233 research outputs found

    A Comprehensive Approach to WSN-Based ITS Applications: A Survey

    Get PDF
    In order to perform sensing tasks, most current Intelligent Transportation Systems (ITS) rely on expensive sensors, which offer only limited functionality. A more recent trend consists of using Wireless Sensor Networks (WSN) for such purpose, which reduces the required investment and enables the development of new collaborative and intelligent applications that further contribute to improve both driving safety and traffic efficiency. This paper surveys the application of WSNs to such ITS scenarios, tackling the main issues that may arise when developing these systems. The paper is divided into sections which address different matters including vehicle detection and classification as well as the selection of appropriate communication protocols, network architecture, topology and some important design parameters. In addition, in line with the multiplicity of different technologies that take part in ITS, it does not consider WSNs just as stand-alone systems, but also as key components of heterogeneous systems cooperating along with other technologies employed in vehicular scenarios

    Resilient Machine Learning:Advancement, Barriers, and Opportunities in the Nuclear Industry

    Get PDF
    The widespread adoption and success of Machine Learning (ML) technologies depend on thorough testing of the resilience and robustness to adversarial attacks. The testing should focus on both the model and the data. It is necessary to build robust and resilient systems to withstand disruptions and remain functional despite the action of adversaries, specifically in the security-sensitive Nuclear Industry (NI), where consequences can be fatal in terms of both human lives and assets. We analyse ML-based research works that have investigated adversaries and defence strategies in the NI . We then present the progress in the adoption of ML techniques, identify use cases where adversaries can threaten the ML-enabled systems, and finally identify the progress on building Resilient Machine Learning (rML) systems entirely focusing on the NI domain

    Accident prediction using machine learning:analyzing weather conditions, and model performance

    Get PDF
    Abstract. The primary focus of this study was to investigate the impact of weather and road conditions on the severity of accidents and to determine the feasibility of machine learning models in accurately predicting the likelihood of such incidents. The research was centered on two key research questions. Firstly, the study examined the influence of weather and road conditions on accident severity and identified the most related factors contributing to accidents. We utilized an open-source accident dataset, which was preprocessed using techniques like variable selection, missing data elimination, and data balancing through the Synthetic Minority Over-sampling Technique (SMOTE). Chi-square statistical analysis was performed, suggesting that all weather-related variables are more or less associated with the severity of accidents. Visibility and temperature were found to be the most critical factors affecting the severity of road accidents. Hence, appropriate measures such as implementing effective fog dispersal systems, heatwave alerts, or improved road maintenance during extreme temperatures could help reduce accident severity. Secondly, the research evaluated the ability of machine learning models including decision trees, random forests, naive bayes, extreme gradient boost, and neural networks to predict accident likelihood. The models’ performance was gauged using metrics like accuracy, precision, recall, and F1 score. The Random Forest model emerged as the most reliable and accurate model for predicting accidents, with an overall accuracy of 98.53%. The Decision Tree model also showed high overall accuracy (95.33%), indicating its reliability. However, the Naive Bayes model showed the lowest accuracy (63.31%) and was deemed less reliable in this context. It is concluded that machine learning models can be effectively used to predict the likelihood of accidents, with models like Random Forest and Decision Tree proving the most effective. However, the effectiveness of each model may vary depending on the dataset and context, necessitating further testing and validation for real-world implementation. These findings not only provide insight into the factors affecting accident severity but also open a promising avenue in employing machine learning techniques for proactive accident prediction and mitigation. Future studies can aim to refine the models further and potentially integrate them into traffic management systems to enhance road safety

    Lightweight Trust Model with Machine Learning scheme for secure privacy in VANET

    Get PDF
    A vehicular ad hoc network (VANETs) is transforming public transport into a safer wireless network, increasing its safety and efficiency. The VANET consists of several nodes which include RSU (Roadside Units), vehicles, traffic signals, and other wireless communication devices that are communicating sensitive information in a network. Nevertheless, security threats are increasing day by day because of dependency on network infrastructure, dynamic nature, and control technologies used in VANET. The security threats could be addressed widely by using machine learning and artificial intelligence on the road transport nodes. In this paper, a comparison of trust and cryptography was presented based on applications and security requirements of VANET

    Lava Flow Hazard Prediction And Monitoring With Unmanned Aerial Systems: Case Studies From The 2014-2015 Pāhoa Lava Flow Crisis, Hawai‘i

    Get PDF
    M.S. Thesis. University of Hawaiʻi at Mānoa 2018

    Developing an advanced collision risk model for autonomous vehicles

    Get PDF
    Aiming at improving road safety, car manufacturers and researchers are verging upon autonomous vehicles. In recent years, collision prediction methods of autonomous vehicles have begun incorporating contextual information such as information about the traffic environment and the relative motion of other traffic participants but still fail to anticipate traffic scenarios of high complexity. During the past two decades, the problem of real-time collision prediction has also been investigated by traffic engineers. In the traffic engineering approach, a collision occurrence can potentially be predicted in real-time based on available data on traffic dynamics such as the average speed and flow of vehicles on a road segment. This thesis attempts to integrate vehicle-level collision prediction approaches for autonomous vehicles with network-level collision prediction, as studied by traffic engineers. [Continues.

    Enhancing Road Infrastructure Monitoring: Integrating Drones for Weather-Aware Pothole Detection

    Get PDF
    The abstract outlines the research proposal focused on the utilization of Unmanned Aerial Vehicles (UAVs) for monitoring potholes in road infrastructure affected by various weather conditions. The study aims to investigate how different materials used to fill potholes, such as water, grass, sand, and snow-ice, are impacted by seasonal weather changes, ultimately affecting the performance of pavement structures. By integrating weather-aware monitoring techniques, the research seeks to enhance the rigidity and resilience of road surfaces, thereby contributing to more effective pavement management systems. The proposed methodology involves UAV image-based monitoring combined with advanced super-resolution algorithms to improve image refinement, particularly at high flight altitudes. Through case studies and experimental analysis, the study aims to assess the geometric precision of 3D models generated from aerial images, with a specific focus on road pavement distress monitoring. Overall, the research aims to address the challenges of traditional road failure detection methods by exploring cost-effective 3D detection techniques using UAV technology, thereby ensuring safer roadways for all users

    4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022)

    Full text link
    Research methods in economics and social sciences are evolving with the increasing availability of Internet and Big Data sources of information. As these sources, methods, and applications become more interdisciplinary, the 4th International Conference on Advanced Research Methods and Analytics (CARMA) is a forum for researchers and practitioners to exchange ideas and advances on how emerging research methods and sources are applied to different fields of social sciences as well as to discuss current and future challenges. Due to the covid pandemic, CARMA 2022 is planned as a virtual and face-to-face conference, simultaneouslyDoménech I De Soria, J.; Vicente Cuervo, MR. (2022). 4th. International Conference on Advanced Research Methods and Analytics (CARMA 2022). Editorial Universitat PolitÚcnica de ValÚncia. https://doi.org/10.4995/CARMA2022.2022.1595
    • 

    corecore