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Seasonal Forcing in a Host-Macroparasite System1

Rachel A. Taylor∗, Andrew White†, Jonathan A. Sherratt‡2

Abstract3

Seasonal forcing represents a pervasive source of environmental variability in natural4

systems. Whilst it is reasonably well understood in interacting populations and host-5

microparasite systems, it has not been studied in detail for host-macroparasite systems.6

In this paper we analyse the effect of seasonal forcing in a general host-macroparasite system7

with explicit inclusion of the parasite larval stage and seasonal forcing applied to the birth8

rate of the host. We emphasise the importance of the period of the limit cycles in the un-9

forced system on the resulting dynamics in the forced system. In particular, when subject to10

seasonal forcing host-macroparasite systems are capable of multi-year cycles, multiple solu-11

tion behaviour, quasi-periodicity and chaos. The host-macroparasite systems show a larger12

potential for multiple solution behaviour and a wider range of periodic solutions compared to13

similar interacting population and microparasite systems. By examining the system for pa-14

rameters that represent red grouse and the macroparasite nematode Trichostrongylus tenuis15

we highlight how seasonality could be an important factor in explaining the wide range of16

seemingly uncorrelated cycle periods observed in grouse abundance in England and Scotland.17

1 Introduction18

Seasonal forcing is a ubiquitous force in nature affecting species through their life-history param-19

eters, with an annual pulse of births in spring and summer seen as perhaps its most pervasive20

manifestation (Turchin, 2003). Seasonal forcing has been shown to be important in generating21

the cycles observed in many ecological and epidemiological systems. For example, by including22

seasonal forcing to represent changes in transmission during the school year, modelling results23

have been shown to be consistent with observations of measles case reports (Altizer et al., 2006;24

Earn et al., 2000; Finkenstadt and Grenfell, 2000). Numerous other examples exist in which25

seasonal forcing has been shown to be a driver of fluctuations: including outbreaks of influenza26

(Dushoff et al., 2004), plankton-fish dynamics (Doveri et al., 1993) and vole population cycles27
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(Smith et al., 2008; Taylor et al., 2013b). Thus, within the field of interacting populations28

and host-microparasite systems, the importance of seasonal forcing is both well-established and29

well-studied (Altizer et al., 2006; Sherratt and Smith, 2008).30

Seasonal forcing within host-macroparasite systems is less well identified and studied. In part,31

this may be because seasonality is associated with its ability to produce cyclic dynamics and these32

are less frequently reported in macroparasite compared to microparasite systems (Gulland, 1995;33

White et al., 1996). However, there are significant examples where macroparasites are thought34

to be influential in driving population cycles. Red grouse fluctuate irregularly across England35

and Scotland (Cattadori et al., 2005b; Haydon et al., 2002) and the role of nematode parasites,36

alongside territorial dynamics, in driving these cycles has been strongly argued (Dobson and37

Hudson, 1992; Hudson et al., 1998; Redpath et al., 2006). Soay sheep have population crashes38

every 3 to 4 years, which have been attributed to nematode parasites in combination with harsh39

winters and malnutrition (Coulson et al., 2001; Gulland and Fox, 1992; Gulland, 1992). There40

is considerable evidence to indicate that seasonal forcing alters many aspects of both these41

systems, such as the host birth rate, the maturation of parasite larvae in the environment, and42

arrested development of larvae within the host (Anderson, 2000), which could impact on the43

dynamics. However, no detailed analysis has been attempted to elucidate the effect of seasonal44

forcing alongside parasitism for these systems.45

Theoretical studies of seasonal forcing in general host-macroparasite systems have been of46

two types. Roberts and Grenfell (1991, 1992) explored system specific model frameworks to47

understand the effect of a periodic pulse on the level of acquired host immunity and how envi-48

ronmental forcing on maturation of the nematode larvae affects the epidemiological dynamics49

of farmed ruminants. This work has been extended to consider wildlife systems, focussing on50

how host immunity and the relationship between host age and parasite intensity changes over51

one season within the host (Cattadori et al., 2005a; Cornell et al., 2008). These studies found52

that the host immune response was affected by both seasonal changes in larvae transmission53

and the month of host birth; therefore different host age – parasite intensity curves exist for54

different birth cohorts. General host-macroparasite models have examined the role of seasonality55

on population dynamics by representing annual reproduction as a step-function (White et al.,56

1996) and a pulse of births (White and Grenfell, 1997). When free-living stages are considered57

explicitly, seasonality can increase the period and amplitude of population cycles and there is58

evidence of multiple population attractors (White et al., 1996), although there has not been59

a detailed investigation of these findings. Therefore a detailed examination of the role of sea-60

sonality on host-macroparasite dynamics is lacking and could utilize the recent developments in61
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computational bifurcation theory and resonance-based analysis that have been applied to under-62

stand population cycles in microparasite and interacting systems (Bolzoni et al., 2008; Choisy63

et al., 2006; Greenman et al., 2004; Taylor et al., 2013a).64

Experimental and theoretical studies highlight the need to explore seasonal effects in host-65

macroparasite systems. In this paper we propose to undertake a comprehensive analysis of the66

role of seasonality on host-macroparasite population dynamics that utilizes the new develop-67

ments in the study of forced coupled systems (Taylor et al., 2013a). We will undertake this68

analysis in a system that explicitly represents free-living stages of the parasite, since White69

et al. (1996) indicated that seasonality could have a marked effect in such systems. This allows70

us to understand the wide range of outcomes occurring from seasonal forcing in general host-71

macroparasite systems. In particular, we will show the importance of the unforced dynamics on72

the seasonally forced system and the possibility of multiple solution behaviour, multi-year cycles73

and period-doubling to chaos. Furthermore, such model formulations without seasonal forcing74

have been parameterised to represent the red grouse - Trichostrongylus tenuis system (Dobson75

and Hudson, 1992) and therefore our results will provide important insight into the influence of76

seasonality on the population dynamics in a specific ecological system.77

2 Methods78

Macroparasites (helminths) differ from microparasites (viruses, bacteria, protozoa) in that they79

reproduce by releasing free-living infective stages, which mature in the environment or a sec-80

ondary host before being transmitted to the definitive host. They usually have a relatively long81

life span and are persistent in the host with multiple re-infections being typical (Anderson and82

May, 1992). This added complexity in the life cycle of the macroparasite leads to the necessity of83

modelling the parasite burden within each host explicitly. A pattern seen across a wide range of84

different host and parasite species is that a minority of hosts within the population harbour the85

majority of parasites (Anderson and May, 1978; Wilson et al., 2002); regularly more than 80% of86

parasites are contained within 20% of the hosts (Anderson and May, 1992). Macroparasites can87

cause a reduction in breeding capabilities of the host, by modifying host behaviour or lowering88

the average brood size. Reduced survival is also possible indirectly, by making the host more89

susceptible to predation, and when hosts contain large numbers of parasites, this can become a90

direct cause of death (Anderson and May, 1978, 1992; Gulland, 1995; Hudson et al., 1992).91

Numerous models have been used to represent host-macroparasite systems, with different92

frameworks for including aggregation, the effect of immunity, arrested development and larval93

dynamics (Anderson and May, 1978; Diekmann and Kretzschmar, 1991; May and Anderson,94
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1978; Rosà and Pugliese, 2002; White et al., 1996; White and Grenfell, 1997). In this paper95

we build on previous studies by using a general model formulation which includes exponential96

growth of the host, models the larval stage explicitly, and the aggregation of parasite spread97

throughout hosts is represented by the commonly used negative binomial distribution (Anderson98

and May, 1978; Rosà and Pugliese, 2002; White and Grenfell, 1997). This produces the following99

system of equations:100

dH

dτ
= (a∗ − b)H − (α+ δ∗)P

dP

dτ
= β∗LH − (µ∗ + b+ α)P − αP

2

H

(
k + 1

k

)
dL

dτ
= λP − γ∗L− β∗LH.

(2.1)

A derivation of this model is provided in Appendix A. H(τ) is the number of host species at101

time τ , P (τ) is the total number of adult parasites contained within all of the hosts at time τ and102

L(τ) is the number of free-living larval stage parasites. The host species undergoes exponential103

birth and death, with rates a∗ and b respectively, as well as death, αP , and reduced fecundity,104

δ∗P , caused by the parasite. The term β∗LH denotes the rate of transmission of larvae to hosts105

leading to adult parasites. Parasites are lost due to natural mortality with rate µ∗, natural106

death of the host (rate b) and parasite induced death of the host. However, host death due to107

parasitism requires knowledge of expected number of parasites within each host, and we assume108

a negative binomial distribution for the parasites with aggregation parameter k (which leads to109

the form of (2.1)). Finally, the larvae are produced by adult parasites laying eggs at rate λ and110

die at rate γ∗.111

We non-dimensionalise this model, with the scalings, h = β∗H
b , p = αβ∗P

b2
, l = αβ∗L

λb and112

t = bτ . The new parameters are a = a∗

b , δ = δ∗

α , β = λ
b , µ = µ∗+α

b and γ = γ∗

b . This produces113

the following model:114

dh

dt
= (a− 1)h− (1 + δ)p

dp

dt
= βlh− (µ+ 1)p− p2

h

(
k + 1

k

)
dl

dt
= p− γl − lh.

(2.2)

Our work is not specifically focussed on red grouse; rather we use this example to elucidate115

our results for the effects of introducing a seasonally forced birth rate into host-macroparasite116

systems. Red grouse (Lagopus lagopus scoticus) are a common case study for macroparasites due117

to the relative simplicity of the parasite dynamics, the interesting cyclic dynamics seen across118

England and Scotland and the availability of data from hunting records. The adult nematode119

Trichostrongylus tenuis lives in the caeca of the grouse, passing eggs out of the host through120
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the caecal faeces. The larvae mature in the environment (if conditions are suitable) and then121

migrate to the tips of heather. The grouse ingest these larvae by eating the heather, their122

main food plant (Anderson, 2000; Hudson et al., 1992). Experimental studies have shown that123

the nematode Trichostrongylus tenuis reduces reproduction in red grouse populations through124

lower clutch sizes, egg mortality and chick loss (Hudson et al., 1992), thus Dobson and Hudson125

(1992) emphasised the reduced fecundity term, δ. In Dobson and Hudson (1992) the above126

model (2.1) is parameterised for the red grouse system as shown and also when there is the127

addition of a logistic growth term. For consistency with other studies of host-macroparasite128

systems (White et al., 1996; White and Grenfell, 1997), we use the exponential growth model129

and the parameter values provided by Dobson and Hudson (1992), which after rescaling become:130

a = 1.7, β = 10/1.05, µ = 1.0003/1.05, k = 1 and γ = 10/1.05. These rates are defined per year.131

Dobson and Hudson (1992) let δ = 1.667, which combined with the other parameter values leads132

to diverging cycles driving the hosts and parasites to extinction. This can be counteracted by133

adding host regulation through logistic growth or by varying the value of δ and analysing the134

effect of this on the dynamics, which is shown throughout this study. The influence of seasonal135

forcing in the model with host regulation included would be a natural area for future study.136

We introduce seasonal forcing into the birth rate of the host, using a sinusoidal form, a137

common method for representing seasonal changes (Choisy et al., 2006; Dietz, 1976; Rinaldi138

et al., 1993). The birth rate becomes139

a(t) = a(1 + ε sin(2πt)) (2.3)

where a is the mean value of the forced birth rate (the same value as in the unforced case,140

a = 1.7) and ε is the amplitude of the forcing.141

2.1 Unforced dynamics142

In order to understand the effect of seasonal forcing, we first need to consider the unforced143

dynamics. The system (2.2) undergoes a Hopf bifurcation when δ is varied, with a stable144

equilibrium for δ < 0.78 and stable limit cycles for δ above this value. Explicit inclusion of the145

larval stage is somewhat akin to the addition of a time delay and this is fundamental in causing146

the cycles. In Figure 1 the period and amplitude of these limit cycles are plotted as a function147

of δ.148

As shown in Figure 1, the period of the limit cycles starts at 5.9 years and increases rapidly149

as δ increases. Previous studies (Greenman et al., 2004; Rinaldi et al., 1993; Taylor et al.,150

2013a) have shown how yearly forcing can resonate with the unforced period at integer values151

to produce multi-year cycles of that integer period or multiples thereof. Thus, we do not expect152
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Figure 1: In (a) the period of the limit cycles is plotted as δ is varied. In (b) the amplitudes

of the steady state and the limit cycles are plotted as δ is varied. Stability and instability are

indicated by the solid and dashed lines respectively. All other parameter values are kept constant

with the following values: a = 1.7, β = γ = 10/1.05, µ = 1.0003/1.05 and k = 1.

to be able to find multi-year solutions which have period less than 6 (since that is the smallest153

integer period that can be exhibited in the model for our parameter choice). The amplitude plot154

in Figure 1(b) shows the amplitude of the limit cycles also increasing rapidly as δ increases (and155

explains why divergent cycles leading to extinction occur for δ = 1.667 in Dobson and Hudson156

(1992)).157

2.2 Bifurcation Method158

We will investigate the effects of seasonal forcing in this example by varying both δ and ε159

and show the multi-year dynamics and multiple solution behaviour that occur using a two-160

dimensional bifurcation diagram. We will then move on to a more general framework to un-161

derstand seasonal forcing within host-macroparasite systems in greater detail. We begin with162

a brief overview of the necessary bifurcation theory; for more information please see references163

Kuznetsov (1995); Taylor et al. (2013a). There are three main bifurcation curves namely, period-164

doubling bifurcation curves, fold bifurcation curves and Neimark-Sacker bifurcation curves. The165
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standard procedure for locating bifurcations uses the Poincaré (or stroboscopic) map that trans-166

forms the continuous system into a discrete one by sampling the solution once in each forcing167

period; once per year in our case. Note that the stable/unstable annual cycles become sta-168

ble/unstable fixed points of the Poincaré map. Discrete bifurcation theory reveals that this169

fixed point is unstable if one of the eigenvalues of its linearisation has modulus larger than 1.170

Changes in stability are of three possible types. If the eigenvalue is equal to −1, it is a period-171

doubling (flip) bifurcation; if the eigenvalue is equal to +1 it is a fold (saddle-node, tangent)172

bifurcation; and if there is a pair of complex conjugate eigenvalues with modulus 1, it is a173

Neimark-Sacker (torus) bifurcation.174

At a period-doubling bifurcation curve, which we denote by PDk, a stable cycle of period175

k loses stability and a stable cycle of period 2k arises. On one side of a fold bifurcation curve176

denoted by FDk there is no solution but on the other side there are both stable and unstable177

solution branches of a cycle of period k, which meet at a fold at the bifurcation point. A Neimark-178

Sacker bifurcation is often described as a discrete version of a Hopf bifurcation because for a179

standard supercritical bifurcation, the fixed point on the Poincaré section becomes unstable and180

a stable closed invariant curve arises around the point. Typically, each iteration of the Poincaré181

map brings the solution back to a different point on the closed invariant curve. Therefore,182

in the continuous setting when crossing a Neimark-Sacker bifurcation curve, denoted by NSk,183

a cycle of period k loses stability and a quasi-periodic solution arises. That is, the solution184

may superficially appear periodic but in fact it has no finite period. Thus, there are different185

Neimark-Sacker bifurcation curves and separate regions of quasi-periodicity related to each of186

the different periodic solutions.187

We use auto bifurcation software (Doedel, 1981) to produce the bifurcation diagrams and188

Matlab (ode15s) to produce numerical simulations. The simulations were run for 7000 years189

with initial conditions randomly chosen; arbitrarily we use a uniform distribution between 0190

and 1. We then tested whether they had an exact period of between 1 and 16 years. If the191

simulations did not have an exact period within this range, they were labelled as quasi-periodic.192

Note that we also log-transformed the equations to speed up computational time as the solutions193

spend a large proportion of each cycle very close to zero and it takes a long time for the transient194

dynamics to die out. Log-transforming the equations significantly improves both computational195

time in Matlab and accuracy in auto. However, we reverse this log-transformation before196

presenting results.197
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3 Results198

We consider first the host-macroparasite system with the red grouse parameters. This highlights199

key properties of seasonal forcing in host-macroparasites systems, such as a wide range of multi-200

year cycles of different periods, multiple solution behaviour and the possibility for increases in201

the amplitude of seasonal forcing alone to significantly change the dynamics. We then vary202

the model parameters, which has the effect of changing the unforced dynamics of the system203

and allows us to explore the effect of seasonal forcing on the host-macroparasite dynamics more204

generally.205

3.1 The red grouse dynamics206

In Figure 2, a two-dimensional bifurcation diagram is plotted for parameters representing the207

red grouse system showing the fold bifurcation curves and the Neimark-Sacker bifurcation curve.208

The Neimark-Sacker bifurcation curve (NS1) hits the ε = 0 axis where the unforced system has209

a Hopf bifurcation. Below this curve there are stable yearly cycles - the effect of annual forcing210

on a stable equilibrium. Above the Neimark-Sacker bifurcation quasi-periodicity exists, caused211

by the annual forcing on the stable limit cycles. The Neimark-Sacker curve is almost horizontal,212

indicating that the unforced dynamics are a good predictor, in this case, of the split between213

yearly cycles and quasi-periodic dynamics. There are also regions of periodicity due to the214

resonance between the annual forcing and limit cycles with integer period, leading to the fold215

bifurcation curves. These curves originate from the ε = 0 axis and diverge as ε increases with216

periodic behaviour possible within the fold boundaries. Note, however, that the curves indicate217

the existence of multi-year cycles but not their stability, which we will discuss later. The fold218

curves start at period 6 (FD6) which is the first integer greater than the lowest possible period219

in the unforced system (which is 5.9). The fold regions get larger as the period increases from220

period 6 to period 11 (FD6 is very narrow and FD11 is significantly wider). The fold regions221

decrease in size for regions greater than period 11 (not shown in Figure 2 but see Figure 5). No222

period-doubling of the yearly cycle occurs thus we do not find solutions with periods between223

2-5 years inclusive.224

The fold curves hit the axis at the value of δ at which the unforced limit cycles have the225

corresponding period, and the regions widen as ε increases from 0. The rapid increase of the226

unforced period with δ, as seen in Figure 1, leads to an overlap of the fold curves and indicates227

that there is potential for multiple solution behaviour. Moreover, some of the fold curves extend228

below the Neimark-Sacker bifurcation curve for larger values of ε. Thus, increasing the amplitude229

of seasonal forcing from 0 to 1 can change the system from a stable equilibrium to a yearly cycle230
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Figure 2: A two-dimensional bifurcation diagram in δ and ε. The Neimark-Sacker bifurcation

curve is green, the fold curves are red. The FD6 curve lies almost on top of the NS1 curve. More

fold curves exist with period higher than 11 but these are omitted to avoid over-complication.

There is no period-doubling bifurcation. Only existence and not stability of the multi-year

solutions is shown, outlined by the fold curves. The points labelled (a), (b) and (c) refer to

the corresponding simulations in Figure 3. All other parameters values are kept constant with

the following values: a = 1.7, β = γ = 10/1.05, µ = 1.0003/1.05 and k = 1. (Colour online;

Neimark-Sacker curve is dotted, fold curves are solid in print.)

to multi-year cycles, with no change in any other parameter (Figure 3). The multi-year cycles231

also have a significant increase in amplitude in comparison to the yearly cycle. Therefore, the232

inclusion of seasonal forcing can have a dramatic effect on the dynamics of the host and parasite233

for parameters corresponding to the red grouse system.234

3.2 General Host-Macroparasite Dynamics235

We wish to investigate further the effect of the unforced dynamics on the resulting multi-year236

cycles when forcing is introduced into the system. When the red grouse parameters are used,237

the model does not exhibit any multi-year cycles with period less than 6 (and the 6 year cycles238
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Figure 3: Simulations showing the effect of increasing the amplitude of forcing while all other

parameters are kept constant. (a) ε = 0; a stable equilibrium. (b) ε = 0.4; a stable yearly cycle.

(c) ε = 0.8; a stable 8 year cycle (corresponding to the points labelled in Figure 2). The initial

conditions are the same for all three simulations. δ = 0.76 and all other details are as in Figure

2.

only for a very narrow range of δ-values). In comparison, interacting population and epidemio-239

logical systems frequently exhibit cycles with periods of 3-4 years (Earn et al., 2000; Korpimaki240

and Krebs, 1996). Are these higher period cycles observed purely because of the parameter241

values that are relevant for red grouse dynamics, or are they representative of our general host-242

macroparasite system?243

To answer this question we consider the unforced dynamics in more detail and investigate the244

period at the Hopf bifurcation. As mentioned previously, the forcing only resonates with integer245

periods expressed in the unforced limit cycles. Thus, we investigated whether it is possible246

to reduce the initial period arising at the Hopf bifurcation so that the system will be able to247

resonate with lower period limit cycles. We varied the parameters in pairs, in order to stay248

on the Hopf bifurcation, and calculated the initial period at the Hopf bifurcation. We found249

that the host birth rate parameter a was the key driver of the period in the unforced system250

(regardless of the other parameter that was varied concurrently).251

In Figure 4, we show how changing a affects the period at the Hopf bifurcation, and the252

corresponding changes in δ that are required in order to stay on the Hopf bifurcation. For a < 1253

only the trivial steady state exists (where the host and parasite are absent). As a increases from254

10



0 5 10
0

10

20

30

40

50

a

pe
ri

od
(a)

0 5 10
0.75

0.8

0.85

0.9

0.95

1

1.05
(b)

1

4

3

2

5

a

δ

Figure 4: The Hopf bifurcation in the unforced system in more detail. In (a) the period at the

Hopf bifurcation of the unforced system is plotted as a (and implicitly also δ) is varied. (b)

The bifurcation diagram of the unforced system in a and δ. The thick black line is the Hopf

bifurcation while the thick grey line indicates where the equilibrium is replaced by exponential

growth. Dynamics by region: 1 - trivial equilibrium; 2 - stable equilibrium; 3 - stable limit

cycles; 4 - diverging cycles driving host and parasite to extinction; 5 - exponential growth. All

other details are as in Figure 1.

1 the period of the unforced system decreases with a minimum period of 2.3 years for a = 5.9.255

As a increases further the period increases and there is a rapid increase in period for a > 8 as δ256

approaches 1. For δ > 1, there are diverging cycles that drive the host and parasite to extinction257

(Dobson and Hudson, 1992). For larger a the steady state increases in value because there is no258

host self-regulation in (2.2). The host and parasite populations experience exponential growth259

for parameter values in region 5 in Figure 4 as the parasites are unable to regulate the host260

population. Importantly, this shows that there is potential for lower period cycles in this model261

system. To understand how seasonal forcing interacts with the underlying period of the unforced262

system, we produce bifurcation diagrams in δ and ε for different values of a (Figure 5).263

In Figure 5 the fold regions (red lines) for the different periods are plotted separately for264

each value of a. For lower values of a there are empty plots in the upper region of Figure 5265

since here the cycle period is less than the initial period of the unforced dynamics (Figure 4).266
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Figure 5: Bifurcation diagrams in δ and ε for different values of a. Each fold curve, outlining

the different periodic regions, is plotted on a separate graph. The shaded regions indicate where

each of the multi-year cycles are stable. Fold curves are red, period-doubling curves are blue

and Neimark-Sacker bifurcation curves are green. Only those curves relevant to each particular

multi-year cycle are plotted within each figure. For each value of a there is also a Neimark-Sacker

bifurcation curve (NS1) indicating loss of stability of the yearly cycles but these aren’t included.

The 15 and 16 year fold curves for a = 5 stop before ε = 1 due to continuation problems in

auto (although not shown due to overlap of the period-doubling curves). All other details as

in Figure 2. (Colour online; fold curves are thick black lines, period-doubling curves are thin

black lines and Neimark-Sacker curves are dashed lines.)
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The fold regions are small if the period is close to the initial period. For example, suppose that267

the initial period at the Hopf bifurcation is either 5.2 or 5.9. The lowest possible period for268

multi-year cycles will be 6 years in both cases, but the 6 year fold region will be much smaller269

for the latter case. The fold regions start to decrease in size once the period is much larger than270

the initial period expressed in the unforced system. In general, there is a pattern of the largest271

fold regions occurring across a diagonal from top-right to bottom-left in Figure 5.272

There is a significant difference between existence and stability of multi-year cycles in terms273

of the resulting dynamics of the system, and thus it is important to consider the region of274

stability of the multi-year cycles within each of the fold curves (i.e. the shaded regions in Figure275

5). The presence of Neimark-Sacker bifurcation curves and period-doubling curves inside the276

fold curves leads to loss of stability of the multi-year cycles. For example, if we focus on the277

3 year fold region for a = 5 (i.e. the top right plot in Figure 5), the 3 year cycles are stable278

in the shaded region, but crossing the Neimark-Sacker bifurcation curve for larger δ results in279

quasi-periodicity while crossing the period-doubling curve through increasing ε produces stable280

6 year cycles. The size of the regions of stability follows a similar pattern to the fold regions: it281

decreases as the period increases for each value of a, mostly due to the period-doubling region282

inside the fold curves increasing in size. Notably, many of the fold curves contain only very283

small regions of stability, especially for the higher period cycles.284

To investigate the potential for multiple solutions we superimpose the stable regions of the285

different multi-year solutions in Figure 5 for each value of a (Figure 6). The yearly Neimark-286

Sacker bifurcation curve (NS1) is shown but the fold, period-doubling and Neimark-Sacker287

curves for each of the multi-year cycles are omitted for clarity. There is considerable overlap of288

different stable multi-year regions implying that multiple solutions are possible for a fixed set of289

parameters. Figure 6 highlights the large effect that varying a has on the stability of multi-year290

cycles. This is further emphasised by noting that the stability regions shown in Figure 6(a)291

predominantly correspond to 10-14 year cycles whereas those in (f) have periods of 3-5 years,292

as seen in Figure 5.293

To examine the likelihood of multiple solutions we ran simulations of our model system for294

four different parameter sets (indicated by the crosses in Figure 6) for 200 sets of initial conditions295

selected at random. Figure 7 indicates that multiple solution behaviour was observed. Both of296

the points which lie above the Neimark-Sacker bifurcation curves in Figure 6 (Figure 7(a),(c))297

exhibit quasi-periodic dynamics while the two points below the curves (Figure 7(b),(d)) show298

yearly cycles as well as the multi-year cycles. Figure 7 also shows typical host population299

solutions for the four parameter sets, indicating that a range of annual, multi-year and quasi-300
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Figure 6: Two-dimensional bifurcation diagrams in δ and ε for each value of a showing only the

stability regions (shaded) of the multi-year solutions. The Neimark-Sacker bifurcation curves

(green online; grey dotted lines in print) indicate the change in stability of the yearly cycle,

with yearly cycles stable below the line. The four crosses in (b) and (f) indicate the points that

we used for testing multiple solution behaviour, as shown in Figure 7. All other details are the

same as in Figure 2.

periodic behaviour can be exhibited. A wide range of amplitude is seen across the 12 simulations.301

This varies with cycle period, and with the values of ε, δ and a. For the case a = 5, it would302

be expected that there would mainly be low period cycles due to their larger regions of stability303

but there are some 16 year cycles. These 16 year cycles have peaks every 4 years, which suggests304

that they have arisen due to period-doubling (we examine this below). In comparison, a 16 year305

cycle that has arisen through the 16 year fold curve would usually have only one peak in the 16306

year period.307

In this more general framework of the host-macroparasite model we have shown that changing308

a has an important impact on the periodic solutions possible, with a greater likelihood of lower309

period multi-year cycles for the higher values of a tested. The overlap of stable regions for these310

multi-year cycles has been highlighted, and we have confirmed that multiple solution behaviour311

is possible, involving a wide range of cycle periods and amplitudes. We now move on to some312
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Figure 7: Investigating the potential for multiple solution behaviour. In (a) – (d) histograms

show the results of 200 simulations for 4 different points (indicated on Figure 6). (a) a = 1.7,

ε = 0.2 and δ = 0.83; (b) a = 1.7, ε = 0.9 and δ = 0.76; (c) a = 5, ε = 0.2 and δ = 0.9; and (d)

a = 5, ε = 0.9 and δ = 0.8. Quasi-periodicity is represented by period 0 years. Three simulations

of host populations are plotted for each histogram (in the same column) showing that different

multi-year cycles are possible for that point. The period of the multi-year cycles are as shown.

In (c)(i) the solution was calculated to be quasi-periodic but is actually an 18 year cycle (since

we only test the simulations for periodicity of 16 years or lower). The simulations are not to

scale; specifically (c)(i) ×105, (c)(ii) ×103, (c)(iii) ×104, (d)(ii) ×102, (d)(iii) ×104 and the rest

of the simulations are all ×10. All other details are the same as in Figure 2.

of the more complicated aspects of these bifurcation diagrams for different values of a, such313

as the period-doubling bifurcations in Figure 5 and the overall effect of increasing the forcing314

amplitude ε.315

3.3 Period-Doubling and Chaos316

One aspect of Figure 5 which requires further attention is period-doubling inside the fold loci.317

Nearly all of the fold regions in Figure 5 contain period-doubling curves which indicate not318
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only the loss of stability of the cycles generated at the folds but also the generation of stable319

higher period cycles. Trying to show all this information on one plot, such as Figure 5, is rather320

complicated and thus we highlight one case (the 4 year cycles for a = 4) to show the full range321

of dynamics that can occur due to period-doubling (Figure 8).322
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Figure 8: A bifurcation diagram in δ and ε showing only the 4, 8 and 16 year fold regions

with their subsequent period-doubling bifurcations for the case a = 4. Both type and period of

each curve is represented by the different colours. Stability of the different periodic solutions is

shown by the shaded regions as indicated. The cross at ε = 0.72, δ = 0.86 corresponds to the

simulation in Figure 9. All other details are as in Figure 2.

In Figure 8 there are three fold regions plotted, the largest being the 4 year fold region (FD4)323

in which the 4 year cycles lose stability as ε increases through a period-doubling bifurcation324

(PD4) leading to stable 8 year cycles. These 8 year cycles also undergo period-doubling (PD8)325

leading to stable 16 year cycles. Also shown is the 8 year fold region (FD8), in which the 8326

year cycles lose stability through a period-doubling bifurcation (PD8) leading to stable 16 year327

cycles. And lastly, there is the 16 year fold region (FD16) which also indicates a region of328

stable 16 year cycles. All 3 of these stable 16 year regions lose stability through more period-329

doubling bifurcations (PD16). Moreover, period-halving occurs for large ε in the 4 year fold330
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region, leading to more regions of stable 8 and 16 year cycles (although the additional 16 year331

stable region is very small and not visible at this scale). This highlights that there are several332

routes that can lead to 16 year population cycles. It is interesting to note that the region of333

stability for the 16 year cycles resulting from two successive period-doublings of the 4 year cycles334

is larger than that for the 16 year fold curve, so that these period-doubling bifurcations are of335

key importance in providing information on the stable dynamics of the system. Also, the form336

of the period 16 cycles resulting from period-doubling and from the 16 year fold curve are very337

different, with only one peak every 16 years for the fold curve compared to a peak every 4 years338

for the period-doubled solution. There is also a significant difference in amplitude, which is339

much larger for the fold curve solution (this has been seen through extensive simulation; results340

not shown).341

Figure 8 raises the possibility of chaos in this system through a period-doubling cascade.342

Within the 4 year fold curve there is a region after the 16 year cycles have lost stability before the343

period-halving begins, in which there is the suggestion of period-doubling to chaos. Simulation344

results have shown solutions which appear chaotic (Figure 9), although we have not tested this345

in detail.346
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Figure 9: A simulation of an apparently chaotic solution. The fast Fourier transform method

indicates a period of 70 years. Parameter values are a = 4, δ = 0.86 and ε = 0.72, indicated by

a cross in Figure 8. All other details as in Figure 2.

Figure 8 is useful for exhibiting the complexities of the host-macroparasite model with sea-347

sonal forcing, especially when it is remembered that there are many other multi-year fold curves348

omitted from this figure, all with period-doubling regions which might lead to chaos. One com-349

mon factor of all the multi-year cycles, as seen in Figures 5, 6 and 8 is that they lose stability as350

ε increases. Thus, an increase in seasonal forcing, with no changes in any other parameters, can351
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change the dynamics dramatically from multi-year limit cycles, to multi-year cycles of potentially352

different period due to the multiple solution behaviour and period-doubling, to quasi-periodicity353

and chaos. This again highlights the substantial impact of increasing the strength of the seasonal354

forcing on the dynamics.355

The overlap of stable multi-year regions and the abundance of multiple solution behaviour356

indicate that the system may be sensitive to small perturbations in parameters or to noise. In357

Figure 10, a simulation shows the effect of a perturbation in the host population abundance358

(but no change of any parameters), which leads to a change in cycle period and amplitude. A359

similar perturbation in the corresponding unforced case would always settle back to the stable360

equilibrium as there are no multiple solutions. Overall, the host-macroparasite model when
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Figure 10: A simulation showing the effect of perturbations. A 10 year cycle is perturbed at

7000 years by changing the host population by 10%. It switches to a 9 year cycle. The transition

in shown in (a) and the 10 and 9 year cycles are shown in more detail in (b) and (c) respectively

for the host population. Parameter values are a = 1.7, δ = 0.77, ε = 0.8 and all other details

are as in Figure 2.

361

subject to seasonal forcing is a complicated system with a wide range of possible dynamics362

depending on parameter values, the amplitude of the seasonal forcing and the initial conditions.363

3.4 Results Summary364

We have considered a general host-macroparasite model with reduced fecundity and explicit365

inclusion of a larval stage and explored the effects of introducing seasonal forcing through the366

host birth rate. When seasonal forcing is introduced into this host-macroparasite model it leads367

to stability of multi-year cycles, multiple stable solutions, period-doubling to higher period368
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cycles, quasi-periodicity and apparently chaotic behaviour. We studied this for different values369

of the host birth rate, parameter a in (2.2), as this leads to changes in the initial period of the370

unforced system at the Hopf bifurcation. For all values of a shown the unforced period of the371

limit cycles increases rapidly from the initial period at the Hopf bifurcation, and this results in372

fold curves of different periods on the ε = 0 axis being very close together (as seen in Figure373

5). This leads to an overlap of fold curves of many different periods and to multiple solution374

behaviour being possible, as shown for two values of a in Figure 7. Furthermore, in all cases the375

effect of increasing ε (the strength of the seasonal forcing) is substantial when the parameter376

choice gives rise to both a stable equilibrium and stable limit cycles in the unforced system.377

Whilst there are many similarities in the bifurcation diagrams for the different values of a,378

variation in the initial period of the unforced system has important consequences for the different379

dynamics possible in the forced system, specifically the range of stable periodic solutions. Lower380

period cycles are only possible for the larger values of a tested. Apart from this difference in381

period, the bifurcation diagrams change more generally, as seen in Figure 6, where the Neimark-382

Sacker bifurcation curve for the yearly cycles (NS1) moves up in δ as a increases. In the a = 5383

case, the Neimark-Sacker curve also becomes less horizontal so that it is possible to move from a384

stable equilibrium to quasi-periodicity and chaos by increasing ε and keeping all other parameters385

constant. The fold regions are also much wider for a = 5 indicating that seasonal forcing has an386

effect for a wider range of δ values in this case. From Figures 5 and 6, it is clear that there is a387

considerable difference in the dynamics between low values of a, say a = 1.5 or 1.7 which are in388

the range given for the red grouse system, compared to a = 5, with the inference that seasonal389

forcing has more of an impact for the higher values of a tested.390

The largest fold and stability regions for a = 4 and a = 5 are much larger than those for391

lower values of a (as seen in Figure 5). This raises an interesting question: is this occurring392

because lower period cycles resonate more, creating more stability for the multi-year cycles of393

lower period, in comparison to those of higher period? This could be because the 3 and 4 year394

cycles are closer in period to the forcing (1 year). Or are the regions larger because the initial395

amplitude of the limit cycles in the unforced system is higher, causing more resonance when396

forcing is introduced? Or is it the fact that a is now much larger: since a is the parameter397

being annually forced this could lead to greater resonance and hence larger fold regions? One398

approach to gain some insight into this would be to produce a similar figure to Figure 5 with399

the same range of a values, but with a different parameter being seasonally forced. This is a400

natural area for future study.401
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4 Discussion402

Seasonal forcing has been well studied in both interacting population and microparasite systems403

(Choisy et al., 2006; Greenman et al., 2004; Kuznetsov and Piccardi, 1994; Rinaldi et al., 1993).404

As in this host-macroparasite study, these have all shown that seasonal forcing can lead to multi-405

year cycles, quasi-periodicity, chaos and multiple solution behaviour. Other similarities include406

the increased amplitude in population abundance of the multi-year cycle solutions compared407

to the yearly cycle and the significant impact on the dynamics observed through increasing408

the amplitude of forcing. The similarities are particularly true for systems in which there is a409

Hopf bifurcation present in the unforced dynamics, since this is the determining factor for the410

existence of quasi-periodicity and is influential in the production of the fold curves (although411

these can occur when non-cyclic systems are forced (Kuznetsov and Piccardi, 1994; Taylor et al.,412

2013a)).413

However, seasonal forcing within this host-macroparasite systems shows some important414

differences to ecological and microparasite systems. One of the most noticeable aspects of this415

host-macroparasite system is the existence of a wide range of different period solutions, with416

sizable regions of stability for 3 to 16 year cycles as well as an 18 year cycle found by simulation417

and the numerous period-doubling bifurcations to higher period cycles. This indicates that418

host-macroparasite interactions, including the red grouse system, are able to experience many419

different periodic solutions. In contrast, data for predator-prey systems often show a smaller420

range of cycles such as 3-5 years for Fennoscandian voles (Bjørnstad et al., 1995) or 8-11 years421

for the snowshoe hare and lynx cycles (Murray, 2000). Also, in the measles literature, cycles of422

1-3 years are most common, although there is the possibility of cycles with periods of up to 8423

years (Earn et al., 2000). In the host-macroparasite system the wide range of cyclic dynamics424

occurs due to the rapid increase of the limit cycle period from the Hopf bifurcation in the425

unforced system.1 Thus the bifurcation diagram shows that the fold curves overlap to a much426

greater extent than is typical for interacting population and microparasite systems (Kuznetsov427

and Piccardi, 1994; Rinaldi et al., 1993). Not only does this rapid increase in the unforced428

period lead to the wide range of different period cycles but most importantly, it leads to an429

increased chance of multiple solution behaviour. While multiple solutions do occur in interacting430

population and microparasite systems, it is often for a small number of parameter sets and is431

usually restricted to 2 or 3 different solution possibilities (Earn et al., 2000; Taylor et al., 2013b).432

In contrast, Figure 6 shows that multiple solution behaviour is possible for a wide range of δ433

1Comparison of rapidity of the increase is based upon observing the relative width of the fold curves in

comparison to the distance between the cusp of each fold curve on the axis.
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and ε values for all values of a tested, and in Figure 7 the points tested have at least 5 different434

solutions possible. Furthermore, the wide range of periodic dynamics and the multiple solution435

behaviour combine so that both higher and lower period cycles can be found in the resulting436

dynamics for the same parameter values. For example, in Figure 7(c) both 4 and 18 year cycles437

occur in simulations for the same parameter values but different initial conditions.438

There are other aspects of the bifurcation diagrams shown here for host-macroparasite sys-439

tems which differ from seasonal models of interacting population and microparasite systems.440

The Neimark-Sacker bifurcation curves are, generally, almost horizontal (Figure 6) which is not441

usually the case for interacting population and microparasite systems (Kuznetsov and Piccardi,442

1994; Rinaldi et al., 1993), and indicates that the unforced dynamics are a good predictor of443

the split between yearly cycles and quasi-periodic dynamics. Also, our results indicate several444

regions of (apparently) chaotic behaviour, due to the many period-doubling bifurcation curves445

which can give rise to period-doubling cascades (Aron and Schwartz, 1984). This multitude of446

period-doubling cascades is not readily observed in other seasonal systems (O’Regan et al., 2013;447

Rinaldi et al., 1993). Our study also shows that period-halving can occur, which has not been448

reported in previous studies of seasonally forced models. This highlights the importance of the449

period-doubling bifurcations on the resultant population dynamics.450

Small perturbations in the strength of the seasonal forcing or other parameters can lead to451

significantly different dynamics through a change of period and amplitude, or to quasi-periodic or452

chaotic solutions. This is in contrast to the unforced model, where a small change in parameter453

values would lead to a relatively small change in the period of the limit cycles (unless the454

parameters are very close to the Hopf bifurcation, in which case switches between a stable455

equilibrium and limit cycles could occur). In Figure 10, a simulation showed the effect of a456

perturbation in the host population abundance (but no change of any parameters), which led457

to a change in cycle period and amplitude. This sensitivity to perturbations leads to difficulties458

in determining the factors that are the key drivers of population cycles and in explaining the459

causes of shifts in population behaviour. Furthermore, since multiple solutions can exist for a460

single parameter set it is not possible at the outset to predict the resulting population dynamics.461

The literature on red grouse documents a very wide range of periods of population cycles in462

England and Scotland, with reported periods varying between 4-8 years (Hudson et al., 1998),463

3-13 years (Cattadori et al., 2005b) or 2-15 years (Haydon et al., 2002). The driver of red grouse464

cycles is subject to debate, with infection from the nematode macroparasites and territorial465

behaviour seen as the most likely causative factors (Dobson and Hudson, 1992; Hudson et al.,466

1998; Redpath et al., 2006). It has also been shown that there is no strong latitudinal variation467
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in periodicity but rather a plethora of intermixing periods across the whole of England and468

Scotland (Haydon et al., 2002). Both these aspects are consistent with our results. With469

parameter values corresponding to red grouse populations across England and Scotland, the470

host-macroparasite model showed a wide range of periodic cycles and multiple solution behaviour471

were found (Figures 5, 7). In the model it is possible for two geographically close populations472

of red grouse to have very similar life-history parameters and yet show exceedingly different473

dynamics such as low period and high period cycles with different amplitudes. Furthermore, the474

sensitivity to perturbations may explain the difficulty in determining cyclicity and the presence475

of only weakly cyclic time-series data (Haydon et al., 2002). This suggests that seasonal forcing476

may be an important factor in producing the wide range of cyclic periods observed in red grouse477

population dynamics and can have a significant impact on the dynamics of host-macroparasite478

system in general.479

Appendix A Model Details480

To aid readers unfamiliar with mathematical models of host-macroparasite systems, a full de-481

scription of the derivation of (2.1) is provided here. The number of parasites within each host482

are modelled explicitly producing an infinite set of equations. Let pi(t) be the number of hosts483

which are infected with i parasites at time t (hence p0(t) are hosts which have no parasites at484

time t). This leads to
∑∞

i=0 pi equalling total host population and
∑∞

i=0 ipi the total macropar-485

asite population. We include birth and death of hosts, transmission and death of parasites and486

explicitly model the free-living larval stage of the parasites, L(t), the total number of larvae at487

time t. This produces the following model equations:488

dp0
dt

=a∗
∞∑
i=0

pi − δ∗
∞∑
i=0

ipi − bp0 − β∗Lp0 + µ∗p1

dpi
dt

=− bpi − αipi − µ∗ipi + µ∗(i+ 1)pi+1 − β∗Lpi + β∗Lpi−1 for i = 1 . . .∞

dL

dt
=λ

∞∑
i=0

ipi − γ∗L− β∗L
∞∑
i=0

pi.

(A.1)

The first two equations show how the populations of hosts with no parasites and i parasites489

change with time. a is the birth rate of hosts; any host can give birth but all new hosts are490

free from parasites hence all births arrive into this first class. δ is the reduction in fecundity491

caused by the parasite, which decreases the birth of new hosts in proportion to the number of492

parasites within each host. This term can cause the birth rate to become negative when there493

are large numbers of parasites, which is clearly unrealistic. Nevertheless, the linear relationship494

is suggested by field experiments. Several authors have used nonlinear terms to prevent the495
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possibility of a negative birth rate (Diekmann and Kretzschmar, 1991; Rosà and Pugliese, 2002),496

but they do not find significant differences in results for realistic parameter values. Therefore we497

retain the original formulation of May and Anderson (1978), which is also used in other models498

(Dobson and Hudson, 1992; White et al., 1996). The rate of natural host death is given by b;499

we assume that death of a host leads to death of the parasites within that host. A host becomes500

infected by a macroparasite through contact with larvae L, with transmission rate β. In the501

second equation, this leads to gains into the pi class through a host with i−1 parasites becoming502

infected by another parasite and similarly, losses are caused by a host with i parasites gaining503

a new parasite and moving into the pi+1 class. µ is the natural death rate of parasites within504

hosts, consequently leading to hosts moving from having i parasites to having i − 1 parasites,505

where any of those i parasites can die. This leads to the two terms involving µ in the second506

equation. Death of hosts caused by the parasites occurs at rate αi i.e. it is proportional to the507

number of parasites within the host. Lastly, in the larvae equation all the parasites are able508

to produce larvae at rate λ and the larvae have natural death rate of γ. The larvae come into509

contact with hosts and have successful transmission at rate β. We assume that once a larvae510

enters a host it becomes a mature parasite.511

We now let H =
∑∞

i=0 pi and P =
∑∞

i=0 ipi. Hence the following hold true:512

dH

dt
=
dp0
dt

+
∞∑
i=1

dpi
dt

dP

dt
= 0.

dp0
dt

+
∞∑
i=1

i.
dpi
dt
.

(A.2)

When performing these calculations many terms cancel each other out, which leads to the513

following equations:514

dH

dτ
= (a∗ − b)H − (α+ δ∗)P

dP

dτ
= β∗LH − (µ∗ + b)P − α

∞∑
i=0

i2pi

dL

dτ
= λP − γ∗L− β∗LH.

(A.3)

The last term in the second equation arises because the number of parasites within a host affects515

the likelihood of a host dying due to parasitism. Thus, it is necessary to know how the parasites516

are spread throughout the host population. To do this, we first change variable by letting p̃i = pi
H517

and interpret p̃i as the probability that a host has i parasites. This leads to the following change518

in (A.3):519

α

∞∑
i=0

i2pi = αH

∞∑
i=0

i2p̃i. (A.4)

The negative binomial distribution is commonly assumed for the distribution of p̃i (Anderson520

and May, 1978; Diekmann and Kretzschmar, 1991; Rosà and Pugliese, 2002), as it represents521
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the fact that a minority of hosts harbour the majority of parasites. The negative binomial can522

be described using two parameters, m and k, where m is the mean number of parasites per523

host, i.e. m = P
H and k is the aggregation parameter. The parasites become more evenly spread524

amongst hosts as k increases. Thus, the negative binomial assumption leads to:525

∞∑
i=0

i2p̃i =
P

H
+

(
P

H

)2 k + 1

k
, (A.5)

which produces the form of (2.1) when substituted into (A.3).526
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