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The widespread adoption and success of Machine Learning (ML) technologies depend on thorough testing
of the resilience and robustness to adversarial attacks. The testing should focus on both the model and the data.
It is necessary to build robust and resilient systems to withstand disruptions and remain functional despite
the action of adversaries, specifically in the security-sensitive Nuclear Industry (NI), where consequences can
be fatal in terms of both human lives and assets. We analyse ML-based research works that have investigated
adversaries and defence strategies in the NI. We then present the progress in the adoption of ML techniques,
identify use cases where adversaries can threaten the ML-enabled systems, and finally identify the progress
on building Resilient Machine Learning (rML) systems entirely focusing on the NI domain.
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1 INTRODUCTION

The Nuclear Industry (NI) is a highly complex and security-sensitive industry with strict safety
regulations. It needs technologies that can be used in environments with no human accessibility
such as small tunnels with radiation, reactors containing hazardous elements, and so on. Despite
the regulations, it is reported that about 60% of major failures in the Nuclear Power Plant (NPP)

are caused by human errors [70]. Consequently, there have been efforts to eliminate human errors
by integrating automation in the industry [62]. Certain tasks and sectors within the NI can benefit
from automation, as several studies have presented their attempts to automate tasks using Ma-

chine Learning (ML) techniques. These tasks range from “Fault Diagnosis” [132, 154], “Remote
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Fig. 1. Nuclear energy generator with pressurised water reactor. Source: Reference [51].

Inspection” [28], “Nuclear Fuel Management” [78] to “Nuclear Decommissioning” [162], to name a
few. A comprehensive list of existing works, the benefits, and the risks of using ML in the indus-
try is discussed in detail in Section 4.1. But first, we start the article by introducing the NI and
Artificial Intelligence (AI).

Nuclear Industry and the processes within it, revolve around the nuclear reaction that pro-
duces nuclear energy. Nuclear energy is a form of energy released from the nucleus of the atom
as a result of fission or fusion [51]. In fission, the nuclei of atoms split into several parts and in
fusion multiple nuclei fuse. For example, in fission reaction, an incident neutron splits Uranium-
235 into Barium nucleus and a Krypton nucleus and two or three neutrons [51]. Figure 1 de-
picts a simplified nuclear power generator using fission with basic components of a typical nu-
clear plant. A typical nuclear energy plant has a reactor along with a water supply, pressuriser,
condenser, and so on. The nuclear plant and industry, in general, comprises both physical- and
software-based infrastructures where monitoring, coordination, controlling, and integration of
the operations are imperative and need to adhere to the safety regulations [136]. The faults can
arise from sensor degradation to external attacks and its consequences can be from reduced per-
formance to safety hazards [107]. Nuclear-related incidents can have severe consequences; we
summarise some of the real-world nuclear disasters and their consequences due to various fac-
tors such as human error, safety test violation, and natural disasters (e.g., earthquake) in Table 1.
To eliminate and reduce these incidents, one way is to build an intelligent and robust system in
place.

Artificial Intelligence (AI) is a concept to create intelligent machines that can simulate
human behaviour, and ML is the application that uses statistical methods and historical data to
learn human behaviour without being programmed explicitly. The advancement in computational
processing both in software (e.g., cloud computing, distributional computing, Compute Unified

Device Architecture (CUDA), Tensorflow, Pytorch) and in hardware such as Graphical
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Table 1. Examples of Major Real-World Nuclear Disasters in History

Incident When Where Explanation Cause Consequence Reference

Three Mile
Island
Accident

1979 United
States

Misinterpretation of reac-
tor condition by opera-
tors.

Operator
Misinterpretation
and Misjudgement

Limited radioactive
gas release; no
direct fatalities

[163]

Chernobyl
Disaster

1986 Soviet
Union
(now
Ukraine)

Safety test violation
leading to reactor
explosion and fire.

Operational and
Safety Protocol
Violation

Extensive
environmental
contamination;
large-scale human
impact

[44]

Tokaimura
Nuclear
Accident

1999 Japan Excessive addition of ura-
nium solution to a tank.

Safety Protocol
Violation

Two fatalities;
radiation exposure
to workers

[146]

Davis-Besse
Incident

2002 United
States

Severe corrosion problem
on reactor vessel head due
to maintenance issues.

Maintenance and
Inspection Error

No fatalities;
potential for severe
accident prevented

[33]

Fukushima
Daiichi
Nuclear
Disaster

2011 Japan Tsunami and earthquake
leading to equipment fail-
ures and meltdowns.

Underestimation of
Natural Disaster
Risk

Major radiation
release; long-term
environmental
impact

[32]

Processing Unit (GPU) and Tensor Processing Unit (TPU) has led to the rapid progression
in AI and ML. The benefits of adopting intelligent learning techniques in the NI can be highly
rewarding. However, any malfunction in such automation can lead to economic loss as well
as human lives. It is an extremely precarious environment that can, on one hand, benefit from
automation but, on the other hand, can lead to a catastrophe.

In recent years, particularly with the introduction of deep learning, the performance of ML
models has significantly improved and their adoptions have increased in various industries for
tasks such as object classification, object recognition, natural language understanding, speech
recognition and generation, and many more [67, 93]. This widespread adoption of ML techniques
has also manifested the rise in malicious manipulation of ML algorithms. These manipulations,
commonly known as adversarial attacks, can influence the decision process of ML techniques
producing results favouring attackers’ objectives [15, 56, 57]. Different types of adversarial attacks
can be classified based on their goals and capabilities. The attacks could be white-box attacks,
black-box attacks, evasive, poisoning, and exploratory attacks; they are explained in more detail
in Table 3. In this article, we investigate the applications of ML and their security focusing on
the NI. To comprehend the stage of resilient ML in the NI, we conducted a gap analysis on the
adversarial attacks and defensive strategies in ML-enabled applications only focusing on the NI.
The main findings of this work are as follows:

— We identify various applications adopting ML techniques in the NI.
— We observe that the adoption of ML techniques is slowly emerging in the NI, however, the

study of the security and resilience towards the feared events in ML-enabled nuclear appli-
cations is still in the early stage.

— We identify various targeted nuclear use cases for the adversarial attacks and threats gener-
ated by the attacks.

— We identify the opportunities and barriers to the adoption of Resilient Machine Learning

(rML) in the NI.
— We promote various open research issues and propose future research directions in

ML-driven nuclear operations and processes.

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Table 2. Acronyms Used in the Article

Acronym Definition

AI Artificial Intelligence
aML Adversarial Machine Learning
API Application Program Interface
BIM Basic Iterative Method
CPS Cyber Physical Systems
CW Carlini-Wagner
CUDA Compute Unified Device Architecture
DCN Deep Contractive Networks
DNN Deep neural networks
FGSM Fast Gradient Simple Method
GAN Generative Adversarial Network
GPU Deep neural networks
JSMA Jacobian-based Saliency Map Attack
MIM Momentum Iterative Method
ML Machine Learning
NPP Nuclear Power Plant
PGD Projected Gradient Descent
rML Resilient Machine Learning
ISR Intelligence, surveillance and reconnaissance
SVM Support Vector Machine
TPU Tensor Processing Unit
UAB Universal Adversarial Perturbation

The article is structured as follows: We define acronyms used in the article in Table 2. Section 2
describes the methodology of collecting papers to review. Section 3 provides generic background
on ML, Adversarial Machine Learning (aML), and rML. This section specifically presents the
threat model in ML, various types of adversarial attacks, and discusses various defensive strategies
against adversarial attacks on ML. Section 4 includes a discussion on the integration of ML in
the NI, barriers and concerns of adopting ML techniques in the NI, identification of the nuclear
sectors adopting ML techniques for different scenarios, and the uses of different types on ML
techniques in the industry. This section also presents a discussion of aML and rML in the NI.
Last, Section 5 reports various open research directions in the domain. Section 6 concludes the
work.

2 RESEARCH METHODOLOGY

This work is related to the study of defence systems applied in aML techniques focusing on the
NI. We used various combinations of words and phrases to find relevant research works from the
plethora of research publications in the digital world. We combined words and phrases including
adversar*, machine learn*, resilien*, artificial intelligen*, and nuclear to collect the literature in the
field. We used two scientific databases, scopus1 and web of knowledge,2 to search the relevant
articles. In total, we obtained more than 700 documents. We filtered a large number of papers by
reading their title and abstracts and narrowed down the list to 120 papers systematically. These

1https://www.scopus.com/
2https://www.webofknowledge.com/
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selected papers are strictly the study of AI in the NI. On reading each paper in detail, we found
that there are not many works researching rML in nuclear systems. We obtained less than 10% of
relevant papers that have studied adversarial attacks and defence mechanisms on ML algorithms
focusing on the nuclear systems’ scenarios. We also conducted backwards and forward citation
trails from the narrowed-down papers to identify relevant papers and, at the end, we studied 186
publications.

3 BACKGROUND IN RESILIENT MACHINE LEARNING

In this section, we briefly discuss the background topics and relevant publications in rML for gen-
eral purposes. For in-depth literature reviews on adversarial attacks and defensive strategies in ML
algorithms, we direct the readers to References [3, 27, 102, 124, 137]. Specifically, the review pre-
sented in References [124] and [102] describes Cyber Physical Systems (CPS) and the progress
of such systems towards their safety and resilience against adversarial attacks.

3.1 Adversarial Machine Learning (aML)

In simple terms, ML is the study of automated techniques that make use of large sets of data and
algorithms to imitate and learn human behaviour [19, 71]. This field has undergone significant
progress in the past few decades. As the technology towards AI matured, multiple learning meth-
ods have been proposed [67]. The learning method that requires labelled data to train learning
algorithms is supervised learning. Some widely used supervised learning methods include but are
not limited to Neural Networks, Naive Bayes, Linear regression, Logistic regression, and Support

Vector Machine (SVM). Unlike supervised learning, unsupervised ML does not need labelled data
to learn. Unsupervised learning algorithms discover hidden patterns within data without the need
for human intervention or labelling [19]. The progress of ML methods has led to the adoption of
them in diverse domains. However, a rise in the adversarial attacks in the learning models is also
undeniable [157]. Lately, researchers are exploring vulnerabilities of ML models and identified that
the models may be susceptible even to a small perturbation [15, 57, 125, 157]. The perturbation can
be applied via different mediums, e.g., on the training data (e.g., deliberated to cause incorrect clas-
sification) [35], on the learning model (e.g., manipulation in parameters or features of the model).
These vulnerabilities can affect their trustworthiness and applying ML in security-sensitive envi-
ronments such as nuclear facilities can have irreversible consequences and be dangerous. In the
next section, we briefly discuss a threat model that comprises ML attack surface, adversarial capa-
bilities, and adversarial goals.

3.1.1 Threat Model in Machine Learning. ML models are susceptible to adversarial actions; the
security and privacy of the ML can be quantified by comprehending the adversarial capabilities
and adversarial goals [57, 127, 128, 157]. We list some widely explored adversarial attacks in Table 3.
We recommend research works [57, 127] for a detailed exploration of generic adversarial attacks.
Based on the strength of adversarial attacks, a threat model has been proposed that comprises ML
attack surface, adversarial capabilities, and adversarial goals [127, 128].

— ML Attack Surface: Broadly, an ML system has three main components: input, processing,
and output. Adversaries can attack in any component, for example, they can attempt to
manipulate the collection and processing of data, corrupt the model, or even tamper with
the output [128]. Figure 2 shows an attack surface in a generic ML model [128]. An attack
can happen at any stage, from the collection of data to the processing of the data and can
also be present in the learning model. If an adversary is successful, then it will produce a
wrong result that can have devastating consequences. If we consider autonomous driving,
the input may be images of road signs and the task would be to classify the road sign into

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Fig. 2. System’s attack surface: The generic ML model pipeline [128].

Fig. 3. A taxonomy of adversaries against ML models based on adversarial goals and adversarial capabilities

[127].

one of the road signs (output). In case of an adversarial attack, if the “Go” sign is shown
instead of the “Stop” sign in a traffic signal, then autonomous vehicles will continue to move
when they should have stopped, which can lead to accidents costing human lives and assets.

— Adversarial Capabilities: A threat model can be defined by the actions and information
based on the level of access to adversaries. Depending upon the type of information and
access level, the adversaries can impose stronger or weaker adversarial attacks, as depicted
in Figure 3. Adversarial capabilities try to identify where and how attackers can subvert the
systems under attack [128].

— Adversarial Goals: One of the primary objectives of an adversary is to attack the ML model
and generate the incorrect output. There can be various ways, such as by reducing the confi-
dence of the model prediction and misclassifying the results. Therefore, modelling the secu-
rity and safety of an ML model against adversaries can be structured around a well-defined
taxonomy of adversarial capabilities and goals, proposed by Reference [127]. The taxonomy
is shown in Figure 3.
Based on the threat model discussed in Section 3.1.1, we list some widely explored adversarial
attacks in Table 3. We recommend readers to read References [57, 69, 127, 157] for a detailed
exploration and discussion on adversarial attacks.

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Table 3. List of Popular Adversarial Attacks

Attack Description Reference

Exploratory It tries to gain access and modify ML models. For this attack, ad-
versarial examples are crafted in such a way that the model passes
them as real examples. Some of the popular types of exploratory
attacks are Model Inversion, model extraction via Application

Program Interface (API), and membership inference attacks.

[18, 127]

Evasive It is an adversarial attack that forces an ML model to provide
false prediction and evade detection. Generative Adversarial

Network (GAN)-based attacks, adversarial example generation,
and adversarial classification are some of the notable methods to
generate an evasive attack.

[15, 18, 127]

Poisoning It tampers with training data, leading to predicting the correct
output from the learning model. The goal of the attacker is to get
their tampered data (adversarial examples) to be accepted in the
training data.

[16–18, 127]

White-box It is a type of attack where an attacker knows the architecture of
ML models of the systems, e.g., the number of layers in a neural
network, parameters’ values, and algorithms such as gradient op-
timisation, activation function, and so on. With this information,
the model can be exploited by altering the input by crafting per-
turbations.

[27, 43, 127]

Black-box It is a type of attack where an attacker does not have any
knowledge about the ML model except the input and the output
of the model. Here, attackers may have access to the settings of
past inputs to analyse the vulnerability of the model.

[126, 127]

3.1.2 Methods for Adversarial Attacks. The vulnerabilities of neural networks to adversarial
examples were initially studied by Reference [157]. Szegedy et al. stated that imperceptible adver-
sarial perturbations (examples) can be introduced to data to mislead ML models [157]. There are
several research works carried out in the literature to minimise errors while calculating the ad-
versarial sample. We present some of the notable works in aML literature in Table 4, however, for
a more detailed discussion on adversarial attack-generating methods, we would like to direct the
reader to References [4, 27, 128].

3.2 Resilient Machine Learning (rML)

ML models need to be secure, trustworthy, robust, and resilient. While resilience can be associated
with the ability to return to normal operations over an acceptable period after the disruption in
the operations, robustness is the ability to maintain operations during a crisis [21]. With the
resilience and robustness in place on the systems, there can be increased trust and security towards
the systems. Many efforts have been invested to achieve such salient features; some of them are
understanding and generating different attacks [22, 25, 42, 56, 173], detecting adversarial examples
[49, 108, 112], defending already trained models [61, 61], training robust models [92, 109, 114],

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Table 4. Widely Used aML Methods

Methods Definition Reference

Fast Gradient Simple
Method (FGSM)

It calculates the gradient of the cost function with re-
spect to the input of the neural network.

[57]

Basic Iterative
Method (BIM)

Reference [92] extended FGSM to improve the perfor-
mance by running a small step size iterative optimiser
multiple times, while clipping the intermediate adversar-
ial samples after each step ensuring to be in the range of
an original input.

[92]

Projected Gradient
Descent (PGD)

It is similar to BIM, while BIM uses a negative loss func-
tion, the loss function is explored by re-starting the gra-
dient descent from many points in the vector norm of
infinity L∞ around the input examples in PGD.

[109]

Momentum

Iterative Method

(MIM)

Gradient descent algorithms are accelerated by
accumulating a velocity vector in the gradient direction
of the loss function across iterations.

[42]

Carlini-Wagner

(CW)

It creates an adversarial instance by finding the
smallest noise added to an image that will change the
classification to a class in such a way that the output is
still in the valid range.

[25]

Universal

Adversarial

Perturbation (UAB)

It is computed to fool a network on all data in the
dataset rather than a single input data with high
probability.

[116]

Jacobian-based

Saliency Map

Attack (JSMA)

It uses the forward derivative to construct adversarial
saliency maps, which show input features to include in
perturbation to produce adversarial samples.

[127]

DeepFool It aims at minimising the distance between perturbed
samples and the original samples by iteratively adding
the perturbations and estimating the decision
boundaries between the classes.

[117]

understanding the weakness and vulnerability [48, 148], and more. Some of the defensive strategies
are implemented during the training phase and on training data, while others are implemented
during the testing phase. For example, while training the model, adding adversarial data in the
training set can help the learning model become resilient to adversarial perturbations. This is one
of the ways to tackle adversarial attacks. Table 5 presents several defensive methods proposed in
the literature.

4 INTEGRATION OF INTELLIGENT OPERATIONS IN THE NUCLEAR INDUSTRY

The NI comprises activities that provide the equipment and services necessary for the construc-
tion, supply, and management of nuclear power plants [160, 161]. The industry is inherently
complex and has technically challenging engineering systems that consist of numerous com-
ponents and interdependent systems. Many hazardous elements are involved in the systems,
such as Uranium and Plutonium [161]. Hence, they must operate safely and securely. With the

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Table 5. Widely Used Defensive Strategies for Adversarial Attacks

Method Definition Reference

Brute-force
adversarial training

Adversarial training is a standard brute force approach where the
defending method generates adversarial examples and augments
these perturbed data into the training set while training the tar-
geted model.

[179]

Data Randomisation This technique attempts to randomise the effects of adversarial per-
turbations. Reference [23] proposed the technique for randomly
shuffling the order of data in memory, which makes it more diffi-
cult for attackers to exploit memory errors.

[23]

Deep Contractive
Network

The Deep Contractive Networks (DCN) works by adding a
smoothness penalty to the loss function. This penalty encourages
the network to learn features that are smooth and invariant to
small perturbations, which makes it more difficult for attackers to
generate adversarial examples that will fool the network.

[58]

Gradient Masking Adversarial examples generation techniques access the gradient of
ML models to generate adversarial attacks on the model. Gradient
masking is one of the techniques that denies access to the gradient
details to the attackers.

[106, 127, 138]

Defensive Distillation Distillation is used for distilling the knowledge of a more complex
neural network into a smaller network. They used it as a technique
for model compression, where a small model is trained to imitate
a large and complex one to obtain computational savings.

[129]

DeepCloak It is a defensive method that utilises a masking layer, where the
layer is inserted just before the layer that handles classification.
The added layer is explicitly trained by a forward-passing clean
and adversarial pair of objects (e.g., images), and it encodes the
differences between the output features of the previous layers for
those pairs of objects.

[52]

Feature squeezing It reduces the complexity of representing the data so the adversar-
ial perturbations disappear because of low sensitivity, as shown in
Figure 3. It reduces the search space available to an adversary by
combining samples that correspond to many different feature vec-
tors in the original space into a single sample.

[175]

involvement of radiation levels and extremely harsh and hazardous environments, human access
is mostly restrained in many nuclear facilities. Building autonomous systems that can operate
safely in such hazardous environments is preferable and beneficial. If the industry is to adopt ML
techniques that can operate autonomously, then machines need to learn the operation as humans
do and make decisions accordingly. Any wrong decision can be expensive in terms of human
lives, as well as the economy. The NI covers a wide range of security-sensitive tasks, from nuclear
decommissioning to nuclear fuel management. While Figure 4 shows the various nuclear sectors
in the industry, Table 6 exhibits several applications mapped to the sectors presented in Figure 4.
It can be seen that researchers have applied ML techniques to various applications. For example,
cracks detection in underwater surfaces in NPPs [28, 40, 147], crack detection in the metallic
surface in NPPs [29], identification of accidents like drop off a control rod [153], fault diagnosis in

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Fig. 4. Nuclear industry–related tasks that can leverage ML.

the nuclear facilities, fuel management, prediction of hydrogen concentration [30, 82], pressure
vessel water level estimation [83, 89], loss of coolant accident in a nuclear reactor [120], and many
more. NI is thriving to innovate, for example, to build safe and affordable energy, and existing
NPP are committed to improving the safety of human lives and maintaining smooth operation in
the facilities so there is a potential of high reward in embedding AI in the industry [72].

4.1 Machine Learning in the Nuclear Industry

In this section, we discuss existing applications of ML in the NI that have adopted ML techniques.
We mention the references that have adopted ML for each task; the complete list of tasks and
references is listed in Table 6.

— Fault Diagnosis identifies any abnormal activities in the nuclear facilities [154]. Faults can
be sensor failure, sensor blockage, cracks in the walls, the reactor, and more. Since nuclear
facilities can have multiple components including sensors, actuators, and controllers, man-
ual identification of the precise location of faults can be a challenging task. Therefore, the
adoption of ML techniques to identify faults autonomously can be hugely beneficial. ML
techniques can help ease challenges such as learning adversaries from sensors, identifying
patterns, diagnosing abnormality [132], identification of sensor failures in boiling water reac-
tor, checking sensor condition, control systems to tolerating faults including loss of coolant
accident, ejection of control rod, and so on [65].

— Remote inspection of the components of NPP is an important task of the NI and needs to
be carried out at regular intervals, because the nuclear facilities can be extremely volatile
and dangerous [154]. The preventive remote inspection helps avoid accidents by detecting
a fault earlier and ensuring safety in the facilities, such as detecting crack patches in each
recorded video clip by the remote inspecting devices [28].

— Nuclear Fuel Management (NFM) is a complex task that manages fuel-related tasks such
as maintaining the quantity and quality of new fuel assemblies, reloading the partly burnt
fuel assemblies, the core-loading pattern, and planning for control rod insertion for each
reloaded cycle. The core objective of NFM is to minimise the cost while optimising energy

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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Table 6. Research Works Adopting ML Techniques in the Nuclear Industry

Focus Task Reference
Fuel Management In-core fuel management [47, 121, 122, 145]

Fuel loading/reloading pattern [10, 36, 39, 80, 81, 182]
Reactor core parameters optimisation [66, 90]

Fault diagnosis Plant condition monitoring [184]
Fault diagnosis [63, 91]
Power control of reactor [65]
Identification of operational parameters [65]
Transducer and actuator condition [54]
Cracks detection [28, 29]

Transient
Identification

Identification of plant transients [46]

Classification of transients [181]
Plant transients diagnosis [143]
Transient type and severity [115]
Reactor plant transients [103, 111]
Identification of faults in transients [8]
Initiating event detection [171]

Identification of
accidents

Loss of coolant accident [31, 120, 140, 142, 158]

Maximum cladding temperature [24]
Power peaking factor [11]
Identification of nuclear accidents [55, 133, 153]
Prediction of hydrogen concentration [30, 82]
Pressure vessel water level estimation [83, 89]

Radiation Protection Radiation monitoring [50, 53, 76]
Radiation detection [64]
predict radiation dose levels [13]

Nuclear Waste
Management &

Waste material classification for nuclear
decommissioning

[149]

Decomissioning identify and remove waste material from
nuclear facilities

[2]

Safety of nuclear waste isolation repositories [14]
improve the safety of nuclear waste disposal [176]
Safety and efficiency of nuclear waste
vitrification

[38, 60, 152]

use of digitalisation for nuclear waste
management

[88]

Nuclear Security Investigation of security measure for NPP [87, 96–98, 151]
Nuclear infrastructure security modelling and
simulation

[41, 139]

Fault diagnostic system for online security
assessment

[75]

Nuclear energy security and sustainability [134]
Anomaly detection in nuclear security [6, 7]

Nuclear Safety Design of NPP safety systems [1, 95, 110]
Safety requirement analysis [12, 85, 94, 131, 165, 167, 178, 183]
Monitoring nuclear operator safety-relevant
tasks

[77, 86, 141]

Knowledge discovery for nuclear safety [59, 164]
Nuclear safety enhancement or assessment or
management

[135, 150, 155, 166, 168, 172, 174]

Safety parameters prediction in NPP [84, 85]

ACM Comput. Surv., Vol. 56, No. 9, Article 224. Publication date: April 2024.
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demand and maintaining safety. Table 6 presents research focused on the use of AI in
NFM.

— Nuclear decommissioning refers to the decommissioning of the nuclear facility after
its operational life. A typical life span of NPP is approximately 25 years, however, there
are hundreds of nuclear power plants still around that were built in the 1950s [70]. Most
NPPs that were built in such period have well passed their due date to decommissioning
[162]. Due to the higher cost of decommissioning a nuclear power plant, the Nuclear
Regulatory Commission extended the operating licenses of several NPP that are over 40
years old. The decommissioning NPPs can cost about $3 billion and results in the loss of
jobs [74, 104, 105, 162]. This resulted in most of the operating nuclear power plants around
the world, having an average age of 25 years, being around for some time. This is considered
one of the major and essential tasks of the NI to be completed [162].

— Transient identification is the process of identifying undesirable changes in the state
of a NPP from normal to abnormal. It can be caused by a variety of factors, such as
component failures, such as rupture in the steam-generating tube, disturbance in the flow
of coolant of the reactor, and control systems sending a wrong signal [118, 154, 180]. ML
techniques can improve the accuracy of transient identification. For example, identifying
untagged transients [46], classification of U-tube steam generator [181], and use of resilient
backpropagation for the diagnosis of the NPP [143], to name a few.
The use of ML for transient identification has several advantages. First, ML algorithms can
learn to identify transients even if they are not tagged. This is important, because not all
transients are tagged, and tagging can be a time-consuming and labour-intensive process.
Second, ML algorithms can be trained on a large dataset of transients, which can improve
their accuracy. Third, ML algorithms can be used to identify transients in real time, which
can help operators take corrective action quickly. There can be some challenges associated
with using ML for transient identification. For example, ML algorithms can be sensitive to the
quality of the data they are trained on. If the data is noisy or incomplete, then the accuracy
of the algorithm can drop. Additionally, ML algorithms can be computationally expensive
to train and run. This can be a challenge for NPPs with limited computing resources.

— Identification of accident scenarios Accidents in nuclear facilities can be very expensive
and devastating and can cost human lives. There can be several types of accidents in the
facilities such as the breakdown of the pump (e.g., pump coolant to the nuclear reactor),
ejection of the control rod, a burst of coolant pipe, and leakage of nuclear material.
Researchers have applied ML techniques to various accidental scenarios, including loss
of coolant accident [142], prediction of hydrogen concentration [30, 82], and many more.
The accidental scenarios are listed in the Table 6. Due to the complexity and involvement
of dangerous elements in the facilities, identifying or predicting accidents manually can
be challenging [37]. If adversaries have access to either ML model or data in the nuclear
facilities, then there may be dangerous consequences. For example, a pressure system in a
nuclear power plant has the critical functions of maintaining the coolant level in the core
and defining pressure in the primary heat transport systems. If the adversaries update the
pressure in the system and the coolant level, then the coolant pipe may burst.

4.2 Barriers for Machine Learning Adoption

Nuclear facilities are among the most secure infrastructure in the world; however, their systems
are not updated regularly, and most of them are still analogue [70]. With all the advancements in
digital technologies, the industry is starting to implement new digital systems throughout its facil-
ities. The progression towards modernisation has led to automating the processes in the domain,
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Table 7. List of Machine Learning (ML) Techniques Adopted in Different Domains of the Nuclear

Industry

Domain ML model Reference
Nuclear Radiation Neural Network [119]

Gaussian Mixture Model [7, 156]
Least Square Support Vector Machine model [53]
Support Vector Machine [76],
Random Forest Regressor [64]
Gaussian Process Regressor [13]

Nuclear Waste Convolution Neural Network [149]
Support Vector Machine [2, 38, 88, 152, 176]
Artificial Neural Network [14, 38, 68, 88]
Random Forest regressor [38, 88, 176]
Linear Regression [68]
Principle Component Analysis [68]
Gaussian Process Regression mode [60]

Nuclear Security IBM Watson [96]
Monte Carlo–based learning [41]
G-Descent [97]
Convolution Neural Network [97]
Fuzzy Rules–based Gaussian processes [6, 7]

Nuclear Fuel
Management

Neural Network [122]

Support Vector Machine [145]
Long Short-Term Memory [95]

Nuclear Safety and
Regulation

Long Short-Term Memory [95]

k-Nearest Neighbour and MetaModeling [170]
AdaBoost and Random Forest [131]
k-Nearest Neighbour [77, 86]
Support Vector Machine [77, 86]
Evidential Reasoning [174]
Probabilistic Model [168]
Random Forest [183]
Artificial Neural Network [141, 167, 183]
Bidirectional Long Short Term Memory [84, 85]
Deep Rectifier Neural Network [178]
Reinforcement learning [12]
Multi-system deep learning network [94]
Active learning [5]
Probabilistic Analysis [166]
Interpretive Structural Modelling [172]
Multi-Layer Perceptron with Resilient Backpropagation [63]

specifically using Artificial Intelligence (AI)—see Table 7. However, if a system gets attacked
(e.g., cyber) in the Nuclear Industry (NI), then the consequences can be dangerous. As the NI is
a highly complex and security-critical infrastructure, any attack can be heavily damaging [124].
Therefore, the industry has strict protection policies and practices that lower the risks of physical
and cyber-attacks in nuclear facilities [159]. However, the rise of ML techniques is still ongoing
in different domains, and the building of regulations and guidelines for using AI around the world
is still in preparation. The industry is one of the highly security-sensitive organisations and the
regulations for implementing AI in NI are yet to be robust [123], leading to the slow adoption
of ML techniques in the NI as compared to the other industries such as Marketing, Finance, and
e-commerce.
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As shown in Table 7, ML techniques have been adopted in the NI but they are mainly for research-
based work [154]. To adopt the ML techniques in the live systems, ML systems must be robust,
resilient, and secure against cyber attacks. For instance, cyber attacks on nuclear power plants
and their control systems could expedite the theft of usable nuclear materials and malicious acts
by adversaries [159]. Adversarial attacks such as physical attacks like intrusions, fault injection,
and how malicious actors could navigate through isolated networks to disable physical protection
systems and then take over control systems can be catastrophic. Therefore, it is important to study,
understand, and test various adversarial attacks that can impact the industry and build defensive
strategies against such attacks. It has been shown that even a small perturbation in strong ML
techniques such as deep learning methods are susceptible to adversarial attack and are not robust
[57, 127].

Research in Adversarial Machine Learning (aML) is still in its infancy and the NI is one of
those areas that cannot afford systems that can be easily attacked. For example, if the temperature
of a cooling rod is altered, it could lead to a reactor core meltdown. The implementation of
autonomous decision-making techniques needs to be explored and tested thoroughly before
relying completely on it. Hence, transparency or understanding the behaviour of developed

intelligent model is critically necessary for the NI [26]. Advances in ML and autonomy could
be beneficial to all the key areas of the nuclear systems architecture such as command and
control, Intelligence, surveillance and reconnaissance (ISR), nuclear weapon delivery, and
non-nuclear counter-force operations (e.g., air defence, cyber security, and physical protection
of nuclear assets). However, ML methods are yet to reach the stage where they could lead
to maturity in the nuclear strategy. Presently, there are three main reasons for this. They are
as follows:

— ML model is a black-box model where the knowledge of ML architecture is not known to
all. Researchers and practitioners change models’ parameters to fulfil their objectives [154].
These models are yet to obtain maturity, and it would be dangerous to rely on the safety
and reliability from the immaturity of the technology from a perspective of command and
control systems.

— Due to the lack of transparency and explainability of the ML models, there is uncertainty
around the predictability and reliability of the output [26].

— ML model could be compromised by adversarial attacks, such as data poisoning to de-
ceive, and spoofing the input data [101].

As discussed already, the ML model is yet to be at the stage where it can be comfortably applied
to cyber-physical systems where safety is critical. For example, for sensitive matters like nuclear
weapon control systems, there will always be the risk of a nuclear catastrophe if the weapons are
mishandled. It would be dangerous and far-fetched to accept ML-enabled autonomy in nuclear
facilities without testing factors such as security, resilience, and robustness. For instance, an acci-
dental escalation resulting from incorrect information (e.g., regarding nuclear weapons) provided
by an algorithm is a far more likely scenario that will have to be taken into account [20]. Even small
malicious information relating to a nuclear weapon can have irreversible consequences. Further-
more, if attackers have access to model architecture or data where they can manipulate them, then
this could be immensely risky, too. Next, we present the security concerns and ethical implications
of adopting ML technologies in the NI.

4.2.1 Security Concerns. The NI is extremely security-sensitive, and any security concerns
should be taken seriously. Adopting ML techniques could implicate various security concerns such
as:
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— Data security: The NI generates a large amount of sensitive data, which must be protected
from unauthorised access. ML algorithms often require access to this data to train and oper-
ate, so it is important to ensure that the data is secure.

— Algorithmic bias: ML algorithms can be biased [57, 131], which means that they may not
accurately reflect the real world. This could lead to problems in the NI, such as the misiden-
tification of a security threat or the incorrect diagnosis of a problem with a reactor.

— Explainability: It is important to be able to explain how ML algorithms make decisions. This
is especially important in the NI, where it is important to be able to understand why an
algorithm has made a particular decision.

4.2.2 Ethical Implications. The use of machine learning techniques provides several benefits in
the NI, including improved safety, increased efficiency, enhanced security, and improved decision-
making. It can also be used to predict equipment failures, optimise fuel usage, detect anomalies,
or even monitor plant security. It has the potential to revolutionise the way nuclear power plants
are operated and maintained. However, the use of ML in the NI is still in its early stages and raises
several ethical implications such as:

— Transparency and explainability: ML models are often complex and not transparent, making
it difficult to understand how they make decisions. It is considered a black-box approach.
This can make it difficult to assess the fairness and accuracy of the decisions.

— Bias: ML models can be biased, reflecting the biases in the data they are trained on. This can
lead to discrimination against certain groups of people, also the production of inaccurate or
misleading results.

— Privacy: ML models often require access to large amounts of data to learn. In terms of the NI,
the use of the sensitive nature of the data and the potential risks associated with its exposure
can be the major issues. This raises concerns about privacy and data protection.

— Security: ML models could be hacked, which can lead to major incidents such as the disrup-
tion of nuclear power plants or the release of radioactive material, and so on. This could
have serious consequences for public safety.

To address these ethical implications, it is important to ensure that ML models are transparent,
explainable, and fair following Responsible AI principles.

4.3 Machine Learning Attack Surface in the Nuclear Industry

In this section, we present an attack surface of an ML-based system built with data and ML
model reflective of its purpose to the NI. Since there are different scenarios and tasks in the NI,
we map the threat model from Section 3.1.1 to the NI scenario. As an example, we present an
attack surface related to the NI through a use case: crack detection in a Nuclear Power Plant

(NPP) [79]. We discuss HOW and WHAT kinds of attacks that can happen when ML is adopted
to detect cracks. To detect cracks in nuclear power plants, traditionally a human operator goes
through a video of plant inspection. They have to concentrate through the video frames. With
an ML-based system, it can collect sensor inputs (e.g., video image, network events) from which
intrinsic features (e.g., pixels, flows) are extracted and fed to the model to learn. The model
learns a pattern and generates output (such as cracks and marks on the NPPs walls). The output
is then interpreted and corrective action will be taken (such as shutting the plant or pausing
the works in the plant). Here, adversaries can attempt to manipulate the collection and tamper
with the data, corrupt the model, or even fabricate the outputs. To present this, we illustrate an
attack surface during crack detection in a nuclear power station in Figure 5, which was studied in
Reference [79].
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Fig. 5. aML pipeline in the context of cracks detection scenario in a NPP [79].

4.4 Adversaries in the Nuclear Industry

In this section, we discuss the consequences of adversarial attacks in the NI and the adopted ML
models in the industry. Adversaries targeting the NI may have various motivations, including sab-
otage, espionage, or financial gains [9, 100]. Successful adversarial attacks in the industry can lead
to severe consequences, including compromised safety systems, disruption of critical processes,
and potential release of hazardous materials endangering human lives. Brundage et al. discuss in
their report extensively the malicious use of AI and their consequences in critical industries like
nuclear [113]. Such adversarial attacks can undermine the safety and integrity of nuclear systems,
affecting the nuclear power plant operation and jeopardising the confidentiality of sensitive data
[37, 113]. There can be several types of attacks including physical ones such as commando-like
attacks on equipment that could lead to a reactor core meltdown or widespread dispersal of ra-
dioactivity; or cyber-attacks including power plant shutdown, wrong scheduling of temperature
update on the coolant rod, and so on [70].

Only a small number of research works are available applying aML techniques in nuclear sys-
tems. Furthermore, they are limited to academic projects only and applied mostly in the simulators
[20, 154]. The reasons can be the security concern regarding the use of autonomous systems on the
live systems; we still do not have ML enabled technologies that provide complete safety against
adversarial attacks in the NI. This gives a chance to study the security concerns of ML approaches
before we rely on such technologies to handle highly complex tasks such as inspecting a nuclear
power plant or protecting people from radiation dispersion autonomously. While conducting the
literature review, we obtained less than 10 papers that have studied aML in the NI. References
[99–101, 144] focused on injecting faulty data in the training dataset, which remains the most
popular adversarial attack type in the NI.

Identifying vulnerabilities in ML models used in the NI is challenging, especially due to the com-
plexity and opaqueness of the model design [70, 154]. The NI operates under various strict regu-
latory guidelines and frameworks that address cybersecurity concerns [73] such as the Interna-

tional Atomic Energy Agency (IAEA), Nuclear Security Series, and national regulatory bodies
requirements. However, the regulations on adopting AI in the security sensitive industries is still
an ongoing topic [34, 123]. On the other hand, aML presents unique challenges that may require
specific regulations and standards to address the risks and ensure the security of nuclear systems.
Collaboration among industry stakeholders, government agencies, and researchers is essential for
developing effective policies, guidelines, and standards that consider the nuances of aML in the NI
[45]. Due to the lack of studies in aML in the NI, we explore some ML-based adversarial attack sce-
narios in Tables 8 to 10 that can potentially occur in the NI if ML techniques are to be implemented.
For example, adversaries can target radiation monitoring ML models in a nuclear facility and inject
manipulated data leading to inaccurate or delayed detection of radiation events; this can compro-
mise safety and emergency response measures. We believe this list will encourage researchers on
both the NI and cyber security in ML to further catalyse the aML study in the industry.
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Table 8. Data Poisoning Attacks

Task Scenario Adversarial Outcome
Nuclear
materials
detection

Adversaries can aim to subvert the ML
model used for nuclear materials detec-
tion, such as radioactive source identi-
fication or nuclear material tracking.

Adversaries can inject manipulated data into
the training set, causing the ML model to
misclassify, compromising the effectiveness of
nuclear materials detection.

Radiation
monitoring

Adversaries can target the ML model
used for radiation monitoring in a
nuclear facility.

By injecting manipulated data into the train-
ing set, the adversaries can manipulate the ML
model’s behaviour, leading to inaccurate de-
tection of radiation events and compromising
safety and emergency response measures.

Fault detection
and diagnosis

Adversaries can try to disrupt the ML
model used for fault detection and
diagnosis.

Adversaries can poison the training data with
carefully crafted samples that resemble specific
anomalies, causing the ML model to provide in-
correct fault diagnoses, potentially leading to
undetected critical system failures.

Security
monitoring

Adversaries can target the ML model
used for security monitoring in a
nuclear facility, such as intrusion
detection or access control systems.

By injecting manipulated data into the train-
ing set, the adversaries can manipulate the ML
model’s behaviour, potentially bypassing secu-
rity measures, gaining unauthorised access, or
camouflaging their activities within the facility.

Radioactive
waste
classification

Adversaries can target the ML model
used for classifying different types of
radioactive waste for proper disposal
and storage.

By injecting manipulated data into the training
set, the adversaries can mislead the ML model
into misclassifying waste materials, potentially
resulting in incorrect handling, storage, or dis-
posal of radioactive substances.

Nuclear
material
tracking

Adversaries can try to manipulate the
ML model used for tracking the
movement and inventory of nuclear
materials within a nuclear facility or
during transportation.

Adversaries can inject manipulated data into
the training set, compromising the accuracy of
the ML model’s tracking capabilities and po-
tentially enabling unauthorised diversion of nu-
clear materials.

Nuclear
security event
detection

Adversaries can target the ML model
used for detecting security events,
such as unauthorised access attempts
or breaches, within a nuclear facility.

By injecting manipulated data into the training
set, the adversaries can disrupt the ML model’s
ability to accurately detect security events, po-
tentially allowing unauthorised individuals or
malicious activities to go undetected.

Radiation
hotspot
identification

Adversaries can target the ML model
used for identifying radiation hotspots
in the vicinity of a nuclear facility,
such as areas with increased radiation
levels or potential contamination.

By injecting manipulated data into the training
set, the adversaries can cause the ML model to
misidentify radiation hotspots, leading to
inaccurate response measures and potential
safety risks.

4.5 Resilient Machine Learning (rML) in Nuclear Industry

Based on the research methodology explained in Section 2, we identified only six papers that ap-
plied defensive strategy on the attacks in ML-based applications in the NI. In Table 11, we present
research works that investigated defence strategies against adversarial attacks on ML models in the
industry. While References [100, 177] focused on adversary training defensive mechanism into
the training set, Reference [130] restricted parameter values in selective layers of learning methods
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Table 9. Model Inversion Attack

Task Scenario Adversarial Outcome
Critical system
parameter
inference

The adversaries can try to infer critical
system parameters such as reactor
core temperature or coolant flow rate.

By observing the responses of the ML model
used in the control system, the adversaries
can deduce sensitive information about the sys-
tem’s (e.g., NPP) infrastructure, potentially aid-
ing in unauthorised access.

Process
anomaly
detection

Adversaries can aim to extract
information about the internal
operations of a nuclear facility by
performing a model inversion attack.

By making specific queries to the ML model
used for anomaly detection, the adversaries can
infer details about the facility’s processes, po-
tentially revealing vulnerabilities, operational
patterns, or critical information.

Security
system bypass

Adversaries can attempt to bypass the
ML model-based security system in a
nuclear facility, such as a biometric
access control system.

By exploiting model inversion attacks, the ad-
versaries can extract information about the ML
model’s decision boundaries, potentially en-
abling them to deceive the system and gain
unauthorised access to secure areas within the
facility.

Environmental
monitoring
inference

Adversaries can try to infer sensitive
environmental information about a
nuclear facility’s surroundings, such
as air quality, radiation levels, or
potential sources of contamination.

By observing the outputs of the ML model used
for environmental monitoring, the adversaries
can deduce details about the facility’s surround-
ings, potentially aiding in planning unautho-
rised activities or compromising the facility’s
security.

Safety system
analysis

Adversaries can aim to analyse the
behaviour and vulnerabilities of safety
systems in a nuclear facility by
performing a model inversion attack.

By querying the ML model used for safety
system analysis, the adversaries can gain
insights into the system’s decision-making
process, potentially identifying weaknesses or
finding ways to bypass safety measures.

(e.g., Deep Neural Network) to strictly limit the range of parameter values that attackers can
exploit. Reference [177] proposed an rML ensemble method that utilises Moving Target Defense

(MTD) mechanism. MTD makes it difficult for hackers to attack a system by constantly changing
the position of targets. This creates challenges for hackers to find their targets, and even if they find
them, they will only find decoys that will capture the information for further analysis. As a result,
MTD successfully prevents damage, rather than simply mitigating it. When an input (either clean
or adversarial input) enters the system, the rML controller pulls the required ML models from the
rML repository and creates the environment for the resilient decision mechanism. Each of the ML
models evaluates the input from the user and provides a prediction. Next, a voting mechanism us-
ing the Boyer-Moore majority vote algorithm determines if there is any different output from the
ML models and the majority of the decisions is accepted as the true output. Reference [99] built a
defensive strategy against false data injection (adversarial training) attacks following the concept
of active monitoring of system behaviour. Active monitoring involves deliberately perturbing the
data traffic in a digital control system (such as nuclear systems) based on an understanding of the
systems’ behaviour derived from physics. These perturbations are carefully crafted to be subtle,
causing no noticeable impact on the system’s behaviour. The primary advantage of this approach
is its ability to detect threats at an early stage, particularly during the initial period when attackers
typically test the system by introducing small disturbances such as commands to actuators, similar
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Table 10. Model Extraction Attacks

Task Scenario Adversarial Outcomes
Radiation
detection
model
extraction

Adversaries can attempt to extract the
ML model used for radiation detection
in a nuclear facility.

By interacting with the ML model and query-
ing it, the adversaries can aim to clone the
model for unauthorised analysis. This can po-
tentially enable them to exploit weaknesses, de-
velop countermeasures, or gain insights into
the facility’s radiation detection capabilities.

Nuclear
material
tracking model
extraction:

Adversaries can target the ML model
used for tracking the movement and
inventory of nuclear materials within
a nuclear facility.

By interacting with the ML model and query-
ing it, the adversaries can try to extract the
model’s parameters. This allows them to repli-
cate the model’s behaviour, potentially aiding
in unauthorised movement or diversion of nu-
clear materials.

Predictive
maintenance
model
extraction

Adversaries can aim to extract the ML
model used for predictive
maintenance of critical equipment in a
nuclear power plant.

By querying the ML model, the adversaries
can try to clone the model. This can enable
them to analyse the model’s predictions, iden-
tify vulnerabilities in the maintenance process,
or develop counterfeit models for malicious
purposes.

Reactor core
temperature
prediction
model
extraction:

Adversaries can target the ML model
used for predicting the temperature of
the reactor core in a nuclear power
plant.

By interacting with the ML model and probing
it with specific inputs, the adversaries can aim
to extract the model’s parameters. This can pro-
vide them with insights into the reactor’s be-
haviour, potential vulnerabilities, or critical op-
erational information.

Control system
model
extraction

Adversaries can try to extract the ML
model used in the control system of a
nuclear facility, responsible for
regulating various parameters and
maintaining safe operation.

By querying with the ML model, the
adversaries can attempt to extract the model’s
details, enabling them to replicate its
behaviour. This can lead to unauthorised
control actions, tampering with critical
systems, or understanding the facility’s
control mechanisms.

to injecting adversarial examples in the training data to learn from the examples. It is important
to detect attacks early on due to the requirement of fast and effective response time to critical inci-
dents in the NI. Reference [101] believed off-the-shelf methods are not suitable to defend against ad-
versarial attacks on ML models especially in critical systems like Nuclear, as design, operation, and
safety are based on well-established practices. Therefore, Li et al. combined multiple techniques
including Fast Fourier Transform (FFT), Least Squares, Alternating Conditional Estimation

(ACE) and Regularisation, and a physics-based model to protect the prediction outcomes [101].

5 OPEN RESEARCH DIRECTION

The adoption of AI in the NI brings both opportunities and challenges. While leveraging ML tech-
niques accelerates the potential of various aspects of nuclear operations such as radiation moni-
toring, several open issues need attention for the successful integration of ML in the industry. This
section discusses the key open issues.

— Responsible AI: As the implementation of ML algorithms continues to expand across
diverse domains, there is a pressing need for in-depth studies on building responsible
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Table 11. Research Works that Studied Adversarial Attacks and Defence Strategies in Terms of Nuclear

Applications

Adversarial attack Defence strategy Case study Reference

Fault data injection ( BinFi) Restricting parameter
values in selective
Deep neural

networks (DNN)

layers (Ranger)

Autonomous
Vehicle in
safety-critical
domain

[130]

Fault data injection - Power and Gas grid [144]
Fault data injection Adversarial training Nuclear reactor [100]
Manipulate ML at testing phase Ensemble Methods Safety critical

domain
[177]

Fault data injection Ensemble methods Nuclear reactor [101]
Fault data injection Active Monitoring Nuclear reactor [99]
Fault data injection Distillation method Nuclear Power

plant
[63]

(including safe, secure, robust, and resilient principles) ML systems. The demand for respon-
sible ML-enabled systems is crucial in high-stake industries such as Nuclear Industry, and
Healthcare, as they involve situations where human lives can be at risk if the technologies
are susceptible to easy attacks. Therefore, the interpretability and explainability of ML algo-
rithms can be crucial in safety-critical domains like nuclear operations, where understanding
the decision-making process is imperative for building trust. For instance, nuclear reactors
experience many changes during their service time, causing updates in monitoring and op-
erational guidelines [169]. Additionally, this sector is dynamic in nature with continuously

updating operational objectives based on the dynamic needs. Due to such nature, the reg-
ulatory guidelines are also updated. Such continuous changes will make implementation of
the AI and ML systems challenging [154], as models and data need to be updated accordingly.

— Evaluation: Even if the development leads to cutting edge AI techniques for the NI,
there will still be the need for thorough evaluation in real-world scenarios, which can be
challenging. This is due to the secure nature of nuclear facilities. Therefore, researchers and
practitioners, both in academia and industry, need to closely work together by sharing
resources such as real data, and scenarios. Systems need to be broken several times to
achieve a robust and precise model; this can be challenging in the NI.

As NI comprised a variety of applications as discussed in the earlier section (Section 4.1), it
is possible for some components such as sensors to become faulty and give faulty readings lead-
ing to faulty output. However, it is equally possible that learning models may be attacked due to
adversaries such as data poisoning. Therefore, it is necessary to learn to differentiate what is

adversarial attack and what is actual systems (e.g., hardware) failure. The problem of dis-
tinguishing malicious attacks from systems’ failures in any Cyber Physical Systems (CPS) can
be challenging and needs to be solved as the cyber-physical industry continues to seek to build
resilient ML systems [124].

6 CONCLUSION

The NI is one of the most challenging environments. With radiation levels and the involvement
of hazardous elements and the environment, there are often restrictions placed on human access
to the facilities. So, on paper, it is highly suitable for automation (using ML and robots). However,
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even with the safety measures established, there can be high risk. Hence, understandably, the
adoption of technologies is slow in comparison to other industries. In this article, we investigated
existing ML applications and studies that explored the study of adversarial attacks in application
to the NI.

From the review, we noted that faulty data injection and adversarial training are the most-
studied adversarial attack and defensive mechanisms in NI, respectively. This demonstrates the
lack of investigation for other attacks and defensive strategies. It is possible that a cyber-attack
(e.g., spoofing, hacking, manipulation, and digital jamming) could infiltrate an NI, including nu-
clear weapons systems, threaten the integrity of its communications, and ultimately gain control
of its possible command and control systems. For instance, a hacker might interfere with nuclear
command-and-control systems, spoof and compromise warning systems, or in a worst-case sce-
nario, trigger an accidental nuclear launch. Since the nuclear sector is vastly diverse from nuclear
decommissioning to nuclear safety regulation, there can be numerous different scenarios. There-
fore, it is highly essential to investigate diverse use cases. If AI is embedded in its applications,
then they need to be aware of different angles of security in both physical and cyber systems.
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