in the population starts at the individual

level, this thesis explores how variability in immune system response within an en-

demic environment affects an individual’s vulnerability, and how prone it is to co-

infections. Immunology-based models of Malaria and Tuberculosis (TB) are con-

structed by extending and modifying existing mathematical models in the literature.

The two are then combined to give a single nine-variable model of co-infection with

Malaria and TB. Because these models are difficult to gain any insight analytically

due to the large number of parameters, a phenomenological model of co-infection

is proposed with subsystems corresponding to the individual immunology-based

model of a single infection. Within this phenomenological model, the variability

of the host immune health is also incorporated through three different pathogen re-

sponse curves using nonlinear bounded Michaelis-Menten functions that describe

the level or state of immune system (healthy, moderate and severely compromised).

The immunology-based models of Malaria and TB give numerical results that agree

with the biological observations. The Malaria–TB co-infection model gives reason-
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able results and these suggest that the order in which the two diseases are introduced

have an impact on the behavior of both. The subsystems of the phenomenological

models that correspond to a single infection (either of Malaria or TB) mimic much

of the observed behavior of the immunology-based counterpart and can demon-

strate different behavior depending on the chosen pathogen response curve. In ad-

dition, varying some of the parameters and initial conditions in the phenomenolog-

ical model yields a range of topologically different mathematical behaviors, which

suggests that this behavior may be able to be observed in the immunology-based

models as well.

The phenomenological models clearly replicate the qualitative behavior of primary

and secondary infection as well as co-infection. The mathematical solutions of

the models correspond to the fundamental states described by immunologists: vir-

gin state, immune state and tolerance state. The phenomenological model of co-

infection also demonstrates a range of parameter values and initial conditions in

which the introduction of a second disease causes both diseases to grow without

bound even though those same parameters and initial conditions did not yield un-

bounded growth in the corresponding subsystems. This results applies to all three

states of the host immune system. In terms of the immunology-based system, this

would suggest the following: there may be parameter values and initial conditions

in which a person can clear Malaria or TB (separately) from their system but in

which the presence of both can result in the person dying of one of the diseases.

Finally, this thesis studies links between epidemiology (population level) and im-

munology in an effort to assess the impact of pathogen’s spread within the popu-

lation on the immune response of individuals. Models of Malaria and TB are pro-

posed that incorporate the immune system of the host into a mathematical model of

an epidemic at the population level.
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Chapter 1

OVERVIEW OF MATHEMATICAL MODELING AND IMMUNOLOGY

1.1 Thesis Overview

Before we start to develop any aspect of the thesis, we want to highlight to

originality of our research work. To date and to our knowledge there are no math-

ematical models that include in the modeling process the variability of the immune

system response. Using the basic principal of linear and nonlinear dynamical sys-

tem, mathematical biology and population dynamic, we introduce an immunologi-

cal model of the interaction between immune system and pathogen(s); with explicit

consideration of the nonlinear bounded Michaelis-Menten functions to describe the

state of the health of the host. With this function we can have an infinite states

as the Hill coefficients varied. In the thesis for simplicity we only consider three

states (health, moderately compromised and severely compromised) of the immune

system.

The thesis is organized into two main parts. In the first part, we discuss some basic

background informations on epidemiology and immunology (Chapter 1) and then

we propose a co-infection model of Malaria and TB based on the immunology of

each disease (Chapter 2). This yields a complicated model, which we then use

to create a phenomenological model that captures much of the biology and allows

for us to better understand the mechanisms of co-infection. The phenomenologi-

cal model is discussed in full mathematical detail by considering three subsystems

of it that allow us to characterize the full system. The phenomenological model

is proposed at the end of Chapter 2 and then fully justified and analyzed in Chap-

ters 3-5. At the end of Chapter 5, we compare the immunology-based Malaria–TB

co-infection model with the corresponding phenomenological model. In the sec-

ond part of the thesis, we propose a method (in Chapter 6) by which we can link
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the individual immune system (immunology) to the overall population (epidemiol-

ogy). Finally, we propose specific epidemiological models of Malaria and TB by

incorporating this new technique.

1.2 Introduction.

Epidemiology and immunology have been around for centuries. The ear-

liest known notion of immunity dates back to the plague of Athens in 430 B. C.,

where Thucydides noted that people who had recovered from a previous bout of

the disease could nurse the sick without contracting the illness a second time [105],

and epidemiology back to Hippocrates (460 BC - 370 BC) who is the first person

known to have examined the relationships between the occurrence of disease and

environmental influences. Despite these first discoveries, many aspects of immu-

nity were not explored in any great detail until toward the end of eighteen cen-

tury by Pierre-Louis Moreau de Maupertuis, Louis Pasteur, etc. Additionally, there

had been no attempt in understanding the immune system dynamic until the nine-

teenth century with the rapid developments of immunology or cellular immunol-

ogy by Elie Metchnikoff [47], who was recognized by the award of a Nobel Prize

in 1908. A similar situation holds for epidemiology. The standard mathematical

methods were introduced into epidemiology by Ross (1911) [100], McKendrick

(1912) [79], and Martini (1928) [75] with the modeling of malaria which today is

one of the deadly infectious diseases in Sub Sahara Africa transmission. After this

first wave of publication, Kermack and McKendrick published a series of papers

on deterministic models for the spread of infectious diseases [65–67; 78]. These

papers, later extended in a number of publications by Bailey (1979) [10], Hethcote

and Yorke (1984) [52; 54] , Dietz and Hadeler (1988) [36], and Anderson and May

(1991) [3; 4; 76], provide and shed an important light on problems of theoretical

investigation of the evolution of infectious diseases.
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The paper published in 1927 by Kermack and McKendrick, develops the SIR (Susceptible-

Infected-Removed) epidemic model that incorporates variable periods of infectiv-

ity; that is, the infection rate depends on the duration in the infected state; and the

infection only happens one time in the life span of the host individual. If the infec-

tivity is assumed to be constant, the SIR model reduces to a well known ordinary

differential equation model [2]. There have also been studies on variable infectivity

[4; 58; 72; 108]. In “The Legacy of Kermack and McKendrick” by Diekmann et al.

[35], the basic assumptions of the model formulation are

1. a single infection triggers an autonomous process within the host;

2. the disease results in either complete immunity or death;

3. contacts are according to the law of mass action;

4. all individuals are equally susceptible;

5. the population is closed;

6. the population size is large enough to warrant a deterministic description.

These above assumptions, when focusing on the immune system response, may not

be sufficient. During the past decades, the SIR and SEIR (susceptible-exposed-

infective-removed) epidemic models have been extended to various epidemic de-

mographic situations, see for example [4; 7; 16; 21; 23–27; 45; 51–53; 108].

The mathematical epidemiological models examine the population of individual

people and describe the spread of the disease due to “interactions” or “contacts”

between susceptible and infectious. The Law of Mass Action addresses processes

which occur simultaneously, and it is widely accepted idea that the rate of contact

between two groups in a population is proportional to the size of each of the groups
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concerned [107]. The simplest transmission model assumes homogeneous mix-

ing, that is, each individual has an equal chance of coming in contact with another

individual in the population. Sometimes, one can have a slightly more realistic

transmission assumption, e.g. proportionate mixing, where the rate at which in-

dividuals make such random contacts depends on the class to which they belong.

Even though different approaches may be used to define the interactions for trans-

mission rates, the parameters of mathematical epidemiology models are considered

as statistical means from a sample of the overall population. As with most models

that use ordinary differential equations, this is usually a reasonable first assumption.

Tremendous progress has been made on numerous communicable diseases that

have plagued our societies since the beginning of humanity and continue to glob-

ally affect the overall health and social well-being of many individuals [57] in

under-developed countries. Our understanding in recent years of infectious-disease

epidemiology and control has greatly increased through mathematical modeling,

which now plays a key role in policy making, emergency planning and risk assess-

ment, control program evaluation, etc.

Mathematical models in epidemiology help to understand a vast array of diseases,

including smallpox, measles, malaria, tuberculosis, HIV and countless others [7;

15; 16; 21; 23–27; 39; 40; 45; 51–53; 108]. As part of theoretical epidemiology,

the epidemiological modeling can use dynamical systems to characterize and ex-

plain epidemic patterns. Most models have adopted one of two methodologies.

The first is a phenomenological approach. The second approach is the construction

of explicit deterministic or stochastic models of the demography which generates

pathogen distributions. In the classic theory of infectious diseases the key concept

is the so called basic reproductive rate R, which allows one to specify the minimum

intervention effort to make the disease-free-equilibrium stable. It is usually inter-

preted as the number of secondary cases that one case could produce if the total
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population were susceptible. With R, we can accurately describe conditions on the

parameters for when a disease will remain endemic in the population.

Parallel to all these approaches, we can add another layer of complexity to the

models described above when host immune response is included. Immunological

models are often considered to be either too simplistic or too complex. This area

recently received considerable theoretical attention, particularly in the derivation of

immuno-epidemiological models [50; 117; 118]. Because of the complexity and the

diversity of the immune system, there is general limited acceptance of the models

by immunologist.

Within the population, there are many different pathogens in circulation and any as-

sumptions about how they interact can profoundly affect the outcome of any study.

In the presence of two or more infectious diseases, any formulation of a mathe-

matical model should identify the entire infection history of the individual and its

immunological status with respect to the various pathogens/strains. Such general

models can be difficult to study due to the large number of degrees of freedom re-

sulting in the difficulty of both parametrization (setting of parameters) and analysis.

Some parameters (e.g., contact rate) depend on interactions within the population

while other parameters, e.g., recovery rate or rate of infection, depend on the in-

dividual that has been exposed to or is fighting/recovering from the disease (both

of which depend heavily on the person’s immune system and their body’s abil-

ity to get rid of the disease). Hence, detailed immunological studies are required

to clarify some of the typical behavior. With the advances in science, technology

and computing, more molecular and immunological data is now available and we

face the challenge to integrate this knowledge with the epidemiology and the evo-

lutionary disease models that we know so far. However, when considering all this

information, we notice that very little work has been done to try to tie together

epidemiological modeling with immunological modeling, that is, to use knowledge
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of one’s immune system response to rewrite the relevant terms in the traditional

epidemiological models as functions of the immune system. This is particularly

important if, when focusing on the immune system, we realize that the body, in

a geographically endemic region of disease is not able to respond as quickly to a

disease if there is already another one present. In this latter situation, the measured

value of the relevant parameters may be consequently, unfairly skewed.

The focus here is to understand the role of host immune response in determining

patterns of infection when considering the degree to which the individual is im-

mune compromised, if it can be clearly identified. We specifically study how the

interaction between pathogen and (compromised) host immune system can affect

the variability in the influence of the infection rates observed at the population

level. Understanding the state of individual immune system within the popula-

tion can help to evaluate the evolution of disease in the population. However, it is

equally important to understand how the dynamic of the population can thus help

to predict the average state of an individual immune system. This work begins to

examine the immune system response when the host is invaded by one pathogen

or two pathogens (co-infections) in an endemic region and what effect is seen by

incorporating this in the overall population dynamics.

1.3 Basic understanding of the immune response

In order to describe the immune system response to any infectious disease,

we need to know the characteristics of the immune system itself. The function of the

immune system is to protect our body from infections and illnesses. The immune

system works to identify pathogens and tumor cells that could cause diseases and to

eliminate them from our system. The immune system is like a community or team

that is comprised of many different cells that work together to keep us healthy.

Many of these cell types have specialized functions and ways of communicating
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with each other. The immune system is composed of many interdependent cell

types that collectively protect the body from foreign organisms (parasites). All

cells of the immune system are initially produced from the bone marrow.

Right after birth, the newborn’s immune system is functionally naive and enters a

state of differentiation and reorganization [89]. A number of critical maturation and

activation events occur before any immune system cells (T cells, B cells, NK cells,

etc.) acquire specific effector functions. At birth, the bone marrow and thymus

are fully colonized with hemopoietic stem cells that gradually mature into various

different lineages of immune cells (lymphoid, karyocyte or granulocyte lineage);

see Figure 1.1 for the key stages in stem cell differentiation [43].
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Figure 1.1: Key stages of stem cell differentiation. Abbreviations used: S = stem
cell; LS= lymphoid stem cell; HS= hemopoietic stem cell; MK= megakaryocyte;
ES=erythroid stem cell; GM= granulocyte-monocyte precursor; T= T lymphocyte;
B= B lymphocyte; Th= T helper cell; Tc= T cytotoxic cell; TCR= T cell receptor;
CD= cluster of differentiation marker [43].
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Throughout growth, the total cellularity of the spleen and lymph nodes increases

dramatically as immune cells begin to migrate from primary immune organs to

establish residence in secondary immune organs. And it is within the secondary

immune organs that some of them (T and B lymphocytes) develop memory for spe-

cific antigens or pathogens. Immunological memory is clearly an important topic

in any consideration of the interaction between host and pathogen both at the in-

dividual and at the population levels [4]. It is not uncommon for people to be

concurrently infected with more than one infectious disease. The immune system

is designed to fight infection by making proteins called antibodies; a different an-

tibody is produced for each different infection, and each type of antibody attacks

only its particular virus or bacterium.

The immune system is divided into two functionally distinct parts: one part which

is innate (nonadaptive), and the other part which is acquired (adaptive). Innate im-

munity (non-adaptive) refers to immune elements which are non-specific, whereas

acquired (adaptive) immunity refers to immune elements which are specific.

The response of the adaptive immune system of vertebrates [111] is a function of

exposure to past infectious disease. An immune response can have several differ-

ent effects on future exposures: immunity for identical or nearly identical diseases,

some amount of cross-reactive protection for similar diseases, no effect for unre-

lated diseases, and in exceptional cases an increased vulnerability.

The adaptive immune system derives the ability to respond to new infections through

a diverse population of cells, each having a distinct set of chemicals to which it can

respond [92; 93; 103]. The mechanisms that generate this diversity also generate

cells that will respond inappropriately to inert environmental chemicals (allergens),

or even the body’s own chemicals, thereby causing autoimmune disease. There are

two types of specific immunity: Humoral (antibody) Mediated Immunity (HMI)

and Cell Mediated Immunity (CMI).
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HMI involves the production of antibody molecules in response to an antigen and is

mediated by B cells. The B cell is a type of white blood cell and, specifically, a type

of lymphocyte. Many B cells mature into what are called plasma cells that produce

antibodies (proteins) necessary to fight off infections while other B cells mature into

memory B cells. The B cells become transformed into antibody-secreting plasma

cells which produce immunoglobulins (antibodies) when a foreign antigen (para-

site) triggers the immune response [109]. Antibodies circulate in the blood and

lymph streams and attach to foreign antigens to mark them for destruction by other

immune cells such as scavenging cells which include neutrophil and macrophages.

CMI involves the production of cytotoxic T cells, T helper cells, activated macrophages,

activated natural killer cells, and cytokines in response to an antigen and is medi-

ated by T cells. T cells are usually divided into two major sub-populations — the

T helper cells also called CD4+ T cells (Cluster of Differentiation Antigen No.4

Positive T cells) and Cytotoxic T cells (CD8+ T-cells). The T helper cell is fur-

ther divided into Th1 and Th2 depending on their lymphokines profiles [63]. The

T helper cells stimulate B cells to divide repeatedly and form a clone. Most cells

of the clone differentiate into plasma cells which synthesize and secret antibodies;

other cells of the clone become memory B cells. The memory B cells remain in

circulation after plasma cells have died. On secondary infection by the same anti-

gen, memory B cells detect the antigen quickly and respond more intensively. They

develop into plasma cells much more rapidly than the original or naive B cells and

proceed to secrete their immunoglobulins. This second response is much quicker

than the first, and often prevents symptoms of the disease from occurring.

The T helper cells also can activate other T cells and immune system scavenger

cells. The Cytotoxic T cells grow and divide into mature CD8+ T cells and memory

CD8+ T cells when activated by parasites. Mature CD8+ cells attack and destroy

infected cells and parasites. Memory CD8+ cells function like memory B cells;
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they persist, multiply and mature if they are re-exposed to the same antigen. For

the immune response to be active, the host has to be exposed to foreign pathogens

that in certain circumstances provoke an infectious disease. Antibodies, cytokines,

natural killer cells, and T cells are essential components of a normal immune re-

sponse. Indeed, in most infections cytotoxic T lymphocytes play a critical role in

host system defense [13; 81; 86].

1.4 Basic understanding of infectious diseases

Infectious diseases are part of the human condition and evolution. Infec-

tious diseases, also known as communicable diseases [56], or transmissible diseases

comprise clinically evident illness (i.e., characteristic medical signs and/or symp-

toms of disease) resulting from the infection, presence and growth of pathogenic

biological agents in an individual host organism [83]. Broadly speaking for any in-

fectious diseases the immune system regards all micro organisms not belonging to

the individual host as “non-self” and reacts against them. Especially, the immune

system response discriminates between self and non-self agents within the body

and remove the non-self elements [92; 93; 103]. Infectious diseases have also been

shown to directly trigger certain autoimmune diseases [9].

Although, diseases can spread directly or indirectly, the transmission of a pathogen

can occur in various ways including physical contact, contaminated food, body flu-

ids, objects, airborne inhalation, or through vector organisms. Most of the epidemic

infections are caused by micro organisms such as viruses, bacteria and protozoa.

Bacteria are among the oldest living organisms on Earth, and they are very small

and can only be seen through a microscope. Bacteria are commonly found in

the ground, water and in other living organisms. Infectious agents are easily

spread by oral means, fecal matter, water, air or food. While some types of

bacteria can cause diseases and become harmful to the environment, animals
10



and humans, others offer benefits that we likely could not live without [83].

For example, many bacteria that are beneficial to humans live in the digestive

system of the human body. They compete with the harmful bacteria and also

help in certain body functions. Also beneficial to humans are the anaerobic

bacteria used in fermentation of vinegar, antibiotic drugs, the aging process

of cheese, etc. In humans, certain harmful bacteria can cause tetanus, pneu-

monia, syphilis, tuberculosis and other illnesses. As long as the host is not

infected with antibiotic resistant bacteria, they can be treated with antibiotics,

which kill bacteria or at least hamper their growth. Antiseptics, sterilization

and disinfectants can help prevent contamination and the risk of infection

from bacteria.

Virus can be defined as a submicroscopic parasite that can infect and often lead to

a serious or deadly disease. A virus consists of a core of RNA or DNA, gener-

ally surrounded by a protein, lipid or glycoprotein coat, or some combination

of the three, allowing it to initially ‘trick’ the body into thinking that it be-

longs. No virus can replicate without the help of a host cell. Some of the most

common or best known viruses include the human immunodeficiency virus

(HIV), which is the virus that causes AIDS, the herpes simplex virus (which

causes cold sores), smallpox, multiple sclerosis, and the human papilloma

virus (now believed to be a leading cause of cervical cancer in adult women).

The common human cold is also caused by a virus. Viruses can be spread

in many ways. Viruses in animals can be carried by blood-sucking insects

known as vectors sometimes through coughing and sneezing (influenza), by

the fecal-oral route entering the body in food or water (norovirus and ro-

tavirus), and through sexual contact and by exposure to infected blood (HIV).

Parasite is an organism that obtains nourishment and shelter from another or-

ganism. Parasites can cause harm or disease to their host. They are gen-
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erally much smaller than their hosts and cannot live independently. Para-

sitic diseases include infections by protozoa (e.g., malaria by plasmodium),

helminths (schistosomiasis), and arthropods.

Co-infection with different microorganisms is common, yet little is known about

how infection with one affects the host’s response to another. For example, TB and

HIV can be a lethal combination: HIV weakens the immune system and promotes

the progression of recent exposure to TB and latent tuberculosis infection to active

TB disease [68]. Co-infection can also complicate treatment. For example, people

with liver damage due to chronic hepatitis are more likely to experience hepatotox-

icity (liver toxicity) related to anti-HIV drugs [104].

We cannot start to comprehensively model the dynamic of interaction with the hu-

man host as it is not only complex but much remains unknown. With the advances

in diverse fields related to systems biology, recent studies have taken a more global

approach to defining the host immune response to bacilli. Previous mathematical

models have been developed to consider the Mtb and parasite P. falciparum dy-

namics in the human host. For example, looking at TB cases, mathematical models

consider macrophage dynamics with partial differential equation (PDE) models of

tumor biology [87; 88]; ODE models of bacilli infection [46; 74; 116], phagocyto-

sis and in the immune response to an unspecified disease or infection [12; 95]. All

these models consist of equations governing the temporal dynamics of the P. falci-

parum, alveolar macrophages, neutrophils, extracellular and intracellular bacteria,

T cells and cytokines. We have not been able to find any models of co-infection

with diseases caused by parasite and bacteria respectively.

Here in this chapter we described the most useful definition about pathogens, in-

fection diseases, and immune system functionality, that will help throughout our
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research for the understanding and elaboration of the diverse biologically relevant

assumptions we will be using.
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Chapter 2

WITHIN HOST DYNAMICAL IMMUNE RESPONSE TO CO-INFECTION

WITH MALARIA AND TUBERCULOSIS

To elaborate and explore different hypotheses, we need to give a clear un-

derstanding of the different elements or pathogens causing the different diseases,

their evolution and interaction. The ultimate goal is to use the assumptions and

definitions in the beginning of this chapter to derive realistic models for Malaria,

Tuberculosis and ultimately co-infection with both.

2.1 Malaria and the immune response

Parasitic infections present a major cause of disease and morbidity in Africa.

Malaria is one of the most dangerous human infections and is caused by one of

the four protozoan parasites of the genus plasmodium: Plasmodium falciparum,

Plasmodium vivax, Plasmodium malariae, and Plasmodium ovale. Of these, P

falciparum is of greatest risk to non-immune humans and inflicts the largest bur-

den. Early treatment of Malaria will shorten its duration, prevent complications

and avoid a majority of deaths [30]. It is estimated that 40% of the world’s popula-

tion is at risk of Malaria, and about 90% of the populations infected with Malaria

live in sub-Sahara Africa [48]. Malaria is a major cause of morbidity and mortal-

ity. It ranks alongside acute respiratory infections, measles and diarrheal diseases

as a major cause of mortality worldwide. Unlike other acute diseases which pro-

duce life-long resistance to reinfection, Malaria only elicits partial immunity after

several years of continuous exposure during which time recurring infections and

illness occur which could be fatal, especially in children. This immunity is only

partially effective unless reinforced through frequent reinfection.
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Malaria is transmitted by the female mosquito (genus anopheles) to the human host.

According to Aron and May (1982), the biology of the four species of plasmodium

is generally the same and consists of two distinct phases; sexual and asexual. The

asexual phase consists of sporozoites, merozoites and trophozoites. The sexual

phase consists of gametocytes. Infection of the human host begins with the bite

of a female anopheline mosquito vector, and the injection of sporozoites into the

blood stream. The infectious sporozoites enter the liver parenchyma cells. Here,

they replicate, giving rise to the merozoite form at about the time the human host

natural defense begin to attack the infected cells. After an incubation period of

about 7 days which is not accompanied by illness, about 30,000 merozoites are

released from each infected liver cell into the blood stream.

Figure 2.1: Malaria parasites inside: red blood cells infected with malaria parasites
(cell nucleus in blue). See Section 2.1. [Credit: Biomedical Primate Research
Centre, Netherlands]

The merozoites attack and invade the red blood cells (erythrocytes) (Fig. 2.1) where

upon they change into the trophozoite form. P. falciparum, in particular, attacks all

ages of erythrocytes. This form undergoes asexual division and in approximately

48 hours (depending on species) the infected erythrocyte ruptures releasing about
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Figure 2.2: The process of red blood cell invasion and the egress of the parasites
from the host cell. See Section 2.1.

8 - 32 merozoites [49] which invade other erythrocytes (see erythrocytic cycle,

Figure 2.2).This process is responsible for the clinical symptoms of the disease.

The erythrocytic cycle usually continues until controlled by the immune system

response or chemotherapy or until the patient dies (in the case of P. falciparum).

Some merozoites differentiate into the sexual forms of the parasites called gameto-

cytes (microgamete and macrogamete). Gametocytes are transmitted to a mosquito

during the blood meal of an infected person. The female gametes are fertilized

and develop into oocysts on the walls of the mosquito gut. Each oocyst gives rise

to about 1000 immature sporozoites [49] which migrate to the mosquito salivary

gland and mature to repeat the cycle.
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Variables definition and immune response model for Malaria

We consider the following variables and parameters in Table 2.1 that will be

used to construct our ODE model describing the immune response to Malaria.

Table 2.1: Brief description of state variables for Malaria within host; see Model
(2.1.1).

Variables Description
X Concentration of uninfected RBC
Y Concentration of infected RBC
F P. falciparum malaria parasite load (merozoites)
T Concentration of T cells
sR Recruitment rate of red blood cell
dR Natural death rate of naive RBC
β Infection rate of naive RBC
dI Death rate of infected RBC
k2 Rate immune effectors clear P. falciparum
α Maturation rate of infected RBC
k1 Rate immune effectors (T cells) clear infected RBC
p Carrying capacity of infected RBC

dF Natural death rate of P. falciparum
sT Recruitment rate of T cells
dT Natural death rate of T cells
c1 Half-saturation constant for infected RBC
a2 Immunostimulation strength for P. falciparum
a1 Immunostimulation strength for infected RBC
a3 Immunostimulation strength for immune effector
b Half-saturation constant for immune effector

Erythrocyte red blood cell (RBC) dynamics. At a given time t, the naive or healthy

erythrocytes X(t) are assumed to be produced from the source (bone marrow,

known as ‘hematopoietic stem cell’) at a constant recruitment rate sR, and

die naturally at a per capita rate dR. During the infection, on contact with

merozoites parasite F(t), erythrocytes get infected at a constant rate β and

become the infected Y (t) using the law of mass action. Infected erythrocytes
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die rapidly at the constant per capita death rate dI , or mature at rate α . At mat-

uration, given an average of intracellular carrying capacity p, new merozoites

, pαY , burst from the host cell to invade new erythrocytes, beginning another

round of infection [8]. At the same time the infected RBCs activate the im-

mune response, they are also being killed at the net rate k1
Y

c1+Y T , where k3 is

the successful removal rate of infected RBCs by the immune effector and c1

is the half saturation constant for the infected cells in parallel to k1Y T used

in [80] when assumed that the immune response functions are unbounded.

T cells. They are recruited for the source at a constant rate sT and their prolifera-

tion is induced by the infection at rate a1 and the presence of the merozoites

at the rate a2. They die at the per-capita rate dT . Without loss of general-

ity, the T cells, as immune effector agents, will be stimulated by the para-

sites (immunostimulation factor) which is follow by the additional processes

of autocatalytic and/or cooperative reinforcement through the function g(T )

where a3 is the immunostimulation strength for immune effector and b the

half-saturation constant for immune effector. The T cells can also clear, re-

spectively, the merozoites and infected erythrocytes at constant rates k2 and

k1.

Merozoites. With a finite lifetime, P. falciparum parasites die at rate dF . Mature

infected erythrocytes Y (t) produce pαY merozoites per unit of time by lysin,

which can again infect the naive erythrocytes (see Figure 2.2).
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Within host model for malaria

Based on all the assumptions, we propose a simple immunological model for

Malaria:

dX
dt

= sR−dRX−βXF,

dY
dt

= βXF−dIY − k1
Y

c1 +Y
T,

dF
dt

= pαY −βXF−dFF− k2
F

c2 +F
T, (2.1.1)

dT
dt

= sT −dT T +a2
F

c2 +F
T +a1

Y
c1 +Y

T +a3
T 2

b+T 2 .

Analysis of the model

The domain D is valid epidemiologically because the populations X ,Y,F and

T are all nonnegative. We denote points in D by x = (X ,Y,F,T ). The nonnegative

orthant R4
+ = {x ∈R4|x≥ 0} is called a positively invariant region if for any trajec-

tory that starts in the nonnegative quadrant remains in the same quadrant forever.

It can be shown using standard techniques described in [106; 107] that if initial

conditions are specified for each of the states variables at time t = 0, then there

exists a unique solution satisfying these initial conditions for all time t ≥ 0. We

need to show that solutions of the model are nonnegative with an initial condition

X(0), Y (0), F(0) and T (0)≥ 0.

Lemma 1. The closed positive orthant is positively invariant for the Model (2.1.1).

Proof. Since Y = 0 and F = 0 are invariant planes for the model, we only need to

prove that X(t)≥ 0, and T (t)≥ 0 for t ≥ 0 if the initial conditions are in the positive

octant. Assume there exists t1 > 0 such that X(t1) = 0, T (t1) = 0, and 0 < t1 < t.

Then
dX(t1)

dt
= sR > 0, and

dT (t1)
dt

= sT > 0,
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which imply that X(t) ≥ 0 and T (t) ≥ 0 for t ≥ t1. Thus, X(t) ≥ 0, and T (t) ≥ 0

for all t ≥ 0.

Local stability

Let P = (X∗,Y ∗,F∗,T ∗) be steady state. Whether the human host is in-

fected or not, there are always RBCs (erythrocytes) and T cells in the human

body. This implies simply that there is no trivial equilibrium i.e., we cannot have

(X∗,Y ∗,F∗,T ∗) = (0,0,0,0). Setting the right hand sides of Equations (2.1.1) to

zero gives the following equilibrium solutions:

At the disease-free-equilibrium, F∗ = 0, we have Y ∗ = 0, X∗ = sT
dT

and

sT +a3
T 2

b+T 2 −dT T = 0. (2.1.2)

Solving Equation (2.1.2) for nonnegative real solutions T ∗, implies that the disease-

free-equilibrium (DFE) exists and is ( sT
dT

,0,0,T ∗).

If one varies the parameters of Equation (2.1.2) within a positive domain of the

parameters values, the long-term behavior may change since we can have one or

three DFE using the “Descartes’ Rule of Signs;” the “Sturm chain or sequence

method” (cf. Beaumont and Pierce, 1963) provides more precise conditions for the

number of steady states. The appearance or disappearance of equilibria produce

topological changes in the system and are examples of bifurcations.

The Jacobian (J) evaluated at the DFE gives

J =



−dR 0 −βX∗ 0

0 −dI− k1
c1

T ∗ βX∗ 0

0 pα −βX∗−dF − k2
c2

T ∗ 0

0 −a1
c1

T ∗ −a2
c2

T ∗ 2 a3bT ∗

(b+T ∗2)2 −dT


.
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Simulation

It is almost impossible to find explicitly the solutions of Equations (2.1.1),

and since the parameters that govern the rates and behavior of interactions in the

model may change from individual to individual and over time, we then simulate the

model by solving the differential equations using an appropriate numerical method.

We discuss below the results of the computational experiments within an individual;

see Figures 2.3 - 2.4.

Figure 2.3: Time series of parasite P. falciparum, red blood cells, and the immune
effector at the beginning of the interaction within host. Next figure (Figure 2.4)
captures the long-term behavior.

Through this simple mathematical model, we can understand the dynamics of the

parasite and the immune effector (T ). Depending on the initial conditions, specifi-
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Figure 2.4: Time series of parasite P. falciparum, red blood cells, and the immune
effector which reach a steady state; see Figure 2.3 for the transient solution up to
t = 50.

cally the initial amount of merozoites releases in the blood stream, we see the rise

of the infected red blood cells with a slow decrease of the naive RBC. Following the

activation of the naive immune effector cells, we see a decline of the parasite and

the infected RBC, respectively. This type of behavior can be observed in the initial

stages of Malaria. In an endemic region, a prolonged exposure of the host to a par-

asite due to a constant presence of mosquitos can lead to a tolerant immunological

state of the individual immune system.

2.2 Tuberculosis within the individual

Tuberculosis (TB) has been a leading cause of death in the world for cen-

turies. During the period after the second world war, because of the medical im-
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provement for treatment and hygiene practices, the number of cases steadily de-

clined in the world to a level that could be controlled [41; 42]. However, in one

third of the world, TB still is a big threat and much of the population harbors the

latent form of tuberculosis infection [82]. Today, within the pathogen-induced dis-

eases worldwide, TB counts more that 1.5 million deaths [31].

During its latency period, the bacteria causing TB, Mycobacterium tuberculosis

(Mtb), is postulated to exist in a dormant state where the host can effectively contain

the pathogen.

Mtb is an obligatory aerobic-intracellular pathogen, which has a predilection for

the lung tissues rich in oxygen supply [97]. The tubercle bacilli enter the host via

the respiratory route. In certain situations, the bacilli spread from the site of the

infection in the lung to other parts of the body through the lymphatics or blood.

In the lung, the alveolar macrophages represent the first line of immune defense

in the host-pathogen relationship with the phagocytosis of mycobacterium tuber-

culosis. This first line of defense is followed by the cell-mediated immunity with

an influx of lymphocytes (T cells) and activated macrophages/monocytes into the

lesion resulting in granuloma formation (Figure 2.5). One of three things may hap-

pen to the bacilli. They may remain forever within the granuloma causing no/little

harm, get activated later, or may get discharged into the airways after an enormous

increase in number, necrosis of bronchi and cavitation [97]. At the site of bacilli

multiplication, neutrophils (monocytes) are the first cells to arrive followed by nat-

ural killer (NK) cells, a type of lymphocyte (a white blood cell), T cells, γ/δ cells

and α/β cells. It has been noticed that a significant reduction in NK activity is as-

sociated with multi-drug-resistant TB (MDR-TB) [14]. The tuberculous granuloma

contain T cells (both CD4+ and CD8+) that contain the infection within the granu-

loma and prevent reactivation. T cell (CD4+) depletion causes a rapid activation of

the infection. In humans, the pathogenesis of HIV infection which causes the loss
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of CD4+ T cells greatly increases susceptibility to both acute and re-activated TB

[98].

Figure 2.5: The formation of granuloma [64]. See section 2.2.

In spite of this persistence over many centuries, TB can be controlled. Treatment

of TB is well known and developed in the case of non-resistant strains. To treat

active TB, it is necessary to take several antibiotics at the same time. If not treated

properly, TB can be fatal. The common regime of treatment is the combination of

isoniazid, rifampicin and pyrazinamide for two months followed by isoniazid and
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rifampicin for at least four to seven months, if the organism is known to be sensitive,

until all the bacteria have been completely cleared [69; 99].

The different system models of Wigginton and Kirschner [116] on TB and host

immune response, Perelson on the dynamic of T cells [91], Artavanis-Tsokonas on

Malaria and immunopathology [8], Mackinnon [73], serve as background models

for the immune response in the environment of co-infection of TB and Malaria. In

regions endemic with malaria and TB such as sub-Sahara Africa, it will be interest-

ing to track the progression of both diseases in the human host and the outcome of

the interactions and respective impact of the pathogens. And to investigate the pos-

sibility of repeated malaria infection promoting an active TB within the individual

host.

Variables definition and immune response model for Tuberculosis

We have the following variables and parameters in Table 2.2 that will be used

in our ODE model:

Macrophage dynamics. The rate of change of the macrophages, especially the

resting or naive monocytes, includes the recruitment term (sM) from the source

and undergo a natural death term (µMMR). This is natural assuming that the

macrophages have a finite life span, and in the absence of infection the mono-

cytes undergo a renewed process or constant turnover to maintain an equilib-

rium. In the close proximity of infection, the naive monocytes are infected

at the maximum rate of β , which depends on the extracellular bacterial load.

Here we use the sigmoidal saturation function based on a form of the Hill

equation [68]. The infected macrophages can be cleared by maturation at

rate α , where given the intracellular carrying capacity they burst, or the im-
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Table 2.2: Brief description of state variables for TB within host; see Model (2.2.1).

Variables Description
T Concentration of T cells

MR Resting Macrophages
MI Infected Macrophages by Mtb
BI Intracellular Bacteria (TB)
BE Extracellular Bacteria (TB)
α Rate of busting of chronically infected macrophages
sT Recruitment rate of T cells
dT Natural death rate of T cells
sM Recruitment rate of macrophages
β Resting macrophages infection rate
µR Natural death rate of resting macrophages
µI Natural death rate of infected macrophages
γM Rate immune effectors (T cells) clear infected macrophages
γB Rate immune effectors (T cells) clear extracellular bacteria
αI Intracellular bacterial growth rate
N Carrying capacity of infected macrophages
αE Extracellular bacterial growth rate
k4 Extracellular bacterial rate of phagocytosis
c0 Half-saturation constant for extracellular bacteria
c1 Half-saturation constant for infected macrophages
a2 Immunostimulation strength for extracellular bacteria
a1 Immunostimulation strength for infected macrophages
a3 Immunostimulation strength for immune effector
b Half-saturation constant for immune effector

mune response through the T cells, or by natural death at the constant rate

µI .

Bacteria. The interactions and growth of Mtb are described by extracellular and

intracellular bacteria. Extracellular bacteria (BE) grow at a maximum rate αE

and are killed by macrophages at rate k4. The intracellular grow within the

macrophages at a maximum rate of αI with Hill kinetics accounting for the

carrying capacity [68]. They become extracellular when the host macrophage

bursts when it becomes chronically infected at an assumed threshold of half

of the carrying capacity N.
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T cells. They are recruited for the source at a constant rate sT and their prolif-

eration is induced by the infected macrophages at rate a1 and extracellular

bacteria at the rate a2. They have a finite lifetime and die at rate dT . Without

loss of generality, the T cells, as immune effector agents, will be stimulated

by the bacteria (immunostimulation factor) which is followed by the addi-

tional processes of autocatalytic and/or cooperative reinforcement through

the function g(T ) where a3 is the immunostimulation strength for immune

effector and b the half-saturation constant for immune effector. The T cells

can also clear infected macrophages at a constant rates γ .

Within host model for TB

Based on all the assumptions, we propose a simple basic immunological

model for TB:

dMR

dt
= sM−βMR

(
BE

BE + c0

)
−µRMR− k4MRBE ,

dMI

dt
= βMR

(
BE

BE + c0

)
−µIMI−αMI

(
B2

I

B2
I +(NMI)2

)
− γMMIT,

dBE

dt
= αEBE − k4MRBE +αNMI

(
B2

I

B2
I +(NMI)2

)
− γBBET

−β

(
N
2

)
MR

(
BE

BE + c0

)
+ γMNMIT + µIBI, (2.2.1)

dBI

dt
= αIBI

(
1− B2

I

B2
I +(NMI)2

)
−αNMI

(
B2

I

B2
I +(NMI)2

)
+β

(
N
2

)
MR

(
BE

BE + c0

)
− γMNMIT −µIBI

dT
dt

= sT −dT T − γMIT − γBBET +a2
BE

c0 +BE
T +a1

MI

c4 +MI
T +a3

T 2

b+T 2 .

Analysis of the model

The domain D is valid epidemiologically because the populations MR,MI,BE ,BI

and T are all nonnegative. We denote points in D by x = (MR,MI,BE ,BI,T ). The

nonnegative orthant R5
+ = {x ∈ R5|x ≥ 0} is called a positively invariant region if
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for any trajectory that starts in the nonnegative orthant remains in the same orthant

forever. Parallel to the Malaria model, we can use standard techniques described in

[106; 107]: if initial conditions are specified for each of the states variables at time

t = 0, then there exists a unique solution satisfying these initial conditions for all

time t ≥ 0. We need to show that solutions of the model are nonnegative with an

initial condition MR(0), MI(0), BE(0), BI(0) and T (0)≥ 0.

Lemma 2. The closed positive orthant is positively invariant for the Model (2.2.1).

Proof. Since MI = 0, BE = 0 and BI = 0 are invariant planes for the model, we only

need to prove that MR(t)≥ 0, and T (t)≥ 0 for t ≥ 0 if the initial conditions are in

the positive orthant. Assume there exists t1 > 0 such that MR(t1) = 0, T (t1) = 0,

and 0 < t1 < t. Then

dMR(t1)
dt

= sM > 0, and
dT (t1)

dt
= sT > 0,

which imply that MR(t)≥ 0 and T (t)≥ 0 for t ≥ t1. Thus, MR(t)≥ 0, and T (t)≥ 0

for all t ≥ 0.

Local stability

Let P = (M∗R,M∗I ,B∗E ,B∗I ,T
∗) be steady state. Whether the human host is

infected or not, there are always macrophages and T cells in the human body. This

implies simply that we cannot have (M∗R,M∗I ,B∗E ,B∗I ,T
∗) = (0,0,0,0,0), i.e., that

there is no trivial equilibrium. Setting the right hand sides of Equations (2.2.1) to

zero gives the following equilibrium solutions:

At the disease-free-equilibrium, B∗E = 0, we have M∗I = 0, B∗I = 0, M∗R = sM/µR and

sT +a3
T 2

b+T 2 −dT T = 0. (2.2.2)

Solving Equation (2.2.2) for positive real solutions T ∗, implies that the disease-

free-equilibrium (DFE) exists and is ( sM
µR

,0,0,0,T ∗). We can try to complete the
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analytical analysis of Equations (2.2.1), but it will be too involved and complicated,

and since we are mostly interested in the phenomenological behavior, we instead

simulate the model by solving the differential equations using an appropriate nu-

merical method. We discuss below the results of these computational experiments

within an individual.

Simulation

Figure 2.6: The TB infection time series for Model (2.2.1). The transient solutions
of the concentrations of macrophages, bacteria and effector, MR, MI, BE , BI and
effector (T ) the beginning are shown; see Figure 2.7 for the long-term behavior.
Observe the increase of intracellular bacteria while the concentration of extracellu-
lar bacteria decreases.

For the parameters found in the literature [68; 74; 116], we see from the simulation

(Figures 2.6-2.7) that at the initial stages, the extracellular bacteria give rise to intra-
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Figure 2.7: Time series of Model (2.2.1) showing the long-term behavior of the
concentration of macrophages, bacteria and effector, MR, MI, BE , BI and effector
(T ). Figure 2.6 shows the initial transient solutions up to t = 5.

cellular bacteria that ultimately reach the carrying capacity before the extracellular

bacteria die off. The effector population also reaches a carrying capacity locally

around the granuloma which contains a small population of extracellular bacteria

and infected macrophages, as can be seen from the Figure 2.7 in which the final

time is 100. This type of behavior can be observed in the initial stages of TB.

2.3 Co-infection with Malaria and TB within the individual

The human immune system has two main responses to the introduction of

foreign antigen into the body: a cellular-mediated response and a humoral response

(antibodies). Both TB and Malaria primarily affect a cellular-mediated immune

response for which we gave a brief description in the previous sections. In this
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section we focus mainly on the effect that TB or Malaria has on each other but also

comment on how the model may explain the activation of latent TB.

We consider the following variables and parameters in Table 2.4 that we will be

used to construct our ODE model describing the immune response to Malaria an

TB co-infection. Based on the assumptions from the previous sections, we propose

Table 2.3: Brief description of state variables for Model (2.3.1); cf. Models (2.1.1)
and (2.2.1) with respective Tables 2.1 and 2.2 with u 6= v.

Variables Description
X Concentration of uninfected RBC
Y Concentration of infected RBC
F P. falciparum malaria parasite load
T Concentration of T cells

MR Resting Macrophages
MI Infected Macrophages by Mtb
BI Intracellular Bacteria (TB)
BE Extracellular Bacteria (TB)

a simple immunological model for TB and Malaria co-infection that combines the
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Table 2.4: Parameters - symbols and descriptions. Brief description of parameters
for Model (2.3.1); cf. Models (2.1.1) and (2.2.1) with respective Tables 2.1 and 2.2
with u 6= v.

Symbol Explanation
sR Recruitment rate of red blood cell
dR Natural death rate of naive RBC
β Infection rate of naive RBC
dI Death rate of infected RBC
k1 Rate immune effectors C clear P. falciparum
α1 Maturation rate of infected RBC
k2 Rate immune effectors (T cells) clear infected RBC
p Carrying capacity of infected RBC

dF Natural death rate of P. falciparum
sT Recruitment rate of T cells
dT Natural death rate of T cells
γM Rate immune effectors (T cells) clear infected macrophages
λM Half-saturation constant for infected macrophages
α2 Rate of busting of chronically infected macrophages
sM Recruitment rate of macrophages
k3 Infection rate of resting macrophages
µR Natural death rate of resting macrophages
µI Natural death rate of infected macrophages
αI Intracellular bacterial growth rate
N Carrying capacity of infected macrophages
αE Extracellular bacterial growth rate
k4 Extracellular bacterial rate of phagocytosis
γB Rate immune effectors (T cells) clear extracellular bacteria

c0 = λB Half-saturation constant for extracellular bacteria
c1 Half-saturation constant for P. falciparum
c3 Half-saturation constant for infected RBC
c4 Half-saturation constant for infected macrophages
a1 Immuno-stimulation strength for P. falciparum
a2 Immuno-stimulation strength for extracellular bacteria
a3 Immuno-stimulation strength for infected RBC
a4 Immuno-stimulation strength for infected macrophages
a5 Immuno-stimulation strength for immune effector
b Half-saturation constant for immune effector

32



Models (2.1.1) and (2.2.1) where u = v = 1 in those models:

dX
dt

= sR−dRX−βXF,

dY
dt

= βXF−dIY − k2
Y

c3 +Y
T,

dF
dt

= pα1Y −βXF−dFF− k1
F

c1 +F
T,

dT
dt

= sT −dT T − k1FT + k2Y T +a1
Fu

c1 +Fv T +a3
Y u

c3 +Y v T

+a2
Bu

E
c0 +Bv

E
T +a4

Mu
I

c4 +Mv
I

T +a5
T 2

b+T 2

−k1
F

c1 +F
T − k2

Y
c3 +Y

T − γB
BE

λB +BE
T − γM

MI

λM +MI
T, (2.3.1)

dMR

dt
= sM− k3MR

(
BE

BE + c0

)
−µRMR,

dMI

dt
= k3MR

(
BE

BE + c0

)
−µIMI−α2MI

(
B2

I

B2
I +(NMI)2

)
− γM

MI

λM +MI
T,

dBE

dt
= αEBE +α2NMI

(
B2

I

B2
I +(NMI)2

)
− k4MRBE

−k3

(
N
2

)
MR

(
BE

BE + c0

)
+ µIBE − γB

BE

λB +BE
T + γMN

MI

λM +MI
T,

dBI

dt
= αIBI

(
1− B2

I

B2
I +(NMI)2

)
−α2NMI

(
B2

I

B2
I +(NMI)2

)
−µIBE

+k3

(
N
2

)
MR

(
BE

BE + c0

)
− γMN

MI

λM +MI
T.

2.4 Analysis of the model

The domain D is valid epidemiologically because the populations X , Y , F ,

T , MR, MI , BE , and BI are all nonnegative. We let x = (X ,Y,F,T,MR,MI,BE ,BI)

denote the points in D . The nonnegative orthant R8
+ = {x ∈ R8|x ≥ 0} is called a

positively invariant region if for any trajectory that starts in the nonnegative quad-

rant remains in the same orthant forever. By the same token, we can shown that

if initial conditions are specified for each of the states variables at time t = 0, then

there exists a unique solution satisfying these initial conditions for all time t ≥ 0.

We need to show that solutions of the model are nonnegative with an initial condi-

tion X(0), Y (0), F(0), T (0), MR(0), MI(0), BE(0) and BI(0)≥ 0.
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Lemma 3. The closed positive orthant is positively invariant for the Model (2.3.1).

Proof. Since Y = 0, F = 0, MI = 0, BE = 0, and BI = 0 are invariant planes for the

model, we only need to prove that X(t) ≥ 0, T (t) ≥ 0, and MR(t) ≥ 0 for t ≥ 0 if

the initial conditions are in the positive orthant.

Assume there exists t1 > 0 such that X(t1) = 0, T (t1) = 0, and MR(t1) = 0, and

0 < t1 < t. Then

dX(t1)
dt

= sR > 0,
dT (t1)

dt
= sT > 0, and

dMR(t1)
dt

= sM > 0,

which imply that X(t) ≥ 0, T (t) ≥ 0, and MR(t) ≥ 0 for t ≥ t1. Thus, X(t) ≥ 0,

T (t)≥ 0, and MR(t)≥ 0 for all t ≥ 0.

Equilibria and reproductive number

Let P = (X∗,Y ∗,F∗,T ∗,M∗R,M∗I ,B∗E ,B∗I ) be steady state. Whether the hu-

man host is infected or not, there are always RBCs (erythrocytes) and T cells in the

human body. This implies simply that there is no trivial equilibrium i.e. we cannot

have (X∗,Y ∗,F∗,T ∗,M∗R,M∗I ,B∗E ,B∗I ) = (0,0,0,0,0,0,0,0).

Existence of the disease-free equilibrium point

Disease-free equilibrium points are steady state solutions where there is no

disease. This is the state in which an individual has no parasites (P. falciparum) or

bacteria (Mtb) in the body. Thus, we take Y ∗ = F∗ = M∗I = B∗E = B∗I = 0. From

Equations (2.3.1) we get X∗ = X0 = sR
dR

, where X0 is the equilibrium density of

all ages of erythrocytes in absence of pathogens; M∗R = M0 = sM
µMR

the equilibrium

density of macrophages; and for the T cells, T0, will depend on average degree of

stimulation of leukocyte and no matter what, the number of T cells in human body

remains bounded, and the dynamics of (2.3.1) reduce to examine the dynamic of

sT +a5
T 2

b+T 2 −dT T = 0. (2.4.1)
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By solving Equation (2.4.1) in the appropriate domain for the positive solution that

represents the biologically relevant steady state of the system, the pathogen-free

equilibrium (PFE) is given by

P0 =
(

sR

dR
,0,0,T ∗,

sM

µR
,0,0,0

)
.

It can easily be shown that the PFE is unstable. Finding the rest of the steady

states of Model (2.3.1) analytically is very complicated and involved; therefore we

use numerical simulation for understanding the dynamics of the TB and Malaria

co-infection and interaction on the immune response.

2.5 Results of simulation

Figure 2.8: Co-infection Model (2.3.1) with Malaria introduced first, then TB at
t = 1.5 with t f = 6 and u = v = 1.
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Figure 2.9: Co-infection Model (2.3.1) with Malaria introduced first, then TB at
t = 1.5 with t f = 60 and u = v = 1.

One numerical observation we make before moving on is that an increase in the

death rate from d = .007 to d = .03 has a noticeable impact on the effector levels as

they drop when Malaria is introduced. This drop can be exaggerated significantly

by changing the initial conditions of the various quantities. Thus even changing one

parameter may have significant influence on the transient and/or long-term behavior

of the system.

Since we have only been able to explore the dynamics of the Malaria, TB and co-

infection Malaria–TB models through numerical simulation, we want to simplify

the different models with appropriate caricatures (phenomenological models) to fo-

cus on the relevant mechanisms and central components of a single pathogen or two

pathogens together with the effector cell (T cells). In all situations, we first make

sure that the system is well-posed and makes immunological sense in the absence
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Figure 2.10: Co-infection Model (2.3.1) with TB introduced first, then Malaria at
t = 1.5 with t f = 6 and u = v = 1.

of pathogen(s), namely the pathogen(s) free steady-state. Next, we expect that each

pathogen should be able to sustain its own infection. Furthermore, throughout the

caricature/phenomenological models we want to include the degree of healthiness

of the individual using the Michaelis-Menten function with specific Hill coeffi-

cients. We consider the different possible responses of the immune system stages

with respect to the pathogens, namely healthy immune, moderately compromised

immune and severely compromised systems.
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Figure 2.11: Co-infection Model (2.3.1) with TB introduced first, then Malaria at
t = 1.5 with t f = 60 and u = v = 1.
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Figure 2.12: Co-infection Model (2.3.1) with TB introduced first, then Malaria at
t = 1.5 with t f = 6. The natural death rate of effectors is increased here compared
with the previous figures, from d = .007 to d = .03. This gives a noticeable drop of
the effector levels when Malaria is introduced.
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Figure 2.13: Co-infection Model (2.3.1) with TB introduced first, then malaria at
t = 1.5 with t f = 60. The natural death rate of effectors is increased here compared
with the previous figures, from d = .007 to d = .03. This gives a noticeable drop of
the effector levels when Malaria is introduced.
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2.6 A Phenomenological Approach

It is difficult to gain insight into the mechanisms that affect the long term

behavior of the co-infection Model (2.3.1). While we could perform a sensitivity

analysis in an effort to find key parameters, we instead choose to take a phenomeno-

logical approach. We consider both Malaria and TB as generic “pathogens” and do

not focus on their biological intricacies. Instead, as we describe in detail in the

next chapter, we consider each pathogen to have a natural birth rate and death rate

and a removal rate by the effectors (usually T-cells). The equation describing the

effectors is based on the biology of the T-cells as stated in the malaria and TB mod-

els, which we will again elaborate on in the next chapter, and involves stimulation

of the effector in the presence of the pathogen as well as when more effectors are

present together with a constant recruitment rate, natural death rate, and removal

rate upon engagement with a pathogen. Thus, our first phenomenological model

takes the form

dP1

dt
= rP1− kP1E

dP2

dt
= ρP2−κP2E (2.6.1)

dE
dt

= e+ f (P1)E + f (P2)E + s
E2

b+E2 −dE− (kP1 +κP2)E,

where

f (Pi) = pi
Pi

ai +Pi
, i = 1,2,

describes the stimulation of the effector population by the pathogen. The variables

and parameters are given in Table 2.5,

Such a phenomenological model may give us insight into the mechanisms that gov-

ern the long term behavior of solutions in the co-infection Model (2.3.1). However,

in order to fully utilize the mathematical tools that will help us gain this insight

we will consider some generalizations of this model. We first will generalize the
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Table 2.5: States Variables for phenomenological Models (2.6.1) and (2.6.4).

Symbol Definition
P1 First pathogen (target cell) population
P2 Second pathogen (target cel) population
E1 Inactivated effector population

E, E2 Immune competence, (activated) effectors agent population
α Natural growth rate of naive effector
e Recruitment rate of naive immune effector
K Carrying capacity of naive effector

c, c1 Activation rate of naive immune effector by pathogen 1
c2 Activation rate of naive immune effector by pathogen 2
d Natural per capita death rate
r Within host growth rate of pathogen 1
ρ Within host growth rate of pathogen 2
k Clearance rate of pathogen 1 by immune effector agent
κ Clearance rate of pathogen 2 by immune effector agent
p Immunostimulation strength for pathogen 1
π Immunostimulation strength for pathogen 2
s Immunostimulation strength for immune effector

a, a1 Half-saturation constant for pathogen 1
a2 Half-saturation constant for pathogen 2
b Half-saturation constant for immune effector

stimulation function, f (Pi), currently given as pi
Pi

ai+Pi
E. We will do this by con-

sidering various responses based on what we will characterize as the health of a

person’s immune system. This can be done by considering the stimulation function

as a specific example of a Hill function and we will consider three variations of the

f (Pi):

pi
P2

i

ai +P2
i

: healthy immune system

pi
P3

i

ai +P3
i

: moderately compromise immune system (2.6.2)

pi
P3

i

ai +P4
i

: severely compromised system.

In Appendix A, we discuss various Hill functions for a simpler one-pathogen ver-

sion of Model (2.6.1) that doesn’t multiply the stimulation function by the effector
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(as is required by the immunology). This mathematically simpler but immuno-

logically incorrect model was proposed by Mayer in 1995 and is presented in the

appendix for completeness.

Another generalization of Model (2.6.1) with (2.6.2) that can easily be considered

is the effect of considering activation in the effector equation, which we again fully

justify in a later chapter. Model (2.6.1) gives a constant recruitment e into the

effector equation. However, a more accurate biological model would consider two

levels of effectors: inactivated (E1) and activated (E2). In this case we can write

two effector equations:

dE1

dt
= e+αE1

(
1− E1

K

)
− (c1P1 + c2P2)E1 (2.6.3)

dE2

dt
= (c1P1 + c2P2)E1 +( f (P1)+ f (P2))E2 +g(E2)− (kP1 +κP2)E2−dE2;

see Table 2.5 for the definitions of state variables and parameters. Incorporating

the two stages of effectors can occur in any of the models. Thus our most general

phenomenological model consists of

dP1

dt
= rP1− kP1E,

dP2

dt
= ρP2−κP2E, (2.6.4)

dE1

dt
= e+αE1

(
1− E1

K

)
− (c1P1 + c2P2)E1,

dE2

dt
= (c1P1 + c2P2)E1 +( f (P1)+ f (P2))E2 +g(E2)− (kP1 +κP2)E2−dE2,

with the f (Pi) given in equations (2.6.2). We will ultimately compare the long-term

behavior of (2.6.4) with its fully-biologically based counterpart, Model (2.3.1).

However, in order to mathematically obtain insight into (2.6.4), we first consider

three subsystems contained within it.

Chapter 3: subsystem containing one pathogen, one stage of effector; the pre-

dictions of this phenomenological model will be compared with both the malaria
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Model (2.1.1) and TB Model (2.2.1).

Chapter 4: subsystem containing one pathogen, two stages of effector; the pre-

dictions of this phenomenological model will again be compared with the malaria

Model (2.1.1) and TB Model (2.2.1) and we additionally comment on the incorpo-

ration of the inactivated class of effectors into the behavior of the overall model.

Chapter 5: subsystem containing two pathogens and one stage of effector; subsys-

tem containing two pathogens and two stages of effectors; the prediction of these

phenomenological models will be compared with the numerical results of the co-

infection Model (2.3.1).
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Chapter 3

PHENOMENOLOGICAL SUBSYSTEM: SINGLE-PATHOGEN,

SINGLE-STAGE EFFECTOR MATHEMATICAL MODELS OF IMMUNE

RESPONSE

3.1 Introduction

During an epidemic outbreak in a population, one can control the spread of

the disease when we understand the mode of transmission of the pathogen between

the individuals. Observing that the individual is the epicenter of the population,

we can even better control the dynamic of any infectious diseases at the popula-

tion level if we fully understand and can begin to control what is going on with the

pathogens within the individual. Understanding the dynamic of the pathogen within

the individual can help to isolate the different groups within the population and im-

plement measures to facilitate a speedy recovery of the individual. At the human

level, the dynamics of the immune response have a very high degree of complexity.

Therefore it is quite challenging to develop any realistic and complete mathemati-

cal model to capture every situation of the host defense. The immune system is a

masterwork that effectively prevents our body from being overtaken by scavenging

germs every day. Without an effective immune system, we would develop all sorts

of infections from bacteria, viruses, protozoa, parasites and fungi. A pathogen pro-

liferates in a habitat (e.g., host tissue, internal organ) in which it is normally limited

by physical and chemical barriers (e.g., phagocytic in Figure 3.1, macrophage and

others cells of the immune system). Evolution occurs in both the microbial invaders

population and the host immune system. The immune system is an ideal example

for the study of complex systems. It offers adaptation and evolution on observ-

able time scales and offers testable hypotheses. In response to diseases the immune

system is adapting to its environment.
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Figure 3.1: The formation of the phagocytic cup - the foreign pathogen is degraded.
See Section 2.2.

Nowadays, with the advances in science and technology, it is important to under-

stand how the immune system impacts the infectivity or recovery from diseases;

this is the “avant-garde” of the future development of treatment. For example, it

has been demonstrated and we now better understand that there is a firm link be-

tween the immune system and cancer, and that by properly stimulating the immune

system, certain forms of cancers can be treated [96]. This is the underlying concept

of the new principle of “Immune Therapy”. There has been much interest in mathe-

matical modeling of the immune response during an epidemic and the dynamics of

targets or pathogens (virus, bacteria, etc.) [62; 71; 90; 102; 113–115; 120]. Much

of the mathematical modeling consists of systems of differential equations. The

differential equation lets us describe how a physical system changes in time. For-

mulating the dynamics of a system in terms of rules for how they change rather than

their specific behavior allows a single equation to describe many different types of

phenomena. The differences between these phenomena arise from varying initial

conditions and choices of parameters. Newton’s single differential equation for
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projectile motion describes both how an object falls to the ground and the orbital

motion of satellites, the differences in behavior coming from the initial positions

and momenta of these objects.

Motivated by the approach taken in [34], our focus is to examine the variability

of the immune competence E, based on more realistic and reasonable biological

assumptions, with a mathematical model. We modify and extend a mathematical

model from the literature [77], so that it additionally accounts for the differentia-

tion and maturation of immune competence cells, and for the formation of immune

memory after infection. The immune effector or competence can be defined as the

elimination capacity of the immune system with respect to that special pathogen or

“non-self” micro-organism within the host. Our ultimate goal is to study and un-

derstand the effect of individual immune responses on the outcome of the outbreak

or an epidemic at the population level. Our models can capture many essential fea-

tures of the immune system that are able to produce a variety of immune responses,

many of which we observed experimentally or clinically [11; 32; 59; 61; 101].

3.2 Phenomenological Model formulation

In constructing our phenomenological models, the populations of interest are

represented by P and E. Table 2.5 gives the definitions and symbols of the popula-

tions and parameters that we will use. Note that in all our models, as in Segel and

Pereleson [103], lymphocytes (memory, naive and effector cells) are not specifically

T or B cells, but a generalization having properties common to both types.

In the development of our models, we take into account some specific biological as-

sumptions that are based on a generally accepted understanding of immune system

function [60], and that we seen in our immunology-based models of Malaria and

TB, Models (2.1.1) and (2.2.1). In the host, the targets have an innate net growth

rate constant r (nonnegative) and the elimination as a result of the interaction with
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the immune effector E is assumed to be proportional to the concentration of the

target and the immune effector with non-negative constant k using the law of mass-

action. Here, taking into consideration the different hypotheses for this first (naive)

model we consider the temporal change of the pathogenic infectious agent popula-

tion size P to be determined by the difference between their reproduction r1P and

their elimination by the immune effector kPE and the natural death within the host

d1P. We can establish the following equation for the dynamics of pathogens:

dP
dt

= r1P− kPE−d1P.

For simplicity, the dynamics of the pathogen population in our model can be re-

duced by setting r = r1−d1. Therefore, the pathogen equation yields

dP
dt

= rP− kPE.

Also we assume that rates of infection are small enough that the immune system

completely eliminates one pathogen, and relaxes to the uninfected state long before

the next infection occurs. For the immune competence E, we assume it to be consti-

tuted by a minimum of four different factors that were all seen in the Malaria Model

(2.1.1) and TB Model (2.2.1): the innate recruitment rate for reproduction e; the

natural death of the immune effectors dE and removal due to the pathogens erad-

ication kiPiE; the presence of the targets in the host trigger the immune response,

which is the immunostimulation factor or the speed of activation of the immune

effector also defined as the speed of activation f (Pi)E with i = {1,2}; followed by

the additional strength of the immune activation processes by autocatalytic and/or

cooperative reinforcement g(E) [77]. Throughout these processes, the nonspecific

and antigen-specific immune responses are activated, which lead to increases in

the immune competence, E. All the parameters are positive. Note that, unlike the

Mayer model (see Appendix A), we multiply the activation function f (P) by the

factor E because this immune effector response requires cell interactions with the
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target cells [60]. In our model, t = 0 marks the time when the pathogen is mixed

into the lymph and begins to stimulate an immune response. This represents how

once a small amount of the pathogen bypasses the physical barriers of the innate

immune system it will proliferate until it finds its way into the blood and then lymph

nodes, at which point the immune response is triggered. Taking into account the

cell proliferation and saturation within the host, the appropriate way of defining the

functions f (Pi) and g(E) is with the nonlinear bounded Michaelis-Menten func-

tions. This attempt was first used by Agur et al. [1] in 1988, Anite et al. [6] in 1994

and later properly formulated by De Boer and Perelson [33] in 1995.

Using the list of the assumptions from above and substituting specific mathematical

forms for each of the descriptions yield a system of two coupled differential equa-

tions, in which each equation gives the rate of change of a particular cell population

described in Table 2.5. The model is given by following system, cf. (2.6.1) with

(2.6.2) and P2 = 0:

dP
dt

= rP− kPE (3.2.1)

dE
dt

= e+ f (P)E +g(E)−dE− kPE

where f (P) and g(E) are defined as in Mayer’s model (see Appendix A):

f (P) = p
Pu

mv +Pv with P≥ 0, u≤ v and g(E) = s
En

cn +En .

In general, depending on the integer exponent there exist three qualitatively differ-

ent shapes of the stimulation function f (Pi) as illustrated by Figure 3.2. On the

other hand, the qualitative shape of g(E) is like Figure 3.2(c) for n > 1. All these

functions are bounded taking into account the fact that the population is limited and

cannot grow unbounded. We note that the Malaria Model (2.1.1) and TB Model

(2.2.1), as currently formulated, correspond to the specific case of u = v = 1.
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(a) 1≤ u < v.
Severely immune
compromised.

(b) 2≤ u = v.
Moderately immune
compromised.

(c) 1 < u≤ v.
Healthy immune.

Figure 3.2: Graph of stimulation function f (P). Whenever v > 1 we have a small
delayed response (Allee effect) as the immune system mounts its response. In (a),
the immune system initially responds in the normal way for small P levels but it
cannot continue and decreases its response for larger P values. In (b) and (c) the
immune response increases with pathogen levels but reaches a saturation level. Al-
though the qualitative shape of (b) and (c) are similar, we assume that both the
saturation levels and immune response are less in the moderate immune compro-
mised versus the healthy individual.

For the purpose of our work and for simplification, we will assume some speci-

fication about the function f (P) which will clearly correspond to the qualitative

representation of the immune response to pathogen invasion in the three situations

on which we would like to focus. In the line of development, we will consider only

the following three scenarios of the immune system response:

• Immune non-compromised (healthy immune system): u = v = 2.

• Immune moderately compromised: u = v = 3,

• Immune severely compromised: u = 3 and v = 4.

with a specific parameter value within the parameters domain see Figures 3.3 - 3.5.

For each of the scenarios, the parameters will take the respective values:

• immune non-compromised (healthy): u = v = 2; p = 1 and a = 0.85.

• immune moderately compromised: u = v = 3; p = 0.75 and a = 0.50
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• immune severely compromised: u = 3 and v = 4; p = 1 and a = 1.20

Figure 3.3: Three functions that describe the state of the immune system response
to pathogen invasion.

Thus we model the immune response under the following conditions:

• For simplification, we consider every model with:

n = 2; mv = a; and cn = b;

• Using a Michaelis-Menten saturation function, the qualitative behavior of

f (P) allows us to qualify the state of the immune system. Throughout our

work, we will focus on three scenarios:
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Figure 3.4: Dynamic of pathogens for different degrees of healthy immune or mod-
erately compromised individuals. As n increases the response to the pathogen in-
creases rapidly to reach saturation.

The first scenario where the host immune system is healthy yields the following

system of equations:

dP
dt

= rP− kPE (3.2.2)

dE
dt

= e+ p
P2

a+P2 E + s
E2

b+E2 −dE− kPE.

For the second scenario, the immune system is moderately compromised, and the

equations are the following:

dP
dt

= rP− kPE (3.2.3)

dE
dt

= e+ p
P3

a+P3 E + s
E2

b+E2 −dE− kPE.

The third scenario yields:

dP
dt

= rP− kPE (3.2.4)

dE
dt

= e+ p
P3

a+P4 E + s
E2

b+E2 −dE− kPE.
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Figure 3.5: Dynamic of response to pathogen for different degrees of compromised
immune systems. As u < v and v−u both increase, the response increases rapidly
and soon after starts to decline. The higher the value of v− u, the more compro-
mised the host is.

These three phenomenological Models (3.2.2)-(3.2.4) are caricatures of the Malaria

Model (2.1.1) and TB Model (2.2.1) with the health of the host additionally incor-

porated via the different f (Pi) stimulation functions.
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3.3 Existence of solutions

Due to the biological meaning of the different variables P and E, we have to

restrict the domain to the nonnegative quadrant R2
+ where the populations P and E

are all nonnegative. This restriction will be applicable to each model. The domain

is called a positively invariant region if any trajectory that starts in the nonnegative

quadrant remains in the same quadrant forever. It can be shown using standard

techniques described in [106; 107] that if initial conditions are specified for each of

the state variables at time t = 0, then there exists a unique solution satisfying these

initial conditions for all time t ≥ 0.

Proposition 4. The closed positive quadrant R2
+ is positively invariant for the Mod-

els (3.2.2) - (3.2.4).

Proof. The proof is similar in all three scenarios. Here using the first scenario

model, we need to show that the solutions for the Model (3.2.2) are nonnegative

given an initial condition P(0) ≥ 0 and E(0) ≥ 0. For P = 0, we have an invariant

line for the system of Equations (3.2.2), and thus we only need to prove that E(t)≥

0, for t ≥ 0 if the initial conditions are in the positive quadrant.

Assume there exists t1 > 0 such that E(t1) > 0. Then

dE(t1)
dt

≈ e > 0

which implies that E(t)≥ 0, for t ≥ t1. Therefore, E(t)≥ 0 for all t ≥ 0.

3.4 Analysis of equilibria

We shall first determine the equilibrium solutions of Models (3.2.2)-(3.2.4)

and then investigate the type(s) of possible bifurcations from the equilibria. The

equilibria are defined when we equate the right hand sides of every equation of the

system to zero and solve for the state variables. We study the stability of the fixed
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points by analyzing the distribution of the eigenvalues of the linearized system. Due

to the nonlinearity of the system, it may not be possible to express the fixed points

in closed form.

Pathogen-free-equilibrium

In the absence of targets cells, P = 0, all the systems (3.2.2) - (3.2.4) yield

e+ s
E2

b+E2 −dE = 0. (3.4.1)

Solving Equation (3.4.1) for positive real solutions E∗, for the fixed points of the

systems (3.2.2) - (3.2.4), we have to solve the following polynomial of degree three

for E:

dE3− (e+ s)E2 +dbE− eb = 0.

With all the parameters positive, using “Descartes’ Rule of Signs” there are three

or one positive roots. This implies that the pathogen-free-equilibrium (PFE) exists

and is (0,E∗).

If one varies the parameters of Equation (3.4.1) within a positive domain of the

parameters values, the long-term behavior may change since we can have one or

three DFE using the “Descartes’ Rule of Signs;” “Sturm chain or sequence method”

(cf. Beaumont and Pierce, 1963) provides more precise conditions for the number

of steady states. The appearance or disappearance of equilibria produce topological

changes in the system and are examples of bifurcations.

The Jacobian (J), evaluated at the critical points, (0,E∗) is:

J =

 r− kE∗ 0

h(E∗) 2 sbE∗

(b+E∗2)2 −d

 ,

where

h(E) =
∂

∂P

(
dE
dt

)
.
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Depending on the values assigned to u and v, h(E) will have different expressions.

The Jacobian matrix can be simplified to

J =

 r− kE∗ 0

−kE∗ 2 sbE∗

(b+E∗2)2 −d

 ,

which is an upper triangular matrix whose eigenvalues can easily be identified:

λ1 = r− kE∗

λ2 = 2
sbE∗(

b+E∗2
)2 −d.

In the case that the immune system has never encountered a specific pathogen,

E = 0 as memory cells, we have

Proposition 5. Consider the Systems (3.2.2) - (3.2.4) with e = 0 and all other pa-

rameters positive. The pathogen-free-equilibrium (0,0) is unstable.

Although mathematically convenient, requiring e = 0 goes against one of our key

modeling assumptions; it is more realistic to have e > 0.

In the case the pathogen has been presented to the immune system and has been

cleared out, E > 0, we have

Proposition 6. Consider the Systems (3.2.2) - (3.2.4) with all parameters positive.

For E∗ > r/k and 2 sbE∗

(b+E∗2)2 < d the pathogen-free-equilibrium (0,E∗) is stable

otherwise it is unstable.

Endemic equilibrium

The different values assigned to u and v will play a major role in the existence

of endemic equilibria, (P∗,E∗) when P∗,E∗ > 0. In all the three scenarios, solving

the right-hand side of the first equations in Models (3.2.2) - (3.2.4) for P(t) > 0, the
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first equation yields always to

E∗ =
r
k
.

When we substitute E∗ = r
k in the second equation, we solve for P∗. Depending

on the different scenarios, we reach the following equations where, for all positive

parameters, let

A = e+ s
E2

b+E2 −dE.

• For u = v = 2, we have

− rkP3 +(kA+ pr)P2− rkaP+aAk = 0. (3.4.2)

1. A < 0 and kA+ pr < 0⇒ zero positive roots

2. A < 0 and kA+ pr > 0⇒ zero or two positive roots

3. A > 0⇒ one or three positive roots

Using the “Descartes rule of Signs” for Eq. (3.4.2), we can say that it is possi-

ble we have three, two, one or zero real positive roots as biologically relevant

solutions. Thus, we can have zero, one, two or three endemic equilibri(um/a).

• For u = v = 3, we have

− rkP4 +(Ak + pr)P3− rkaP+aAk = 0 (3.4.3)

1. A < 0 and kA+ pr < 0⇒ one positive root

2. A < 0 and kA+ pr > 0⇒ zero or two positive roots

3. A > 0⇒ one or three positive roots

Using the “Descartes rule of Signs” for Eq. (3.4.3), we can see that we can

have three, two, one or zero real positive roots as biologically relevant solu-

tions. Thus, we can have zero, one, two or three endemic equilibri(um/a).
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• For u = 3 and v = 4, we have

− rkP5 +AkP4 + prP3− rkaP+aAk = 0. (3.4.4)

1. A < 0⇒ zero or two positive roots

2. A > 0⇒ one or three positive roots

By the same token, with the “Descartes rule of Signs” for Eq. (3.4.4), we

conclude that there may exist zero, one, two or three real positive roots. Thus,

we can have zero, one, two, or three endemic equilibri(um/a).

3.5 Simulations and discussion

Of course, the time series of the targets/pathogens P and the immune effector

E are determined as the solutions of the differential equations, which depend on the

initial conditions. We present some numerical simulations using the parameters

values in Table 3.1 to illustrate the behavior of the interaction immune effector-

pathogen as an explicit function of time.

Table 3.1: Parameters for Figures 3.6 and 3.7, which give some numerical solutions
of Model (3.2.2).

r k p a s b d e
2.3 2 1 .85 2.5 1 1 2

In the presence of a single target invading the host without trying to solve for so-

lutions that depend on the initial condition, we can use phase plane analysis to

analyze the Models (3.2.2) - (3.2.4). When moving along the trajectories the sys-

tem finally converges toward the immune state where only “memory cells” exist, no

targets, as we can see in Figure 3.7. As the pathogen load decreases, the activation

of the antibody (immune competence) will cease and the population of antibod-

ies will decrease to a minimum load of memory cells, near the time of complete
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antigen inactivation, that can be present in the host as along as he lives. Here, the

model predicts that the target cells can be completely cleared from the host by its

immunocompetent cells.

Figure 3.6: Primary and secondary response of the immune competence to a same
pathogen infection. Note that the response of the immune system is quicker for
the second exposure to the pathogen, which is expected given that memory cells
are now present. The qualitative behaviors are the same in all three scenarios
depending on the pathogen virulence, except for the time it takes to clear the
pathogens decreases from severe compromise down to health immune system. Sce-
nario (3.2.2) presented in this picture; however, (3.2.3) and (3.2.4) have the same
qualitative behavior. Values of parameters for computation: [r,k, p,a,s,b,d,e] =
[2.3,2,1, .85,2.5,1,1,2].

Due to the complexity and high non-linearity of each system we are not able to find

an explicit solution for the endemic equilibrium. Since we are mostly interested in

the qualitative behavior, in the following section we provide some simulations to

illustrate the dynamics. Before doing so, we consider possible bifurcations that may

occur in our system. Each of the two dimensional systems that we have, (3.2.2)-

(3.2.4), is different from the others only in the expression governing the response
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(a) Two differently infections trajecto-
ries.

(b) Primary and one secondary re-
sponse to a same pathogen.

Figure 3.7: Phase plane of a single type of pathogen and immune effector
agent. Again note that the response of the immune system is quicker for the
second exposure to the pathogen, which is expected given that memory cells are
now present. Scenario (3.2.2) presented in these pictures; however, (3.2.3) and
(3.2.4) have the same qualitative behavior. Values of parameters for computation:
[r,k, p,a,s,b,d,e] = [2.3,2,1, .85,2.5,1,1,2].

curves

f (P) =
pPu

a+Pv .

where we consider a healthy immune system as u = v = 2,a = .85, p = 1, a mod-

erately immune compromised system as u = v = 3,a = .5, p = .75, and a severely

immune compromised system as u = 3,v = 4,a = 1.2, p = 1. We consider what

happens to the stability of the equilibria as we change some of the parameters.

In each of the three scenarios, we look for Hopf bifurcations of the various pathogen-

free equilibrium and the endemic equilibria. If we let J∗ represent the Jacobian

matrix evaluated at the given equilibrium, the conditions for a Hopf bifurcation are

found by substituting λ = iω into the characteristic equation det(J∗) = 0, equating

real and imaginary parts to zero and eliminating ω from the equation. The resulting

equation gives curves along which Hopf bifurcations potentially occur. However,

performing this procedure does not yield any bifurcation for ω > 0. Thus we can

conclude that the system does not undergo any Hopf bifurcations for any choices

of parameter values.
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The other basic type of bifurcation that we can have is a λ = 0 bifurcation, such as

transcritical, saddle node, or pitchfork bifurcations. We go to the original system to

calculate the Jacobian and corresponding characteristic equation. As we vary d, we

observe λ = 0 bifurcations for the given scenarios, which are given below.

Healthy immune response

Fix parameter values k = .135, a = .85, α = 2.95, K = 250, c = .88, e =

4, s = 0.0007, b = 1, p = 1, r = 2.75 in Model (3.2.2). As we increase d, we can

go from having

• one endemic equilibrium (E∗1 ) and one pathogen-free equilibria (E∗); E∗1 is

a saddle and is biologically relevant; E∗ is stable; for the given parame-

ters this situation will hold when d < 0.192509928950910 (approximately);

“Descartes rule of Signs” predicts 3 or 1 positive endemic equilibria (A >

0, kA+ pr > 0 in (3.4.2));

• three endemic equilibria (E∗1 , E∗2 ,E∗3 ) with one pathogen-free equilibria (E∗);

E∗ remains stable and E1
∗ remains a biologically relevant saddle; equilbria

E∗2 ,E∗3 were born in a saddlenode bifurcation with E∗2 a saddle, E∗3 a stable

spiral, and E∗3 “slightly above” E∗2 in the phase plane; for the given parame-

ters this situation will hold when 0.192509928950910 < d < 0.1963979174

(approximately); “Descartes rule of Signs” predicts 3 or 1 positive endemic

equilibria (A > 0, kA+ pr > 0 in (3.4.2));

• two endemic equilibria (E∗1 , E∗2 ,E∗3 ) with one pathogen-free equilibria (E∗);

E∗2 and E∗ underwent a transcritical bifurcation with E∗2 no longer biolog-

ically relevant (but mathematically stable) and E∗ now a saddle; equilbria

E∗3 is still a stable spiral and E∗1 a saddle; for the given parameters this sit-

uation will hold when 0.1963979174 < d < 0.751421838984983 (approxi-
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mately); “Descartes rule of Signs” predicts 2 or 0 positive endemic equilibria

(A < 0, kA+ pr > 0 in (3.4.2));

• one endemic equilibrium (E∗2 ) remains not biologically relevant (but stable)

and one pathogen-free equilibria (E∗) remains a saddle; E∗1 and E∗3 underwent

a saddlenode bifurcation and no longer exist mathematically; for the given

parameters this situation will hold when 0.751421838984983 < d (approxi-

mately); “Descartes rule of Signs” predicts 2 or 0 positive endemic equilibria

(A < 0, kA+ pr > 0 in (3.4.2));

(a)

Figure 3.8: Phase plane portrait for healthy immune response before it undergoes a
saddle-node bifurcation. For this figure, we have d < 0.192509928950910.

Moderately compromised immune response

Fix parameter values k = .135, a = .85, α = 2.95, K = 250, c = .88, e =

4, s = 0.0007, b = 1, p = 1, r = 2.75 in Model (3.2.3). As we increase d, we can

go from having

• one endemic equilibrium (E∗1 ) and one pathogen-free equilibria (E∗); E∗1 is a

saddle and is biologically relevant; E∗ is stable; for the given parameters this

situation will hold when d < 0.178717215 (approximately); “Descartes rule

of Signs” predicts 3 or 1 positive endemic equilibria (A > 0, kA + pr > 0 in

(3.4.3));
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(a) (b) The right picture is a “blow up” of
the left.

Figure 3.9: Phase plane portrait for healthy immune response after it has un-
dergone a saddle-node bifurcation. The new endemic equilibria that appeared
are located very near the pathogen-free point, as can be seen in (b). We have
0.192509928950910 < d < 0.1963979174.

(a) (b) The right picture is a “blow up” of
the left.

Figure 3.10: Phase plane portrait for healthy immune response. The system has
undergone a transcritical bifurcation with only two endemic equilibria now biolog-
ically relevant. This holds for 0.1963979174 < d < 0.751421838984983.
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(a)

Figure 3.11: Phase plane portrait for healthy immune response, after having under-
gone another saddle-node bifurcation. We have 0.751421838984983 < d.

• three biologically relevant endemic equilibrium (E∗1 , E∗2 ,E∗3 ) and one pathogen-

free equilibria (E∗); E∗ is stable; E∗1 is a saddle and is biologically rele-

vant; E∗2 is a saddle and is “below” the stable spiral E∗3 in the phase plane;

for the given parameters this situation will hold when 0.178717215 < d <

0.180726721966789 (approximately); “Descartes rule of Signs” predicts 3

or 1 positive endemic equilibria (A > 0, kA+ pr > 0 in (3.4.3));

• two biologically relevant endemic equilibria (E∗1 , E∗3 ) with one pathogen-free

equilibria (E∗); E∗2 and E∗ underwent a transcritical bifurcation with E∗2 no

longer biologically relevant (but mathematically stable) and E∗ now a saddle;

equilbria E∗3 is still a stable spiral and E∗1 a saddle; for the given parameters

this situation will hold when 0.180726721966789 < d < 0.8307 (approxi-

mately); “Descartes rule of Signs” predicts 2 or 0 positive endemic equilibria

(A < 0, kA+ pr > 0 in (3.4.3));

• one endemic equilibrium (E∗2 ) remains not biologically relevant (but stable)

and one pathogen-free equilibria (E∗) remains a saddle; E∗1 and E∗3 under-

went a saddlenode bifurcation and no longer exist mathematically; for the

given parameters this situation will hold when 0.8307 < d (approximately);
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“Descartes rule of Signs” predicts 2 or 0 positive endemic equilibria (A <

0, kA+ pr > 0 in (3.4.3));

(a) (b) The right picture is a “blow up” of
the left.

Figure 3.12: Phase plane portrait for a moderately compromised immune re-
sponse before it undergoes a transcritical bifurcation. This picture is valid for
d < 0.180726721966789.

(a)

Figure 3.13: Phase plane portrait for a moderately compromised immune re-
sponse after having undergone a transcritical bifurcation. This picture is valid for
0.180726721966789 < d < 0.8307.

Severely compromised immune response

Fix parameter values k = .135, a = .85, α = 2.95, K = 250, c = .88, e =

4, s = 0.0007, b = 1, p = 1, r = 2.75 in Model (3.2.4). As we increase d, we can

go from having
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(a) (b)

Figure 3.14: Phase plane portrait for a moderately compromised immune response
after having undergone another saddlenode bifurcation. This qualitative behavior
holds for 0.8307 < d.

• one endemic equilibrium (E∗1 ) and one pathogen-free equilibria (E∗); E∗1 is a

saddle and is biologically relevant; E∗ is stable; for the given parameters this

situation will hold when d < .175458204034150 (approximately); “Descartes

rule of Signs” predicts 3 or 1 positive endemic equilibria (A > 0 in (3.4.4));

• three endemic equilibria (E∗1 , E∗2 , E∗3 ) with one pathogen-free equilibria (E∗);

E∗ remains stable and E1
∗ remains a biologically relevant saddle; equilbria

E∗2 , E∗3 were born in a saddle-node bifurcation with E∗2 a saddle, E∗3 a stable

spiral, and E∗3 “slightly above” E∗2 in the phase plane; for the given parame-

ters this situation will hold when 0.17878084 < d < .1963979174 (approxi-

mately); “Descartes rule of Signs” predicts 3 or 1 positive endemic equilibria

(A > 0 in (3.4.4));

• two biologically relevant endemic equilibria (E∗1 , E∗3 ) with one pathogen-free

equilibria (E∗); E∗2 and E∗ underwent a transcritical bifurcation with E∗2 no

longer biologically relevant (but mathematically stable) and E∗ now a saddle;

equilbria E∗3 is still a stable spiral and E∗1 a saddle; for the given parameters

this situation will hold when .1963979174 < d (approximately); “Descartes

rule of Signs” predicts 2 or 0 positive endemic equilibria (A < 0 in (3.4.4));
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• one endemic equilibrium (E∗2 ) remains not biologically relevant (but stable)

and one pathogen-free equilibria (E∗) remains a saddle; E∗1 and E∗3 under-

went a saddlenode bifurcation and no longer exist mathematically; for the

given parameters this situation will hold when 0.62647 < d (approximately);

“Descartes rule of Signs” predicts 2 or 0 positive endemic equilibria (A < 0

in (3.4.4));

Figure 3.15: Phase plane portrait for a severely compromised immune response that
has undergone a saddle-node bifurcation. The necessary condition for this picture
is 0.17878084 < d < .1963979174 and we have the existence of two biologically
relevant fixed points.

Figure 3.16: Phase plane portrait for a severely compromised immune response
after having undergone another saddle-node bifurcation, leaving no biologically
relevant endemic equilibria. This hold when 0.62647 < d. The sequence of figures
is qualitatively the same as in the healthy and moderately compromised immune
systems.
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Comparison of single-pathogen, single-stage effector with Malaria Model (2.1.1)

and TB Model (2.2.1)

Figure 3.17: Time series of pathogen and activated immunocompetent cells concen-
tration in the host for healthy individual and IC = (.05,15). (a) Transient behavior;
(b) Transient dynamics at the beginning of infection. The qualitative behavior of
the moderately and severely compromised immune system is the same for the given
choice of parameters.

While we have been able to gain tremendous insight into the behavior of our phe-

nomenological Models (3.2.2)-(3.2.4), our ultimate goal is to compare these with

the immunology-based Malaria Model (2.1.1) and TB Model (2.2.1).

In the case of the Malaria model, Figure 3.17 illustrates the same qualitative behav-

ior of the pathogen as the immune system gets the pathogen (Malaria) under control

but does not completely eliminate it from the body. Thus our phenomenological

models capture a key feature of the actual immunology-based model. Another key
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feature of the immunology-based Malaria Model (2.1.1) is that the effector popu-

lation monotonically increases to its steady-state value. In our 2-dimensional phe-

nomenological Models (3.2.2)-(3.2.4), we are not able to observe this behavior in

the effector as a spiral that gives the correct pathogen behavior also requires os-

cillatory behavior of the effector. In order to mathematically observe oscillatory

behavior in one variable and monotonic behavior in a second variable, we would

need a third variable to be present. Thus, when we examine the next subsystem of

the general phenomenological Model (2.6.4) that includes two classes of effectors

(inactivated and activated) we may be able to mimic the behavior of the true system.

Figure 3.18: Time series of pathogen and activated immunocompetent cells concen-
tration in the host for healthy individual and IC = (.02,17). (a) Transient behavior;
(b) Transient dynamics at the beginning of infection. The qualitative behavior of
the moderately and severely compromised immune system is the same for the given
choice of parameters.

In the case of the TB model, Figure 3.18, we can choose initial conditions that give

behavior close to that observed for BI and E. The immunology-based TB model

appears to have a very weak oscillatory behavior in the BI equation and monotonic
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behavior in the E equation. The phenomenological models again correctly mimic

the behavior of the immunology-based TB model in the pathogen (BI) variable but

not the effector variable since it predicts small oscillations as it approaches steady-

state (and this is not observed in the immunological Model (2.2.1). As with the

malaria Model, considering the next subsystem of the general phenomenological

Model (2.6.4) that would include two classes of effectors (activated and inactivated)

we may be able to mimic the behavior of the true system. In both models, as

future research, we intend to investigate whether varying the parameter d in the

Malaria and TB models can yield the qualitatively observed behavior (bifurcations)

of the phenomenological models. However, even without having such a numerical

bifurcation analysis of the immunological models, we are able to conclude that

the first subsystem of the phenomenological model helps us better understand the

potential mechanisms underlying the behavior of the true models.

3.6 Conclusion

The immune response in the presence of one pathogen has been analyzed with

a simplistic mathematical model based on assumptions that we defined earlier. The

model predicts the increase of memory cell formation with the decrease in time to

response during the second infection with the same pathogen in all the scenarios. At

the same time one can notice the decrease in the time of infection from the severely

compromised to healthy immune systems. Even though there are no experimental

data to support the classification of the immune system state using the Hill function

with anything other that u = v = 1, we can see how the degree of the saturation

function can affect the dynamics of the immune system.

To our knowledge, there is no mathematical models of the immune system response

that can be compared to our phenomenological model for one stage of the effec-

tor maturation and that take into consideration the state of the individual health.
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The selected models capture a key feature of the actual immunology-based model,

monotonically increasing of the effector population to get the pathogen under con-

trol before reaches its steady state. Under certain conditions, these models illustrate

the qualitative behavior of the Malaria model.

General speaking, with the complexity of the immune response, we cannot pretend

to include all the aspects of the immune system and its interaction with the foreign

agents in a simple mathematical model. But still, the model presented herein is

among the simplest phenomenological models to describe the pathogen–immune

system interaction. In the next chapter, we incorporate additional realistic assump-

tions into the modeling such as the maturation of the immune effector cells, which

then gives extensions of Equations (3.2.2) - (3.2.4).
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Chapter 4

PHENOMENOLOGICAL SUBSYSTEM: SINGLE PATHOGEN, TWO STAGE

EFFECTOR MATHEMATICAL MODELS OF IMMUNE RESPONSE

4.1 Introduction

A healthy immune system aims to create a state of immunity against many

pathogens or invaders. To reach this state it is essential to be marked by a spe-

cific non-self agent (bacteria, viruses, immunization, etc.). The agent or pathogen

that enters the host is recognized by the immune system and consequently causes

a specific reaction. The immune response is a specific process resulting from the

confrontation of organism(host) with an antigen, and immunity is the result of suc-

cessful course of the immune response. In our initial Models, (3.2.2) - (3.2.4), one

cannot observe the stages of the immune system from inactivated to activated ef-

fector. Thus our extension of (3.2.2) - (3.2.4), which is also the justification of

Equation (2.6.3), will now account for the activation of immune competence cells

and for the formation of immune memory after infection. Although occurring on

a vastly different time scale and only in a developing immune system, we can also

think of the two stages of effectors as naive and mature. It has been noted that the

foreign pathogen provoking the response is also called the antigen and the immune

response itself is characterized by the production and the maturation of antibodies,

which are antigen specific, and that the bindings to the antigen (foreign pathogen)

hasten its destruction and elimination from the host.

In the development of our models, we take into account some specific biological

assumptions that are based on a generally accepted understanding of the immune

system function [60]:
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1. The mature immune effector cells can kill the target cells and be killed. Note

that the binding reaction between the pathogen and the immunocompetence

cells is not always one to one.

2. The immune effector cells or agents have a finite lifetime.

3. As part of innate immunity, the effectors are always present and active in the

host where they are recruited.

4. All foreign or invader cells have the potential to activate and stimulate the im-

mune effectors by increasing metabolic activity; this reaction induces the pre-

cursor cells for increased proliferation or differentiation. Note that the level

of immune competence depends on both the number of target cells present as

well as the host individual immune effector agents.

The binding of an antibody to a pathogen facilitates its removal and is carried out

by specialized immune competence cells (phagocytes or macrophages). In certain

circumstances, pathogen binding and detachment occurs without damaging the im-

munocompetence cells. The surface of the immune cell is covered with identical re-

ceptors. The activation and the eradication can occur on a one-to-one basis or when

a sufficiently many receptors of the immune effector cell are bound to pathogens.

For simplicity, we assume that each unit of pathogen has a single site of binding

to immune effector cell, and similarly each immune effector cell can bind only a

single pathogen. In fact pathogens (bacteria, viruses) or cells have many binding

sites for antibody, and some of the immune effector cells have two or more sites for

pathogens binding. It may be interesting to consider binding site rather that cells or

molecules as fundamental unit.

When we consider a child vs. an adult or the environment of the host exposed to

multiple pathogens, we know that there is a difference in the immune response

[38; 94]; the competition of two pathogens or a pathogen with multiple strains may
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weaken the immune system as well. Also, when we look at, for example, the T cell

maturation, activation and differentiation one can see some specifications. It will be

very difficult to incorporate in a mathematical model all these specifications which

increase the complexity of the analysis. Here are some of the requirements:

• During the recirculation, the naive T cells circulate from the blood to lymph

node back to the blood every 12 to 24 hours.

• Naive T cell: Cells never meet antigens before and can only be activated by

dendritic cells.

• Effector cells: Short lived cells with special functions such as cytokine secre-

tion and B cell help and cytotoxic killing activity. Effector cells are divided

from naive or memory cells after antigen activation Th1, Th2 subsets.

• Memory cells: Long lived resting cells that are derived from naive and effec-

tor cells. They respond faster and stronger to a subsequent challenge with the

same antigen.

• CD+
4 CD+

25 regulatory T cells: Cells that can inhibit the proliferation of other

T cells population.

We thus group the effector cells into two basic categories: naive vs. mature. Figure

4.1 shows this specific breakdown.

Table 2.5 gives the definitions and symbols of the populations of interest. Recall

that in our model, as in Segel and Pereleson [103], the variables (memory, naive and

effector cells) are not specifically T or B cells, but a generalization with properties

common to both types.
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Figure 4.1: Key stages of stem cell differentiation grouped into two basic cate-
gories: naive vs. mature.

4.2 Model formulation

Based on all the previous assumptions and hypotheses, we thus consider

our next subsystem of the general phenomenological Model (2.6.4) by consider-

ing a single pathogen but now with two stages of effectors. To account for the

two-stage activation–inactivation or the alternative interpretation as chronological

stages, growth or maturation of the immune effector agents, we consider the fol-

lowing phenomenological model for the immune response:

dP
dt

= rP− kPE2

dE1

dt
= e+αE1

(
1− E1

K

)
− cPE1 (4.2.1)

dE2

dt
= cPE1 + f (P)E2 +g(E2)− kPE2−dE2,
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with f (P) = p Pu

a+Pv and g(E2) = s E2
2

b+E2
2
, where u and v are positive integers as de-

fined in Chapter 2. In our model, t = 0 marks the time when the pathogen is mixed

into the lymph and begins to stimulate an immune response. We do not consider

how a small amount of pathogen can bypass the physical barriers of the innate im-

mune system and proliferate until it finds its way into the blood and then lymph

nodes, at which point the immune response is triggered. Let us note that within

the host the homeostatic mechanisms keep the total number of cells relatively con-

stant and controlled. Homeostatic regulation in the immune system refers to the

mechanisms that control the number of cells in the system. Without homeostatic

regulation cells would either experience unconstrained growth (cancer), or decay to

extinction.

This model differs from the basic model (System (3.2.1)) because it also takes into

account two stages of the effector immune competence as shown in Figure 4.1. The

parameter r is the per capita growth rate of the pathogen P in the host and k is the

positive rate of elimination of the antigen by the immune competence through one

to one binding. The maximum growth rate of the naive immune effector E1 is α

with K its carrying capacity, and c the rate of maturation of the immune effector

in presence of the pathogen. With respect to this current approach, we will again

consider the previous three scenarios, namely

• Immune non-compromised, u = v = 2,⇒ f (P) = p P2

a+P2 .

• Immune moderately compromised, u = v = 3,⇒ f (P) = p P3

a+P3 .

• Immune severely compromised, u = 3 and v = 4,⇒ f (P) = p P3

a+P4 .

With this approach of separating the immune competence into naive and mature

immune agents, we can identify two time scales:
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1. the fast time scale occurs with the maturation and the differentiation of the

immune effector cells from the stem cell of the bone marrow (or equivalently,

the inactivated effector cells)

2. the slow time is associated with the activation, metabolic reaction of the im-

mune competence agents and their proliferation and influx into the spleen.

This motivates the application of quasi-steady state approximation to the equation

involving the fast time scale, (i.e. dE1
dt ≈ 0) which yields the following relation with

regard to every scenario:

E1 ≈
K
2α

(
α− cP̄+

√
(α− cP̄)2 +4eα/K

)
,

where P̄ is the pathogen load when we consider the quasi-steady state. For sim-

plicity, the Model (4.2.1) can be reduced to a two dimensional system of equations

when we substitute E1 ≈ K
2α

(
α− cP̄+

√
(α− cP̄)2 +4eα/K

)
into the mature im-

mune effector cells equation. The subsystem yields

dP
dt

= rP− kPE2 (4.2.2)

dE2

dt
= cP

K
2α

(
α− cP̄+

√
(α− cP̄)2 +4eα/K

)
+ f (P)E2

+s
E2

2
b+E2

2
− kPE2−dE2.

4.3 Existence of steady state

The precise values of the steady states of the Model (4.2.2), can be deter-

mined analytically if we are lucky. Setting the right-hand sides of each equation in

(4.2.2) to zero with the assumption that the naive immune competence has a fast
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time scale, meaning E1 reaches a quasi-steady state yields:

0 = rP− kPE2 (4.3.1)

0 = cP
K
2α

(
α− cP̄+

√
(α− cP̄)2 +4eα/K

)
+ f (P)E2

+s
E2

2
b+E2

2
− kPE2−dE2,

with f (P) different due to the change of u and v values as previously mentioned.

Pathogen-free steady state

In the absence of a pathogen, P = 0 at all time, all the scenarios we consider

yield to the same expression:

0 = s
E2

2
b+E2

2
−dE2.

Here one can have two different possibilities when solving for E2:

If a specific pathogen has never been presented to the immune system for the iso-

lated host, the system (4.2.2) with the initial conditions P(0) = E2(0) = 0 has the

unique solution (P∗,E∗2) = (0,0) or for the complete Model (4.2.1)

(P∗,E∗1 ,E∗2) =
(

0,
K
2α

(
α +

√
α2 +4eα/K

)
,0
)

for all times.

In the case that the host been in contact with the pathogen, the system has to be

solved with non-zero initial conditions for the mature immune competence and it

has an equilibrium:

(P∗,E∗2) =
(

0,
s

2d

)
for s2 = 4bd2,

(P∗,E∗2) =

(
0,

s+
√

s2−4bd2

2d

)
for s2 > 4bd2.

We discuss its stability in the next section.
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Endemic steady state

In the presence of pathogen P(t) > 0, and considering that E1 is in the quasi-

steady state, the system is solved with non-zero initial conditions. For

0 = e+αE1

(
1− E1

K

)
− cPE1,

we obtain

E∗1 =
K
2α

(
α− cP̄+

√
(α− cP̄)2 +4eα/K

)
, with P̄ > 0.

Substituting E2 = r
k and E∗1 in the following equation

0 = cPE1 + f (P)E2 + s
E2

2
b+E2

2
−dE2− kPE2 (4.3.2)

yields a different order of polynomial in P based on the values assigned to u and v.

This can be rearranged and possibly solved analytically for the positive roots.

If we consider the first scenario, for example, Eq.(4.3.2) becomes

0 = cPE1 + p
P2

a+P2 E2 + s
E2

2
b+E2

2
−dE2− kPE2.

Thus, the positive roots of this polynomial

cP
K
2α

(
α− cP+

√
(α− cP)2 +4eα/K

)
+ p

P2

a+P2
r
k

+ s
( r

k)
2

b+( r
k)

2 −d
r
k
− rP = 0

(4.3.3)

give the possible endemic steady state(s) that we are going to observe. Hence, the

positive endemic equilibrium is (
P̄,

r
k

)
,

where P̄ takes the values of the positive roots of (4.3.3).

79



4.4 Stability analysis of the steady states

To analyze the local stability of the equilibrium points of the Model (4.2.2)

we will refer to the Jacobian matrix linearization around the steady state. The Ja-

cobian of the model is

J =

 r− kE2 −kP

Ω f (P)+2 sbE2
(b+E2

2 )2 −d− kP

 ,

where

Ω =
∂

∂P

(
dE2

dt

)
.

Pathogen-free steady state

The Jacobian evaluated at the pathogen-free-equilibrium will be very simi-

lar in all scenarios. For the immune system that has never encountered a specific

pathogen, we have

Proposition 7. For all positive parameters, the pathogen-free-equilibrium (0,0) is

unstable at all times t.

Proof. We know that the PFE is (0, Ē1,0). The Jacobian around the PFE is

J(0,Ē1,0) =


r 0 0

−cĒ1 α−2αĒ1
K 0

cĒ1 0 −d

 ,

with Ē1 = K
2α

(
α +

√
α2 +4eα/K

)
. The eigenvalues are r, α−2αĒ1

K and −d.

We have

λ2 = α−2
αĒ1

K
= α−2

α

K
K
2α

(
α +

√
α2 +4eα/K

)
= −

√
α2 +4eα/K

< 0.
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Since all the parameters are positive,

λ1 > 0, λ2 < 0, λ3 < 0.

Hence the PFE
(

0, K
2α

(
α +

√
α2 +4eα/K

)
,0
)

is unstable.

In the case that pathogen has been presented to the immune system and has been

cleared out, we have

Proposition 8. At the pathogen-free-equilibrium
(

0, 1
2d (s+

√
s2−4bd2)

)
:

1. For s2− 4bd2 = 0, if r− ks
2d < 0, then the pathogen-free-equilibrium

(
0, s

2d

)
is stable otherwise it is saddle.

2. For s2−4bd2 > 0, if r− ks
2d < 0, then the pathogen-free-equilibrium(

0, 1
2d

(
s+
√

s2−4bd2
))

is stable otherwise it is a saddle.

Endemic steady state stability

Since it is very difficult to get a reasonable expression for the endemic equi-

libria, here we shall use phase portraits in the P−E2 plane to illustrate the qualita-

tive behavior that may happen depending on the scenario.

To determine stability of the various endemic equilibria and the possible bifurca-

tions that they may undergo, we go back to the original system (4.2.1). As men-

tioned earlier, we consider the three scenarios of the healthy, moderately immune-

compromised, and severely immune-compromised individuals. In each of the three

scenarios, we look for Hopf bifurcations of the various pathogen-free equilibrium

and the endemic equilibria. As before, we let J∗ represent the Jacobian matrix eval-

uated at the given equilibrium, substitute λ = iω into the characteristic equation,

equate real and imaginary parts to zero, and eliminate ω from the equation. We do

not obtain any bifurcation for ω > 0. Thus we can conclude that the system does

not undergo any Hopf bifurcations for any choices of parameter values.
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However, we do have λ = 0 bifurcation (transcritical and saddlenode) and we go to

the original system to calculate show this.

Healthy immune response

Fix parameter values k = .135, a = .85, α = 2.95, K = 250, c = .88, e =

4, s = 0.0007, b = 1, p = 1, r = 2.75 in Model (4.2.1). As we increase d, we can

go from having

• one endemic equilibrium (E1∗) and three pathogen-free equilibria (E0
∗, E1

∗,

E2
∗); E1∗ is a saddle and is biologically relevant; E0

∗ is stable, while both E1
∗

and E2
∗ are saddles; another endemic equilibrium (E2∗) is not biologically

relevant but gets nearer to E∗0 ; for the given parameters this situation will

hold when d < 0.0000342810092997205 (approximately);

• two endemic equilibria (E1∗,E2∗) with three pathogen-free equilibria (E0
∗,

E1
∗, E2

∗); pathogen-free equilibria E1
∗, E2

∗ do not change stability; E1∗ also

remains unchanged as a biologically relevant saddle; equilbria E0
∗ and E2∗

changed stability in transcritical bifurcation with E0
∗ now unstable and E2∗

biologically relevant and stable; for the given parameters this situation will

hold when 0.0000342810092997205 < d < 0.0003500 (approximately);

• two endemic equilibria (E1∗,E2∗) with one pathogen-free equilibria (E1
∗);

E0
∗ and E2

∗ underwent a saddlenode bifurcation; E1
∗ is still a saddle; equi-

lbria E1∗ and E2∗ do not change stability and remain a saddle and a stable

spiral, respectively; for the given parameters this situation will hold when

0.0003500 < d < 9.79200204375484 (approximately);

• there is only one pathogen-free equilibria (E1
∗) that is a saddle; E1∗ and E2∗

underwent a saddlenode bifurcation and no longer exist mathematically; for
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the given parameters this situation will hold when 9.79200204375484 < d

(approximately);

(a) Three biologically relevant fixed
points.

(b) The right picture is a “blow up” of
the left.

Figure 4.2: Phase plane portrait for a healthy immune response before it un-
dergoes a transcritical bifurcation. The necessary condition for this picture is
d < 0.0000342810092997205.

(a) (b) The right picture is a “blow up” of
the left.

Figure 4.3: Phase plane portrait for a healthy immune response after having under-
gone a transcritical bifurcation. The necessary condition for qualitatively behavior
to hold is 0.0000342810092997205 < d < 0.0003500.

Moderately compromised immune response

Fix parameter values k = .135, a = .5, α = 2.95, K = 250, c = .88, e = 4, s =

0.0007, b = 1, p = .75, r = 2.75 in Model (4.2.1). As we increase d, we can go from

having
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(a) Three fixed points. (b) The right picture is a “blow up” of
the left.

Figure 4.4: Phase plane portrait for a healthy immune response after having under-
gone a saddle node bifurcation that destroyed two pathogen-free equilibria. This
picture is valid for 0.0003500 < d < 9.79200204375484.

(a) Only one fixed point exists.

Figure 4.5: Phase plane portrait for a healthy immune response after the endemic
equilibria undergo a saddlenode bifurcation, leaving only a pathogen-free equilibria
as a saddle. This picture holds for 9.79200204375484 < d.

• one endemic equilibrium (E1∗) and three pathogen-free equilibria (E0
∗, E1

∗,

E2
∗); E1∗ is a saddle and is biologically relevant; E0

∗ is stable, while both E1
∗

and E2
∗ are saddles; another endemic equilibrium (E2∗) is not biologically

relevant but gets nearer to E0
∗; for the given parameters this situation will

hold when d < 0.0000342810219339179 (approximately);

• two endemic equilibria (E1∗,E2∗) with three pathogen-free equilibria (E0
∗,

E1
∗, E2

∗); pathogen-free equilibria E1
∗, E2

∗ do not change stability; E1∗ also

remains unchanged as a biologically relevant saddle; equilbria E0
∗ and E2∗
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changed stability in a transcritical bifurcation with E0
∗ now unstable and E2∗

biologically relevant and stable; for the given parameters this situation will

hold when 0.0000342810219339179 < d < 0.0003500 (approximately);

• two endemic equilibria (E1∗,E2∗) with one pathogen-free equilibria (E1
∗);

E0
∗ and E2

∗ underwent a saddlenode bifurcation; E1
∗ is still a saddle; equi-

lbria E1∗ and E2∗ do not change stability and remain a saddle and a stable

spiral, respectively; for the given parameters this situation will hold when

0.0003500 < d < 9.872106885 (approximately);

• there is only one pathogen-free equilibria (E1
∗) that is a saddle; E1∗ and E2∗

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 9.872106885 < d (approx-

imately);

(a) On two fixed points. (b) Three biologically relevant equilib-
ria.

Figure 4.6: Phase plane portrait for a moderately compromised immune re-
sponse before it undergoes a trancritical bifurcation. This picture holds for d <
0.0000342810219339179.
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(a) Existence of three equilibria (b) Only one fixed point.

Figure 4.7: Phase plane portrait for a moderately compromised immune response
underwent a saddlenode bifurcation of pathogen-free equilibria. This picture is
valid for 0.0003500 < d < 9.79200204375484. The sequence of bifurcations ob-
served in the healthy individual is also observed here and thus only two phase plane
pictures are presented.

Severely compromised immune response

Fix parameter values k = .135, a = 1.2, α = 2.95, K = 250, c = .88, e =

4, s = 0.0007, b = 1, p = 1, r = 2.75 in Model (4.2.1). As we increase d, we can

go from having

• one endemic equilibrium (E1∗) and three pathogen-free equilibria (E0
∗, E1

∗,

E2
∗); E1∗ is a saddle and is biologically relevant; E0

∗ is stable, while both E1
∗

and E2
∗ are saddles; another endemic equilibrium (E2∗) is not biologically

relevant but gets nearer to E0
∗; for the given parameters this situation will

hold when d < 0.0000342810219339179 (approximately);

• two endemic equilibria (E1∗,E2∗) with three pathogen-free equilibria (E0
∗,

E1
∗, E2

∗); pathogen-free equilibria E1
∗, E2

∗ do not change stability; E1∗ also

remains unchanged as a biologically relevant saddle; equilbria E0
∗ and E2∗

changed stability in a transcritical bifurcation with E0
∗ now unstable and E2∗
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biologically relevant and stable; for the given parameters this situation will

hold when 0.0000342810219339179 < d < 0.0003500 (approximately);

• two endemic equilibria (E1∗,E2∗) with one pathogen-free equilibria (E1
∗);

E0
∗ and E2

∗ underwent a saddlenode bifurcation; E1
∗ is still a saddle; equi-

lbria E1∗ and E2∗ do not change stability and remain a saddle and a stable

spiral, respectively; for the given parameters this situation will hold when

0.0003500 < d < 9.8722068853 (approximately);

• there is only one pathogen-free equilibria (E1
∗) that is a saddle; E1∗ and E2∗

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 9.8722068853 < d (ap-

proximately);

(a) (b)

Figure 4.8: Phase plane portrait for a severely compromised immune response
before it undergoes a transcritical bifurcation. This picture is valid for d <
0.0000342810219339179.
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(a) (b)

Figure 4.9: Phase plane portrait for a severely compromised immune response
after having undergone a saddlenode bifurcation. This behavior holds for
0.0000342810219339179 < d < 0.0003500. The sequence of bifurcations observed
in the healthy and moderately compromised individuals is also observed here and
thus only two phase plane pictures are presented.

4.5 Simulation and comparison of single-pathogen, two-stage effector

phenomenological model with Malaria Model (2.1.1) and TB Model (2.2.1)

For the qualitative behavior and the understanding of different processes, we

use the following parameter values and the respective values for a and p

Table 4.1: Parameters value for Figures in 4.10 - 4.12.

r k e α c s b d K
2.5 0.0075 1 2.95 0.88 0.37 4 0.089 250

• In immune non-compromised (healthy), f (P) = P2

.85+P2 .

• In immune moderately compromised, f (P) = .75P3

.5+P3 .

• In immune severely compromised, f (P) = P3

1.20+P4 .

It has been seen that our model for the competition between the pathogen and the

host immune response (antibody) admit a rich variety of solutions depending on the

88



Figure 4.10: Time series of pathogen, naive and mature immunocompetent cells
concentration in the host for healthy individual and IC = (75,165,0). (a) Transient
behavior; (b) Transient dynamics at the beginning of infection.

Figure 4.11: Time series of pathogen, naive and mature immunocompetent cells
concentration in the host for a moderately immune compromised individual.
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Figure 4.12: Time series of pathogen, naive and mature immunocompetent cells
concentration in the host for a severely immune compromised individual.

model parameters. Based on the assumptions, the simulation of the model shows

that the pathogens cannot be completely cleared from the host (example of dis-

eases). Also the mature immune cells and memory cells cannot grow without bound

within the host.

While we have been able to gain tremendous insight into the behavior of our phe-

nomenological single-pathogen two-stage effector Model (4.2.1) our ultimate goal

is to again compare these with the immunology-based Malaria Model (2.1.1) and

TB Model (2.2.1).

As seen in Figures 4.13 and 4.14, the slow time scale of the phenomenological

models considered in this chapter can display the same qualitative behavior as the

Malaria Model (2.1.1) and TB Model (2.2.1) for certain parameter values and initial

conditions when considering the pathogen. However, the problem in the previous

chapter (with only one-class of effector) is the same that is encountered here when

90



Figure 4.13: Time series of pathogen and activated immunocompetent cells con-
centration in the host for healthy individual in the slow time scale, Model (4.2.1).

Figure 4.14: Time series of pathogen and activated immunocompetent cells con-
centration in the host for healthy individual in the slow time scale, Model (4.2.1).
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we only consider the slow time scale of the phenomenological models. Thus in

order to investigate whether we have better qualitative agreement by considering

two stages of effectors, we consider the full 3-dimensional system as we did in the

bifurcation analysis (but not in the phase plane pictures).

Figure 4.15: Time series of pathogen, inactivated (naive) and activated immuno-
competent cells concentration in the host for healthy individual in the 3-dimensional
Model (4.2.1). Observe that we now have oscillation of the pathogen and mono-
tonic behavior of one of the effector classes.

In the case of both Malaria and TB immunological model, Figure 4.15 illustrates the

same qualitative behavior of a pathogen concentration oscillating as it approaches

its non-zero steady-state value while the inactivated (naive) effector class monoton-

ically approaches its non-zero steady-state value; the activated class of effectors is

predicted to oscillate as it goes to its non-zero steady-state value. Thus the current

two-stage effector phenomenological model, in addition to incorporating some of

the important results of the simpler one-stage version, captures another observed

feature of the Malaria and TB immunological models. This shows the importance
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of including this if we intend to capture as much of the observed realistic behavior

as possible.

4.6 Discussion and conclusion

The immune response in the presence of one pathogen has been analyzed

with two phenomenological models that had single-stage and two-stage classes of

effectors. Among other things, the models also predict the increase in the formation

of memory cells. Also from Figure 4.10, 4.11 and 4.12 we can see the decrease in

time to response during the second infection with the same pathogen.

As the pathogen load decreases, the maturation and stimulation of the antibody (ma-

ture immune competence) will cease and the population of antibodies will decrease

to a minimum load of memory cells, near the time of complete antigen inactivation,

which will be present within the host as along as he lives. When we keep all the

parameters identical except p and a, we have a similar qualitative behavior. Beside

the reduction of the region of attraction of the immune effectors there is little ob-

served difference between moderately and severely immune compromised versus

healthy.

One thing we have with the two-stage phenomenological model but not with the

single-stage version, is the variation in the formation of the memory cells in the

host. There is less formation of memory cells in the healthy host compared to the

host with compromised immune response. The length of infection by a pathogen

can change from finite to infinite, persistent or chronic in an endemic environment.

In addition, instead of an infection by a single antigen having a single viral load

peak, it can have multiple peaks or can rebound if the host is not isolated. The de-

crease of the time of infection is not necessarily related to a large immune compe-

tence production. Within the scenario of healthy host, we can reach the eradication
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of pathogens from the host in a short period of time without the accumulation of a

high concentration of specialized immune effectors.

The different steady state solutions of the one-stage and two-stage phenomenolog-

ical models can describe various immunologist classification of stages of infection

by the pathogen: “virgin state,” is the stage where the host has never been invaded

by a specific target and completely free from infection; “immune state” is the state

where the host achieves the control of the pathogens and the formation of memory

cells for the future; and “state of tolerance.” For the latter of these, we recall that

one of the defining features of the immune system is its ability to distinguish self

from non-self; that is, it must be capable of mounting a reaction against any foreign

antigen (pathogen) but not respond to substances normally present in the organism

itself. This essentially describes the phenomenon of natural tolerance.

We see that whether the immune system is compromised or not, when the pathogen

and effector levels are located outside of the region of attraction, the recovery of the

host from the infection can only be achieved through therapeutic treatment, which

allows the immune system to bring the pathogen invasion under control.

As we introduce a new immunological mathematical model with two stages of mat-

uration of the effector cells and the variability of the individual state, we can identify

and qualitatively assess the dynamics of the interaction between the immune sys-

tem and one pathogen, that was not noticeable with the one stage maturation model.

Through these phenomenological models, we can highlight the importance of the

state of the health of the individuals.

The previous chapters give us some understanding and insight of the immune sys-

tem response during a single pathogen invasion. In general the immune response as

it relates to host-pathogen interaction is always specific and our phenomenological
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models allowed us to get away from some of this specificity while still capturing

much of the qualitative behavior.

Comparative tables of the two approach of modeling one pathogen interacts with

the immune response:

Table 4.2: Healthy immune state, comparison of result from Chapters 3 and 4. E∗

is pathogen-free equil.; E∗i and E j∗
i are endemic equil.

Single stage immune response
P, E2

d < .1925 E∗ stable E∗1 saddle,

.1925 < d < .19639
E∗ stable

E∗1 saddle, E∗2 saddle, E∗3 stable

.19639 < d < .7514
E∗ saddle

E∗1 saddle, E∗2 stable
.7514 < d E∗ saddle

Two stage immune response
P, E1, E2

d < .000034
E1∗ saddle,

E∗0 stable, E∗1 saddle, E∗2 saddle

.000034 < d < .00035
E1∗ saddle, E2∗ stable

E∗0 saddle, E∗1 saddle, E∗2 saddle

.00035 < d < 9.79
E1∗ saddle, E2∗ stable

E∗1 saddle
9.79 < d E∗1 saddle

95



Table 4.3: Moderately compromised immune state, comparison of result from
Chapters 3 and 4. E∗ is pathogen-free equil.; E∗i and E j∗ are endemic equil.

Single stage immune response
P, E2

d < .1807
E∗ stable

E∗1 saddle, E∗2 saddle, E∗3 stable

.1807 < d < .8307
E∗ saddle

E∗1 saddle, E∗3 stable
.8307 < d E∗ saddle

Two stage immune response
P, E1, E2

d < .000034
E1∗ saddle

E∗0 stable , E∗1 saddle, E∗2 saddle

.000034 < d < .00035
E1∗ saddle, E2∗ stable

E∗0 saddle, E∗1 saddle, E∗2 saddle

.00035 < d < 9.8721
E1∗ saddle, E2∗ stable

E∗1 saddle
9.8721 < d E∗1 saddle

Table 4.4: Severely compromised immune state, comparison of result from Chap-
ters 3 and 4. E∗ is pathogen-free equil.; E j∗

i and E j∗ are endemic equil.

Single stage immune response
P, E2

d < .1754 E1∗ saddle, E∗ stable

.1754 < d < .19639
E∗ stable

E∗1 saddle, E∗2 saddle, E∗3 stable

.19639 < d < .62647
E∗ saddle

E∗1 saddle, E∗3 stable
.62647 < d E∗ saddle

Two stage immune response
P, E1, E2

d < .000034
E1∗ saddle

E∗0 stable, E∗1 saddle, E∗2 saddle

.000034 < d < .00035
E1∗ saddle, E2∗ stable

E∗0 saddle, E∗1 saddle, E∗2 saddle

.00035 < d < 9.8722
E1∗ saddle, E2∗ stable

E∗1 saddle
9.8722 < d E∗1 saddle
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Chapter 5

FULL PHENOMENOLOGICAL MODEL

In Chapters 3 and 4, we analyzed the two subsystems of the phenomeno-

logical Model (2.6.4) to help us gain insight into the dynamics of the interaction

between pathogen and immune effector. We first considered a single-pathogen one-

stage effector model and then a single-pathogen two-stage effector model and com-

pared the qualitative behavior of both with their immunology-based Malaria Model

(2.1.1) and TB Model (2.2.1). In this chapter, we focus on the impact of a sec-

ond disease on the individual with a one-stage effector and two-stage effector phe-

nomenological models that account for co-infection. These qualitative results are

then compared to the immunology-based Malaria–TB co-infection Model (2.3.1).

5.1 Within host single stage immunological model with co-infection

Model formulation

In considering a second pathogen, we assume that each pathogen is suf-

ficiently different, as in the Malaria–TB co-infection Model (2.3.1), so that each

requires a different metabolic immuno-stimulation strength on the immune com-

petence agents. For simplicity, we consider that both pathogens have the same

virulence, which depending of the circumstances can have different interpretation.

Casadevall and Pirofski produce a mini review on the basic concept of virulence

[20]. But here, by virulence of pathogen, we mean the response of the immune

system to the pathogen is the same in each scenario, which will show on the im-

munostimulation of the pathogen for the pathogen and the half saturation constant.

With state variables and parameters defined as in Table 2.5 and the two pathogens

having characteristics described above, the two-pathogen one-stage effector model
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is given by the following system:

dP1

dt
= rP1− kP1E

dP2

dt
= ρP2−κP2E (5.1.1)

dE
dt

= e+ f (P1)E + f (P2)E +g(E)−dE− kP1E−κP2E

In this model, we consider

f (P1) = p
Pu

1
a1 +Pv

1
; f (P2) = π

Pu
2

a2 +Pv
2

; and g(E) = s
E2

b+E2

with f (Pi), i = 1,2, defined as before:

• Immune non-compromised, u = v = 2,⇒ f (Pi) = p P2
i

ai+P2
i

;

• Immune moderately compromised, u = v = 3,⇒ f (Pi) = p P3
i

ai+P3
i

;

• Immune severely compromised, u = 3 and v = 4,⇒ f (Pi) = p P3
i

ai+P4
i

.

For simplicity, we model the immune response under co-infection with the viru-

lence being the same, i.e., where p = π and a1 = a2.

Existence of solutions

Due to the biological meaning of the different variables P1, P2 and E in

any proposed scenario depending on the values of u and v, we have to restrict the

domain to the nonnegative octant R3
+ where the populations P1, P2 and E are all

nonnegative. We again state that the domain is called a positively invariant region

if any trajectory that starts in the nonnegative octant remains in the same octant

forever and it can be shown using standard techniques described in [106; 107] that

if initial conditions are specified for each of the states variables at time t = 0, then

there exists a unique solution satisfying these initial conditions for all time t ≥ 0.

Lemma 9. The closed positive octant R3
+ is positively invariant for the Model

(5.1.1).
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Proof. We need to show that the solutions for the Model (5.1.1) are nonnegative

given an initial condition P1(0) ≥ 0, P2(0) ≥ 0 and E(0) ≥ 0. For P1 = 0 and

P2 = 0, we have two invariant planes for the system of equations (5.1.1), we only

need to prove that E(t) ≥ 0, for t ≥ 0 if the initial conditions are in the positive

octant.

Assume there exists t1 > 0 such that E(t1) > 0. Then

dE(t1)
dt

= e > 0

which implies that E(t)≥ 0, for t ≥ t1. Therefore, E(t)≥ 0 for all t ≥ 0.

Local stability and possible bifurcations

When we consider any of the three scenarios of healthy, moderately com-

promised or severely compromised immune systems, due to the nonlinearity of the

system it may not be possible to express the fixed points in closed form. In the

absence of targets cells, P1 = P2 = 0, the System (5.1.1) yields

e+ s
E2

b+E2 −dE = 0. (5.1.2)

Solving Equation (5.1.2) in the domain and obtaining a positive real solution, im-

plies that the disease-free-equilibrium (DFE) exists and is (0,0,E∗) with E∗ > 0.

The stability analysis of the DFE is identical to the single-pathogen models and we

refer the reader to Section 3.4.

The Jacobian (J) evaluated at the critical points, (0,0,E∗), for the first scenario

simplifies to

J =


r− kE∗ 0 0

0 ρ−κ E∗ 0

−kE∗ −κ E∗ 2 sbE∗

(b+E∗2)2 −d

 .
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In the presence of a single target invading the host (i.e., P1 = 0 or P2 = 0), we can

refer to Section 3.4 for the dynamics of the steady state. Because of the complexity

of the model to the dynamics of the system, we can use also phase space analysis

and simulation for the qualitatively different behaviors in each scenario.

Numerical simulations and discussion

The time courses of the targets P1 and P2, and the immune effector E are

determined as the solutions of the differential equations, which depend on the initial

conditions. Because of the high non-linearity of Model (5.1.1), we present some

numerical simulations using the parameters values in Table 5.1.

Table 5.1: Parameters values for Figures 5.1 - 5.2.

r k ρ κ s b d e
2.3 1.5 2.4 1.71 2.5 1 .75 5

Table 5.2: Parameter values associated with immune system state.

Immune system state u v p = π a1 = a2
Healthy 2 2 1 .85

Moderately compromised 3 3 .75 .50
Severely compromised 3 4 1 1.20

For the simulations, we assume that the pathogens invade the host at different time.

We are not suggesting that the event of two pathogens invading the immune system

at exactly the same time is impossible but we consider the probability of such an

event occurring to be negligible.

In each of the three scenarios, we look for Hopf bifurcations of the various pathogen-

free equilibrium and the endemic equilibria, and we can conclude that the system

does not undergo any Hopf bifurcations for any choices of parameter values.
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The other basic type of bifurcation that we can have is a λ = 0 bifurcation, such as

transcritical, saddle node, or pitchfork bifurcations. We go to the original system to

calculate the Jacobian and corresponding characteristic equation. As we vary d, we

observe λ = 0 bifurcations for the given scenarios, which are given below.

Healthy immune response

Fix parameter values k = .135, κ = .135, a = .85, α = 2.95, K = 250, c =

.88, e = 4, s = 0.0007, b = 1, p = 1, r = 2.77, ρ = 2.75 in Model (5.1.1). As we

increase d, we can go from having

• two endemic equilibria (E1∗
1 , E1∗

2 ) and one pathogen-free equilibria (E∗0 );

E1∗
1 , E1∗

2 are a saddle and are biological relevant; E∗0 is stable; for the given

parameters this situation will hold when d < 0.195 (approximately)

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ,) with one pathogen-free equilib-

ria (E∗0 ); E∗0 now saddle and E1
1∗, E2

1∗ remain biologically relevant saddle;

equilbria E1
2∗, E2∗

2 were born in a saddle node bifurcation with E2
2∗ a saddle

and E2∗
1 a stable spiral; for the given parameters this situation will hold when

0.195 < d < 0.755 (approximately);

Moderately compromised immune response

Fix parameter values k = .135, κ = .135, a = .5, α = 2.95, K = 250, c =

.88, e = 4, s = 0.0007, b = 1, p = .75, r = 2.77, ρ = 2.75 in Model (5.1.1). As

we increase d, we can go from having

• two endemic equilibria (E1∗
1 , E1∗

2 ) and one pathogen-free equilibria (E∗0 );

E1∗
1 , E1∗

2 are a saddle and are biological relevant; E∗0 is stable; for the given

parameters this situation will hold when d < 0.175 (approximately)
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• four endemic equilibria (E1∗
1 , E2∗

1 , E3∗
1 , E1∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E∗0 remains stable and E1∗
2 a saddle; equilbria E1

2∗, E1
3∗ were born

in a saddle node bifurcation with E2∗
1 a stable spiral and E3∗

1 a saddle; for the

given parameters this situation will hold when 0.175 < d < 0.185 (approxi-

mately);

• six endemic equilibria (E1∗
1 , E2∗

1 , E3∗
1 , E1∗

2 , E2∗
2 , E3∗

2 ) with one pathogen-free

equilibria (E∗0 ); E∗0 , E2∗
1 remain stable and E1

1∗, E1
3∗ remain biologically

relevant saddle; equilbria E2∗
2 ,E3∗

2 were born in a saddle node bifurcation

with E2
2∗, E2

3∗ a saddle; for the given parameters this situation will hold

when 0.185 < d < 0.195 (approximately);

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E3∗
1 and E23∗ underwent a transcritical bifurcation and are no longer

biologically relevant (but mathematically stable) and E∗0 now a saddle; equi-

lbria E2∗
1 is still a stable spiral and E1∗

1 , E1∗
2 , E2∗

2 a saddle; for the given pa-

rameters this situation will hold when 0.195 < d < 0.645 (approximately);

• one endemic equilibrium (E1∗
2 ) remains not biologically relevant (but stable)

and one pathogen-free equilibria (E∗0 ) remains a saddle; E2∗
1 and E2∗

1 under-

went a saddle node bifurcation and no longer exist mathematically; for the

given parameters this situation will hold when 0.645 < d (approximately);

Severely compromised immune response

Fix parameter values k = .135, κ = .135, a = 1.2, α = 2.95, K = 250, c =

.88, e = 4, s = 0.0007, b = 1, p = 1, r = 2.77, ρ = 2.75 in Model (5.1.1). As we

increase d, we can go from having
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• two endemic equilibria (E1∗
1 , E1∗

2 ) and one pathogen-free equilibria (E∗0 );

E1∗
1 , E1∗

2 are a saddle and are biological relevant; E∗0 is stable; for the given

parameters this situation will hold when d < 0.175 (approximately)

• six endemic equilibria (E1∗
1 , E2∗

1 , E3∗
1 , E1∗

2 , E2∗
2 , E3∗

2 ) with one pathogen-free

equilibria (E∗0 ); E∗0 remains stable; equilbria E1
2∗, E1

3∗ were born in a sad-

dle node bifurcation with E2∗
1 a stable spiral and E3∗

1 a saddle, and equilbria

E2∗
2 ,E3∗

2 were born in a saddle node bifurcation with E2
2∗, E2

3∗ a saddle;

for the given parameters this situation will hold when 0.175 < d < 0.185

(approximately);

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E∗0 is now saddle with E1∗
1 , E1∗

2 , E2∗
2 and E2∗

1 remains stable spiral;

equilbria E1
3∗, E2

3∗ underwent a transcritical bifurcation and are no longer

biological relevant; for the given parameters this situation will hold when

0.185 < d < 0.565 (approximately);

• one endemic equilibrium (E2∗
1 ) remains not biologically relevant (but stable)

and one pathogen-free equilibria (E)∗) remains a saddle; E1∗
1 , E1∗

2 and E2∗
2

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 0.565 < d (approximately);
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(a)

(b)

(c)

Figure 5.1: Time series of different agents for the same set of initial conditions.
(a) healthy immune system, (b) moderately immune compromised and (c) severely
immune compromised. Only the healthy immune system succeeded in controlling
both pathogens.
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(a)

(b)

(c)

Figure 5.2: Time series of different agents for the same set of initial conditions
but a later invasion time of pathogen 2 when compared to Figure 5.1. (a) healthy
immune system, (b) moderately immune compromised and (c) severely immune
compromised. In all three scenarios, both pathogens are kept under control.
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Discussion of numerical results for two-pathogen one-stage effector

phenomenological model

We observed the following different qualitative behaviors in our model:

• parameter values and initial conditions exist so that a healthy individual im-

mune system can keep both pathogens under control if the second pathogen

is introduced at time t > tcrit but will succumb to the second pathogen if it is

introduced at time t < tcrit ; this also holds for both moderately and severely

compromised immune systems; see Figures 5.1 - 5.2 for examples with mod-

erately and severely compromised individuals;

• parameter values and initial conditions exist so that a healthy individual im-

mune system can keep both pathogens under control but the moderately com-

promised and severely compromised individuals cannot keep the second pathogen

under control; see Figure 5.1;

• parameter values and initial conditions exist so that both healthy individual

and moderately compromised immune systems can keep both pathogens un-

der control but the severely compromised individuals cannot keep the second

pathogen under control

The time it takes to clear both pathogens is very different in the scenario of the

severely immune compromised system compared to the moderately compromised

and healthy immune systems, where under the same conditions (same parameters

values and initial conditions) it takes approximately the same duration to clear the

host of both pathogens for the latter two; see Figure 5.2. In the scenario where the

immune system is severely compromised, the time the second pathogen invades the
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host compared to the first pathogen invasion dramatically affects the dynamics of

the immune response under the same assumption.

It is important to note that the same pathogen, (under certain conditions), can be

deadly if it invades the host at an earlier stage, this situation can also occur when

there exist some environment factors that can affect the immune system such as

malnutrition or lack of hygiene, especially in an endemic region. The severely

compromised immune system response is not always deadly for the host. The host

can still clear both pathogens if the second pathogen invasion occurs after a certain

time t + τ with t the time of the initial invasion by any first pathogen. There may

exist some factors that, to be realistic, will change the outcome of the immune sys-

tem such as the specificity of immune cells (T cells, B cells, NK cells, etc.) and also

their stages of differentiation and maturation, knowing that all rise from the stem

cells. However, our two-pathogen one-stage phenomenological model suggests that

the health of the individual and the time of invasion of the second pathogen may

play large roles in determining the long term behavior of the two pathogens within

their host. This is significant as we were not able to observe this behavior in the

Malaria–TB co-infection Model (2.3.1) but this may very well be due to our in-

ability to correctly be in the appropriate parameter regimes (expected, given that

we have 33 parameters), even though many of the parameters had realistic ranges

based on the literature. As with the single-pathogen models, we also performed a

numerical table of bifurcations based on varying d and we present this after discus-

sion of the full phenomenological model.
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5.2 Phenomenological model (2.6.4): Co-invasion of pathogens with two-stage

effectors

Model

We are finally ready to consider the two-pathogen two-stage effector phe-

nomenological model that provides us with a caricature of the Malaria–TB co-

infection Model (2.3.1). We use our knowledge of its subsystems in order to com-

plete our analysis. Thus we consider Model (2.6.4):

dP1

dt
= rP1− kP1E2

dP2

dt
= ρP2−κP2E2

dE1

dt
= e+αE1

(
1− E1

K

)
− (c1P1 + c2P2)E1

dE2

dt
= (c1P1 + c2P2)E1 +( f (P1)+ f (P2))E2 +g(E2)− (kP1 +κP2)E2−dE2,

with f (Pi) defined previously in Section 5.1 and state variables and parameters

again given in Table 2.5.

Analysis of the model

The domain D is valid epidemiologically because the populations P1, P2, E1

and E2 are all nonnegative. We denote points in D by x = (P1, P2, E1, E2). The

nonnegative orthant R4
+ = {x ∈ R4|x ≥ 0} is called a positively invariant region.

With an initial condition X(0), Y (0), F(0), andT (0)≥ 0 we can show that the first

orthant is positively invariant.

Lemma 10. The closed positive orthant is positively invariant for the Model (2.6.4).

The proof is fairly easy and similar to one in the previous chapters.

In the same line of development compared to the previous sections and chapters,

we will consider the three scenarios of the immune system response: healthy, mod-
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erately compromised and severely compromised immune systems.Parallel to the

previous chapter, for the steady state analyses of the disease-free and one pathogen

equilibrium for each of the scenarios we refer to Sections 4.3 - 4.4. For the dy-

namics of two pathogens within the host, we provide a numerical simulation and

bifurcation analysis (varying d) to understand the qualitative behavior.

Numerical simulations and conclusions

Let us recall that the active immune effector is composed of the memory cell

resulting from the immune response to both pathogens. The three types of immune

systems considered are as before; see Table B.3. The parameter values used in the

simulation are given in Table 5.3, with the initial conditions the same in Figures 5.3

- 5.5.

Table 5.3: Parameter values for Figures 5.3 - 5.5

r k ρ κ e α K c1 c2 s b
2.77 0.75 2.75 1.45 1 2.95 250 1.88 2.68 .0007 1

To determine stability of the various endemic equilibria and the possible bifurca-

tions that they may undergo, we go back to the original system (2.6.4). As men-

tioned earlier, we consider the three scenarios of the healthy, moderately immune-

compromised, and severely immune-compromised individuals. In each of the three

scenarios, we look for Hopf bifurcations of the various pathogen-free equilibrium

and the endemic equilibria. As before, we can conclude that the system does not

undergo any Hopf bifurcations for any choices of parameter values.

However, we do have λ = 0 bifurcation (transcritical and saddlenode) and we go to

the original system to calculate show this.
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Figure 5.3: The time series plot of pathogens and immune effectors concentration
in a co-infection environment for a healthy immune system. Both pathogens are
kept under control.

Healthy immune response

Fix parameter values k = .135, κ = .135, a = .85, α = 2.95, K = 250, c1 =

.88, c2 = .88, e = 4, s = 0.0007, b = 1, p = 1, r = 2.77, ρ = 2.75 in Model (2.6.4).

As we increase d, we can go from having

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E∗0 is saddle and E1∗
1 a stable; equilbria E2∗

1 , E1∗
2 and E2∗

2 a saddle;

for the given parameters this situation will hold when d < 9.725 (approxi-

mately);

• two endemic equilibria (E1∗
2 , E2∗

2 ) with one pathogen-free equilibria (E∗0 ); E∗0

is saddle; equilbria E1∗
2 and E2∗

2 remain a saddle and E1∗
1 , E2∗

1 changed stabil-
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Figure 5.4: The time series plot of pathogens and immune effectors concentra-
tion in a co-infection environment of a moderately compromised system. As with
Figure 5.3, both pathogens are kept under control although the level of mature (ac-
tivated) effectors is lower when the second pathogen is introduced (compared with
the healthy system).

ity in transcritical but no longer biological relevant; for the given parameters

this situation will hold when 9.725 < d < 9.795 (approximately);

• there is only one pathogen-free equilibria (E0
∗) that is a saddle; E1∗

2 and E2∗
2

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 9.795 < d (approximately);

Moderately compromised immune response

Fix parameter values k = .135, κ = .135, a = .5, α = 2.95, K = 250, c1 =

.88, c2 = .88, e = 4, s = 0.0007, b = 1, p = .75, r = 2.77, ρ = 2.75 in Model (2.6.4).

As we increase d, we can go from having
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Figure 5.5: The time series plot of pathogens and immune effectors concentration
in a co-infection environment of a severely compromised system. As the pathogen
2 invades, the immune response decreases considerably and both pathogens take
over the host; at the time of the invasion by the second pathogen, the mature (acti-
vated) effector population is lower than in the healthy or moderately compromised
systems.

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E∗0 is saddle and E1∗
1 a stable; equilbria E2∗

1 , E1∗
2 and E2∗

2 a saddle;

for the given parameters this situation will hold when d < 9.635 (approxi-

mately);

• two endemic equilibria (E1∗
2 , E2∗

2 ) with one pathogen-free equilibria (E∗0 ); E∗0

is saddle; equilbria E1∗
2 and E2∗

2 remain a saddle and E1∗
1 , E2∗

1 changed stabil-

ity in transcritical but no longer biological relevant; for the given parameters

this situation will hold when 9.635 < d < 9.695 (approximately);

• there is only one pathogen-free equilibria (E0
∗) that is a saddle; E1∗

2 and E2∗
2

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 9.695 < d (approximately);
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Severely compromised immune response

Fix parameter values k = .135, κ = .135, a = 1.2, α = 2.95, K = 250, c1 =

.88, c2 = .88, e = 4, s = 0.0007, b = 1, p = 1, r = 2.77, ρ = 2.75 in Model (2.6.4).

As we increase d, we can go from having

• four endemic equilibria (E1∗
1 , E2∗

1 , E1∗
2 , E2∗

2 ) with one pathogen-free equilib-

ria (E∗0 ); E∗0 is saddle and E1∗
1 a stable; equilbria E2∗

1 , E1∗
2 and E2∗

2 a saddle;

for the given parameters this situation will hold when d < 9.465 (approxi-

mately);

• two endemic equilibria (E1∗
2 , E2∗

2 ) with one pathogen-free equilibria (E∗0 ); E∗0

is saddle; equilbria E1∗
2 and E2∗

2 remain a saddle and E1∗
1 , E2∗

1 changed stabil-

ity in transcritical but no longer biological relevant; for the given parameters

this situation will hold when 9.465 < d < 9.535 (approximately);

• there is only one pathogen-free equilibria (E0
∗) that is a saddle; E1∗

2 and E2∗
2

underwent a saddlenode bifurcation and no longer exist mathematically; for

the given parameters this situation will hold when 9.535 < d (approximately);

Conclusion

In comparing Figures 5.1 - 5.2 (two-pathogen, one-stage effector) and Fig-

ures 5.3 - 5.5 (two-pathogen, two-stage effector) with their immunology-based

counterpart in Figures 2.8 - 2.13, we see some key similarities in qualitative re-

sults: we can choose parameter values and initial conditions of the Malaria–TB

Model (2.3.1) that
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• gives monotone behavior of the effector class and one pathogen while it gives

oscillatory behavior in the other pathogen; this can be mimicked in the phe-

nomenological model only when considering the full two-stage model;

• gives monotone behavior of the effector class while it gives oscillatory behav-

ior in both pathogens; this can be mimicked in the phenomenological model

when considering the full two-stage model or the simpler one-stage effector

model;

• causes a significant decrease in the effector population when the Malaria

pathogen is introduced although the body is able to ultimately keep both

pathogens under control; this is mimicked in both one-stage and two-stage

phenomenological model for appropriate choices of parameters and initial

conditions; for the Malaria Model (2.1.1) and TB Model (2.2.1) with param-

eters as presented in Chapter 2, this would be the “expected” result

One of the significant predictions of the two-pathogen phenomenological models

(both one-stage and two-stage effector) is that we can find parameters and initial

conditions in each of the respective immune systems in which the introduction of

the second pathogen causes one or both pathogens to overrun the body. Numerical

“guessing” of parameters and initial conditions failed to give a comparable outcome

in the Malaria–TB Model (2.3.1) and it seems that the reason was the current TB

parameters don’t cause a decrease in the effector population.

The models described here provide a rigorous means of thinking about and de-

scribing the immune system response and its interaction with different pathogens.

The state of the immune system (compromised or healthy) of the host before the

invasion of the pathogen(s), is very critical in defining what approach to adopt or

implement to keep the infection (single or co-infection) under control mostly in en-

demic regions where the prevalence may be high. Even though there are likely more
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types of dynamic behavior occurring in other domains of the parameters, we have

only considered a small domain of parameters to stay consistent with the relative

individual immune system, meaning each host is different and responds differently

in each environment. To be able to test these models we will have to be specific

(i.e., depict a single disease and identify the immune cells that interact the most

with this pathogen).

Looking critically at the contents of the above chapters, we can identify various

improvements that can be addressed. In relation to chapters 3 and 4 the following

aspects are worth examining and analyzing in more detail:

• differentiate more immune system states or levels to categorize the variation

from healthy system to a severely compromised one.

• introduce a realistic time delay between the introduction of the infection and

the different reactions occurring through the interaction of the pathogen - host

immune system.

• consider specific memory cells in identifying the targeted area of the immune

system.

• identify more realistic experiments which can provide quantitative measure-

ment that are directly relevant to a specific infection of pathogen and the

immune dynamic within a given host.

With a very simplistic phenomenological co-infection models caricature based on

the nonlinear mathematical models of Malaria, TB, and their co-infection, we ob-

serve the same findings as in the single pathogen models. Also, we can highlight the

importance of the host state and the critical time of invasion of the second pathogen

in accessing the qualitative behavior of the immune system throughout the infec-

tions.
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With the advances in science, technology and computing, more immunological data

have become available and we face the challenge to integrate this knowledge with

the epidemiology and the evolutionary disease models that we know so far. The

biggest challenge may be knowing how to incorporate the vast amounts of data at

hand, which consists of transferring all the above ideas into an effective, realistic

and not too complex mathematical model with properly identified parameters to

truly appreciate the reality and the wonder of the immune system.

Comparative tables of the two approach of modeling the co-infection and the im-

mune response:

Table 5.4: Healthy immune state. Comparison of results from Sections 5.1 and 5.2.
E∗0 is pathogen-free equil.; E j∗

i is endemic equil.

Single stage immune response.
P1, P2, E2

d < .195
E∗0 stable

E1∗
1 saddle

E1∗
2 saddle

.195 < d < .755
E∗0 saddle

E1∗
1 saddle, E2∗

1 stable
E1∗

2 saddle, E2∗
2 stable

.755 < d E∗0 saddle
Two stage immune response

P1, P2, E1, E2

d < 9.725
E∗0 saddle

E1∗
1 stable, E2∗

1 saddle
E1∗

2 saddle, E2∗
2 saddle

9.725 < d < 9.795
E∗0 saddle

E1∗
2 saddle, E2∗

2 saddle
9.795 < d E∗0 saddle
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Table 5.5: Moderately compromised immune state. Comparison of results from
Sections 5.1 and 5.2. E∗0 is pathogen-free equil.; E j∗

i is endemic equil.

Single stage immune response.
P1, P2, E2

d < .175
E∗0 stable

E1∗
1 saddle

E1∗
2 saddle,

.175 < d < .185
E∗0 stable

E1∗
1 saddle, E2∗

1 stable, E3∗
1 saddle

E1∗
2 saddle,

.185 < d < .195
E∗0 stable

E1∗
1 saddle, E2∗

1 stable, E3∗
1 saddle

E1∗
2 saddle, E2∗

2 saddle, E3∗
2 saddle

.195 < d < .645
E∗0 saddle

E1∗
1 saddle, E2∗

1 stable,
E1∗

2 saddle, E2∗
2 saddle,

.645 < d E∗ saddle
Two stage immune response

P1, P2, E1, E2

d < 9.635
E∗0 saddle

E1∗
1 stable, E2∗

1 saddle
E1∗

2 saddle, E2∗
2 saddle

9.635 < d < 9.695
E∗0 saddle

E1∗
2 saddle, E2∗

2 saddle
9.695 < d E∗0 saddle
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Table 5.6: Severely compromised immune state. Comparison of results from Sec-
tions 5.1 and 5.2. E∗0 is pathogen-free equil.; E j∗

i is endemic equil.

Single stage immune response.
P1, P2, E2

d < .175
E∗0 stable

E1∗
1 saddle

E1∗
2 saddle,

.175 < d < .185
E∗0 stable

E1∗
1 saddle, E2∗

1 stable , E3∗
1 saddle

E1∗
2 saddle, E2∗

2 saddle, E3∗
2 saddle

.185 < d < .565
E∗0 saddle

E1∗
1 saddle, E2∗

1 stable
E1∗

2 saddle, E2∗
2 saddle

.565 < d E∗0 saddle
Two stage immune response

P1, P2, E1, E2

d < 9.465
E∗0 saddle

E1∗
1 saddle, E2∗

1 stable
E1∗

2 saddle, E2∗
2 saddle

9.645 < d < 9.535
E∗0 saddle

E1∗
2 saddle, E2∗

2 saddle
9.535 < d E∗0 saddle

118



Chapter 6

IMMUNO - EPIDEMIOLOGY

6.1 Bridge between immunology and epidemiology

Introduction and preliminaries

An integro-differential (difference) equation is an equation which involves

both integrals (sum) and the derivatives of the functions. As is typical with differ-

ential equations, obtaining a closed form solution can be difficult. Nevertheless,

in some situations integro-differential equations can be solved using the Laplace

transform for integrals and derivatives.

Integro-differential equations can be used to model many situations in science and

engineering. For example, one can encounter a particularly rich source in electric-

circuit analysis. Integro-differential (difference) equations are widely used in math-

ematical biology, especially theoretical ecology, to model the dispersal and growth

of populations. The following intgro-differential equations are given, investigated

and analyzed thoroughly among others, by MacDonald with the model for the

parasite population growth (MacDonald, 1978); Volterra for predator-prey models

(Volterra, 1928), Kendal (1957,1965) and Mollison (1972); Medlock & Kot (2003);

Allen & Ernest (2002) with an integro-difference equation.

Reducible systems - Linear chain trick

Frague [44] observed that the integro-differential equation

ẋ = H(x, t)+
∫ t

−∞

K(t− τ)F(x(τ))dτ

with initial condition x(t) = φ(t), −∞ < t < 0, is equivalent to a differential equa-

tion system with initial condition if and only if the kernel K (that satisfies a differ-

ential equation with constant coefficients) is a linear combination of functions

eat , teat , . . . , tmeat , a ∈ C
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where K is a non-negative, continuous function.

In the following, we assume that every kernel K is a normalized convex combination

of functions Km(t) with

Km(t) =
am

(m−1)!
tm−1e−at , m ∈ N, a ∈ C.

The first derivative of Km is given by

d
dt

Km(t) = a
(
Km−1(t)−Km(t)

)
, with F0(t) = 0.

Alternatively, we can introduce new variables xm as

x0(t) = x(t), (6.1.1)

xm(t) =
∫ t

−∞

Km(t− τ)x(τ)dτ, m ∈ N. (6.1.2)

Differentiating Equation (6.1.2) under the integral sign, it follows for the integro-

differential equation that these new variables satisfy

ẋ0(t) = H(x, t)− xm(t), (6.1.3)

ẋm(t) = a
(
xm−1(t)− xm(t)

)
, m ∈ N, (6.1.4)

since we have

Km(0) = 0; K1(0) = a; Km(∞) = 0.

Hypothesis

We consider our previously analyzed two-pathogen one-stage effector phe-

nomenological model as a caricature of the immunology-based co-infection model

at the individual level:

dP1

dt
= rP1− kP1E,

dP2

dt
= ρP2−κP2E, (6.1.5)

dE
dt

= e+ f (P1)E + f (P2)E +g(E)−dE− (kP1 +κP2)E.
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If one takes the equation of E, we rewrite it and approximate the increase of the

immune competence by stimulation (activation), f (P1)E and f (P2)E, by a function

of I j, j = 1,2, where I is traditional epidemiological state variable describing the

population of the infectious individual. In other words we say that

f (P1)E + f (P2)E = ϑ(I1, I2,E, t)

where ϑ(I1, I2,E, t) can be some simple kernel function, for example,

ϑ(I1, I2,E, t) = θE
∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ.

In the population, the presence of an infectious disease results from the presence

of at least one infected individual or infected vector from whom the pathogens can

spread. Thus I j, j = 1,2, represents the population of the infected class that will

spread the pathogens and ϑ(I1, I2,E, t) represents the stimulation of the immune

effector agents due to the presence of pathogens through the infectious class of host

or vector. Thus we can write

dE
dt

= e+ f (P1)E + f (P2)E +g(E)−dE− (kP1 +κP2)E

= e+θE
∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ +g(E)−dE− (kP1 +κP2)E,

where θ , σ are arbitrary. This will allow us to explicitly incorporate immune com-

petence into our problem.

Let us assume that this is possible, so we can have

dE
dt

= e+θE
∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ +s
E2

b+E2 −dE−(kP1 +κP2)E. (6.1.6)

In Equation (6.1.6), the immune competence activation is approximated, using an

integro-differential equation, by

H(t) = θE
∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ. (6.1.7)
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Here we can use the linear chain method for the nonlinear integro-differential in-

troduced in the previous Section 6.1, to write the system of ordinary differential

equations

d
dt

E = e+H(t)+g(E)−dE− (kP1 +κP2)E, (6.1.8)

d
dt

H = θσE
(

(I1 + I2)(t)−
∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ

)
. (6.1.9)

This system is equivalent to

d
dt

E = e+H(t)+g(E)−dE− (kP1 +κP2)E, (6.1.10)

d
dt

H = σ

(
θE
[
(I1 + I2)(t)−

∫ t

−∞

(I1 + I2)(τ)e−σ(t−τ) dτ

])
, (6.1.11)

which can be simplified to

d
dt

E = e+H(t)+g(E)−dE− (kP1 +κP2)E, (6.1.12)

d
dt

H = θσE
(
(I1 + I2)(t)

)
−σH.

Incorporating these last Equations (6.1.12) into our two-pathogen one-stage effector

phenomenological model gives a model that encompasses both the immunological

and epidemiological effects on the individual:

dP1

dt
= rP1− kP1E,

dP2

dt
= ρP2−κP2E, (6.1.13)

dE
dt

= e+H(t)+g(E)−dE +g(E)−dE− (kP1 +κP2)E,

dH
dt

= θσE
(
(I1 + I2)(t)

)
−σH.

In the remainder of this chapter we propose various immuno-epidemiology models

that incorporate this new approach into a traditional epidemiological model.
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6.2 Immuno-epidemiology example 1 - Malaria

Introduction

Many models have been developed to explore the dynamic of Malaria within

the population [28; 30; 37; 70; 85]. We now consider an extension of the Malaria

model that now explicitly includes the population of humans in relation to Malaria.

We briefly derive the mathematical model of Malaria which incorporates compart-

ments for the mosquitos and human population. We introduce a Malaria model that

crosses epidemiology and immunology. We are well aware of the interaction of

diseases in the population and the immune response of the host, which sometimes

can be intricate and complex.

Our approach is to develop a mathematical model and analyze the dynamics of

Malaria with loss of immunity in the population of humans by taking into consider-

ation the “competence” of the immune response of the individual. Furthermore, the

immune competence can affect the infection rate and the recovery rate of the host

within the population.

Model

Before deriving the mathematical model, we define the following variables

and parameters; see Table 6.1. The host and vector populations are divided into

classes containing susceptible, asymptomatic, and infectious individuals. At time

t, there are Sv, Sh susceptible mosquitos and human, Ah asymptomatic humans, and

Iv, Ih infectious vector and humans where Nv = Sv + Iv and Nh = Sh + Ah + Ih are

the total population of the mosquitos and humans, respectively, in the specific en-

vironment. We assume in the model no vertical transmission i.e., all newborns are

susceptible in both populations with Λv > 0 and Λh > 0 as the constant recruitment

rates for vectors and humans, respectively. All individuals have a limited lifespan
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Table 6.1: State variables.

State variables
Variable Explanation

Sv Susceptible vector population
Iv Infected vector population
Sh Susceptible human population
Ah Asymptomatic human population
Ih Infectious human population

Symbol Description
Λv Recruitment rate for the vector
βv Rate of infection of vector by biting infected human
µv Vector natural death rate
Λh Recruitment rate of human population
βh Rate of infection of human
µh Natural death rate for human
δh Recovery rate
q Proportion of asymptomatic
γh Rate of progression from asymptomatic to infectious
dh Death rate due to infection

in both populations and experience natural per capita death rates positive µv > 0

and µh > 0 for mosquitos and humans, respectively. The effective contact leading

to infection of susceptible individuals in the population is considered βv and βh,

respectively for the vectors and the host. Based on the competence of the immune

response, a proportion, 1− q with q ∈ [0,1], of the susceptible class will become

infectious while q will be asymptomatic. As discussed in previous chapters, the

immune reaction is additionally strengthened by autocatalytic and/or competitive

reinforcement of immune activation processes. In other words, competence im-

mune effector cells can proliferate and/or stimulate themselves or precursor cells

for increasing proliferation or differentiation.

In the human population, an asymptomatic individual becomes infectious at the per

capita rate constant γh, and infectious individual recovers at rate δh. At the same

time, an infectious individual can die from the disease at a constant rate dh.
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We can now write the equations of the model describing the Malaria dynamics using

the standard mass action laws:

dSv

dt
= Λv−βvSv

Ih

Nh
−µvSv, (6.2.1)

dIv

dt
= βvSv

Ih

Nh
−µvIv, (6.2.2)

dSh

dt
= Λh−βhSh

Iv

Nv
−µhSh +δhIh, (6.2.3)

dAh

dt
= qβhSh

Iv

Nv
− (µh + γh)Ah, (6.2.4)

dIh

dt
= (1−q)βhSh

Iv

Nv
+ γhAh− (µh +dh +δh)Ih. (6.2.5)

By adding up Equations (6.2.1)-(6.2.2) and (6.2.3)-(6.2.5), we get the equations for

the vector and human total population, respectively:

dNv

dt
= Λv−µvNv,

dNh

dt
= Λh−µhNh−dhIh

where all the parameters are assumed to be positive. All these equations are valid

as long as Nv > 0 and Nh > 0. It can easily be shown that if the initial conditions

are defined for all the states variables at t = 0, then there exists a unique solution

satisfying the initial conditions for all t ≥ 0. For nonnegative initial values, the

model is well posed with Nv ≤ Λv
µv

and Nh ≤ Λh
µh

.

For mathematical simplicity, we make the change of variables

sv =
Sv

Nv
, iv =

Iv

Nv
, sh =

Sh

Nh
, ah =

Ah

Nh
, ih =

Ih

Nh
,

so that the respective total populations become

sv + iv = 1 and sh +ah + ih = 1.

If we introduce the following variables

Lv =
Λv

Nv
, Lh =

Λh

Nh
,
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then the system (6.2.1 - 6.2.5) becomes

div
dt

= βv(1− iv)ih−Lviv, (6.2.6)

dah

dt
= qβh(1−ah− ih)iv− (γh +Lh)ah +dhihah, (6.2.7)

dih
dt

= (1−q)βh(1−ah− ih)iv + γhah− (dh +δh +Lh)ih +dhi2h. (6.2.8)

This new Model (6.2.6) - (6.2.8) is given in terms of proportions and has corre-

sponding initial conditions in Ω = Ω1 +Ω2, where

Ω1 = {(iv,ah, ih) ∈ [0,1]3|0≤ iv < 1,0≤ ah + ih ≤ 0},

and

Ω2 =
{

(Nv,Nh) ∈ R2
∣∣∣0 < Nv ≤

Λv

µv
,0 < Nh ≤

Λh

µh

}
.

If we denote points in Ω by x = (iv,ah, ih,Nv,Nh)t , then we re-write System (6.2.6)

- (6.2.8) in the considered form

dx j

dt
= f j(x), j = 1,2,3 (6.2.9)

where we develop results that will guarantee the global well posedness of the model.

The small variation we intend to include with the analysis of the model, is to investi-

gate the impact of the spread of diseases in the population on the individual immune

system response and if possible the dependence of βh and δh on the immune compe-

tence of the individuals within the population of interest. From here, we can rewrite

the Model (6.2.6) - (6.2.8) by including the immune competence effector using the

approach developed earlier. With only one pathogen in consideration for Malaria
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(P. falciparum), our model will become

div
dt

= βv(1− iv)ih−Lviv, (6.2.10)

dah

dt
= qβh(1−ah− ih)iv− (γh +Lh)ah +dhihah, (6.2.11)

dih
dt

= (1−q)βh(1−ah− ih)iv + γhah− (dh +δh +Lh)ih +dhi2h,(6.2.12)

dE
dt

= e+H + s
E2

b+E2 −dE, (6.2.13)

dH
dt

= σθEiv−σH. (6.2.14)

Existence of steady state solutions

Here, we explore the dynamics of the model and present some results con-

cerning the existence of equilibria. Considering the two populations, there is no

solution for the model in which all variables are 0. For the DFE, we have Iv =

Ah = Ih = H = 0, and from Equations (6.2.1) and (6.2.3) we have S∗v = Λv/µv,

S∗h = Λh/µh and E∗ = Ē. Hence the disease-free equilibrium is

DFE0 =
(

Λv

µv
,0,

Λh

µh
,0,0, Ē,0

)
.

As it is customary in epidemiological models, the basic reproductive number, which

give the number of secondary cases following the introduction of a single infected

individual into a fully susceptible population, allows us to summarize the transmis-

sion and the dynamics of a disease. We leave for future research the completion of

the analysis of this model to see if understanding the dynamics at the population

level could give some insight on the immunology of the individual.

6.3 Immuno-epidemiology example 2 - Tuberculosis

Introduction

Tuberculosis (TB) in all its forms (pneumonia, bones, meningitis, etc.) can be

traced to the beginning of mankind and saw a surge with the industrial development.
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In the early history, TB was a fatal disease and had been a leading cause of human

death. Today it still claims more that 1.3 million deaths within in one third of

the world population. The world becomes aware of the pathogen causing TB after

the brilliant scientific discovery of Robert Koch of the Micobacterium tuberculosis

bacillus (Mtb). Mtb is an obligatory aerobic-intracellular pathogen, which has a

predilection for the lung tissues rich in oxygen supply [97]. The tubercle bacilli

enter the host via the respiratory route. In certain situations, the bacilli spread from

the cite of infection in the lung to other parts of the body through the lymphatics

or blood. Most infected individuals remain latent for a long period of time and

sometimes for their entire lives. During the latency period, Mtb is postulated to exist

in a dormant state where the host can effectively contain the pathogen. However,

the risk of developing active TB increases with the presence of any impairment of

the immune system [41; 69].

TB can be controlled and treatment of TB is well known and developed in the case

of non-resistant strains. To treat active TB, it is necessary to take several antibiotics

at the same time. If not treated properly, TB disease can be fatal. The common

regime of treatment is the combination of isoniazid, rifampicin and pyrazinamide

for two months followed by isoniazid and rifampicin for a further and at least four

to seven months, if the organism is known to be sensitive, until all the bacteria have

been completely cleared (WHO, 2009 Global Tuberculosis Control).

Many contributions [7; 22; 25; 26; 45; 46; 110; 116] in the fields of science, mathe-

matics, epidemiology, etc. have helped in the understanding of the dynamics of TB

within the humans population and also at the individual level.

Model

As is typically done in epidemic models, the population of humans of interest

is divided into groups or subpopulations - S Susceptible, L Exposed or Latent, and I
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Table 6.2: State variables and parameters.

State variable
Symbol Explanation

S Susceptible
L Latent/Exposed
I Infectious

Parameters
Symbol Description

Λ Recruitment rate
β Rate of infection
µ Natural death rate
p Degree/level of re-infection
γ Progression rate from latent to infectious
δ Rate of recovery
d Disease induced death rate

Infectious with N = S+L+ I to be the total population. We consider the population

to be closed and the transmission of TB to be governed by homogeneous mixing.

The susceptible individuals can become infected but not infectious and move to

the latent class at the rate βSI/N. The exposed class of individuals can develop

active TB and become infectious. The progression rate from latent class to active

TB (the infectious class) is given by γL. Within the population when considering

the continuous exposure of individuals, latently-infected individuals can still be

re-infected through additional contact with the infectious class. The exogenous

re-infection is given by pβL I
N . Individuals in the infectious class can lose being

infectious and move to the exposed compartment. All individuals have a limited

lifespan and die at the per capita rate µ . We note that the meaning or interpretation

of some of the parameters may vary, (β for example, is considered as the likelihood

of transmission or the force of infection). The simplest dynamic model of TB can
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be written as,

dS
dt

= Λ−βS
I
N
−µS, (6.3.1)

dL
dt

= βS
I
N
− pβL

I
N
− (µ + γ)L+δ I, (6.3.2)

dI
dt

= pβL
I
N

+ γL−δ I− (µ +d)I. (6.3.3)

The basic reproductive number, that is the number of secondary infections gener-

ated by an actively infectious individual in a population of susceptibles, is given

by

R0 =
(

β

µ +δ +d

)(
γ

µ + γ

)
.

R0 is obtained by the product β/(µ +δ +d), that is the average number of suscep-

tible infected by one infectious individual during his/her effective infectious period

and γ/(µ + γ) which represents the fraction of the population which survives the

exposed/latent period.

It can be shown for Equations (6.3.1) - (6.3.3) that the first octant in the state space

is positively invariant. The total population is given by

dN
dt

= Λ−µN−dI.

Since N′(t) < 0 for N > Λ/µ , we can reduce the state space to a positively invariant

subset of R3
+ represented by

Ω =
{

(S,L, I)|S,L, I ≥ 0,S +L+ I ≤ Λ

µ

}
.
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Here also, we can rewrite the TB model by including the immune competence ef-

fector using the approach developed earlier. The model becomes:

dS
dt

= Λ−βS
I
N
−µS, (6.3.4)

dL
dt

= βS
I
N
− pβL

I
N
− (µ + γ)L+δ I, (6.3.5)

dI
dt

= pβL
I
N

+ γL−δ I− (µ +d)I, (6.3.6)

dE
dt

= e+H + s
E2

b+E2 −dE, (6.3.7)

dH
dt

= σθEI−σH. (6.3.8)

Parallel to Equations (6.2.10) - (6.2.14), any insight on the dynamics of the immune

system of the host based on the disease dynamics in the population will come from

a complete analysis of Equations (6.3.4) - (6.3.8). As with the Malaria immuno-

epidemiology model, we leave this analysis for future research.

6.4 Conclusion

While the earlier chapters of this thesis addressed various aspects of co-

infection at the immunological level, this chapter proposes a novel method for

bridging the currently distinct approaches to an epidemic of immunology versus

epidemiology. Using the integro-differential equation method, we were able to de-

rive a set of equations that related the class of infectious individuals at the pop-

ulation level to the immune effector at the individual level. Knowing that our

phenomenological models from earlier chapters capture many key features of a

true immunology-based model, we have hope that further analysis of this approach

may yield significant contributions to our understanding of disease and its spread

through the population, whether in the specific cases of the Malaria Model (6.2.10)

- (6.2.14), TB Model (6.3.4) - (6.3.8), or other similar model formulation.
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Chapter 7

SUMMARY

The object of this thesis is to model the interaction of the immune system

response with two pathogens (co-infection), namely the P falciparum parasite for

Malaria and the Mycobacterium tuberculosis (Mtb) for TB. One thing that became

clear very early in the thesis is the complexity of the immune system. Every aspect

of the immune system that one tries to include in any mathematical model adds

another layer of complexity to the model. Coupled with the complexity of the

immune response, we cannot pretend to include every aspect of the immune system

and its interaction with the foreign agents in our “simple” mathematical model of

co-infection (2.3.1), which consisted of 8 state variables and 33 parameters. One of

the key approaches to this thesis was to propose and analyze a phenomenological

model that captured much of the qualitative behavior of the original immunology-

based model. The phenomenological Model (2.6.4) and its various subsystems are

among the first mathematical models to mimic the interaction of the pathogen with

the immune effectors.

Through the nonlinear mathematical models of Malaria, TB and their co-infection,

we introduce new mathematical models of the immune response in order to identify

and qualitatively assess the phenomenological time evolution of the distribution of

the interacting populations. These new mathematical models greatly simplify the

complex dynamics of the immune response and include several assumptions about

the known biology. The findings suggest the importance of incorporating the state

of the health of the individual in the mathematical modeling of the immune response

with respect to the location (endemic regions).

One important contribution was in describing the processes occurring during the

activation of the naive immune effector cells (T cells), which gave rise to our two-
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stage models. Through simple biological and immunological assumptions, these

processes were transcribed into mathematical models using differential equations.

Due to the complexity of the model and because of the high nonlinearity of the

system, we could not proceed too far with the analytical analysis and had to resort

to numerical simulation to understand the temporal dynamics of the pathogens and

the target cells.

In the first part of the thesis, we focused on the formulation of our full Malaria–

TB co-infection model and the corresponding phenomenological models (and its

subsystems) of pathogen(s) interacting with the immune system. For the immune

system, for simplicity, we considered one-stage and two-stage activation of the im-

mune effector in which we incorporated the state of the individual health, namely

healthy, moderately compromised and severely compromised immune systems, us-

ing the Michaelis-Menten modal function with specific Hill coefficients. With these

phenomenological models, we proved the well posedness of the system and the ex-

istence of steady states. When we considered the equilibria, we do not have Hopf

bifurcations but only saddle node and transcritical bifurcations, which also can de-

scribe the various immunologist classifications of the immune system state after

infection by pathogen: “naive state,” “immune state,” and the “state of tolerance.”

Bolstered by the success of the single-pathogen phenomenological models, we then

considered the two-pathogen phenomenological that we considered our caricature

of the fully immunology-based Malaria-TB Model (2.3.1). We examined the within

host dynamics of the phenomenological model using mathematical analysis and

numerical simulation. In particular, the co-infection phenomenological models did

not exhibit any Hopf bifurcations. The steady states only underwent saddle node

and transcritical bifurcations. Depending on the state of the individual health, the

invasion of the second pathogen can prove deadly for the individual in an endemic

region. We did not observe this equivalent qualitative behavior in the case of the
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co-infection Malaria–TB model, where it was difficult to do anything other than

“guess” how we might change a set of realistically-based parameters in order to see

such behavior and observe the impact of both diseases on the immune system. Al-

though we obtained qualitative agreement with the Malaria Model (2.1.1) and TB

Model (2.2.1), it would remain to be seen if this agreement would hold if we con-

sidered different stages of Malaria or TB infection such as asymptomatic Malaria

or latent TB.

In the second part of the thesis, we laid out a potential implication of our research

about understanding the level or state of compromised immune system and the im-

pact on the population. We proposed a method by which we can link the immunol-

ogy and the epidemiology using the integro-differential equation with the linear

chain trick based on the observation of Frague [44]. With this approach we pro-

posed a simple immuno-epidemiology model for the specific cases of Malaria and

TB that will be analyzed for future work. This future analysis would need to dis-

cuss the possibility of defining and understanding the overlapping time scales of the

diseases in the population and the pathogen within the individual. The progress in

immuno-epidemiology is controlled by the development of rigorous methods that

are capable of using the large data at hand and systematically analyzing complex

mathematical or statistical models including more realistic descriptions of the im-

mune system or the development of immunity. Here, we face the challenge of time

scales, since developed models require an explicit within-host dynamics, where

epidemiological dynamics (slow or fast) overlap these within-host dynamics.
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APPENDIX A

MAYER MODEL

In 1995, Mayer et al. [77] proposed a very simple model of the typical
immune response, which is capable of describing a variety of possible situations.
The model consists of two ordinary differential equations (ODE) describing the
evolution of a pathogen (target cell) population P (e.g., viruses, bacteria, fungi,
protozoa) in interaction with the relevant host immunocompetent’s agents denoted
E (e.g., leukocyte, macrophages):

dP
dt

= rP− kPE

dE
dt

= f (P)+g(E)−dE (A.0.1)

with
f (P) = p

Pu

mv +Pv , and g(E) = s
En

cn +En ,

where P ≥ 0, E ≥ 0 and p,s,m and c are positive constants, and n, u and v are
positive integer parameters.

In the model, it is assumed that before any stimulation, there is already a certain
population of immunocompetent cells and also that a lot of basic immunology prin-
ciples have been neglected. The rich variety of qualitatively different solutions of
the model is due to the highly nonlinear terms in the equations, f (P) and g(E)
which describe the production rates of E, and to the nonlinear interaction term.
However, since the model consists of only two ODEs it has only regular solutions,
such as fixed points, periodic orbits and asymptotic orbits.

There is one important aspect of the immune response that cannot be ignored and
which is not the focus of our study, but it is worth mentioning: time delays. As we
can see in [33], antigenic stimulation may need a period of time τ to react that may
depend on the pathogen population at the time of infection or invasion t− τ .

Using Mayer’s model and under certain assumptions of retarded immune response,
Burić et al. [17], and Yu et al. [119] studied the effect of time delay of the immune
response. With the same approach but considering slightly different models, Nelson
et al. [84], Canabarro et al. [19], and Wang et al. [112] also investigated immune
response and time delay. Burić et al., in particular, discussed and extended the
Mayer model by replacing certain constant parameters with the parameters that are
periodically dependent on time [18].
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APPENDIX B

VARIABLES AND PARAMETERS

The parameters and variables of all our models are, in theory, all able to be
estimated with experimental data for a specific disease. For our analysis, we have
assumed arbitrary parameters due to the generality of the models with values in a
range that we consider to be biologically realistic.

Table B.1: Variables description and units

Variables Unit Description
P cellsml−1 Population of pathogen
E cellsml−1 Population of immune effector (e.g., leukocyte, macrophages)

Table B.2: Summary of parameters units

Parameters Unit Description
r day−1 Rate of pathogen proliferation
k ml cell−1day−1 Removal rate by immune system
e cellsday−1 Rate of recruitment of immune effector
α day−1 Rate of naive immune effector proliferation
K cells Carrying capacity of naive cells
c ml cell−1day−1 Maturation/activation rate of immune effector
d day−1 Death rate of cells
p ml cell−1day−1 Stimulation rate of immune system by pathogen
a ml cell−1 Half saturation constant for pathogen
s ml cell−1day−1 Proliferation rate of mature immune effector
b ml cell−1 Half saturation constant for mature immune effector
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Table B.3: Parameters for Malaria model within the host from [5; 29; 55].

Parameter Value Description
sR 4.15×104 Rate of prodoction of RBC
dR 8.3×10−3 Death rate of RBC
dI 1.0 Rate of decay of infected RBC
dF 48 Death rate of malaria parasites
dT 0.007 Death rate effector cell
β 2×10−6 Rate of infection of RBC
α 1.2 Rate of maturation of infectious RBC
k1 10−8 Removal rate of infected RBC
p 36 Rate of production of parasites
k2 10−8 Removal rate of merozoides
sT 10 Recruitment rate of immune effector
a1 2.5×10−5 Rate of stimulation by infected RBC
a2 4.69×10−5 Rate of stimulation by parasites
a3 1.43 Stimulation strength of effector cells
c1 5×10−4 Half saturation of infectious RBC
c2 6.67×10−4 Half saturation of parasite
b 103 Half saturation of immune effector
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