25 research outputs found

    Process-based simulation of growth and overwintering of grassland using the BASGRA model

    Get PDF
    Process-based models (PBM) for simulation of weather dependent grass growth can assist farmers and plant breeders in addressing the challenges of climate change by simulating alternative roads of adaptation. They can also provide management decision support under current conditions. A drawback of existing grass models is that they do not take into account the effect of winter stresses, limiting their use for full-year simulations in areas where winter survival is a key factor for yield security. Here, we present a novel full-year PBM for grassland named BASGRA. It was developed by combining the LINGRA grassland model (Van Oijen et al., 2005a) with models for cold hardening and soil physical winter processes. We present the model and show how it was parameterized for timothy (Phleum pratense L.), the most important forage grass in Scandinavia and parts of North America and Asia. Uniquely, BASGRA simulates the processes taking place in the sward during the transition from summer to winter, including growth cessation and gradual cold hardening, and functions for simulating plant injury due to low temperatures, snow and ice affecting regrowth in spring. For the calibration, we used detailed data from five different locations in Norway, covering a wide range of agroclimatic regions, day lengths (latitudes from 59◦ to 70◦ N) and soil conditions. The total dataset included 11 variables, notably above-ground dry matter, leaf area index, tiller density, content of C reserves, and frost tolerance. All data were used in the calibration. When BASGRA was run with the maximum a-posteriori (MAP) parameter vector from the single, Bayesian calibration, nearly all measured variables were simulated to an overall normalized root mean squared error (NRMSE) < 0.5. For many site × experiment combinations, NRMSE was <0.3. The temporal dynamics were captured well for most variables, as evaluated by comparing simulated time courses versus data for the individual sites. The results may suggest that BASGRA is a reasonably robust model, allowing for simulation of growth and several important underlying processes with acceptable accuracy for a range of agroclimatic conditions. However, the robustness of the model needs to be tested further using independent data from a wide range of growing conditions. Finally we show an example of application of the model, comparing overwintering risks in two climatically different sites, and discuss future model applications. Further development work should include improved simulation of the dynamics of C reserves, and validation of winter tiller dynamics against independent data

    Effects of climate change on grassland biodiversity and productivity: the need for a diversity of models

    Get PDF
    There is increasing evidence that the impact of climate change on the productivity of grasslands will at least partly depend on their biodiversity. A high level of biodiversity may confer stability to grassland ecosystems against environmental change, but there are also direct effects of biodiversity on the quantity and quality of grassland productivity. To explain the manifold interactions, and to predict future climatic responses, models may be used. However, models designed for studying the interaction between biodiversity and productivity tend to be structurally different from models for studying the effects of climatic impacts. Here we review the literature on the impacts of climate change on biodiversity and productivity of grasslands. We first discuss the availability of data for model development. Then we analyse strengths and weaknesses of three types of model: ecological, process-based and integrated. We discuss the merits of this model diversity and the scope for merging different model types

    Effects of climate change on grassland biodiversity and productivity: the need for a diversity of models

    Get PDF
    There is increasing evidence that the impact of climate change on the productivity of grasslands will at least partly depend on their biodiversity. A high level of biodiversity may confer stability to grassland ecosystems against environmental change, but there are also direct effects of biodiversity on the quantity and quality of grassland productivity. To explain the manifold interactions, and to predict future climatic responses, models may be used. However, models designed for studying the interaction between biodiversity and productivity tend to be structurally different from models for studying the effects of climatic impacts. Here we review the literature on the impacts of climate change on biodiversity and productivity of grasslands. We first discuss the availability of data for model development. Then we analyse strengths and weaknesses of three types of model: ecological, process-based and integrated. We discuss the merits of this model diversity and the scope for merging different model types

    Calibration Bayésienne d'un modèle d'étude d'écosystème prairial : outils et applications à l'échelle de l'Europe

    Get PDF
    Grasslands cover 45% of the agricultural area in France and 40% in Europe. Grassland ecosystems have a central role in the climate change context, not only because they are impacted by climate changes but also because grasslands contribute to greenhouse gas emissions. The aim of this thesis was to contribute to the assessment of uncertainties in the outputs of grassland simulation models, which are used in impact studies, with focus on model parameterization. In particular, we used the Bayesian statistical method, based on Bayes’ theorem, to calibrate the parameters of a reference model, and thus improve performance by reducing the uncertainty in the parameters and, consequently, in the outputs provided by models. Our approach is essentially based on the use of the grassland ecosystem model PaSim (Pasture Simulation model) already applied in a variety of international projects to simulate the impact of climate changes on grassland systems. The originality of this thesis was to adapt the Bayesian method to a complex ecosystem model such as PaSim (applied in the context of altered climate and across the European territory) and show its potential benefits in reducing uncertainty and improving the quality of model outputs. This was obtained by combining statistical methods (Bayesian techniques and sensitivity analysis with the method of Morris) and computing tools (R code -PaSim coupling and use of cluster computing resources). We have first produced a new parameterization for grassland sites under drought conditions, and then a common parameterization for European grasslands. We have also provided a generic software tool for calibration for reuse with other models and sites. Finally, we have evaluated the performance of the calibrated model through the Bayesian technique against data from validation sites. The results have confirmed the efficiency of this technique for reducing uncertainty and improving the reliability of simulation outputs.Les prairies représentent 45% de la surface agricole en France et 40% en Europe, ce qui montre qu’il s’agit d’un secteur important particulièrement dans un contexte de changement climatique où les prairies contribuent d’un côté aux émissions de gaz à effet de serre et en sont impactées de l’autre côté. L’enjeu de cette thèse a été de contribuer à l’évaluation des incertitudes dans les sorties de modèles de simulation de prairies (et utilisés dans les études d’impact aux changements climatiques) dépendant du paramétrage du modèle. Nous avons fait appel aux méthodes de la statistique Bayésienne, basées sur le théorème de Bayes, afin de calibrer les paramètres d’un modèle référent et améliorer ainsi ses résultats en réduisant l’incertitude liée à ses paramètres et, par conséquent, à ses sorties. Notre démarche s’est basée essentiellement sur l’utilisation du modèle d’écosystème prairial PaSim, déjà utilisé dans plusieurs projets européens pour simuler l’impact des changements climatiques sur les prairies. L’originalité de notre travail de thèse a été d’adapter la méthode Bayésienne à un modèle d’écosystème complexe comme PaSim (appliqué dans un contexte de climat altéré et à l’échelle du territoire européen) et de montrer ses avantages potentiels dans la réduction d’incertitudes et l’amélioration des résultats, en combinant notamment méthodes statistiques (technique Bayésienne et analyse de sensibilité avec la méthode de Morris) et outils informatiques (couplage code R-PaSim et utilisation d’un cluster de calcul). Cela nous a conduit à produire d’abord un nouveau paramétrage pour des sites prairiaux soumis à des conditions de sécheresse, et ensuite à un paramétrage commun pour les prairies européennes. Nous avons également fourni un outil informatique de calibration générique pouvant être réutilisé avec d’autres modèles et sur d’autres sites. Enfin, nous avons évalué la performance du modèle calibré par le biais de la technique Bayésienne sur des sites de validation, et dont les résultats ont confirmé l’efficacité de cette technique pour la réduction d’incertitude et l’amélioration de la fiabilité des sorties

    Soil Greenhouse Gases emissions in Mediterranean forage systems

    Get PDF
    Many studies on the impacts of soil management on Greenhouse Gases (GHG) emissions were carried out in the last years. However, field studies on GHG emissions in forage systems under semi-arid Mediterranean conditions are still limited. Modelling approaches are required for predicting the long term performances of Mediterranean grasslands under different environmental and management strategies, but so far very few attempts were made for these environments. The overall aim of the PhD dissertation was to analyse the processes and the management options that influence the soil C cycle and GHG emissions in two typologies of Mediterranean forage systems: extensively managed pastures and irrigated maize-based systems. Field experiments were carried out for both forage systems, while a modelling approach was undertaken only for the pastures. The PaSim model was assessed for its ability to simulate C exchanges in Mediterranean grasslands. A new model parameterization was derived for Mediterranean conditions from a set of ecophysiological parameters. The obtained results highlight the reliability of PaSim to simulate C cycle components in Mediterranean grasslands although some improvements are required. In the irrigated forage systems, soil GHG and the net Global Warming Potential were compared under different fertilization strategies, which showed contrasting impacts on GHG emissions, providing some insights on their different potential mitigation roles under Mediterranean conditions

    The use of biogeochemical models to evaluate mitigation of greenhouse gas emissions from managed grasslands

    Get PDF
    Simulation models quantify the impacts on carbon (C) and nitrogen (N) cycling in grasslandsystems caused by changes in management practices. To support agricultural policies, it is however important to contrast the responses of alternative models, which can differ greatly in their treatment of key processes and in their response to management. We applied eight biogeochemical models at five grassland sites (in France, New Zealand, Switzerland, United Kingdom and United States) to compare the sensitivity of modelled C and N fluxes to changes in the density of grazing animals (from 100% to 50% of the original livestock densities), also in combination with decreasing N fertilization levels (reduced to zero from the initial levels). Simulated multi-model median values indicated that input reduction would lead to an increase in the C sink strength (negative net ecosystem C exchange) in intensive grazing systems: −64 ± 74 g C m−2 yr−1 (animal density reduction) and −81 ± 74 g C m−2 yr−1(N and animal density reduction), against the baseline of −30.5 ± 69.5 g C m−2 yr−1 (LSU [livestock units] ≥ 0.76 ha−1 yr−1). Simulations also indicated a strong effect of N fertilizer reduction on N fluxes, e.g. N2O-N emissions decreased from 0.34 ± 0.22 (baseline) to 0.1 ± 0.05 g N m−2 yr−1 (no N fertilization). Simulated decline in grazing intensity had only limited impact on the N balance. The simulated pattern of enteric methane emissions was dominated by high model-to-model variability. The reduction in simulated offtake (animal intake + cut biomass) led to a doubling in net primary production per animal (increased by 11.6 ± 8.1 t C LSU−1 yr−1 across sites). The highest N2O-N intensities (N2O-N/offtake) were simulated at mown and extensively grazed arid sites. We show the possibility of using grassland models to determine sound mitigation practices while quantifying the uncertainties associated with the simulated outputs

    Report on the meta-analysis of crop modelling for climate change and food security survey

    Get PDF

    Modelling the impact of climate change on livestock productivity at the farm-scale: An inventory of LiveM outcomes

    Get PDF
    The report presented here provides an inventory of reports and conference papers  produced by the partners of the livestock and grassland modelling theme (LiveM) of the  Modelling European Agriculture with Climate Change for Food Security (MACSUR)  knowledge hub. The findings presented illustrate the diverse nature of the multidisciplinary  LiveM research community, and provide a reference source for those seeking  to identify and pull out farm-level modelling outputs from the work of MACSUR and its  partners. The survey of farm-scale outputs from LiveM revealed the interdependent, dual  role of a knowledge hub: to increase the capacity of modelling to meet stakeholder and  societal needs under climate change, and to apply that increased capacity to provide new  understanding and solutions at the policy and (the focus here) farm scale. While capacity  building work across disciplines is time-consuming, difficult, and to a large extent invisible  to stakeholders, such work is vital to ensuring that subsequent scientific outcomes reflect  best practice, and integrated expertise. Long term, sustained funding of network-based  capacity building activities is highlighted as essential to ensuring that the farm-scale  modelling work highlighted here can continue to build on ongoing improvements in model  quality, flexibility and stakeholder relevance
    corecore