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Abstract

In this paper, we consider the global dynamics of a microparasite model with more general incidences.
For the model with the bilinear incidence, Ebert et al. [D. Ebert, M. Lipsitch, K.L. Mangin, The effect
of parasites on host population density and extinction: Experimental epidemiology with Daphnia and six
microparasites, American Naturalist 156 (2000) 459–477] observed that parasites can reduce host density,
but the extinction of both host population and parasite population occurs only under stochastic perturbations.
Hwang and Kuang [T.W. Hwang, Y. Kuang, Deterministic extinction effect of parasites on host populations,
J. Math. Biol. 46 (2003) 17–30] studied the model with the standard incidence and found that the host
population may be extinct in the absence of random disturbance. We consider more general incidences that
characterize transitions from the bilinear incidence to the standard incidence to simulate behavior changes
of populations from random mobility in a fixed area to the mobility with a fixed population density. Using
the techniques of Xiao and Ruan [D. Xiao, S. Ruan, Global dynamics of a ratio-dependent predator–prey
system, J. Math. Biol. 43 (2001) 268–290], it is shown that parasites can drive the host to extinction only
by the standard incidence. The complete classifications of dynamical behaviors of the model are obtained
by a qualitative analysis.
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1. Introduction

In practice, parasites may be used to control pest species instead of chemical pesticides. This
is based on the fact that parasites can reduce host density and even drive host populations to
extinction [1–6,11,14]. Theory on the effects of parasites on host population dynamics has been
extensively developed, with the aim of understanding whether variability in the effects of para-
sites on host fecundity and survival is reflected in host population dynamics.

In an effort to understand the ability of six microparasites to regulate Daphnia populations
and drive the populations to extinction, Ebert et al. [7] formulated the following microparasite
model with horizontal transmission:⎧⎪⎪⎨

⎪⎪⎩

dS

dt
= r(S + σI)

(
1 − S + I

K

)
− dS − βSI,

dI

dt
= λSI − (d + ε)I,

(1.1)

where S(t) and I (t) represent the densities of uninfected (susceptible) and infected (infective)
hosts at time t , respectively, r is the per capita growth rate of uninfected hosts, σ is the relative
fecundity of an infected host with 0 � σ � 1, K is the carrying capacity of the environment for
the host population, d is the parasite mortality rate, β is the infection rate coefficient, and ε is the
infection-induced death rate.

This deterministic model predicts the existence of a globally stable steady state and the host
density will decrease monotonically as a function of parasite-induced reductions in fecundity.
Whereas in the population experiments, Ebert et al. [7] found that the time series from the
infection treatment fell into three categories. First, host and parasite coexisted throughout the
experiment. Second, the parasite went extinct. Third, the Daphnia population and the parasites
went extinct together. This means that the model cannot predict the extinction of both host pop-
ulation and parasites. However, they found, by computer simulations, that the extinction of both
the host population and parasite population occurs under suitable stochastic perturbations. In [9],
Hwang and Kuang changed the mass action incidence βSI to the standard incidence β S

S+I
I .

Significantly, this revised parasite–host model can exhibit the observed parasite-induced host ex-
tinction. This means that the extinction of the host population may be due to deterministic factors
instead of stochastic factors. Note that the mass action incidence implies that individuals of the
population occupy a fixed area so that the contact rate is proportional to the population density.
Note also that the standard incidence implies that the occupied area is proportional to its popula-
tion size so that the contact rate is a constant. This means that the two incidences are two extreme
cases.

Now, it is natural to ask what is the evolutionary consequence of the host population and
parasites if the incidence lies between these two extreme cases. Especially, can parasites drive
host population to extinction now? In order to understand the mechanism, we consider a more
general incidence βNα S

N
I (where 0 � α � 1) that characterizes continuous transitions from

the bilinear incidence βN S
N

I to the standard incidence β S
N

I . Indeed, it reduces to the bilinear
incidence if α = 1 and the standard incidence if α = 0. Furthermore, if the occupied area of
population is given by k1

N1−α , which implies that the population density is k1N
α , and population

movement is random in the occupied area, then the valid contact rate can be in the form of βNα .
In this case, when α is decreased from 1 to 0, the occupied area varies from the constant k1 to k1

N
,

which corresponds to the changes from a fixed occupied area to the area with a fixed contact rate.
With the given incidence, the model to be studied is
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⎧⎪⎪⎨
⎪⎪⎩

dS

dt
=

(
b − rN

K

)
(S + σI) − dS − βNα−1SI,

dI

dt
= βNα−1SI − (d + ε)I,

(1.2)

where N = S + I . From (1.2), we obtain

dN

dt
= r

[
N − (1 − σ)I

](
1 − N

K

)
− εI + d(σ − 1)I, (1.3)

where r = b − d . Thus, in the absence of the disease, (1.3) leads to

dN

dt
= r(1 − N/K)N.

Hence, N → K as t → ∞. The advantage of the model (1.2) is that the original meanings of
parameters r and K in the logistic differential equation are maintained, in the sense that r is
the intrinsic growth rate of the population and K is the carrying capacity of environment. For
biological reasons, we will restrict out attention on the region {(S, I ): 0 � S + I � K}.

In this paper we shall show that parasites could drive the host population to extinction only by
the standard incidence. This means that a little expansion of the habitat for individuals in satura-
tion level implies the survival of the host population. The key point is that the origin (0,0) is a
highly degenerate equilibrium for system (1.2). Following the techniques of Xiao and Ruan [17],
we shall give a complete analysis for dynamic behaviors of the solutions of system (1.2). The
results extend the work in [7] where α = 1 and the work in [9] where α = 0. The rest of this
paper is organized as follows. In Section 2, the conditions for the extinction of host populations
are analyzed. Section 3 is devoted to the existence and uniqueness of positive equilibrium, and
its global stability. The paper ends with brief discussions.

2. Asymptotic behavior at (0,0)

For simplicity, we non-dimensionalise system (1.2) with the following scaling

S = d + ε

β
x, I = d + ε

β
y, τ = (d + ε)t.

If t is used to represent τ , we obtain

⎧⎪⎨
⎪⎩

dx

dt
= ax + σ(a + c)y − hx2 − h(σ + 1)xy − hσy2 − p(x + y)α−1xy,

dy

dt
= p(x + y)α−1xy − y,

(2.1)

where

a = r

d + ε
, c = d

d + ε
, h = r

βK
, p =

(
d + ε

β

)α−1

.

In this paper, we assume that r, β, d and ε are positive constants, σ and α are constants in [0,1].
The feasible region of (2.1) is {(x, y): x � 0, y � 0, 0 � x + y � a }.
h



634 G. Li et al. / J. Math. Anal. Appl. 331 (2007) 631–643
There are two equilibria (0,0) and (a/h,0) in (2.1). First, we study the local stability of (0,0)

when α = 0. If α = 0, system (2.1) is reduced to⎧⎪⎪⎨
⎪⎪⎩

dx

dt
= ax + σ(a + c)y − hx2 − h(σ + 1)xy − hσ y2 − p

xy

x + y
,

dy

dt
= p

xy

x + y
− y.

(2.2)

We make another time scale change dt = (x + y)dξ (for simplicity t is used to represent ξ ) such
that system (2.2) is equivalent to the following system:⎧⎪⎨

⎪⎩
dx

dt
= X2(x, y) + Φ(x,y),

dy

dt
= Y2(x, y),

(2.3)

where

X2(x, y) = ax2 + (σa + σc + a − p)xy + σ(a + c)y2,

Φ(x, y) = −hx3 − h(σ + 2)x2y − h(2σ + 1)xy2 − hσy3,

Y2(x, y) = y(px − x − y) ≡ Y2(x, y).

By [18], if an orbit of (2.3) tends to the origin then it must tend to it along a fixed direction. This
corresponds to the extinction of both parasites and the host population. To find characteristic
directions, we introduce the polar coordinates x = r cos θ , y = r sin θ to obtain⎧⎪⎨

⎪⎩
dr

dt
= r2(H(θ) + o(1)

)
,

dθ

dt
= r

(
G(θ) + o(1)

)
,

(2.4)

where

H(θ) = Y2 sin θ + X2 cos θ

= a cos3 θ + (σa + σc + p − 1) cos θ sin2 θ

+ (σa + σc + a − p) cos2 θ sin θ − sin3 θ,

G(θ) = Y2 cos θ − X2 sin θ

= sin θ(cos θ + sin θ)
[
(p − a − 1) cos θ − σ(a + c) sin θ

]
.

Then the characteristic equation of system (2.3) takes the form

G(θ) = sin θ(cos θ + sin θ)
[
(p − a − 1) cos θ − σ(a + c) sin θ

] = 0. (2.5)

θ = 0 is a trivial characteristic direction. In θ = 0, infected hosts die out and the uninfected
host population tends to its carrying capacity K . To determine if there exist orbits of system (2.3)
which tend to the origin along the direction θ = 0 as t tends to +∞ or −∞, we have to compute
the derivatives of G(θ).

G′(θ) = cos 2θ
(
(p − a − 1) cos θ − (σa + σc + a − p + 1) sin θ

)
+ cos θ sin θ

(
(a + 1 − p) sin θ − (σa + σc + a − p + 1) cos θ

)
,

G′′(θ) = 2 cos 2θ
(
(a + 1 − p) sin θ − (σa + σc + a − p + 1) cos θ

)
+ 5 cos θ sin θ

(
(a + 1 − p) cos θ + (σa + σc + a − p + 1) sin θ

)
.



G. Li et al. / J. Math. Anal. Appl. 331 (2007) 631–643 635
By means of techniques from [17,18], we can obtain the following theorems.

Theorem 2.1. Suppose p − a − 1 > 0. Then there exist ε1 > 0 and r1 > 0 such that all orbits of
system (2.3) in{

(θ, r): 0 � θ < ε1, 0 < r < r1
}

tend to (0,0) along θ1 = 0 as t → −∞.

Proof. When p − a − 1 > 0, θ1 = 0 is a simple root of (2.5). Since G′(θ1) = p − a − 1,
H(θ1) = a, and G′(θ1)H(θ1) > 0, by Theorem 3.4 in [18, p. 68] there exist ε1 > 0 and r1 > 0
such that all orbits of system (2.3) in {(θ, r): 0 � θ < ε1, 0 < r < r1} tend to (0,0) along θ1 = 0
as t → −∞. �
Theorem 2.2. Suppose p − a − 1 = 0 and 0 < σ � 1. Then there exist ε2 > 0 and r2 > 0 such
that all orbits of system (2.3) in{

(θ, r): 0 � θ < ε2, 0 < r < r2
}

tend to (0,0) along θ1 = 0 as t → −∞.

Proof. When p − a − 1 = 0 and 0 < σ � 1, θ1 = 0 is a root of (2.5) with multiplicity 2. Since
G′(0) = 0 and G′′(0) = −2σ(a + c), we have G′′(0)H(0) �= 0. It follows from Theorem 3.8 in
[18, p. 75] that there exist ε2 > 0 and r2 > 0 such that all orbits of system (2.3) in{

(θ, r): 0 � θ < ε2, 0 < r < r2
}

tend to (0,0) along θ1 = 0 as t → −∞. �
If p − a − 1 = 0 and σ = 0, we have G(θ) ≡ 0. This is a singular case. By performing the

Briot–Bouquet transformation y = ux to transform (2.3), we obtain⎧⎪⎨
⎪⎩

dx

dt
= x

(
a − u − hx(1 + u)2),

du

dt
= hxu(1 + u)2.

(2.6)

In the (u, x)-plane system, (2.6) can be written as

dx

du
= a − u − hx(1 + u)2

hu(1 + u)2
. (2.7)

Equation (2.7) has a general solution:

x = k

u
− a + 1

hu(1 + u)
− ln(1 + u)

hu
,

where k is an arbitrary constant. Thus, the general solution of system (2.3) is

y = k − (a + 1)x

h(x + y)
− 1

h
ln

(
1 + y

x

)
.

The topological structure of the orbits of system (2.2) in the interior of the first quadrant is
sketched in Fig. 1, which consists of an elliptic sector and a parabolic sector.

We now consider the case of p − a − 1 > 0. In this case, Eq. (2.5) has a non-trivial character-
istic direction: θ2 = arctan p−a−1 .
σa+σc
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Fig. 1. Topological structure of the system (2.2) at (0,0) when p − a − 1 = 0 and σ = 0, where p = 2, a = 1, h = 0.3.

Theorem 2.3. Assume p − a − 1 > 0. Then:

(a) If σ(a + c)(p − 1) < p − a − 1 holds, there exist ε3 > 0 and r3 > 0 such that all orbits of
system (2.3) in{

(θ, r): 0 � |θ − θ2| < ε3, 0 < r < r3
}

tend to (0,0) along θ2 = arctan p−a−1
σ(a+c)

as t → +∞.
(b) If σ(a + c)(p − 1) > p − a − 1 holds, there exist ε4 > 0 and r4 > 0 such that there exists a

unique orbit of system (2.3) in{
(θ, r): 0 � |θ − θ2| < ε4, 0 < r < r4

}
which tends to (0,0) along θ2 = arctan p−a−1

σ(a+c)
as t → −∞.

Proof. We apply the Briot–Bouquet transformation

x = x, y = ux, dτ = x dt

to transform (2.3) into⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
= −x

[−a + hx − (σa + σc + a − p)u + h(σ + 2)xu

+ h(2σ + 1)xu2 + σhxu3],
du

dt
= u(1 + u)

[
p − a − 1 + hx − σ(a + c)u + h(σ + 1)xu + σhxu2],

(2.8)

where t is used to represent τ . On the u-axis system (2.8) has two equilibria (0,0) and (0, z0)

where z0 = p−a−1
σ(a+c)

. Obviously, (0,0) is an unstable node. To analyze equilibrium (0, z0), we
make the change of variables x1 = x, x2 = u − z0 to transform (2.8) to⎧⎪⎨

⎪⎩
dx1

dt
= g1(z0)x1 + o

(∥∥(x1, x2)
∥∥)

,

dx2 = hz0(z0 + 1)2(σz0 + 1)x1 + g2(z0)x2 + o
(∥∥(x1, x2)

∥∥)
,

(2.9)
dt
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where

g1(z0) = σ(a + c)z2
0 + (σa + σc + a − p)z0 + a

= σ(a + c)(p − 1) − p + a + 1,

g2(z0) = −3σ(a + c)z0
2 − 2(σa + σc + a + 1 − p)z0 + p − a − 1

= −(p − a − 1)(σa + σc + p − a − 1).

If p − a − 1 > 0 and σ(a + c)(p − 1) < p − a − 1, then g1(z0) < 0 and g2(z0) < 0. The
equilibrium (0,0) of system (2.9) is a stable node. Thus, (0, z0) of system (2.8) is a stable node
in the interior of the first quadrant. We use the inverse Briot–Bouquet transformation to obtain
the result: there exist ε3 > 0 and r3 > 0 such that all orbits of system (2.3) in{

(θ, r): 0 � |θ − θ2| < ε3, 0 < r < r3
}

tend to (0,0) along θ2 = arctan p−a−1
σ(a+c)

as t → +∞.
If p − a − 1 > 0 and σ(a + c)(p − 1) > p − a − 1, then g1(z0) > 0, g2(z0) < 0. Equilibrium

(0,0) of system (2.9) is a saddle. Therefore, the equilibrium (0, z0) of system (2.8) is a saddle,
and there exists a unique separatrix of this equilibrium in the interior of the first quadrant of
system (2.8), which tends to (0, z0) as t → −∞. By the inverse Briot–Bouquet transformation,
there exist ε4 > 0 and r4 > 0 such that there exists a unique orbit of system (2.3) in{

(θ, r): 0 � |θ − θ2| < ε4, 0 < r < r4
}

which tends to (0,0) along θ2 = arctan p−a−1
σ(a+c)

as t → −∞. �
When p − a − 1 < 0, θ1 = 0 is a simple root of (2.5). By similar discussions to those in the

proof of Theorem 2.1, we have

Theorem 2.4. Suppose p − a − 1 < 0. Then there exist ε5 > 0 and r5 > 0 such that a unique
orbit of system (2.3) in{

(θ, r): 0 � θ < ε5, 0 < r < r5
}

tends to (0,0) along θ1 = 0 as t → −∞.

Let us now consider the case where 0 < α � 1. We make a time scale change dt = (x + y)dη

for system (2.1) such that system (2.1) is equivalent to the following system:⎧⎪⎨
⎪⎩

dx

dt
= X2(x, y) + Φ(x,y),

dy

dt
= Y2(x, y) + Ψ (x, y),

where t is used to represent η for simplicity, and

X2(x, y) = ax2 + (σa + σc + a)xy + σ(a + c)y2,

Φ(x, y) = −hx3 − h(σ + 2)x2y − h(2σ + 1)xy2 − σhy3 − p(x + y)αxy,

Y2(x, y) = −xy + y2,

Ψ (x, y) = p(x + y)αxy.
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We use the change of variables x = r cos θ, y = r sin θ to obtain⎧⎪⎨
⎪⎩

dr

dt
= r2(H(θ) + o(1)

)
,

dθ

dt
= r

(
G(θ) + o(1)

)
,

where

H(θ) = Y2 sin θ + X2 cos θ

= (cos θ + sin θ)
[
a cos2 θ + σ(a + c) sin θ cos θ − sin2 θ

]
,

G(θ) = Y2 cos θ − X2 sin θ

= − sin θ(cos θ + sin θ)
[
(a + 1) cos θ + σ(a + c) sin θ

]
.

Then the characteristic equation of system (2.1) takes form

G(θ) = − sin θ(cos θ + sin θ)
[
σ(a + c) sin θ + (a + 1) cos θ

] = 0.

Since σ(a + c) and a + 1 are always greater than zero, there is no characteristic direction in
(0,π/2). By similar discussions as above, we have the following theorem:

Theorem 2.5. There are ε6 > 0 and r6 > 0 such that (2.1) admits a unique orbit in {(θ, r): 0 �
θ < ε6, 0 < r < r6} that tends to (0,0) along θ = 0 as t → −∞.

We have shown, in Theorems 2.1–2.4, that parasites can drive the host to extinction only by the
standard incidence. In other situations the host population and parasites cannot die out together
because (0,0) is a repeller. Computer simulations are given to show that parasites and the host
population die out together when α = 0 in Fig. 2 and parasites reduce only the host density when
α �= 0 in Fig. 3. In addition, it is easy to see that the equilibrium (a/h,0) is a saddle, and the
positive x-axis is divided by the point (a/h,0) into two parts. They are two separatrices of the
equilibrium and both of them asymptotically approach the equilibrium as t → +∞. There also
exists a unique separatrix in the closed first quadrant which tends to (a/h,0).

Fig. 2. Topological structure of the system (1.2) at (0,0) when α = 0, r = 0.5, d = 0.4, ε = 0.5, K = 2, σ = 0.1, β = 1.6.
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Fig. 3. Topological structure of the system (1.2) at (0,0) when α = 0.5 with r = 0.5, d = 0.4, ε = 0.5, K = 2, σ = 0.1,
β = 1.5.

3. Existence and stability of positive equilibrium

We now consider positive equilibria of (2.1). Roughly speaking, the existence of these
equilibria is necessary for the coexistence of the host population and parasites. First, we per-
form a topological transformation to (3.1) so that positive equilibria can be easily found. Set
u = x + y, v = y/(x + y). Substituting them into (2.1) and then replacing u by x, v by y, for the
simplicity of notations, we obtain⎧⎪⎨

⎪⎩
dx

dt
= x

[−hx + h(1 − σ)xy + (σa + σc − a − 1)y + a
]
,

dy

dt
= −y

[−pxα + pxαy − hx + h(1 − σ)xy + (σa + σc − a − 1)y + a + 1
]
.

(3.1)

Evidently, we should consider this system in the region

D = {
(x, y): 0 < x < a/h, 0 < y < 1

}
.

Setting the right-hand side of system (3.1) to zero, we obtain

−hx + h(1 − σ)xy + (σa + σc − a − 1)y + a = 0, (3.2)

−pxα + pxαy − hx + h(1 − σ)xy + (σa + σc − a − 1)y + a + 1 = 0. (3.3)

From (3.2) we obtain

x = (σa + σc − a − 1)y + a

h(σ − 1)y + h
. (3.4)

Substituting (3.2) into Eq. (3.3), we obtain

−pxα + pxαy + 1 = 0. (3.5)

From (3.4) we see that 0 < y < −a
σa+σc−a−1 to have a positive x. If σa + σc − 1 < 0, we find

the positive equilibrium of (3.1) in 0 < y < −a
σa+σc−a−1 < 1. If σa + σc − 1 > 0, it suffices to

consider 0 < y < 1 because −a
σa+σc−a−1 > 1.

In the following, we consider two cases according to α.



640 G. Li et al. / J. Math. Anal. Appl. 331 (2007) 631–643
(1) α = 0. Then it is easy to see y = p−1
p

. Assume σa + σc − 1 < 0. If

1 < p <
σa + σc − a − 1

σa + σc − 1
,

it follows from (3.4) and (3.5) that system (3.1) has a unique positive equilibrium (x∗, y∗) where

x∗ = (σa + σc − a − 1)(p − 1) + ap

h(σ − 1)(p − 1) + ph
, y∗ = p − 1

p
. (3.6)

Similarly, if σa + σc − 1 > 0 and p > 1, system (3.1) has a unique positive equilibrium
(x∗, y∗) defined in (3.6).

(2) α �= 0. Then we solve (3.5) to obtain

x =
(

1

p(1 − y)

) 1
α

.

By (3.4) we have

(
1

p(1 − y)

) 1
α = (σa + σc − a − 1)y + a

h(σ − 1)y + h
. (3.7)

If u = 1 − y, it leads to

p
1
α u

1
α = h(1 − σ)u + hσ

−(σa + σc − a − 1)u + σa + σc − 1
.

Define

f (u) = p
1
α u

1
α ,

g(u) = h(1 − σ)u + hσ

−(σa + σc − a − 1)u + σa + σc − 1
.

Then the existence of positive equilibria of system (3.1) is changed into the existence of inter-
section points of f (u) with g(u) in the given region. Evidently, f (u) is an increasing function.
By calculations, we obtain

g′(u) = h(σc − 1)

(−u − au + uσa + uσc − σa − σc + 1)2
< 0,

which means that g(u) is a decreasing function.
When σa + σc − 1 < 0, since a feasible positive equilibrium satisfies

0 < y <
−a

σa + σc − a − 1
< 1,

we consider an intersection point of f (u) with g(u) in the interval:

u0 := σa + σc − 1

σa + σc − a − 1
< u < 1. (3.8)

Note that

lim
u→u +0

g(u) = +∞.

0
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If g(1) < f (1), i.e., h
a

< p
1
α , it is easy to see that there is a unique intersection point of f (u) with

g(u) in (u0,1). If g(1) > f (1), i.e., h
a

> p
1
α , there is no intersection point of f (u) with g(u) in

(u0,1).
When σa + σc − 1 > 0, we consider an intersection point of f (u) with g(u) in 0 < u < 1.

Note that

g(0) = σh

σa + σc − 1
> f (0) = 0.

If g(1) < f (1), i.e., h
a

< p
1
α , there is a unique intersection point of f (u) with g(u) in (0,1). If

g(1) > f (1), i.e., h
a

> p
1
α , there is no intersection point of f (u) with g(u) in (0,1).

Note that 0 < y < 1 implies

(σa + σc − a − 1)y + a

h(σ − 1)y + h
= a

h
+ (σc − 1)y

h(σ − 1)y + h
<

a

h
.

Therefore, if y is a solution of (3.7) in (0,1), x < a/h is automatically satisfied.
Summarizing above discussions, we have the following theorem:

Theorem 3.1. For system (3.1), the following statements are true.

(a) Assume α = 0. Then system (3.1) has a positive equilibrium if one of the following conditions
holds:
(1) σa + σc − 1 > 0 and p > 1,
(2) σa + σc − 1 < 0 and 1 < p < σa+σc−a−1

σa+σc−1 .
(b) Suppose α �= 0. Then we have

(i) if h
a

< p
1
α , then system (3.1) has a positive equilibrium,

(ii) if h
a

> p
1
α , then system (3.1) has no positive equilibrium.

Now we consider the stability of the positive equilibrium. The Jacobian matrix at a positive
equilibrium (x, y) is

J =
( −(σa + σc − a − 1)y − a x

y
(hx − a)

y
x
(α + a + (σa + σc − a − 1)y) −pxαy − hx + a

)
.

Its characteristic equation is

λ2 + (
pxαy + hx − a + (σa + σc − a − 1)y + a

)
λ

+ (
(σa + σc − a − 1)y + a

) y

1 − y
− (σc − 1)αy

(σ − 1)y + 1
= 0.

Since 1 − y < (σ − 1)y + 1, we have

det(J ) = [
(σa + σc − a − 1)y + a

] y

1 − y
− (σc − 1)αy

(σ − 1)y + 1

>
[(σa + σc − a − 1)y + a]y − (σc − 1)αy

(σ − 1)y + 1
.

Since a positive equilibrium (x, y) satisfies

0 < y <
−a

<
(σc − 1)α − a

,

σa + σc − a − 1 σa + σc − a − 1
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it is easy to see det(J ) > 0. In addition,

trJ = −pxαy − hx − (σa + σc − a − 1)y.

Using (3.2) and (3.5), we have

trJ = − y

1 − y
− (σc − 1)y

(σ − 1)y + 1
− (σa + σc − a − 1)y − a

< − y

1 − y
− (σc − 1)y

(σ − 1)y + 1

<
−σcy

1 + (σ − 1)y
< 0.

Therefore, we can state the following theorem.

Theorem 3.2. The unique interior equilibrium (x∗, y∗), whenever it exists, is locally asymptoti-
cally stable.

In order to consider its global stability, we now return to the original system (2.1).

Theorem 3.3. If system (2.1) has a unique interior equilibrium (x∗
1 , y∗

1 ), then it is globally stable.

Proof. It suffices to exclude the existence of a limit cycle in (2.1). Take a Dulac function D = 1
xy

and denote the right-hand sides of (2.1) by P and Q, respectively. Then we have

∂(DP )

∂x
+ ∂(DQ)

∂y
= −σ(a + c)

x2
− h

y
+ hσy

x2

< −σ(a + c)

x2
− h

y
+ σa

x2

= −σc

x2
− h

y
< 0.

By the Bendixson–Dulac Theorem, there is no limit cycle in (2.1). Consequently, the positive
equilibrium is globally stable. �
Remark 3.1. The global stability of the positive equilibrium is completely proved when
0 � α � 1. This extends the work of [9] where α = 0 and the work of [7] where α = 1.

4. Discussion

Epidemic models have been proposed and studied in many ways to understand mechanisms
of disease transmissions (see, for example, [3,8,10,12,13,15,16] and the references cited therein).
Ebert et al. [7] proposed a deterministic model with the bilinear incidence and found that parasites
reduce the fecundity and survival of its host, which in turn is regulated both by density-dependent
birth and by the parasite-induced mortality. They used a stochastic version of the model to simu-
late extinction probabilities. Hwang and Kuang [9] found that it is the deterministic model with
the standard incidence that can exhibit the observed parasite-induced host extinction.

In the paper, we considered the model with a more general incidence βNα S
N

I . This incidence
mimics continuous transitions from the bilinear incidence βN S

N
I to the standard incidence β S

N
I .

By the qualitative theory of differential equations [18], we find that host may be extinct in some
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conditions only for the standard incidence, i.e., α = 0. If 0 < α � 1, parasites are shown only to
reduce host density. Increasing of parasite-induced host mortality rate results in a greater degree
of host population depression until the rate of loss of infected hosts begins to have a detrimental
effect on the efficiency of disease transmission. When the level of pathogenicity is very high, in-
fected hosts die before effective transmission is achieved and the disease is thus unable to persist
within the host population. In brief, highly pathogenic organisms are likely to cause their own
extinction but not that of their host. The application is to select highly pathogenic organisms for
the biological control of pest species. Such pathogens may cause high initial mortality within
the pest population in a manner analogous to a single application of a chemical pesticide [2].
Furthermore, we have obtained conditions for the existence of a positive equilibrium. Mean-
while, we have shown that a positive equilibrium, whenever it exists, is globally stable using the
Bendixson–Dulac Theorem.
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