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A B S T R A C T

In this paper we consider a three level food web subject to a disease affecting the bottom prey. The

resulting dynamics is much richer with respect to the purely demographic model, in that it contains

more transcritical bifurcations, gluing together the various equilibria, as well as persistent limit cycles,

which are shown to be absent in the classical case. Finally, bistability is discovered among some

equilibria, leading to situations in which the computation of their basins of attraction is relevant for the

system outcome in terms of its biological implications.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

Food webs play a very important role in ecology. Their study
dates back to many years ago, see Fryxell and Lundberg (1997),
Gard and Hallam (1979), Holmes and Bethel (1972) and May
(1974). The interest has not faded in time, since also recent
contributions can be ascribed to this field in mathematical biology
(Dobson et al., 1999) invoking the use of network theory for
managing natural resources, to keep on harvesting economic
resources in a viable way, without harming the ecosystems
properties. This is suggested in particular in the exploitation of
aquatic environments.

Mathematical epidemiological investigations turned from the
classical models (Hethcote, 2000) into studies encompassing
population demographic aspects about a quarter of a century ago
(Busenberg and van den Driessche, 1990; Gao and Hethcote, 1992;
Mena-Lorca and Hethcote, 1992). This step allowed then, on the
other hand, the considerations of models of diseases spreading
among interacting populations (Hadeler and Freedman, 1989). On
the basic demographic structure of the Lotka–Volterra model several
cases are examined in Venturino (1994), in which the disease affects
either the prey or the predators. In a different context, namely the
aquatic environment, diseases caused by viruses have been
E-mail address: ezio.venturino@unito.it.
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considered in Beltrami and Carroll (1994). More refined demo-
graphic predator–prey models encompassing diseases affecting the
prey have been proposed and investigated in Venturino (1995),
Chattopadhyay and Arino (1999) and Arino et al. (2004), while the
case of infected predators has also been considered (Venturino,
2002; Haque and Venturino, 2007). In addition, other population
associations such as competing and symbiotic environments could
host epidemics as well (Venturino, 2001, 2007; Haque and
Venturino, 2009; Siekmann et al., 2010). It is worthy to mention
that one very recent interesting paper reformulates intraguild
predator–prey models into an equivalent food web, when the prey
are seen to be similar from the predator’s point of view (Sieber and
Hilker, 2011). For a more complete introduction to this research
field, see Chapter 7 of Malchow et al. (2008).

In Dobson et al. (2008), the role of parasites in ecological webs is
recognized, and their critical role in shaping communities of
populations is emphasized. When parasites are accounted for, the
standard pyramidal structure of a web gets almost reversed,
emphasizing the impact parasitic agents have on their hosts and in
holding tightly together the web. The role of diseases, in general,
cannot be neglected, because, quoting directly from Dobson et al.
(1999), ‘‘Given that parasitism is the most ubiquitous consumer
strategy, most food webs are probably grossly inadequate
representations of natural communities’’. A wealth of further
examples in this situation is discussed in the very recent paper
Selakovic et al. (2014).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2014.03.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ecocom.2014.03.003&domain=pdf
http://dx.doi.org/10.1016/j.ecocom.2014.03.003
mailto:ezio.venturino@unito.it
http://www.sciencedirect.com/science/journal/1476945X
www.elsevier.com/locate/ecocom
http://dx.doi.org/10.1016/j.ecocom.2014.03.003
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Based on these considerations, then, in this paper we want to
consider epidemics in a larger ecosystem, namely a food system
composed of three trophic levels. We assume that the disease
affects only the prey at the lowest level in the chain.

The paper is organized as follows. In the next Section we
present the model, and its disease-free counterpart. Section 3
contains the analytical results on the system’s equilibria. A final
discussion concludes the paper.

2. The model

We investigate a three level food web, with a top predator
indicated by W, the intermediate population V and the bottom prey
N that is affected by an epidemic. It is subdivided into the two
subpopulations of susceptibles S and infected I. The disease,
spreading by contact at rate b, is confined to the bottom prey
population. We assume that neither one of the other populations
can become infected by interaction with the infected prey. The
disease can be overcome, so that infected return to class S at rate g.
The top predators W rely only on the intermediate population V for
feeding. They experience a natural mortality rate m, while they
convert captured prey into newborns at rate p < h, where the latter
denotes instead their hunting rate on the lower trophic level V. The
gain obtained by the intermediate population from hunting of
susceptibles is denoted by e, which must clearly be smaller than
the damage inflicted to the susceptibles c, i.e. e < c, the
corresponding loss rate of infected individuals in the lowest
trophic level due to capture by the intermediate population is n,
while q < n denotes the return obtained by V from capturing
infected prey. The natural mortality rate for the second trophic
level is l. The natural plus disease-related mortality for the bottom
prey is n. In this lowest trophic level, only the healthy prey
reproduce, at net rate a and the prey environment carrying
capacity is K. The remaining terms in the last equation indicate
hunting losses and disease dynamics as mentioned above. The
model is then given by the following set of equations

dW

dt
¼ �mW þ pVW

dV

dt
¼ �lV þ eSV � hVW þ qIV

dI

dt
¼ bIS� nIV � gI � nI

dS

dt
¼ aS 1� Sþ I

K

� �
� cVS� bSI þ gI

(1)

The Jacobian of (1) is

J ¼

�mþ pV pW 0 0
�hV �lþ eS� hW þ qI qV eV

0 �nI bS� nV � g � n bI

0 �cS �aS
1

K
�bSþ g J44

26664
37775 (2)

with

J44 ¼ a� a

K
ð2Sþ IÞ � cV � bI:

2.1. The model without disease

For later comparison purposes, we now discuss briefly the food
chain with no epidemics. It is obtained by merging the last two
equations of (1) and replacing the two subpopulations of
susceptibles and infected by the total prey population N = S + I.
We need also to drop the term containing I in the second equation
and replace S by N in it. The last equation then becomes

dN

dt
¼ aN 1� N

K

� �
� cVN
Correspondingly, the Jacobian J changes into a 3 � 3 matrix bJ, by
dropping the third row and column, dropping the terms in I in J22

and J44 and again replacing with N the population S.
In the W–V–N phase space, this disease-free model has four

equilibria, the origin, which is unconditionally unstable, the
bottom prey-only equilibrium Q1 = (0, 0, K), the top-predator-free
equilibrium Q̃ ¼ ð0; Ṽ; ÑÞ,

Ṽ ¼ a

c
1� l

eK

� �
; Ñ ¼ l

e

and the coexistence equilibrium Q* = (W*, V*, N*), with

W� ¼ 1

h
eK 1� cm

ap

� �
� l

� �
; V� ¼ m

p
; N� ¼ K 1� cm

ap

� �
:

Now, Q1 is stable if

1<
l

eK
; (3)

and furthermore the eigenvalues of the Jacobian are all real, so that
no Hopf bifurcation can arise at this point. Instead Q̃ is feasible if
the converse condition holds,

1� l

eK
; (4)

indicating a transcritical bifurcation between Q1 and Q̃. Stability for
Q̃ holds when its first eigenvalue is negative, i.e. for

m

p
>

a

c
1� l

eK

� �
: (5)

Again here no Hopf bifurcations can arise, since the trace of the
remaining 2 � 2 submatrix is always strictly positive. Feasibility
for Q* is given instead by the opposite of the above condition

m

p
� a

c
1� l

eK

� �
; (6)

indicating once more a transcritical bifurcation for which Q*

emanates from Q̃. Since two of the Routh–Hurwitz conditions hold
easily,

�trðbJðQ�ÞÞ ¼ a

K
N�>0; �detðbJðQ�ÞÞ ¼ a

K
lpW�V�N� >0 (7)

stability of Q* depends on the third one,

a

K
N�ðplW� þ ecN�ÞV�> a

K
N�lpV�W�; (8)

which becomes plW* + ecN* > lpW*. The latter clearly holds
unconditionally. Therefore Q* is always locally asymptotically
stable, and in view that no other equilibrium exists when Q* is
feasible, nor Hopf bifurcations from (8) are seen to arise, it is also
globally asymptotically stable. The same result holds for the
remaining two equilibria Q1 and Q̃ whenever they are locally
asymptotically stable. In fact, the three points Q1, Q̃ and Q* are in
pairs mutually exclusive, i.e. the equilibria Q1, Q̃ cannot be both
simultaneously feasible and stable and similarly for Q̃, Q*, in view of
the transcritical bifurcations that exist among them.

The global stability result for these equilibria can also be
established analytically with the use of a classical method. In each
case a Lyapunov function can be explicitly constructed based on
the considerations of e.g. Hofbauer and Sigmund (1988, p. 63). We
have the following results.

Proposition 1. Whenever equilibrium Q1 is locally asymptotically

stable, it is also globally asymptotically stable, using

L1 ¼
ch

ep
W þ c

e
V þ N � Kln

N

K

� �
:
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Proof. In fact, upon differentiating along the trajectories and
simplifying, we find

L01 ¼ �m
ch

ep
W þ c K � l

e

� �
V � a

K
ðN � KÞ2;

which is negative exactly when (3) holds.

A. De Rossi et al. / Ecological
Proposition 2. Whenever equilibrium Q̃ is locally asymptotically

stable, it is also globally asymptotically stable, using

L̃ ¼ ch

ep
W þ c

e
V � Ṽln

V

Ṽ

� �
þ N � Ñ

ln

N
Ñ

� �
:

Proof. Here differentiation along the trajectories leads to

L̃
0 ¼ ch

e
Ṽ�m

p

� �
W � a

K
N � l

e

� �2

;

again negative exactly when (5) holds.
Proposition 3. Whenever equilibrium Q* is locally asymptotically

stable, it is also globally asymptotically stable, using

L� ¼ ch

ep
W �W�ln

W

W�

� �
þ c

e
ðV � V�ln

V

V�
Þ þ ðN � N�ln

N

N�
Þ:

Proof. In this case the calculation of the derivative, taking into
account the fact that the population values at equilibrium satisfy
the nontrivial algebraic equilibrium equations stemming from the
right hand side of the differential system, leads easily to
ðL�Þ0 ¼ �aK�1ðN � N�Þ2 <0.
2.2. Two particular cases

For completeness sake, here we also briefly discuss the SIS
model with logistic growth and the subsystem made of the two
lowest trophic levels.

2.2.1. SIS model with logistic growth

Focusing on the last two equations of (1), in which V is not
present, we obtain an epidemic system with demographics, of
the type investigated for instance in Gao and Hethcote (1992),
Mena-Lorca and Hethcote (1992), see also Hethcote (2000). It
admits only two equilibria, in addition to the origin, which is
unconditionally unstable, namely the points P1 = (0, K) and
P* = (I*, S*), with

S� ¼ g þm
b

; I� ¼ aS�
K � S�

ðaþ bKÞS� � gK
¼ aS�

bK � g � n
aðg þ nÞ þ bKn

:

The latter is feasible for

bK >g þ n: (9)

Stability of P1 is attained exactly when the above condition is
reversed, thereby showing the existence of a transcritical
bifurcation for which P* originates from P1 when the infected
establish themselves in the system. This identifies also the disease
basic reproduction number

R0 ¼
bK

g þ n
:

Thus when R0 > 1, the disease becomes endemic in the system.
Denoting by J* the Jacobian of this SIS system evaluated at P*, we
find that
�trðJ�Þ ¼ g
I�

S�
þ a

K
S�>0; detðJ�Þ ¼ b

K
I�½S�ðaþ KbÞ � Kg�:

The quantity in the last bracket is always positive, since it reduces
to a(g + n) + bKn > 0. Hence the Routh–Hurwitz conditions hold,
i.e. whenever feasible, the endemic equilibrium is always stable. In
case g = 0, using once again Hofbauer and Sigmund (1988, p. 63),
we have the following result.

Proposition 4. For the SI model global stability for both equilibria P1

and P* holds, whenever they are feasible and stable.

Proof. The Lyapunov function in this case is given by

LSI
1 ¼

aþ bK

bK
I þ S� Kln

S

K

� �
;

LSI
� ¼

aþ bK

bK
I � I�ln

I

I�

� �
þ S� S�ln

S

S�

� �
:

Differentiating along the trajectories for the former we find

ðLSI
1 Þ
0 ¼ aþ bK

bK
IðKb� nÞ � a

K
ðS� KÞ2

and the first term is negative if P1 is stable, i.e. when (9) does not
hold. For the second one, the argument is straightforward, leading
to ðLSI

� Þ
0 ¼ �aK�1ðS� S�Þ2 <0.

The global stability for the more general case of g 6¼ 0 has been
discussed in the classical paper Beretta and Capasso (1986). For
more recent results, see Vargas de León (2011).

2.2.2. Subsystem with only the two lowest trophic levels

The second particular case is a basic ecoepidemic model, of the
type studied in Venturino (1995) and to which we refer the
interested reader. From the analytic side, we just remark the
coexistence equilibrium attains the population values

I� ¼ 1

q
ðl� eS�Þ; V� ¼ 1

n
½bS� � ðg þ nÞ�

where S* solves the quadratic B2S2 + B1S + B0 = 0, with

B2 ¼
ae

qK
� a

K
þ be

q
� cb

n
; B1 ¼ a� al

qK
þ c

n
ðg þ nÞ � bl

q
� eg

q
;

B0 ¼
gl

q
>0:

Existence and feasibility of the coexistence equilibrium can be
discussed on the basis of the signs of these coefficients. The
characteristic equation

P3
i¼0 AiL

i ¼ 0 arising from the Jacobian of
the subsystem evaluated at the coexistence equilibrium, J*, has the
following coefficients

A2 ¼ �trðJ�Þ ¼ gI�ðS�Þ�1 þ aK�1S�>0;

A1 ¼ qnI�V� þ ceS�V� �b
K

I�½ðaþbKÞS� � gK�;

A0 ¼ �detðJ�Þ ¼ cqbV�I�S� þ en

K
I�V�½Kg � S�ðaþKbÞ� �A0nqI�V�:

For stability, the Routh–Hurwitz conditions require

A0 >0; A1 >0; A2 >0; A2A1 >A0: (10)

We will further discuss this point later.



A. De Rossi et al. / Ecological Complexity 21 (2015) 233–245236
3. Model analysis

3.1. Boundedness

We define the global population of the system as
c(t) = W + V + I + S. Recalling the assumptions on the parameters,
for which e < c, q < n and p < h, we obtain the following
inequalities

dc
dt

¼ aS 1� Sþ I

K

� �
� cVS� bSI þ gI þ bIS� nIV � gI � nI � lV

þeSV � hVW þ qIV �mW þ pVW ¼ aS 1� Sþ I

K

� �
�ðc � eÞVS� ðn� qÞIV � ðh� pÞVW � lV �mW � nI

< aS 1� S

K

� �
� lV �mW � nI:

Taking now a suitable constant 0 < h < min(n, l, m) we can
write

dc
dt
þhc < ðaþ hÞS� a

S2

K
þðh� nÞI þ ðh� lÞV þ ðh�mÞW

� ðaþ hÞS� a
S2

K
� Kðaþ hÞ2

4a
¼ L1:

From the theory of differential inequalities we obtain an upper
bound on the total environment population

0 � cðtÞ< L1

h
ð1� e�htÞ þcð0Þe�ht;

from which letting t! +1 it ultimately follows that c(t)! L1h
�1,

which means that the total population of the system, and therefore
each one of its subpopulations, is bounded by a suitable constant

cðtÞ � M :¼max
L1

h
;cð0Þ

� �
:

3.2. Critical points

E1 � (0, 0, 0, 0) is a clearly feasible but unstable equilibrium,
with eigenvalues �m, �l, �g � n, a.

E2 � (0, 0, 0, K) is feasible and conditionally stable. This
equilibrium coincides with Q1 of the classical disease-free system.
The Jacobian’s eigenvalues at E2 are�m,�l + eK, bK � g � n,�a, so
that stability is ensured by

K <min
l

e
;
g þ n

b

� �
: (11)

Note that the stability of this equilibrium now hinges also on the
epidemic parameters, so that this equilibrium may be stable in the
disease-free system, but may very well not be stable when a
disease affects the population at the bottom trophic level in the
ecosystem.

We have then the disease-free equilibrium with all the trophic
levels,

E3� W3;
m

p
;0;K

ap� cm

ap

� �
; W3 ¼

apKe�mecK � apl

ahp
:

feasible for

eKðap�mcÞ� apl: (12)

Again we observe that since W3 �W*, the equilibrium E3 coincides
with the coexistence equilibrium Q* of the disease-free food chain.
Thus also its feasibility condition (12) reduces to (6).

One eigenvalue easily factors out, to give the stability condition

aKpb< cKbmþ anmþ apg þ apn: (13)
The reduced 3 � 3 Jacobian J̃ then gives a cubic characteristic
equation, the Routh–Hurwitz conditions for which become

�trJ̃ðE3Þ ¼
1

p
ðap� cmÞ>0; �detJ̃ðE3Þ ¼ hmW3ðap� cmÞ>0;

corresponding to (7). In fact, these conditions hold in view of
feasibility (12). Also the third Routh–Hurwitz condition is the same
as (8) so it is satisfied.

Stability of E3 hinges however also on the first eigenvalue, i.e. on
condition (13). Again, the presence of the epidemics-related
parameters in it, shows that the behavior of the demographic
ecosystem is affected by the presence of the disease.

Next, we find the subsystem in which only the intermediate
population and the bottom healthy prey thrive,

E4� 0;
aðKe� lÞ

ecK
;0;

l

e

� �
which is feasible iff

K � l

e
: (14)

The eigenvalues of the Jacobian are

l1 ¼
�laþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2a2 � 4lae2K2 þ 4l2aeK

p
2eK

l2 ¼
�la�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2a2 � 4lae2K2 þ 4l2aeK

p
2eK

l3 ¼
�meKc � aplþ apeK

eKc

l4 ¼
blKc þ anl� aneK � geKc � neKc

eKc
:

We have a pair of complex conjugate eigenvalues with negative
real part if and only if la + 4leK � 4e2K2. In the opposite case, these
eigenvalues are real: l2 < 0 always, while l1 < 0 holds if l < eK, i.e.
ultimately in view of the feasibility condition (14). In any case, the
stability of this equilibrium is always regulated by the remaining
real eigenvalues. Therefore the point E4 is stable if and only if these
two conditions are verified

apeK <meKc þ apl; blKc þ anl< aneK þ geKc þ neKc: (15)

Remark 1. Note that the first above condition is the opposite of
(14), or equivalently as remarked earlier (6). Hence there is a
transcritical bifurcation between E3 and E4 which has the classical
counterpart Q* and Q̃.

No Hopf bifurcations can arise at this point, since the real part of
the first two eigenvalues cannot vanish.

The point at which just the bottom prey thrives, with endemic
disease, is

E5� 0;0;
aðKbg þ Kbn� g2 � 2gn� n2Þ

bðag þ anþ KbnÞ ;
g þ n

b

� �
:

It is feasible for

bK �g þ n: (16)

Remark 2. Observe that the stability condition (11) for E2 can fail
in two different ways. If (g + n)b�1 > le�1, then (11) is the opposite
condition of feasibility for E4 (14). This transcritical bifurcation
corresponds thus to the one between Q1 and Q̃ in the classical
disease-free model.



Complexity 21 (2015) 233–245 237
Remark 3. On the other hand, for (g + n)b�1 < le�1, we discover a

transcritical bifurcation between E2 and E5, see (11) and (16). This
situation clearly does not exist in the classical model.

Since the characteristic equation factors, two eigenvalues come
from a 2 � 2 minor J̃ of the Jacobian, for which

�trðJ̃ðE5ÞÞ ¼
a

bK

Kbn2 þ ag2 þ 2agnþ an2 þ b2
K2g � bKg2

ag þ anþ Kbn
(17)

detðJ̃ðE5ÞÞ ¼ a
Kbg þ Kbn� g2 � 2gn� n2

bK
: (18)

The Routh–Hurwitz conditions for stability then require positivity
of both these quantities. Now (18) is implied by feasibility (14),
while (17) yields

Kbn2 þ aðg þ nÞ2 þ b2
K2g >bKg2:

But this condition always holds: note that the left hand side is
minimized by taking n = 0. The resulting inequality,

A. De Rossi et al. / Ecological
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Fig. 1. Here and in all the following figures, the plots are shown starting from the left top

Here they are obtained by the parameter set a = 30, K = 7.5, m = 20, p = 0.2, l = 11, e = 1
holds because the right hand side is larger than bK and using (16)
the latter exceeds g + n � g. The remaining two eigenvalues are
immediate, the first one is �m, the other one gives the stability
condition

eðg þ nÞ
b

þ qa½Kbg þ Kbn� ðg þ nÞ2�
bðag þ anþ KbnÞ < l: (19)

We find up to two equilibria in which the top predators
disappear,

E6;7� 0;
bbS� g � n

n
;
l� ebS

q
; bS !

;

where bS are the roots of the following quadratic equation:

ÃS2 þ B̃Sþ C̃ ¼ 0 (20)

where Ã :¼ naq� neaþ bcKq� nebK , B̃ :¼ nlaþ Kbln� qKcg�
cKnqþ ngKe� qKan, C̃ :¼ �nlgK. Feasibility imposes the following
requirement on the roots bS,

g þ n
b

< bS< l

e
; (21)
equilibrium.
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corner in clockwise order to represent the populations W, V, S, I as function of times.

, h = 0.5, q = 4, b = 5, n = 0.5, c = 1, g = 7, n = 0.
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Hopf bifurcation at the top-predator-free equilibrium.
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Fig. 2. The plots are obtained for the same parameter set as in Fig. 1, but for q: q = 4 gives the stable equilibrium (blue line), q = 11 provides the limit cycles (red line). (For

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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which imply their positivity. In turn, using Descartes’ rule, since
C̃<0, the latter is a consequence of either one of the conditions

Ã>0; B̃>0

which lead respectively to either one of the following explicit
conditions

qðnaþ bcKÞ>neðaþ bKÞ;

nðlaþ Kðblþ geÞÞ> qKðanþ cðg þ nÞÞ:

One eigenvalue factors out, implying for stability an upper
bound for the bottom healthy prey population,

bS< mnþ pg þ pn
pn

:

The remaining characteristic equation is a complicated cubic.
Therefore stability of this equilibrium is analysed only numerically.
By choosing the following hypothetical set of parameters, a = 30,
K = 7.5, m = 20, p = 0.2, l = 11, e = 1, h = 0.5, q = 4, b = 5, n = 0.5, c = 1,
g = 7, n = 0, the system settles to this equilibrium (Fig. 1).

We have studied also the system’s behavior at this equilibrium
point in terms of the hunting rate of the intermediate predator on
the infected prey. The results show that there is a Hopf bifurcation
for which limit cycles arise (Fig. 2). The parameters are the same as
in Fig. 1, but for the parameter q, which is chosen as q = 4 as in the
former figure, as well as q = 11, the value for which the persistent
oscillations are shown.

Endemic coexistence of all the trophic levels is given by the
equilibrium E* � (W*, V*, I*, S*), the population levels of which can
be explicitly evaluated, letting Z = nma + agp + apn + Kbnm +
Kbpn > 0, as

V� ¼ m

p
; S� ¼ nmþ g pþ n p

b p
;

I� ¼ 1

bpZ

	
� an2m2 � 2anmg p� 2anmn p� ag2 p2 � 2ag p2n

� an2 p2

�cm2Kbn� cmKbg p� cmKbn pþ aKbpnmþ aKb p2g

þ aKb p2n



W� ¼ 1

hbpZ

	
aðe� qÞðmnþ g pþ n pÞ2 þ bðqKðap� cmÞ

� plaÞðmnþ g pþ n pÞþ
þ pbKðge� blÞðmnþ pnÞ þ ebKðmnþ n pÞ2

i
Note indeed that since W 6¼ 0, from the first equilibrium equation
V* is obtained explicitly, and then from the third equilibrium
equation we get explicitly also the value of S*. In view of the fact
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that V* > 0 and S* > 0, feasibility easily holds if we require

e� q; qKap� qKcmþ pla; ge�bl: (22)

This equilibrium can be achieved stably, as shown in Fig. 3 for
the hypothetical parameter set a = 20, K = 10, m = 4, p = 2, l = 1,
e = 1, h = 2, q = 4, b = 1, n = 1, c = 1, g = 1, n = 0.

A different choice of the parameter set, m = 20, p = 7, l = 5, e = 2,
h = 15, q = 5, b = 9, n = 12, g = 0.2, n = 1.5, a = 30, K = 220, c = 4, leads
instead to persistent oscillations in all the ecosystem’s populations
(Fig. 4). Oscillations are observed also for these parameters a = 30,
K = 120, m = 20, p = 7, l = 1.9, e = 2, h = 10, q = 5, b = 9, n = 3, c = 4,
g = 0.2, n = 1.5, figure not shown.

Remark 4. The question of global stability for ecoepidemic food
chains deserves further investigations, as it is not our main issue in
this paper. We just remark that a straightforward application of
the technique of Hofbauer and Sigmund (1988, p. 63) for E* here
does not work. Even in the easier case in which g = 0, it leads to the
parameter relationship cq(a + Kb) = beKn, which in general can-
not be satisfied.
[(Fig._3)TD$FIG]
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Fig. 3. Coexistence achieved for the parameter values a = 20, K = 10,
3.3. Bistability

We now show first that some equilibria combinations cannot
possibly stably sussist together.

In view of Remark 2, E2 and E4 cannot both be feasible and
stable for a given parameter set in view of the stability condition
(11) for the former and the feasibility of the latter (14), which
contradict each other. The same situation occurs also for E2 and E5,
since once again stability of the former (11) conflicts with
feasibility of the latter, see condition (16), as mentioned in Remark
3.

Again similarly the same happens for E2 and E3, since feasibility
of the latter (12) contains ap > mc and entails

K >K 1�mc

ap

� �
>

l

e
; (23)

which contradicts (11).
We find the same feature once more for E4 and E3. This is stated

in Remark 1, but it can be better seen from the rephrased feasibility
of the latter (23), which is the opposite of the first stability
equilibrium
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m = 4, p = 2, l = 1, e = 1, h = 2, q = 4, b = 1, n = 1, c = 1, g = 1, n = 0.
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Persistent oscillations of all the populations
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Fig. 4. The plots are obtained for the parameter values m = 20, p = 7, l = 5, e = 2,

h = 15, q = 5, b = 9, n = 12, g = 0.2, n = 1.5, a = 30, K = 220, c = 4.
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Fig. 5. The other parameters are m = 12, p = 0.5, l = 6, e = 2
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condition of the former (15), rephrased as

K 1�mc

ap

� �
<

l

e
: (24)

Instead, the equilibria E4 and E5 can both be feasible and stable.
Indeed, feasibility and stability of E4, i.e. (14) and (15), require

l

e
<

naþ gc þ cn
bcK þ an

K; K 1�mc

pa

� �
<

l

e
� K; (25)

while the corresponding conditions (16) and (19) for E5 entail

g þ n
b

<K <
aðg þ nÞ þ Kbm

aqðg þ nÞ l� eðg þ nÞ
b

� �
þ g þ n

b
: (26)

For studying E4, we now consider the function

f ðnÞ ¼ naþ gc

bcK þ an
K

which is a hyperbola, increasing toward the horizontal asymptote
y = K from f(0) = gb�1 for n � 0 when K > gb�1 and decreasing to it
conversely. We need to find the intervals of the independent
variable n for which le�1 < f(n). Recalling that le�1 � K by feasibility
, h = 10, q = 1, b = 1.6, n = 5, g = 1, n = 0.5, a = 8, c = 2.5.
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(14), for K < gb�1 the inequality will be satisfied for all n � 0. In the
opposite case, the equality le�1 = f(n*) holds for

n� ¼max 0;K
c

a

bl� ge

eK � l

� �
�0:

and therefore the inequality is satisfied for every n > n*.
As for E5, we introduce the function

gðqÞ ¼ aðg þ nÞ þ Kbm
aqðg þ nÞ l� eðg þ nÞ

b

� �
þ g þ n

b

which is also an equilateral hyperbola, with horizontal asymptote
y = (g + n)b�1. By the feasibility condition (16), this asymptote is
always lower than K. The vertical asymptote lies on the vertical
axis,

lim
q! 0þ

gðqÞ ¼ þ1

if bl > e(g + n). Thus in this case the hyperbola decreases to the
horizontal asymptote and therefore meets the level K at

q� ¼ aðg þ nÞ þ Kbm
aqðg þ nÞ l� eðg þ nÞ

b

� �
b

Kb� g � n
:

[(Fig._6)TD$FIG]

Fig. 6. E5 (blue) and E3 (red) are both stable for four different choices of the initial conditi

c = 0.5, g = 1, n = 0. (For interpretation of the references to color in this figure legend, t
In such case then, for q < q* (26) is satisfied. When bl < e(g + n) the
hyperbola is such that

lim
q!0þ

gðqÞ ¼ �1

so that it raises up toward the horizontal asymptote, but since this
is below the level K, (26) can never hold.

In summary, for coexistence of E4 and E5 we need

l

e
<

a

b
<

l

e
þmc

pb
; n>n�; q< q�;

g
b
<min K;

l

e

� �
: (27)

The bistability is indeed achieved, as can be seen in Fig. 5, for two
choices of the initial conditions.

Bistability occurs also for the pair of equilibria E5 and E3, as
shown in Fig. 6 taking four different choices of the initial
conditions, for the parameter values a = 8, K = 4, m = 1, p = 0.5,
l = 6, e = 2, h = 0.1, q = 1, b = 1, n = 5, c = 0.5, g = 1, n = 0.

Finally in Fig. 7 we show empirically the bistability of the
equilibria E7 and E* for the parameters a = 15, K = 7.5, m = 10, p = 1,
l = 12, e = 5, h = 10, q = 4, b = 5, n = 1, c = 1, g = 2, n = 0.

It is interesting also to remark how some of these equilibria
behave as K changes. For K = 6, the equilibria E4 and E5 coexist (Fig.
5). The other parameters are chosen as follows: m = 12, p = 0.5,
l = 6, e = 2, h = 10, q = 1, b = 1.6, n = 5, g = 1, n = 0.5, a = 8, c = 2.5. If
ons. Parameter values: a = 8, K = 4, m = 1, p = 0.5, l = 6, e = 2, h = 0.1, q = 1, b = 1, n = 5,

he reader is referred to the web version of this article.)
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Fig. 7. E7 (blue) and E* (red) are both stable. Parameters used: a = 15, K = 7.5, m = 10, p = 1, l = 12, e = 5, h = 10, q = 4, b = 5, n = 1, c = 1, g = 2, n = 0. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of this article.)
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we change the carrying capacity to the value K = 7 we discover
coexistence of the equilibria E4 and E7 (see Fig. 8).

The separatrix for the basins of attraction of the equilibria E4

and E5 is shown in Fig. 9, in the W = 0 three-dimensional phase
subspace, for the hypothetical parameter values l = 10, e = 2, q = 1,
b = 1.6, n = 5, g = 1, n = 3, a = 8, K = 6, c = 0.5. The figure is produced
using very recently developed approximation algorithms (Cavor-
etto et al., 2011, 2013, 2014). For further details on the
interpolation method, see e.g. Cavoretto and De Rossi (2013)
and Wendland (2005).

A further transcritical bifurcation is shown numerically in Fig.
10 for the parameter values m = 20, p = 11, l = 0.4, e = 1.8, h = 11.5,
q = 0.5, b = 4.5, g = 0.5, n = 0.6, a = 5, K = 9, c = 2.2. The choice n = 4
leads to the equilibrium E3, for n = 3.6 we find instead E*. The
transcritical bifurcation occurs for n* = 3.85.

4. Discussion

Food chain models are now classical in the literature. Here,
however, we have made a step further in that we allow epidemics
to affect one population in the chain.

The proposed ecoepidemic food chain presents some novel
features that distinguish it from its disease-free counterpart. The
purely demographic model indeed exhibits a series of transitions
for which the intermediate population emanates from the
situation in which only the lowest trophic level thrives when
the threshold condition (4) holds. The top predator can invade this
two-population situation again when a second threshold is crossed
(6). In all these cases there is only one stable equilibrium, which is
globally asymptotically stable, and no Hopf bifurcations can arise.

Instead, the ecoepidemic food chain shows a much richer
behavior in several ways.

At first, there are more transcritical bifurcations: all the ones
that appear already in the classical case show up here as well, but
furthermore there are new ones. In fact, for instance, the healthy
prey-only equilibrium can give rise to the endemic disease prey-
only equilibrium, if the disease contact rate exceeds a certain value.
This can be recast as saying that the prey carrying capacity must be
larger than the ratio of the rates at which individuals leave and
enter the infected class, i.e. the ratio of the sum of the recovery and
mortality rates over the disease contact rate.

Secondly, in addition, it contains persistent limit cycles for
some or all the populations thriving in it. This occurs in spite of the
very simple formulation of the equations. In fact, we do not assume
anything else apart from logistic growth for the populations, when
applicable, i.e. at the lowest trophic level, and quadratic, or
bilinear, interactions to describe the interaction terms in the
predation as well as in the disease transmission. No more
sophisticated mechanisms such as Holling type II terms or more
complicated nonlinearities are present in the model.



[(Fig._8)TD$FIG]

Fig. 8. The other parameters are the same as in Fig. 5.
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Finally, bistability is discovered among some equilibria, leading
to situations in which the computation of their basins of attraction
is relevant for the system outcome in terms of its biological
implications.

In one case there could be both the equilibria with only the
bottom prey with an endemic disease, or the last two trophic levels
can coexist in a disease-free environment, compare respectively
the pair of equilibria E5 and E4. Evidently, if the epidemiologists
want to fight the disease, the latter is the goal to achieve. It
represents also a good result from the biodiversity point of view,
since in it two populations of the chain survive instead of only one.
Evidently, then, it is important to compare the basins of attraction
of the two points and understand how the system parameters do
influence them. The goal would then be to act on these parameters
in order to reduce to the minimum possible the basin of attraction
of the unwanted equilibrium point, in this case the one with the
endemic disease.

A similar situation occurs between the point with only the
bottom prey with endemic disease E5 and the one containing all
the chain’s populations, but disease-free, i.e. E3. Evidently, the
latter represents even a better situation from the conservation and
biodiversity point of view. Under this perspective in the applied
ecologist frame of mind, the coexistence of all populations
including the diseased individuals, and the top predators-free
environment with endemic disease represents a secondary choice
with respect to the former bistability situation, because in the
former there is the disease-free equilibrium with all trophic levels
thriving. The influence of the bottom prey carrying capacity in the
shaping of the bistable equilibrium coexisting with the top
predator and disease-free equilibrium, E4 has been investigated
numerically. For a low value of K, the former equilibrium coexists
stably with the one in which only the bottom trophic level is
present, with endemic disease. In this alternative the latter
equilibrium represents a worse situation. For larger values of the
carrying capacity E4 coexists instead with the top predators-free
environment. Again the latter introduces the disease and therefore
it should be regarded as a bad situation, but this kind of coexistence
is preferable to the one we get for lower K, since two trophic levels
are in any case preserved, whether with or without the disease.

Comparing the food chain model to the pure SIS epidemic
model, we observe a much richer behavior in the former, since the
latter exhibits only one equilibrium at the time, in view of the
existence of the transcritical bifurcations discussed in Section
2.2.1. In addition this equilibrium, whether disease-free or
endemic, is always stable, as stated in Proposition 4. Therefore,
the more complex structure of the food chain entails the presence
of persistent oscillations.

To better investigate the subsystem with only the two lowest
trophic levels behavior, we consider the coexistence situation in the
former, when all the populations thrive via sustained oscillations, as
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Fig. 9. The surface separating the basins of attraction of the equilibria E4, lying on the coordinate hyperplane S–V, and E5, lying on the coordinate hyperplane I–S, projected in

the phase-subspace W = 0 for the parameters l = 10, e = 2, q = 1, b = 1.6, n = 5, g = 1, n = 3, a = 8, K = 6, c = 0.5. The two equilibria are marked with small green circles on the two

sides of the separatrix, E5 on the left and E4 on the right, the saddle point on the surface by a red circle. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)
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Fig. 10. The parameters are m = 20, p = 11, l = 0.4, e = 1.8, h = 11.5, q = 0.5, b = 4.5, g = 0.5, n = 0.6, a = 5, K = 9, c = 2.2. The choice n = 4 leads to the equilibrium E3 (red), for n = 3.6

we find instead E* (black). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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shown in Fig. 4. If we keep the same parameter values, but disregard
the top predator W, setting also m = p = h = 0, the ecoepidemic
subsystem settles to a stable equilibrium. On the other hand, we can
start from the unstable situation in the ecoepidemic subsystem,
which can be obtained if any condition in (10) does not hold. For the
parameters l = 5, e = 0.2, q = 5, b = 19.5, n = 4, g = 0.2, n = 1.5, a = 20,
K = 350, c = 0.4, the unstable behavior is shown in Fig. 11. In this case,
introducing now the new population W, we find that the system
settles to an endemic equilibrium in which only the infected lower
trophic level population survives, equilibrium E5. This occurs for the
parameter values m = 0.2, p = 0.2, h = 0.8. A second example leading
from persistent oscillations in the ecoepidemic subsystem to stable
coexistence in the full model is obtained instead for the parameter
choice m = 0.3, p = 0.2, l = 5, e = 0.1, h = 0.02, q = 5, b = 19.5, n = 4,
g = 0.2, n = 1.5, a = 20, K = 350, c = 0.4. We obtain in this case the
stable coexistence equilibrium with the following population
values, E* = (6.267, 1.504, 1.027, 0.390). These results show that
in the ecoepidemic food chain model and in the ecoepidemic
subsystem their two respective coexistence equilibria are indepen-
dent of each other.
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