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Abstract

We consider a plant–pathogen interaction model and perform a bifurcation
analysis at the threshold where the pathogen–free equilibrium loses its hyper-
bolicity. We show that a stimulatory–inhibitory host response to infection load
may be responsible for the occurrence of multiple steady states via backward
bifurcations. We also find sufficient conditions for the global stability of the
pathogen–present equilibrium in case of null or linear inhibitory host response.
The results are discussed in the framework of the recent literature on the sub-
ject.
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1 Introduction

Invasion, persistence and control are among the most relevant aspects of botanical
epidemiology and, in particular, of plant–pathogens interaction modelling [15, 20,
26, 27, 28, 43]. A possible and fruitful approach to such issues comes from the qual-
itative analysis of suitable dynamical systems describing the evolution of botanical
epidemics [16, 18, 33, 41]. Such systems are often adaptations of compartmental
epidemic models for human/animal diseases [1, 12]. Noteworthy examples are given
in the studies by C.A. Gilligan and co-workers (see e. g. [15, 16, 18, 19, 20, 21]). In
particular, paper [21] focuses on criteria for invasion in plant–parasite systems. In
[21] the authors present a mathematical model based on classical epidemic systems
and adapted to take account of the following two relevant special features of plant–
parasite interaction:
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(i) plant parasites may infect from primary infection (externally introduced inocu-
lum), and secondary infection (contact between susceptible and infected host) [3, 20].
This is modelled by an infection term of the form:

F (S, I,X) = Xfp(S,X) + Ifs(S, I). (1)

Here S, I and X are the state variables of the system and represent the density of
susceptible host (S), infected host (I) and inoculum (X), respectively. The functions
fp and fs represent the primary and secondary infection mechanisms, respectively;
(ii) many plants react to infection load with stimulation or inhibition in the pro-
duction of susceptible tissue in infected plants [19], so that the host reproduction is
described by the function:

r(S, I) = b(S)− α(I), (2)

where b(S) and α(I) represent the host growth in absence of infection and the host
response to infection load, respectively.
Considering (1) and (2), the model is described by the following system of nonlinear
ordinary differential equations:

Ṡ = b(S)−Xfp(S,X)− Ifs(S, I)− α(I)

İ = Xfp(S,X) + Ifs(S, I)−mI − hI
Ẋ = aI − cX,

(3)

where h is the natural death rate, m is the recovery rate, a is the parasite repro-
duction rate and c is the parasite death rate.
In [21] the following three noteworthy cases of host response to infection load are
examined:
Case I : no host response, α(I) = 0, for all I ≥ 0,
Case II : linear inhibitory host response, α(I) = γ0I, where γ0 is a positive constant,
Case III : nonlinear (stimulatory–inhibitory) host response:

α(I) =
(γ1I − γ2)

γ3 + I2
I, (4)

where γi, i = 1, 2, 3, are positive constants. Function (4) models the host production
of susceptible tissue below a threshold infection density γ2/γ1, and the inhibition of
host reproduction above such a threshold [19].

Among the relevant results obtained in [21] there is the following:

(a) Assume a logistic growth in absence of infection, with carrying capacity K,
and assume a mass-action transmission; that is, function (1) may be written:

F (S, I,X) = βpSX + βsSI, (5)
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where βp and βs are two positive constants, representing the transmission
rate of primary and secondary infection, respectively. Introduce the basic
reproduction number:

R0 =
K

m+ h

(
βs +

a

c
βp

)
. (6)

Then, cases I and II above produce a classical threshold behaviour: if R0 < 1,
the parasite is unable to invade and the parasite–free equilibrium is locally
stable. If R0 > 1, the parasite–free equilibrium is unstable and system (3)
admits a pathogen–present equilibrium (also said coexistence equilibrium, i.
e. an equilibrium with all positive components).
On the contrary, case III may produce multiple coexistence equilibria: pro-
vided that m+h < γ2/γ3 (i.e. the infected hosts survive for a sufficiently long
time) and Rc < R0 < 1 then there are two coexistence equilibria; Rc being
the critical level (sub–threshold) below which invasion is not possible.
Case III may be completed as follows: if R0 > 1, the parasite–free equilibrium
is unstable and there exists a unique coexistence equilibrium, so that the par-
asite is always able to invade. Finally, if m+ h > γ2/γ3, then the dynamics is
analogous to cases I and II.

Note that the paper [21] focuses only on the invasion; the stability of the coexis-
tence equilibria was considered not relevant and therefore not performed. However,
such an analysis is crucial to assess the persistence of infection. In a more recent
paper [15], persistence for plant pathogens was analysed for model (3) under mass
action transmission and specific forms of host reproduction (2). More specifically,
the following result has been established (among others):

(b) Assume that the transmission (1) is given by (5) and that in (2) the host
response is absent, α ≡ 0, and the growth term is given by a monomolecular
function, i. e.

b(S) = b(K − S),

where b and K are positive constants representing the birth rate and the car-
rying capacity, respectively. Then, the above–mentioned classical threshold
behaviour occurs, where now a further result is proved: the inequality R0 > 1
ensures also the local asymptotic stability of the (unique) coexistence equilib-
rium (in such cases the threshold behaviour is sometimes called ‘R0-dogma’
[37]).

Note that in (b) the stability analysis is local and obtained by means of lineariza-
tion procedures. Also observe that system (3), completed with an equation for the
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removed host (R) and with a monomolecular birth function, is called M–SIRX model
[15]. The equation for R is given by:

Ṙ = mI − hR, (7)

and can be studied separately from the other three equations of the system.
The aim of this paper is to give a contribution to the analysis of plant–pathogen

models. Precisely, in view of the above results (a) and (b), we consider the M–SIRX
model with mass–action transmission (5) and perform the following investigations:

(a’) A bifurcation analysis for all the three above mentioned cases of host response
to infection load. We make use of the bifurcation criterion introduced in [13]
(summarized in subsection A.1) and based on the use of the center manifold
theory [22].

(b’) A global stability analysis of the M–SIRX model in the case of null or linear
inhibition (cases I e II above). The analysis is performed by means of the
generalization of the Poincaré-Bendixson criterion for systems of n ordinary
differential equations, with n ≥ 3, introduced by M. Li and J. Muldowney
[29, 30, 31] and sometimes called geometric approach to global stability (sum-
marized in subsection A.2).

As for goal (a’), we remark that the qualitative analysis performed in [21], based
on existence of equilibria and local stability of the parasite–free equilibrium, indi-
cates the possibility of two coexistence equilibria for R0 < 1 and hence the potential
occurrence of a backward bifurcation [4, 23]. This occurrence implies that a stable
coexistence equilibria may also exist when R0 is less than unity. From the epidemio-
logical point of view, this phenomenon has important implications because it might
not be sufficient to reduce R0 below 1 to eliminate the disease, and the basic re-
production number must be further reduced (below a critical threshold Rc) in order
to avoid coexistence states and guarantee the eradication of infection. Therefore,
we aim to provide a precise indication of the bifurcation thresholds and derive con-
ditions, expressed in terms of the parameters of the system, ensuring that either
forward (that is, the classical R0-dogma) or backward bifurcation occurs.

As far as goal (b’) is concerned, we first observe that our analysis will enhance the
one performed in [15], where the stability of the equilibria was local. Furthermore,
we also consider the case of linear inhibition. We also stress that the global stability
of the coexistence equilibrium ensures that the infection will persist independently
on the initial size of the epidemics (although we will find only sufficient conditions for
the global stability) and this completely solve the problem of infection persistence
when the system undergoes a forward bifurcation for R0 = 1 (as we prove for cases
I and II) since in such scenario the coexistence equilibrium, when exists, is unique.
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The rest of the paper is organised as follows: the M–SIRX model is introduced
in Section 2 together with the existence and local stability of the pathogen–free
equilibrium. The existence of coexistence equilibria is assessed in Section 3 for three
different cases of host response to infection load. The bifurcation analysis for R0 = 1
is presented in Section 4 and the global stability properties of coexistence states are
provided in Section 5. Conclusions are given in Section 6.

2 M-SIRX model

We consider the following M–SIRX model:

Ṡ = r − βp S X − βs S I − hS − hβ(I)

İ = βp S X + βs S I −mI − hI
Ṙ = mI − hR
Ẋ = aI − cX.

(8)

This model can be obtained from system (3) with (2), (5), (7) and monomolecular
growth rate in absence of infection given by b(S) = r−hS. Variables and parameters
are specified in Section 1.
Introducing the scaled dimensionless variables,

Ŝ =
h

r
S, Î =

h

r
I, R̂ =

h

r
R, X̂ =

h2

ar
X, t̂ = ht,

the dimensionless parameters,

β̂p =
ar

h3
βp, β̂s =

r

h2
βs, µ̂ =

m+ h

h
, ĉ =

c

h

and observing that the equations of S, I, and X are independent of the variable R,
system (8) becomes (omitting the hat):

Ṡ = 1− βp S X − βs S I − S − α(I)

İ = βp S X + βs S I − µI
Ẋ = I − cX,

(9)

where

α(I) =
h

r
β
( r
h
I
)
.
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2.1 Pathogen–free equilibrium

System (9) admits the pathogen–free equilibrium:

E0 = (1, 0, 0).

Let us introduce the basic reproduction number R0, which interestingly can be
written as the sum of two independent components corresponding respectively to
the primary and the secondary infection [15]:

R0 =
βp
µc

+
βs
µ
.

We have the following:

Theorem 2.1 If R0 ≤ 1, then the pathogen–free equilibrium E0 is locally asymp-
totically stable. If R0 > 1, then E0 is unstable.

Proof. The Jacobian matrix of system (9) is given by:

J(S, I,X) =

 −βpX − βsI − 1 −βsS − α′(I) −βpS
βpX + βsI βsS − µ βpS

0 1 −c

 . (10)

The Jacobian evaluated at the pathogen–free equilibrium is:

J(1, 0, 0) =

 −1 −βs − α′(0) −βp
0 βs − µ βp
0 1 −c

 .

One eigenvalue is given by λ1 = −1. The others can be derived from the submatrix:

J1 =

(
βs − µ βp

1 −c

)
.

Note that

trJ1 = βs − µ− c = − βs
R0

(1−R0)− c− βp
cR0

,

and
det J1 = −c(βs − µ)− βp = µc (1−R0) ,

so that R0 < 1 implies det J1 > 0 and trJ1 < 0, that is E0 is locally asymptotically
stable. On the other hand, R0 > 1 implies that E0 is a saddle. 2
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3 Coexistence equilibria

Coexistence equilibria E = (S∗, I∗, X∗) can be obtained from the algebraic system:

1− βp S∗X∗ − βs S∗ I∗ − S∗ − α(I∗) = 0
βp S

∗X∗ + βs S
∗ I∗ − µI∗ = 0

I∗ − cX∗ = 0,
(11)

From the third and the second equation we get

X∗ =
I∗

c
;

βp
c
S∗ + βsS

∗ = µ,

that is,

S∗ =
µ(

βp
c + βs

) =
1

R0
.

From the first equation in (11) we get

1− βp
cR0

I∗ − βs
R0
I∗ − 1

R0
− α(I∗) = 0,

from which (
1− 1

R0

)
− 1

R0

(
βp
c

+ βs

)
I∗ − α(I∗) = 0,

so that I∗ must solve the equation(
1− 1

R0

)
= µI∗ + α(I∗). (12)

We observe that a necessary condition for equation (12) to admit positive solutions
is that R0 > 1. The existence of coexistence states (single or multiple) depends on
the form of the functional α(I).

3.1 Case I: no inhibition, α(I) = 0, for all I > 0

If α ≡ 0 we get the unique coexistence equilibrium: Enoi = (S∗, I∗, X∗), where

S∗ =
1

R0
; I∗ =

R0 − 1

µR0
; X∗ =

R0 − 1

cµR0
;

3.2 Case II: linear inhibition, α(I) = γ0I

If α(I) = γ0I we get the unique coexistence equilibrium: Elin = (S∗, I∗, X∗), where:

S∗ =
1

R0
; I∗ =

R0 − 1

(µ+ γ0)R0
; X∗ =

R0 − 1

c(µ+ γ0)R0
.
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3.3 Case III: nonlinear inhibition

As in [21], we consider the nonlinear representation (4). We prove the following:

Theorem 3.1 If R0 > 1, then system (9) admits an unique coexistence equilibrium.
If R0 ≤ 1, then system (9) may admit two coexistence equilibria provided that µγ3−
γ2 < 0. In all other cases there are no coexistence equilibria.

Proof. From equation (12) we obtain:(
1− 1

R0

)
= η(I∗), (13)

where

η(I∗) = µI∗ +

(
γ1 (I∗)2 − γ2I

∗
)

γ3 + (I∗)2 .

Observe that: η(0) = 0, η(+∞) = +∞ and

η′(I∗) =
γ3 (µγ3 − γ2) + µ (I∗)4 + (2µγ3 + γ2) (I∗)2 + 2γ1γ3I

∗(
γ3 + (I∗)2

)2 .

Now,
(a) if µγ3 − γ2 > 0, then η′(I∗) > 0, for all I∗ > 0. As a consequence, equation (13)
admits an unique solution for R0 > 1 and no solutions for R0 < 1. That is to say,
system (9) admits an unique coexistence equilibrium.
(b) if µγ3 − γ2 < 0, then observe that equation η′(I∗) = 0 can be written:

ξ(I∗) := µ (I∗)4 + (2µγ3 + γ2) (I∗)2 + 2γ1γ3I
∗ = γ3 (γ2 − µγ3)

which admits an unique solution I∗∗ being ξ(0) = 0, ξ(+∞) = +∞, and ξ′(I∗) > 0
for all I∗ > 0. Moreover, η′ > 0 for I∗ > I∗∗, and η′ < 0 for I∗ < I∗∗. Hence I∗∗ is a
minimum for η. This means that η(I∗) is negative for all I∗ ∈ [0, I∗∗]. Consequently,
there exists a range of values for R0 < 1, say R0 ∈ (Rc, 1), such that equation (13)
admits two coexistence equilibria. 2

We remark that Theorem 3.1 indicates the possibility of two coexistence equi-
libria for R0 < 1 and hence the potential occurrence of a backward bifurcation.

4 Bifurcation analysis

In this section we will make use of Theorem A.1, summarized in the appendix, which
has been obtained in [13] and is based on the use of the center manifold theory [22].

8



Theorem A.1 gives a practical tool to detect the occurrence of forward (supercrit-
ical) and backward (subcritical) bifurcations when the pathogen–free equilibrium
loses its hyperbolicity at R0 = 1. More precisely, two coefficients of the normal
form representing the system dynamics on the central manifold must be evaluated
(namely, a and b, given by (27) and (28)). Then, their sign will give indications
on which kind of bifurcation occurs. More precisely, if a < 0 and b > 0, then the
bifurcation is forward, if a > 0 and b > 0 then the bifurcation is backward.

Theorem 4.1 If R0 < 1, then system (9) exhibits a forward bifurcation at R0 = 1
in both the cases of no inhibition and linear inhibition. When the inhibition α has
the nonlinear representation (4), then system (9) exhibits a backward bifurcation at
R0 = 1 provided that µγ3 − γ2 < 0, and a forward bifurcation when the reverse
inequality holds.

Proof. We choose βp as bifurcation parameter. The critical value (corresponding
to R0 = 1) is:

β∗p = (µ− βs) c. (14)

Note that the eigenvalues of the matrix

J(E0, β
∗
p) =


−1 −βs − α′(0) − (µ− βs) c

0 βs − µ (µ− βs) c

0 1 −c

 , (15)

are given by λ1 = −1 and by the solutions of

(βs − µ− λ) (−c− λ) + c(βs − µ) = 0,

that is: λ2 = βs−µ−c (which is negative when R0 = 1, see (14)) and λ3 = 0. Hence,
when R0 = 1, the pathogen–free equilibrium E0 is a nonhyperbolic equilibrium: the
assumption (A1) of Theorem A.1 is then verified.
The right eigenvectors w = (w1, w2, w3)T of (15) are given by: J(E0, β

∗
p)w = 0. We

obtain:
−w1 + [−βs − α′(0)]w2 + (βs − µ)cw3 = 0

(βs − µ)w2 − (βs − µ)cw3 = 0

w2 − cw3 = 0,

so that:
w1 = c

[
−α′(0)− µ

]
w3; w2 = cw3.
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The left eigenvectors v = (v1, v2, v3)T of (15) are given by: J(E0, β
∗
p)Tv = 0. We

obtain:
v1 = 0

[−βs − α′(0)] v1 + (βs − µ) v2 + v3 = 0

(βs − µ) cv1 − (βs − µ) cv2 − cv3 = 0,

so that
v1 = 0; v2 =

v3

µ− βs
.

The coefficients a and b given in (27) and (28) may be now explicitly computed.
Taking into account of system (9) and considering only the nonzero components of
the left eigenvector v, it follows that:

a = 2v2w1w2
∂2f2

∂S∂I
(E0, β

∗
p) + 2v2w1w3

∂2f2

∂S∂X
(E0, β

∗
p),

and

b = v2w3
∂2f2

∂X∂βp
(E0, β

∗
p),

where f2 is the right hand side of second equation of system (9), f2 = βpSX +
βsSI − µI. It can be checked that:

∂2f2

∂S∂I
(E0, β

∗
p) = βs,

∂2f2

∂S∂X
(E0, β

∗
p) = β∗p ,

∂2f2

∂X∂βp
(E0, β

∗
p) = 1.

It follows:
b =

v3w3

µ− βs
,

so that b is positive, and

a = 2v2w1w2βs + 2v2w1w3β
∗
p =

2c [α′(0)− µ] v3w
2
3

µ− βs
(
cβs + β∗p

)
,

that is, taking into account of (14),

a =
2µc2 [−α′(0)− µ] v3w

2
3

µ− βs
.

We can now distinguish between the three cases in Section 3:
Case I and Case II: if α ≡ 0, or α = γ0I, then a is always negative and the
transcritical bifurcation is forward.
Case III: if α is given by (4), then

α′(I) =
2γ1γ3I − γ2γ3 + γ2I

2

(γ3 + I2)2 ,
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and hence
α′(0) = −γ2

γ3
,

so that if µγ3−γ2 < 0, then a is positive and the transcritical bifurcation is backward.
If the reverse inequality holds, then the bifurcation is forward. 2

In conclusion, a backward bifurcation scenario occurs when the condition µγ3−
γ2 > 0 is verified. A bifurcation diagram for system (9) with nonlinear inhibition
(4) was obtained with parameter values from [21], and is shown in Figure 1. We
note from the picture that bistability occurs in the range [Rc, 1], where Rc is the
subthreshold Rc = 0.3776 (corresponding to β∗p = 0.1776). Also two-dimensional
phase plots for system (9) in Case III are shown in Figure 2 to better understand
how the bifurcation results in Theorem 4.1 affect the dynamics of (9).
A general expression for the subthreshold Rc may be obtained by observing that
the equality (13) may be written as a third order equation,

x3 +Ax2 +Bx+ C = 0,

where:

A =
γ1

µ
+

1

µ

(
1

R0
− 1

)
, B =

µγ3 − γ2

µ
, C =

γ3

µ

(
1

R0
− 1

)
.

It is well known from basic algebra that the nature of its roots may be obtained by
the analysis of the discriminant:

∆ =
Q2

4
+
P 3

27
,

where:

P =
−A2 + 3B

3
; Q =

2A3 − 9AB + 27C

27
.

It can be checked that solving ∆ = 0 for R0 will give the desired subthreshold Rc.

5 Global stability

In this section we prove the global stability of the coexistence equilibria in the case
of linear inhibition (Case II). The case of no inhibition (Case I) will follow as an
obvious consequence. First of all, we have the following result:

Proposition 5.1 In case of linear or no inhibition, the set:

Ω =
{

(S, I,X) ∈ R3
+ : 0 ≤ S + I ≤ 1, 0 ≤ X ≤ c−1

}
,

is positively invariant and absorbing and, as a consequence, the orbits of (9) are
bounded, provided that (S(0), I(0), X(0)) ≥ (0, 0, 0).
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Figure 1: Bifurcation diagram for system (9) with nonlinear inhibition (4), obtained by
using the following parameters (from [21]): γ1 = 0.5, γ2 = 0.6, γ3 = 0.6, µ = 2, βs = 0.4,
c = 0.5. The steady states of infected host, I∗, are plotted versus the basic reproduction
number R0, which is the bifurcation parameter. The solid lines (-) denote stability; the
dashed lines (- -) denote instability. Condition µγ3 − γ2 > 0 is verified and backward
bifurcation scenario occurs. In particular, bistability occurs in the range [Rc, 1].

Proof. Set N = S+I, from (9) it follows Ṅ < (1−N). Hence, lim supt→+∞N(t) ≤
1. On the other hand, from the inequality: Ẋ ≤ c

(
c−1 −X

)
, it follows that:

lim supt→+∞X(t) ≤ c−1. 2

When R0 > 1, the pathogen–free equilibrium, which is located on the bound-
ary ∂Ω, is unstable and this implies that system (9) is uniformly persistent [17],
i.e. there exists a constant ε0 > 0 such that any solution (S(t), I(t), X(t)) with
(S(0), I(0), X(0)) in the interior of Ω, satisfies:

min{lim inf
t→∞

S(t), lim inf
t→∞

I(t), lim inf
t→∞

X(t)} > ε0.

The uniform persistence together with the boundedness of Ω is equivalent to the
existence of a compact set in the interior of Ω which is absorbing for (9), see [24].
This condition is required by the Li- Muldowney approach, together with a specific
Bendixson criterion (inequality (30) in the Appendix) which will be the goal of the
next theorem.

Theorem 5.1 If R0 > 1 and

µ > 2βs + γ0 + 1, (16)
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Figure 2: Two-dimensional phase is plotted for system (9) with nonlinear inhibition (4),
obtained by using the following parameters (from [21]): γ1 = 0.5, γ2 = 0.6, γ3 = 0.6,
µ = 2, βs = 0.4, c = 0.5. In (a) R0 < Rc, E0 is the only feasible equilibrium and it is locally
asymptotically stable. In (b) R0 ∈ [Rc, 1], system (9) has three steady state solutions E0, E1

and E2, the condition µγ3− γ2 > 0 is verified and bistability occurs. Finally, in (c) R0 > 1,
there exists only one coexistence equilibrium which is stable and E0 is unstable.

then the equilibrium Elin of system (9) with linear inhibition α(I) = γ0I exists and is
globally asymptotically stable with respect to solutions of (9) initiating in the interior
of Ω.

Proof. From the Jacobian matrix J(S, I,X) corresponding to (9), which is given
in (10), we can deduce the second additive compound matrix J [2](S, I,X):

J [2] =

 −βpX − βsI − 1 + βsS − µ βpS βpS
1 −βpX − βsI − c− 1 −βpS − γ0I
0 βpX + βsI βsS − µ− c

 .

Now we consider the function

P = P (S, I,X) = diag

{
1,
I

X
,
I

X

}
. (17)

It follows:

PfP
−1 = diag

{
0,
İ

I
− Ẋ

X
,
İ

I
− Ẋ

X

}
,

and

PJ [2]P−1 =

 −βpX − βsI − 1 + βsS − µ βp
SX
I βp

SX
I

I
X −βpX − βsI − c− 1 −βpS − γ0I
0 βpX + βsI βsS − µ− c

 .

so that

B = PfP
−1 + PJ [2]P−1 =

[
B11 B12

B21 B22

]
,
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where
B11 = −βpX − βsI − 1 + βsS − µ, B12 =

[
βp

SX
I , βp

SX
I

]
, B21 =

[
I
X , 0

]T
,

and

B22 =

 İ
I −

Ẋ
X − βpX − βsI − c− 1 −βpS − γ0I

βpX + βsI
İ
I −

Ẋ
X + βsS − µ− c

 .
Consider now the norm in R3 as

|(u, v, w)| = max {|u|, |v|+ |w|} , (18)

where (u, v, w) denotes the vector in R3 and denote by L the Lozinskĭı measure with
respect to this norm. It follows, [34]:

L(B) ≤ sup {g1, g2} ≡ sup {L1(B11) + |B12|, L1(B22) + |B21|} , (19)

where |B21|, |B12| are matrix norms with respect to the L1 vector norm and L1

denotes the Lozinskĭı measure with respect to the L1 norm3

L1(B11) = −βpX − βsI − 1 + βsS − µ, (20)

|B12| = βp
SX

I
, |B21| =

I

X
, (21)

L1(B22) =
İ

I
− Ẋ

X
− c+ max {−1, 2βsS − µ+ γ0I} . (22)

Taking into account (19) and (20)-(22), the general expressions of g1 and g2 for
system(9) are thus

g1 = −βpX − βsI − 1 + βsS − µ+ βp
SX

I
, (23)

and

g2 =
İ

I
− Ẋ

X
− c+

I

X
+ max {−1, 2βsS − µ+ γ0I} . (24)

Observe that system (9) provides the following equalities:

İ

I
= βp

SX

I
+ βsS − µ,

Ẋ

X
=

I

X
− c.

3i.e., for the generic matrix A = (aij), |A| = max1≤k≤n

∑n
j=1 |ajk| and L(A) = max1≤k≤n(akk+∑n

j=1(j 6=k) |ajk|).
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Therefore, from (23) one gets

g1 =
İ

I
− βpX − βsI − 1 ≤ −1,

and, from (24)

g2 =
İ

I
+ max {−1, 2βsS − µ+ γ0} .

Taking into account that S, I ≤ 1, it follows:

g2 ≤
İ

I
+ max {−1, 2βs − µ+ γ0} .

Now because of assumption (16) we obtain

g2 ≤
İ

I
− 1.

Hence, from (19)

L(B) ≤ sup {g1, g2} =
İ

I
− 1,

and
1

t

∫ t

0
L(B)ds ≤ 1

t
log

I(t)

I(0)
− 1,

which implies

lim sup
t→∞

sup
x0∈Γ

1

t

∫ t

0
L(B(x(s, x0)))ds < 0,

so that the Bendixson criterion given in [31] is verified. 2

6 Conclusions

We considered the plant–pathogen interaction model (9) which includes a monomolec-
ular birth rate of susceptibles in absence of infection and a mass–action transmission.
We studied two noteworthy analytical aspects. The first is the bifurcation at the
threshold R0 = 1, where the pathogen–free equilibrium loses its hyperbolicity. At
this purpose we used a bifurcation criterion based on the use of the center manifold
theory [13]. The second analysis concerned with the global stability of the coex-
istence equilibria and has been performed with the geometric approach to global
stability [31].

Both the used methods are nowadays extensively applied in the analysis of epi-
demic models for human/animal disease (see for example [2, 7, 8, 9, 10, 36, 38, 40]
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Figure 3: Two-dimensional phase is plotted for system (9) with linear inhibition (Case II),
obtained by using the following parameters (from [21]): γ0 = 0.5, µ = 2, βs = 0.4, c = 0.1,
βp = 0.8. Here R0 > 1 and system (9) has two steady state solutions E0 and E1. Condition
(16) is not verified but the stability of the coexistence equilibrium E1 is preserved.

and [5, 6, 11, 14, 25, 32, 39, 42, 44] respectively). However this is the first time, as
far as we know, that they are applied in botanical epidemiology.

We found the following main results:

(i) The dynamics of the M–SIRX model without host response to infection load
(α ≡ 0) follows the classical R0-dogma: if R0 < 1, then the parasite is unable
to invade and the parasite–free equilibrium is stable. If R0 > 1, the parasite–
free equilibrium is unstable and there is a stable coexistence equilibrium. In
terms of bifurcation analysis, a forward bifurcation occurs at R0 = 1.

(ii) A linear host response (with rate γ0) does not alter the qualitative behaviour
of the system (Theorem 4.1). However the infection level of the coexistence
equilibria depends on γ0 (it decreases as γ0 increases).

(iii) A nonlinear host response to infection load may be responsible for the oc-
currence of multiple steady states via backward bifurcations. In particular,
we have shown (Theorem 4.1) that a backward bifurcation may occur when
the host response is represented by the stimulatory–inhibitory function (4).
This happens if the infected host survive for a sufficiently-long time, that is
µ < γ2/γ3. A forward bifurcation occurs if the reversed inequality holds.
These results enhance the one obtained in [21], where the occurrence of mul-
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tiple coexistence equilibria have been detected solely by analysis of existence.
As matter of fact, the bifurcation analysis gives also indications on the sta-
bility of the coexistence states. We stress that the occurrence of a backward
bifurcation is an aspect of relevant interest in the perspective of the disease
control. Indeed, in such a case condition R0 < 1 is no longer sufficient for
disease eradication and the system could stabilize at an endemic level of infec-
tion in the range [Rc, 1], where Rc is a critical threshold corresponding to the
saddle–node bifurcation which causes the appearing of the two (respectively
stable and unstable) coexistence equilibria.

(iv) In case of forward bifurcation, we enhanced the local result obtained in [15]
by providing sufficient conditions for the global stability of the coexistence
equilibrium (Theorem 5.1). Under such conditions the infection will persist
independently of the initial size of the infection. We recall that forward bi-
furcation does not allow for multiple coexistence states, so that the global
stability of the unique coexistence equilibrium completely solve the problem
of infection persistence. Note that the inequalities (16) and R0 > 1 may be
combined to give

2βs + γ0 + 1 < µ < βs +
βp
c
, (25)

which in turn implies

βs + γ0 + 1 <
βp
c
.

According to this last inequality, the primary infection plays a key role in
ensuring that the infection will persist. Indeed it is required a large value of
transmission rate of primary infection, βp, and/or small parasite death rate,
c. In such cases, global stability is guaranteed if the infected host mortality
µ is in the range given by (25). We finally underline that the bounds on
µ may appear to be quite restrictive. As a matter of fact it is possible to
find parameter values that do not satisfy condition (25) but still ensure the
stability of the coexistence equilibrium, as shown in Figure 3. However, the
geometric approach to stability is based on two crucial choices: the entries
of the matrix P and the vector norm; in our case (17) and (18). Therefore
the sufficient conditions we found here might be improved in principle by
choosing in a different way the matrix and the vector norm. This could lead
to better conditions in the sense that the restrictions on the parameters may
be weakened.
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A Appendix

A.1 Bifurcation theorem

Let us consider a general system of ODEs with a parameter φ:

ẋ = f(x, φ); f : Rn ×R→ Rn, f ∈ C2(Rn ×R). (26)

Without loss of generality, we assume that x = 0 is an equilibrium for (26).

Theorem A.1 [13] Assume:
(A1) A = Dxf(0, 0) is the linearization matrix of system (26) around the equilib-
rium x = 0 with φ evaluated at 0. Zero is a simple eigenvalue of A and all other
eigenvalues of A have negative real parts;
(A2) Matrix A has a (nonnegative) right eigenvector w and a left eigenvector v
corresponding to the zero eigenvalue.
Let fk denotes the k-th component of f and,

a =
n∑

k,i,j=1

vkwiwj
∂2fk
∂xi∂xj

(0, 0), (27)

b =
n∑

k,i=1

vkwi
∂2fk
∂xi∂φ

(0, 0). (28)

Then the local dynamics of system (26) around x = 0 are totally determined by a
and b.
i) a > 0, b > 0. When φ < 0, with |φ| << 1, x = 0 is locally asymptotically stable
and there exists a positive unstable equilibrium; when 0 < φ << 1, x = 0 is unstable
and there exists a negative and locally asymptotically stable equilibrium;
ii) a < 0, b < 0. When φ < 0, with |φ| << 1, x = 0 is unstable and there exists a
positive stable equilibrium; when 0 < φ << 1, x = 0 is locally asymptotically stable
and there exists a negative unstable equilibrium;
iii) a > 0, b < 0. When φ < 0, with |φ| << 1, x = 0 is unstable and there exists a
locally asymptotically stable negative equilibrium; when 0 < φ << 1, x = 0 is stable
and a positive unstable equilibrium appears;
iv) a < 0, b > 0. When φ changes from negative to positive, x = 0 changes its
stability from stable to unstable. Correspondently, a negative unstable equilibrium
becomes positive and locally asymptotically stable.
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Remark A.1 Taking into account of Remark 1 in [13], we observe that if the equi-
librium of interest in Theorem A.1 is a non negative equilibrium x0, then the re-
quirement that w is non negative is not necessary. When some components in w are
negative, one can still apply the theorem provided that w(j) > 0 whenever x0(j) = 0;
instead, if x0(j) > 0, then w(j) need not to be positive. Here w(j) and x0(j) denote
the j-th component of w and x0 respectively.

A.2 Geometric approach to global stability

Here we will shortly describe the general method developed in Li and Muldowney,
[31]. Consider the autonomous dynamical system:

ẋ = f(x), (29)

where f : D → Rn, D ⊂ Rn open set and simply connected and f ∈ C1(D). Let
x∗ be an equilibrium of (29), i.e. f(x∗) = 0. We recall that x∗ is said to be globally
stable in D if it is locally stable and all trajectories in D converge to x∗.
Assume that the following hypotheses hold:
(H1) there exists a compact absorbing set K ⊂ D;
(H2) the equation (29) has a unique equilibrium x∗ in D.
The basic idea of this method is that if the equilibrium x∗ is (locally) stable, then
the global stability is assured provided that (H1)-(H2) hold and no non-constant
periodic solution of (29) exists. Therefore, sufficient conditions on f capable to
preclude the existence of such solutions have to be detected.
Li and Muldowney showed that if (H1)-(H2) hold and (29) satisfies a Bendixson
criterion that is robust under C1 local ε-perturbations4 of f at all non-equilibrium
non-wandering5 points for (29), then x∗ is globally stable in D provided it is stable.
Then, a new Bendixson criterion robust under C1 local ε-perturbation and based
on the use of the Lozinskĭı measure is introduced.

Let P (x) be a (
n
2

)× (
n
2

) matrix-valued function that is C1 on D and consider

B = PfP
−1 + PJ [2]P−1,

where the matrix Pf is

(pij(x))f = (∂pij(x)/∂x)T · f(x) = ∇pij · f(x),

4A function g ∈ C1(D → Rn) is called a C1 local ε-perturbation of f at x0 ∈ D if there exists
an open neighbourhood U of x0 in D such that the support supp(f−g)⊂ U and f−gC1 < ε, where
f − gC1 = sup {f(x)− g(x) + fx(x)− gx(x) : x ∈ D}.

5A point x0 ∈ D is said to be non-wandering for (29) if for any neighbourhood U of x0 in D
and there exists arbitrarily large t such that U ∩ x(t, U) 6= ∅. For example, any equilibrium, alpha
limit point, or omega limit point is nonwandering.
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and the matrix J [2] is the second additive compound matrix of the Jacobian matrix
J , i.e. J(x) = Df(x). Generally speaking, for a n × n matrix J = (Jij), J

[2] is

a (
n
2

) × (
n
2

) matrix (for a survey on compound matrices and their relations to

differential equations see [35]) and in the special case n = 3, one has

J [2] =

 J11 + J22 J23 −J13

J32 J11 + J33 J12

−J31 J21 J22 + J33

 .
Consider the Lozinskĭı measure L of B with respect to a vector norm · in RN , N =

(
n
2

) (see [34])

L(B) = lim
h→0+

I + hB − 1

h
.

It is proved in [31] that if (H1) and (H2) hold, condition

lim sup
t→∞

sup
x0∈Γ

1

t

∫ t

0
L(B(x(s, x0)))ds < 0, (30)

guarantees that there are no orbits giving rise to a simple closed rectifiable curve
in D which is invariant for (29), i.e. periodic orbits, homoclinic orbits, heteroclinic
cycles. In particular, condition (30) is proved to be a robust Bendixson criterion for
(29). Besides, it is remarked that under the assumptions (H1)-(H2), condition (30)
also implies the local stability of x∗.
As a consequence, the following theorem holds:

Theorem A.2 [31] Assume that conditions (H1)-(H2) hold. Then x∗ is globally
asymptotically stable in D provided that a function P(x) and a Lozinskĭı measure L
exist such that condition (30) is satisfied.
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