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Abstract 

 

Aiming at improving road safety, car manufacturers and researchers are verging 

upon autonomous vehicles. In recent years, collision prediction methods of 

autonomous vehicles have begun incorporating contextual information such as 

information about the traffic environment and the relative motion of other traffic 

participants but still fail to anticipate traffic scenarios of high complexity. During the 

past two decades, the problem of real-time collision prediction has also been 

investigated by traffic engineers. In the traffic engineering approach, a collision 

occurrence can potentially be predicted in real-time based on available data on traffic 

dynamics such as the average speed and flow of vehicles on a road segment. This 

thesis attempts to integrate vehicle-level collision prediction approaches for 

autonomous vehicles with network-level collision prediction, as studied by traffic 

engineers.  

 

An interaction-aware motion model (i.e. a model which describes the motion of each 

vehicle and the interactions between vehicles) based on Dynamic Bayesian Networks 

(DBNs) is extended in order to accommodate both network-level collision prediction 

and vehicle-level information. The corresponding datasets contain a) collision and 

traffic data from the M1 and M62 motorways on the Strategic Road Network of 

England during 2012 and 2013 and two expressways in Greece, b) highly 

disaggregated simulated traffic and conflict data from M62 and c) vehicle-level data 

acquired using the radar sensor of an instrumented vehicle. 

 

The prevailing traffic conditions just before reported collisions as well as traffic 

conditions during normal operations act as inputs to the network-level classifiers in 

order to estimate the probability of a collision happening in real-time. Network-level 

collision prediction is performed by six machine learning classifiers, i.e. k-Nearest 

Neighbours (kNN), Support Vector Machines (SVMs), Relevance Vector Machines 

(RVMs), Random Forests (RFs), Gaussian Processes (GPs) and Neural Networks 

(NNs). Moreover, as normal traffic conditions are usually overrepresented in 

traditional real-time collision prediction studies all the network-level collision 
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prediction classifiers are treated with imbalanced learning techniques to assure 

proper identification of both hazardous and safe traffic. 

 

The network-level classification results imply that imbalanced learning crucially 

increases the power of all network-level classifiers. Undersampling cases 

representing safe traffic conditions is found to work better with traffic data 

aggregated in 5-minute or 15-minute intervals. On the other hand, oversampling 

dangerous traffic conditions along with undersampling safe cases performs better in 

highly disaggregated data (i.e. in 30-second or 1-minute intervals). 

 

By integrating network- and vehicle-level information in the interaction-aware DBN, 

it has been found that when traffic conditions are classified as hazardous, then the 

identification of dangerous traffic participants is notably enhanced. Even when traffic 

data aggregated at 30-second intervals are utilised, the identification of vehicles 

posing an imminent threat to the ego-vehicle is reinforced by 9-14%. However, 

when traffic conditions are deemed as normal, the interaction-aware 

model demonstrated that network-level information does not boost the detection of 

dangerously driving vehicles.  
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1. Introduction 

Background 1.1.

Motor vehicles are an essential part of everyday life and the most popular means of 

transport around the world. Their invention in the late 19th century completely 

changed the structure of societies and transport systems worldwide. Nowadays it is 

estimated that there are more than 1 billion automobiles in the world (Sousanis, 

2011). 

 

Although vastly used in everyday life, vehicles are also a major reason for fatalities.  

According to the World Health Organisation (WHO), traffic collisions are the main 

non-health related cause of death - claiming 1.25 million lives in 2013 worldwide - 

and the main cause of death for people aged 15-29 (WHO, 2015). An additional 

consequence of vehicular collisions is also the cost incurred from fatalities and 

injuries, which burdens the states. The 2016 annual report of the International 

Transport Forum (ITF) showed that the cost of road collisions was £16.3 billion in 

2014, accounting for a 0.9% of the GDP of the UK. 

 

As a phenomenon, traffic collisions are characterised by complexity as well as 

randomness and have been heavily researched over the years. According to Treat et 

al. (1979), traffic collisions are primarily the outcome of road environment, vehicle 

and human factors. Oh et al. (2001) extended Treat et al.’s spectre of collision 

contributing factors by taking into account a fourth element, traffic dynamics. They 

argued that collisions might happen even if the environment, the vehicle and the 

driver point towards safe driving.  Therefore, traffic engineering research focused on 

the identification of the traffic conditions that cause traffic collisions.  

 

The increased availability of traffic data from loop detectors enhanced the possibility 

of predicting these collision-prone traffic conditions in real-time. Early studies 

utilised data exclusively from inductive loop detectors (e.g. Lee et al., 2003) however 

recent technological advances have led to the incorporation of additional data derived 

from video image processors (Ikeda et al., 1999, Astarita et al., 2011), microwave 

radars(Wang et al., 2015, Shi and Abdel-Aty, 2015), Automatic Vehicle 



2 

 

Identification (AVI) devices (Ahmed et al., 2012a, Yu and Abdel-Aty, 2013a), probe 

vehicles (Park and Haghani, 2016) and smartphones (Guido et al., 2012), all of which 

ensure a data-rich environment for Intelligent Transportation Systems (ITS) experts.  

 

Real-time collision prediction  is formulated on the basis that the probability of a 

collision occurring could be estimated for a short-time prediction horizon from traffic 

data retrieved online (e.g. Abdel-aty and Pande, 2005). Such models utilise traffic 

data either from loop detectors or from other technologies, such as AVI devices or 

traffic cameras. These data are usually aggregated in 5-minute intervals and are 

matched to the documented time of actual collision so as to represent collision-prone 

or “dangerous” traffic conditions. For the majority of the existing literature, traffic 

data collected 5-10 minutes prior to the collision event are utilised for collision-

prediction. 

 

The essence of real-time collision prediction is that if the probability of a collision is 

predicted for an imminent time period, then collisions can be avoided or mitigated, 

relieving the traffic environment from collision related congestion and delays 

(Quddus et al., 2010).  As a result, proactive traffic management systems and 

Advanced Travel Information Systems (ATIS) have emerged as parts of ITS so as to 

estimate the probability of collisions, implement traffic calming measures at the 

location of a collision and inform other traffic participants about the collision event 

downstream of their position. Information regarding the implementation of traffic 

calming measures or the broadcasting of a collision event downstream is usually 

posted through Variable Message Signs (VMS) by a traffic management agency 

(Hossain, 2011). Intensive research has taken place in the past two decades to make 

real-time collision prediction more accurate regardless of the traffic data used for the 

analysis. As real-time collision prediction investigates the probability of a collision 

occurring at a specific link or segment of the road network, real-time collision 

prediction will be henceforth termed as network-level collision prediction (NLCP) in 

this thesis. 

 

Nevertheless, even though proactive traffic management achieved a general decrease 

in collision occurrences and fatalities in the last decades (NHTSA, 2015, European 
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Comission, 2016) a major contributory factor to collisions is human error. In a 

survey by Singh (2015), up to 94% of traffic collisions were found to have been  

caused by driving mistakes. Similarly, Staubach (2009) stated that 90% of collisions 

were caused by human error and added that driving errors can be classified in three 

categories: 

 Errors due to lack of information (e.g. obstructed vision) 

 Errors due to failure to use information (e.g. inattention, omission of using 

turn signals or checking a blind-spot, misperception of the vehicle’s speed or 

acceleration) 

 Errors due to misuse of information (e.g. habituation of not observing hazards 

while driving on quiet roads, miscalculation of another vehicle’s relative 

distance and speed) 

In addition, collisions may be the result of drivers’ impaired state which may be due 

to intoxication or fatigue. Distraction by the passengers of the car may also lead to 

limited attention to available information regarding the environment and the 

surrounding conditions on the road (Wang et al., 2013). 

 

Aiming at improving road safety, the automotive industry and research are focussed 

upon creating “intelligent vehicles”. Since the 1980’s many research efforts have 

been committed to the application of technologies and systems from the fields of 

mobile robotics and computer science to passenger cars and road transport in general 

(Macek et al., 2006). To date, these technologies have been mainly used as part of 

Advanced Driving Assistance (ADAS), by means of on-vehicle sensors which detect 

the surrounding environment (e.g. lane recognition, motion prediction, emergency 

breaking) and post a warning to the human driver if a hazardous situation is taking 

place. 

 

Autonomous vehicles (also known as robotic, driverless or self-driving) are a 

promising technology which is supposed to enhance road safety and simultaneously 

reduce congestion, fuel consumption and emissions that come with current “regular” 

cars, by removing the human element from the task of driving (Litman, 2014). 

Although human drivers can reason and perceive sufficiently the surrounding 

environment, AVs would be able to provide a greater perception horizon even when 
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illumination or visibility conditions are bad. Moreover, AVs will be able to 

communicate with other vehicles which can eventually lead to less space and time 

headways, and faster reactions than humans in cases of evasive manoeuvres. A list of 

possible advantages and limitations from the use of autonomous vehicles is presented 

in Table 1.1 below. 

Table 1. 1 Benefits and problems from the use of autonomous (with information 

from Forrest and Konca, (2007); Thrun, (2010); Gurney, (2013); Mui, (2013); 

Lin, (2014); Litman, (2014) and Ross, (2014) ) 

•Improved traffic safety (Increased Reliability 

, Faster Reaction Time,  Reduction of number 

and severity of crashes, confrontation of the 

imperfection of human driving)

•More efficient traffic flow (Reduced traffic 

congestion , higher speed limits, easier merging 

and exiting in traffic, easier parking, fewer 

vehicles on roads, carpooling) 

•Fuel efficiency (Better fuel economy, no stop 

& go driving, fuel optimization,  emmisions 

reduction, more efficient shipping of goods )

•Time savings (Higher Speed Limits, Less 

Time for Parking and mitigation of parking 

scarcity- AV can leave passengers at some 

point and return to take them back-)

•Removal of driving constraints (Age, 

Disabilities, Sleep while Driving,  Intoxication or 

other impairments)

•Economic relief (Reduction of accident-

related costs, fuel optimization, car 

maintenance costs)

•Damage/ Crash Liability 

•Increased cost (Manufacturing and 

Infrastructure costs)

•Cyber Security (Hacking, Loss of privacy)

•Loss of employment for driving related 

professions (taxi drivers, public transport 

drivers, chauffeurs, traffic police etc)

•Inexperienced Drivers to take control in 

emergency situations

•Unwise planning focus (cost effective 

transport projects, no care taken for 

pedestrians and other road users)

•Absence of policy for autonomous vehicles

Benefits Problems

 

Early approaches in the field of autonomous driving included the California PATH 

program, Navlab and “Hands-free across America” in the United States, as well as 

Dickmann’s Mercedes-Benz robot van and the EUREKA Prometheus Project   in 

Europe (Eskandarian, 2012). 

 

The most influential projects though, the three Grand Challenges, were initiated by 

the Defence Research Advance Projects Agency (DARPA) in 2002.  The initial two 

took place in an off-road course in 2004 and 2005 while the third one (in 2007) was 



5 

 

set in an urban environment with California traffic rules so that the interactions 

between agents could be exploited (Eskandarian, 2012). Despite the fact that six 

autonomous vehicles finished the race, fully autonomous driving capabilities were 

not met, as collisions between the vehicles could not be avoided (e.g. Fletcher et al., 

2008, Martinez-gomez and Fraichard, 2009). 

 

The literature regarding autonomous vehicles has been increasing at a rapid pace in 

the last few years, focusing on building a reliable yet efficient safety framework 

which could guarantee a safe navigation on a modern roadway. Autonomous cars can 

come up against the human error which is the predominant factor of traffic collisions, 

but the issue of interacting with the surroundings (e.g. human, other vehicles, 

environment) while safely transporting passengers is critical for the application of 

autonomous cars in the years to come.  

 

Problem definition 1.2.

In order to ensure the safety of its occupants and other road users, an autonomous 

vehicle (AV) has to perform a safe navigation when interacting with other traffic 

participants.  This fundamental task -known as path planning within the AV 

literature- provides a vehicle with a safe and collision-free path towards its 

destination while taking into account the vehicle dynamics, its manoeuvre 

capabilities in the presence of obstacles, traffic rules and road boundaries. Collision 

prediction and situational risk assessment usually takes place in the manoeuvre or 

behavioural planning of current planning approaches in automated driving 

(Katrakazas et al., 2015, Paden et al., 2016). 

  

Currently, a motion model (i.e. a model which describes the motion of every vehicle 

at a moment of time) is used to predict the intended trajectories of other vehicles and 

surrounding objects in a specific traffic environment and compare them with the 

trajectory of the interested AV in order to estimate the collision risk. Computational 

complexity however emerges when searching for an efficient trajectory 

representation in which vehicles are assumed to move independently (Agamennoni et 

al., 2012, Lefèvre et al., 2014). Recent approaches (e.g. Lefèvre, 2012, Agamennoni 

et al., 2012, Gindele et al., 2015) have emerged, trying to address the problem of risk 
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assessment of AVs by taking into account contextual information (i.e. information on 

the traffic scene and the motion of other vehicles) as well as human-like reasoning 

about vehicles’ interaction without predicting the trajectories of all other vehicles. 

Nonetheless, perfect sensing or communications between vehicles are often assumed 

(Katrakazas et al., 2015, Paden et al., 2016). 

 

The inherent limitations of robotics-based approaches on risk assessment in the 

context of organically changing dynamic and cluttered road environments indicate 

that alternative methods should be sought as supplements for building a robust and 

comprehensive risk assessment module.  

  

NLCP, as part of proactive traffic management systems in ITS, is a potential 

candidate to assist AVs in their task of safe navigation.  It can be understood from 

section 1.1 that the traffic engineering perspective of collision prediction addresses 

the macroscopic problem of identifying a location with high probability of a collision 

occurrence. This spatiotemporal risk could potentially provide a broader picture of 

the road network in terms of hazardous traffic conditions as an additional safety layer 

to AVs.  It is likely that it could increase confidence that another traffic participant is 

dangerous if NLCP points towards collision-prone traffic and enhance safety 

assessment when some parts of the on-board sensor system are malfunctioning or 

obscured. 

 

However, current NLCP modelling needs further enhancing in order to become 

available as a resource to AVs. Traditional NLCP models usually follow four steps: i) 

select actual traffic variables (e.g. temporal or spatial means and variance of them) as 

predictors, ii) collect data corresponding to historical collision cases and normal 

traffic conditions, iii) formulate a classification problem and utilise a collision 

prediction model to estimate the probability of a collision and iv) evaluate the 

modelling performance. Nevertheless, efficiently applying these four steps is not 

perfectly tractable. Traffic measurements from a particular location tend to be 

correlated with each other and therefore the inclusion of available but correlated 

traffic variables might result in misleading classification results (Hossain, 2011). 

Additionally, traffic data might not be available at all times and hence classifiers 
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need to be able to work with limited or bad quality data (Xu et al., 2015a).  Machine 

learning classifiers have been applied to solve the problem of correlated variables 

and missing data, however, in most cases they act like “black-boxes”
1
 which restrict 

the interpretability of the models. Moreover, as collisions are rare events, the data 

collection of collision-prone and normal traffic cases leads to  an overrepresentation 

of cases the cases representing normal traffic which, consequently, results in biased 

classifiers and a large number of false alarms(Xu et al., 2016a).  Oddly, there is little 

evidence in the literature to date to take this imbalance into account when building 

NLCP classifiers. Finally, the fact that AVs require good quality information to be 

available at high frequencies (e.g. at a second or sub-second level) from their sensors 

suggests that the aggregation of traffic data into 5-minute intervals is relatively high 

and hence more disaggregated data need to be utilised.  

 

This thesis will attempt to develop a suitable modelling framework that can 

accommodate both NLCP and vehicle-level collision prediction and avoidance, as 

studied by traffic engineering experts and AV experts in computer science and 

robotics respectively. The results intend to bring the two domains (i.e. robotics and 

traffic engineering) together, enhance the performance of classifiers for a large 

spectrum of data aggregation intervals and ensure a safer navigation of AVs among 

other traffic participants. 

 

Research importance 1.3.

Research on autonomous vehicles is a trending topic nowadays. Automotive and 

technology companies such as Google (Google, 2015), BMW (Ziegler et al., 2014b), 

Tesla (Kessler, 2015)), as well as universities (e.g. Thorpe and Durrant-Whyte, 2009) 

have been in constant competition for the past years in order to make autonomous 

cars a reality. Nevertheless, in order for AVs to be widely accepted and replace 

conventional cars, the public needs to be persuaded that they are to be trusted. To 

date however, although people find autonomous driving a promising and fascinating  

technology (Kyriakidis et al., 2015), the expected level of safety is not fulfilled 

                                                 
1
 A “black-box” approach is a method which can be described by its input and output without 

any transparency on how input led to output.  
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(Fagnant and Kockelman, 2015), as a number of collisions has already occurred 

(Google, 2015, Ackerman, 2016).  

 

On the other hand, the subject of autonomous vehicles for traffic engineers is limited 

to either research on traditional traffic problems such as user preference (e.g. 

Haboucha et al., 2017), traffic flow effects (e.g. (Le Vine et al., 2015), policy (e.g. 

Fagnant and Kockelman, 2015), traffic assignment (Di and Sacco, 2016)  ethics 

(Shariff and Rahwan, 2016) or  the attempt to solve control engineering problems 

(Ntousakis et al., 2016, Brown et al., 2017).  

 

ITS experts have achieved milestones in the last two decades in order to be able to 

predict collisions in real time using aggregated traffic data. If, however NLCP 

information were to be utilised by AVs risk assessment modules, the prediction 

horizon needs to be significantly shortened and highly disaggregated data should be 

employed, without high false alarm rates. This PhD research attempts to enhance the 

performance and interpretability of NLCP in order for them to become a useful 

resource for AVs. By developing an integrated framework with which network-level 

collision prediction (NLCP) can be incorporated into AVs’ safety modules, this 

project is intended to assist the perception and safety performance of automated 

driving. Consequently, AVs will come one step closer to fulfilling Asimov’s zeroth 

law: “A robot may not harm humanity or, by inaction, allow humanity to come to 

harm” (Asimov, 1950). 

 

Aim and Objectives 1.4.

The aim of this PhD research is to develop an advanced collision risk model for 

autonomous vehicles, which integrates network-level and vehicle-level collision risk. 

 

This aim will be fulfilled through the following objectives: 

 To investigate existing motion planning and collision risk assessment 

algorithms for autonomous vehicles 

 To explore factors and methods related to NLCP  

 To refine traffic and collision data so as to enhance the quality of the analysis 
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 To formulate a framework for the incorporation of NLCP within the risk 

assessment module of an autonomous vehicle 

 To enhance the performance and interpretability of current machine learning 

classifiers used in NLCP models 

 To evaluate the framework for risk assessment of AVs 

 

Thesis outline 1.5.

This thesis is organised into eight chapters. This section provides an outline of each 

chapter. 

 

Chapter 2 conducts an in-depth and critical literature review of the state-of-the-art in 

motion planning for autonomous vehicles so as to provide an understanding of how 

autonomous vehicles achieve collision-free motion and assess the risk of colliding in 

real time. 

 

Chapter 3 reviews the literature on NLCP as studied by traffic engineering. The 

review critically compares the methodological approaches as well as the data used, 

reveals limitations and identifies tools and methods which can enhance the prediction 

of collision-prone traffic conditions. 

 

Chapter 4 presents the methodology of this thesis. The chapter begins with the 

description of a probabilistic model which integrates NLCP with vehicle-level risk 

assessment. This is followed by the description of probabilistic machine learning 

algorithms and imbalanced learning techniques, which will be applied to enhance 

classification performance. Finally, the methods of obtaining highly disaggregated 

traffic and conflicting data through microsimulation are presented. 

 

Chapter 5 illustrates the collision and traffic data which will be employed to build 

NLCP models, the data obtained from microsimulation and data obtained from an 

instrumented vehicle. All the datasets are presented along with descriptive statistics 

and scatterplots which demonstrate the size and complexity of the data. 
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Chapter 6 reveals the classification results for all the datasets and methods used. All 

the developed classifiers are compared and contrasted with each other, as well as 

with results from the literature.  

 

Chapter 7 discusses the impact of the proposed framework on the identification of 

“dangerous” traffic participants by AVs. 

 

Finally, Chapter 8 summarises the findings from this research, lays out the 

contribution to knowledge, as well as the drawbacks of this work. This is followed 

by a discussion for future research directions. 

 

Note on the definition of risk 

Risk is generally defined as the likelihood and severity of a collision that may occur 

for a vehicle of interest in the future (Lefèvre et al., 2014). In this thesis, however, 

emphasis is given only on the probability of a collision as NLCP information usually 

correlates traffic dynamics with the probability of a collision and not its severity. 

Hence, throughout the thesis the term risk indicates the probability of a collision 

occurring in the near future for a vehicle of interest.  
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2. Literature Review of Motion Planning Approaches 
 

 

Introduction  2.1.

AVs are a promising evolution of current vehicle technology and ADAS, and are 

envisaged to be the sustainable future for enhanced road safety, efficient traffic flow 

and decreased fuel consumption, while improving mobility and hence general well-

being (e.g. Thrun, 2010, Burns, 2013, Le Vine et al., 2015). Research on autonomous 

vehicles has been growing rapidly in recent years encompassing different domains, 

including robotics, computer science, and engineering. Moreover, it should be noted 

that scientific advances have been made by car manufacturers who do not always 

publicly disclose the details on their approaches or algorithms, owing to commercial 

sensitivity.  

 

Critical decision making is the key to autonomy and is realised through planning 

algorithms, incorporated within the middleware of an autonomous vehicle’s 

navigation module. The main purpose of planning is to provide the vehicle with a 

safe and collision-free path towards its destination, while taking into account the 

vehicle dynamics, its manoeuvre capabilities in the presence of obstacles, along with 

traffic rules  and road boundaries (Zhang et al., 2013). Planning is a memory 

consuming and computationally intensive routine, which is run in parallel with other 

routine operations of the vehicle (e.g. control, data fusion, obstacle tracking).  The 

inputs and outputs of planning are in dependence with these other modules. Reliable, 

robust, and adaptable planning is essential, especially in an urban mixed traffic 

scenario. These algorithms receive inputs from the sensor framework and supplement 

these inputs with data from digital road maps in order to provide a full workspace in 

which the planning takes place.  

 

Existing planning algorithms originate primarily from the field of mobile robotics, 

and have subsequently been applied to different on-road and off-road vehicles and 

operational environments (e.g. desert vehicles (Thrun et al., 2006), planetary rovers 

(Pivtoraiko and Kelly, 2009) and buses (Fernandez et al., 2013). Furthermore, a large 

number of algorithms have been developed for non-holonomic and car-like robots 

planning in abstract, simulation-based environments (e.g. Scheuer and Fraichard, 
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1997). In the review presented in this chapter, only approaches concerned with 

planning for on-road autonomous vehicles are analysed. In general, planning for 

autonomous or intelligent driving is divided into four hierarchical classes, as 

suggested by Varaiya (Varaiya, 1993): (1) route planning, (2) path planning, (3) 

manoeuvre choice and (4) trajectory planning (termed as control planning in the 

work of Varaiya). Route planning is concerned with finding the best global route 

from a given origin to a destination, supplemented occasionally with real-time traffic 

information. Route planning is not within the scope of this review and readers are 

referred to (Thorpe and Durrant-Whyte, 2009) for details on a route planner. Path, 

manoeuvre and trajectory planning components of autonomous on-road driving 

(often combined as one) take vehicular dynamics, obstacles, road geometry and 

traffic interactions into account, and are the primary focus of this review. It is 

important to emphasise that this review presents a state-of-the-art review of motion 

planning techniques, based on the works after the DARPA Urban Challenge (DUC) 

in 2007 (Thorpe and Durrant-Whyte, 2009) and is intended to serve as a key 

reference for researchers who are conducting research on the domain of autonomous 

vehicles.  The focus on works after the DUC is given because the challenge was a 

milestone in autonomous driving and resembles the state-of-the-art work until 2007, 

thus enabling research in autonomous driving to profoundly advance.  

 

The remainder of the review is structured as follows: foundational definitions form 

the body of Section 2.2; while Section 2.3 presents an extensive literature review of 

motion planning approaches applied to autonomous vehicles, with a focus on 

manoeuvre planning and risk assessment. Key limitations of the approaches are then 

described in Section 2.4. Finally, in Section 2.5 the review is summarised. 

 

It should be noted here, that this review of the state-of-the-art in AV motion planning 

aims to identify inherent limitations in risk assessment for AVs as well as the most 

suitable part of motion planning routines to accommodate NLCP information. The 

findings of this review will form the basis for the development of the integrated 

methodology which integrates NLCP and AV risk assessment in section 4.3 of this 

thesis and its application in chapter 7.  
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 Definitions 2.2.

This section describes the key conceptual terms commonly used in the literature 

within the field of planning for robots and, hence, autonomous vehicles. As 

mentioned previously, this review focuses on planning at a local on-road level and 

not globally (e.g. routeing).  

 

The set of independent attributes which uniquely define the position and orientation 

of the vehicle according to a fixed coordinate system is termed the configuration 

vector (Eskandarian, 2012). Consequently, the set of all the configurations of the 

vehicle constitute the configuration space.  

 

The set of attribute values describing the condition of an autonomous vehicle at an 

instance in time and at a particular place during its motion is termed the ‘state’ of the 

vehicle at that moment (Eskandarian, 2012). The most common set of attributes, 

defined as a vector, which are used to express the state of a vehicle are the position 

(x, y, z), the orientation (θx, θy, θz), linear velocities (vx, vy, vz) and angular velocities 

(ωx, ωy, ωz). Subsequently, state space represents the set of all possible states that a 

vehicle can be in. As will be seen in the next sections, the mathematical 

representation of a state space differs from the approach taken by vehicle planning. 

A trade-off between explicit representation and efficiency of the algorithms should 

be considered for every planning problem. Representations that can be used for 

constructing a configuration or a state space will be discussed in Section 2.3. 

 

The bicycle model is a dynamic/kinematic model of vehicles, in which the two front 

and wheels along with the two rear ones, are replaced by one front and one rear 

wheel respectively. The vehicle moves on the plane and its coordinates are described 

by the vector (x, y, θ) where x, y is the position of the centre of gravity and θ is the 

orientation of the vehicle. Steering angle of the front wheels is denoted by φ. A basic 

assumption of the bicycle model is that the inner slip, outer slip and steer angles are 

equal.  

 

A robot is holonomic if the controllable degrees of freedom are equal to the total 

degrees of freedom. Vehicles or car-like robots are thus non-holonomic because they 
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are described by 4 degrees of freedom (2 Cartesian coordinates, orientation and 

heading) but have 2 kinematic constraints: i) they can only move backwards and 

forwards, tangentially to the direction of their main body and ii) the steering radius is 

bounded. Another definition of holonomy is described in LaValle (2006), Siegwart et 

al. (2011) and Laumond (1998), where it is stated that car-like vehicles are non-

holonomic because their motion is constrained by non-integrable differential 

constraints due to the assumption that the  wheels roll without slipping. 

Actions are system inputs (such as acceleration, steering angle) that result in a 

vehicle’s state transition. Actions are defined either as a function of time or as a 

function of state and time. Action space represents the set of all possible actions that 

can be applied to the state space. 

 

Given a configuration space or a state space, planning is a computationally intensive 

task, demanding high memory utilisation. Within the field of robotic motion (both in 

the case of on-road and off-road vehicles and objects), planning is performed at 

different levels. The highest level of planning is concerned with origin to destination 

route planning and the workspace is essentially limited to digital maps representing 

the underlying road network. The lowest level of planning is concerned with 

planning a smooth trajectory adhering to vehicular dynamics and such a plan is 

chalked out on a small (local) search space of high dimensional states. To facilitate 

the description and discussion, the following terms are defined as used in the rest of 

the review.  

 

Path is expressed as a continuous sequence of configurations beginning and ending 

with the boundary configurations, i.e. the initial configuration and the terminating 

configuration respectively (Eskandarian, 2012). In other words, a path is a geometric 

trace that the vehicle should follow in order to reach its destination without colliding 

with obstacles. Path-planning is therefore the problem of finding a geometric path 

from an initial configuration to a given terminating configuration, such that each 

configuration and state (if time is taken into account) on the path is a feasible one. A 

feasible configuration/state is a configuration/state that does not result in a collision 

and adheres to a set of motion constraints such as road and lane boundaries, as well 

as traffic rules. It should be noted that, throughout the review where path planning is 
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discussed, importance is given in finding the best and safest geometric trace, under 

the constraints described above which also have a logical argument regarding the 

rules of traffic.  

 

Manoeuvre is a high-level characterisation of the motion of the vehicle, regarding the 

position and speed of the vehicle on the road. Examples of manoeuvres include 

‘going straight’, ‘turning’, ‘overtaking’ etc. A manoeuvre is nominal if it is 

performed safely according to traffic or other rules. As a result, manoeuvre planning 

addresses the problem of taking the best high-level decision for the car, while taking 

into account the path that is specified from path planning.  

 

On the other hand, trajectory is represented as a sequence of states visited by the 

vehicle, parameterised by time and, possibly, velocity. Trajectory planning (also 

known as trajectory generation) is concerned with the real-time planning of the 

actual vehicle’s transition from one feasible state to the next, satisfying the vehicle’s 

kinematic limits based on vehicle dynamics and constrained by the navigation 

comfort
2
, lane boundaries and traffic rules, while avoiding, at the same time, 

obstacles including other road users as well as ground roughness and ditches. 

Trajectory planning is parameterised by time as well as acceleration or velocity, and 

is frequently referred to as motion planning. During each planning cycle, the path 

planner module generates a number of trajectories from the vehicle’s current location, 

with a look-ahead distance, depending on the speed and line-of-sight of the vehicle’s 

on-board sensors, and evaluates each trajectory with respect to some cost function to 

determine the optimal trajectory. Trajectory planning is scheduled at regular 

intervals; the length of which largely depends on the frequency of receiving fresh 

sensor data. For example, trajectory planning was scheduled every 100 milliseconds 

(ms) in the controller that was tested during the VisLab Intercontinental Autonomous 

Challenge (Broggi et al., 2012). Error between the current vehicle location and the 

determined trajectory is monitored; triggering a trajectory revised plan upon 

detecting an error beyond a pre-defined threshold. It should be noted that there is a 

rich body of literature on trajectory planning of aircraft movements in the context of 

                                                 
2
 In terms of the acceleration (lateral & longitudinal) that the car develops, the curvature of the 

trajectory and other parameters which are indicated by standards such as ISO 2631-1 1997. 
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air traffic control. Aircraft trajectory planning is, however, quite different from 

trajectory planning of on-road vehicles. The operational environment and the 

allocated space for aircrafts to manoeuvre is different from the overpopulated, 

multimodal, congested road network, which is also constrained by road geometry, 

road lanes and the existence of a large number of obstacles which do not appear in 

the air. Furthermore, the degrees of freedom, the dynamics and the size of aircrafts 

are different from on-road vehicles in a way that trajectory planning for cars and 

aircraft (which must take all these parameters into account) requires different 

approaches. For example, as described in  Schuster (2015) an aircraft’s trajectory is 

4D (comprising of the spatial coordinates (x, y z)  and time) while a road vehicle 

primarily acts on a 2D space or 3D space if time is added. Furthermore, the state 

vector of an aircraft motion planning includes 3D position coordinates (x, y, and 

height), air speed and aircraft mass. However, the state vector of an on-road vehicle 

does not consider air speed and vehicle mass. It can therefore be understood that an 

aircraft trajectory is treated with 6 degrees of freedom, while the trajectory of an on-

road vehicle is normally treated with only 3. 

 

Most existing trajectory planning implementations follow two steps: (i) trajectory 

generated on a low resolution/lower dimensional search space in the first step and (ii) 

the resulting optimal trajectory smoothed out on a higher resolution/higher 

dimensional search space during the second step. The planning module is integral to 

rendering complete autonomy to the vehicle, with the outputs of the trajectory 

planner feeding into the low-level steering/manoeuvre control unit.  

 

 Search Space for Planning 2.3.

Planning a journey for an autonomous vehicle on the road requires that the 

environment should be represented in a way that enables the query for a path. This 

means that the physical space must be transformed into a configuration or a state 

space. The state space, as defined in the preceding section, consists of every 

representation of the vehicle position, orientation, linear or angular velocities, in 

addition to any other measures of interest (Howard, 2009). As the vehicle travels on 

the road, readings from the sensors and information obtained from a digital map are 

used to transform the continuum of the environment into a digital representation of 
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the road network, which is the essential space for planning. This discretisation must 

efficiently be dealt with in terms of efficiency, density and expressiveness (Howard, 

2009), as high density network may result in high computational costs and power. 

Similarly, inadequate representation, though it would improve computational speed, 

may introduce sub-optimality and inexpressiveness, not to mention collision risks.  

 

Some of the existing algorithms initiate a search in continuous coordinates using 

only the road boundaries and positions of the obstacles, for example, driving 

corridors (Jeon et al., 2013, Hardy and Campbell, 2013, Wille and Form, 2008, Wille 

et al., 2010a). Decomposition (or tessellation) techniques analyse the space with 

higher resolution and  include Voronoi Diagrams (Dolgov et al., 2010, Lee and 

Vasseur, 2014), occupancy grids (Kolski et al., 2006; Bohren et al., 2008; 

Hundelshausen et al., 2008; Kammel et al., 2008; Leonard et al., 2008; Zhao et al., 

2011; Xu et al., 2014), cost maps (Bacha et al., 2008; Rauskolb et al., 2008; Schröder 

et al., 2008; Himmelsbach et al., 2009; Murphy and Newman, 2011; Broggi et al., 

2012; ) and  lattices (Pivtoraiko and Kelly, 2005; Pivtoraiko et al., 2009; Ziegler and 

Stiller, 2009; McNaughton et al., 2011). Diagrammatic representations of these 

search spaces are depicted in Figure 2.1.  
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a b

c d

e
 

Figure 2. 1 Graphs used in planning 

(a)  Voronoi Diagram (Lee and Vasseur, 2014);b) Occupancy Grid (Schröder et 

al., 2008); c) Costmap (Ferguson and Likhachev, 2008);d) State Lattice (Ziegler 

and Stiller, 2009); e) Driving Corridor (Wille et al., 2010b) 

Voronoi Diagrams or Dirichlet tessellation techniques, generate paths which 

maximise the distance between the vehicle and surrounding obstacles (Takahashi and 
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Schilling, 1989). Algorithms which are used for  searching on Voronoi Diagrams are 

complete in the sense that, if a path exists in the free space, it would also appear on 

the Voronoi Diagram (Siegwart et al., 2011). As depicted in Figure 2.1(a), grey lines 

represent Voronoi edges (i.e. edges with maximum distance from detected obstacles), 

and produce a space where the vehicle can perform its trip. Dolgov et al. (2010) used 

Voronoi Diagrams for path-planning of autonomous vehicles in parking lots by 

combining Voronoi Diagrams with potential fields; an obstacle avoidance algorithm 

derived from mobile robotics. This combined approach, referred to as Voronoi fields, 

was developed to overcome the issue of conventional potential field approaches in 

narrow passages (that generate high potential), which rendered such passages 

virtually non-traversable. Voronoi Diagrams are typically used for planning in static 

environments, such as parking lots. Furthermore, Voronoi diagrams on their own are 

not suitable for on-road path-planning, since Voronoi edges, along which a car 

navigates, can potentially be discontinuous and unsuitable for non-holonomic cars. 

 

Occupancy grids (Kolski et al., 2006; Bohren et al., 2008; Hundelshausen et al., 

2008; Kammel et al., 2008; Leonard et al., 2008; Zhao et al., 2011; Li et al., 2013; 

Xu et al., 2014;) and costmaps (Bacha et al., 2008; Rauskolb et al., 2008; Schröder et 

al., 2008; Himmelsbach et al., 2009; Murphy and Newman, 2011; Broggi et al., 

2012) work in a similar way; they both discretise the state space into a grid and each 

cell of the grid is associated with a probability of the cell being occupied by an 

obstacle, or a cost proportional to the feasibility or risk of traversal. Risk or 

feasibility is primarily calculated by considering the presence of obstacles, lane and 

road boundaries. Grid-based approaches are fast in finding a solution with low 

computational power (Pivtoraiko et al., 2009)  but have difficulties in accounting for 

nonlinear dynamics in a robust way (Kushleyev and Likhachev, 2009), and in the 

presence of obstacles (Pivtoraiko et al., 2009). As seen in Figures 1b and 1c, 

occupancy grids consist of a grid with the position of the obstacles and (sometimes) 

an attached velocity showing their expected motion; while in cost maps, the higher 

the cost of a certain cell, the more intense its presentation is on the map. 

 

State Lattices can be seen as a generalisation of grids (Pivtoraiko and Kelly, 2005). 

In the same way that grids are built by the repetition of rectangles or squares to 
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discretise a continuous space, lattices are constructed by regularly repeating primitive 

paths which connect possible states for the vehicle, in terms of position, curvature or 

time, as can be seen in Figure 1d. The problem of planning then reduces to a 

boundary value problem  of connecting the original state with the required final state 

(McNaughton et al., 2011). State Lattices overcome the limitations of grid based 

techniques in efficiency without increasing computational power (Pivtoraiko et al., 

2009). 

 

Driving Corridors represent a continuous collision-free space, bounded by road and 

lane boundaries as well as other obstacles, where the car is expected to move. 

Driving corridors are based on lane boundary information given on the detailed 

digital maps, or a map built by using a Simultaneous Localisation and Mapping 

(SLAM) technique. Lane boundaries form the outer bound of the driving corridors, 

restricted in the presence of obstacles. In Figure 2.1e, a driving corridor is 

constructed for each car according to the chosen manoeuvre. The centre line of the 

determined corridor forms the path around which the trajectory to be followed by an 

autonomous vehicle is planned. The major drawback of planning in a continuous way 

is that, since intensive computational power
3
 is needed for planning for the entire 

range of coordinates regarding the road network, representation of roads or lanes 

may constrain the motion of the vehicle (Fletcher et al., 2008). 

 

It should be noted that the above techniques of search space representation for 

planning are not always employed independently. For example, Voronoi Diagrams 

and potential fields have been combined to produce Voronoi fields by Dolgov et al. 

(2010) to generate a safe trajectory. In most of the cases, they are combined in order 

not only to provide better results for a single planning level but also to offer planning 

capabilities in all three levels (i.e. path, behaviour and trajectory planning). Their 

advantages and disadvantages are summarised in Table 2.1. 

  

                                                 
3
The continuous nature of driving corridors, leads to an exponential increase in the dimensions of 

state vector for each one of the coordinates included in the driving corridor. Thus, at each time 

moment a large number of attributes need to be calculated for each of the coordinates, 

necessitating more computational resources. 
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Table 2. 1 Comparison of Search Space for planning 

Representation Advantages Disadvantages 

Voronoi Diagrams 
 Completeness 

 Maximum distance from obstacles 

 Limited to static 

environments 

 Discontinuous edges 

Occupancy Grids 

Cost Maps 

 Fast discretisation 

 Small computational power
4
 

 Problems with vehicle 

dynamics 

 Errors in the presence of 

obstacles 

State Lattices 

 Efficiency without increasing 

computational time
5
 

 Pre-computation of edges is possible  

 Problems with curvature 

 Restrict motion 

 Difficulties in dealing with 

evasive manoeuvres 

 

Driving Corridors 
 Continuous collision free space for the 

car to move 

 Computational cost
6
 

 Constraints on motion 

 

Once a search space is constructed, then the planning algorithms are initiated in order 

to select the best path, behaviour and trajectory respectively.  

 

 Planning Techniques  2.4.

This section presents a review of planning techniques used in existing studies in the 

areas of autonomous on-road driving. Given a route provided by the route planner, 

motion planning for on-road driving (hereinafter planning) concentrates on finding 

the best path for the vehicle to follow while taking into account the constraints of the 

                                                 
4
 Computational power refers to computations needed to construct the cells and estimate their costs. 

The space, in which the planning problem is solved, is discretised. Furthermore, the number of 

attributes needed to define each of the cells is small (the attributes just need to show if the cell is 

occupied or not, plus the cost of traversing the cell). As a result, the dimensions of the state matrix 

of each of the cells are manageable in real-time. 

5
 Similar to (3), computational time refers to computations needed to construct the lattice: Because 

of the predefined shape of the curve with which the lattice is constructed and the pre-computation 

of edges, the space for planning is discretised and thus less time is needed to find the correct 

solution. 

6
Computational cost for driving corridors is analysed in footnote 2. 



22 

 

vehicle’s motion model, waypoints that the vehicle should follow and the traffic 

environment, including static and dynamic obstacles. Planning can be divided into 

incremental approaches which try to find the best sequence of state transitions 

(which are not fully specified from the beginning) by re-using information from 

previous searches and local approaches which attempt to find the best single state 

transition for the vehicle to follow. A global or local path also has a strong 

correlation with the decisions or manoeuvres that the car performs, so manoeuvre 

planning will also be addressed. As shown in Figure 2.2, path search is initiated after 

a route has been chosen from the route planner and acts as input to the search for the 

best manoeuvre (i.e. the manoeuvre which places the car with the most correct and 

safe behaviour). The final path may however change, based on the best manoeuvre, 

as shown with a feedback loop between these two modules. Once the path is finalised, 

the final trajectory planning is generated.  

 

 

Figure 2. 2 A flow chart of planning modules 
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As such, planning is divided into three levels of planning, namely:  

1) Finding the best geometric path for the vehicle to follow 

a. Finding the best sequence of actions through incremental sampling or 

discrete geometric structures (i.e. Incremental search); 

b. Finding the best action from multiple final states (i.e. Local search); 

2) Finding the best manoeuvre to perform; 

3) Finding the best trajectory to follow through the optimisation of a geometric 

curve, according to given constraints. 

For example, when a vehicle is on the road it follows the sequence of waypoints 

taken from the route planner and then constructs the geometric path of the vehicle 

(Figure 2.3a). These waypoints must be obstacle-free since the car needs to interact 

with the other vehicles so as to cooperatively move along the road. According to the 

geometric path that has been derived and the interactions with other vehicles, the 

automated vehicle must decide its next ‘high level’ action (Figure 2.3b); i.e. should it 

overtake the leading vehicle to reach the next waypoint in time? As implied, these 

high-level decisions depend on the path, because the vehicle needs reference 

waypoints in order to decide its best action. If the waypoints and the proper 

manoeuvre are finalised, then trajectory planning describes the procedure of 

searching the best way to connect the determined waypoints (Figure 2.3c). 

 Figure 2. 3(a) Path Planning (b) Manoeuvre Planning (c) Trajectory Planning 

(adapted from Lee and Vasseur, 2014) 

waypoint 

a c 

b 
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This chapter will review only approaches on manoeuvre planning and risk estimation 

as this part of planning has the most potential to incorporate network-level 

information. For more information on motion planning techniques the reader is 

prompted to Katrakazas et al., (2015). 

 

 Manoeuvre Planning and Decision Making 2.4.1.

During the DARPA Urban Challenge in 2007, analysis showed that there was a lack 

of interactions between cars and driving in a human-like manner, with many 

incidents of a behavioural nature being faced during the challenge (Fletcher et al., 

2008).  

 

While driving autonomously on public roads, the car at each moment should be 

capable of deciding the best and safest manoeuvre to undertake after finding the best 

geometric sequence of waypoints to follow. This decision must be made without 

overlooking the ego-vehicle’s 
7
interactions with the surrounding traffic environment. 

Manoeuvre planning therefore, incorporates techniques which anticipate the 

behaviour of both the motorised and non-motorised traffic participants and assesses 

the surrounding traffic situation, thus arming the driverless car to decide on its best 

manoeuvre. Techniques which are described in this section work on a more high-

level basis. Manoeuvre planning moves away from searching for a path or generating 

a trajectory; instead acting as a ‘brain’ which filters the results of path search, 

interacts with other traffic participants and gives the approval for the geometric path 

before it is transformed to a feasible trajectory.  

 

Techniques for manoeuvre planning can be divided into two categories:  

1) Those that emphasise motion modelling and obstacle prediction (Section 2.4.1.1); 

and 

2) Those that are concerned with the decision-making module of autonomous 

vehicles, based on the modelling of the traffic environment (Section 2.4.1.2). 

                                                 
7
 ego-vehicle: the AV which is the focus of the research 
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2.4.1.1.Motion Modelling  

Lefèvre et al. (2014) present a detailed survey to classify recent research on traffic 

environment modelling and prediction and introduce several risk estimators for 

intelligent vehicles. According to their work, motion models are classified into 

physics-based, manoeuvre-based and interaction-aware models. The first category 

describes motion models according only to the laws of physics, while the second 

relies on estimating the intentions of other traffic participants, based either on 

clustered trajectories or on manoeuvre estimation and execution. These two 

categories of motion models do not take into account the environment, but rather, 

view vehicles as independent entities. Interaction-aware models were developed in 

order for the inter-vehicle relationships to be exploited, so that dangerous situations 

can easily be modelled and identified in real-time.   

 

As far as risk estimators are concerned, Lefèvre et al. indicate that a collision can be 

predicted through collision prediction (binary or probabilistic) through estimated 

trajectories, but also through unexpected behaviour or conflicting manoeuvres 

between vehicles. The readers are referred to the survey of Lefèvre et al. for further 

details on the description of techniques and risk indicators. 

 

Most of the approaches for obstacle prediction (also included in the survey of 

Lefèvre et al.) refer to straight roads and do not apply well to the context of each 

manoeuvre. 

 

A grid-based Bayesian filter is used by Alin et al. (2012) to model behaviours as 

spline functions to anticipate curvy roads and infer the trajectories of other vehicles. 

The technique shows better results than Bayesian filters that do not take into account 

context, but considers only cut-in and lane change manoeuvres.  

 

A hybrid-state system using hierarchical hidden Markov models and Finite State 

Machines is used by Gadepally (2013) to predict future state of traffic participants at 

intersections. This model is motivated by the fact that vehicle behaviours (such as 

turning in different directions) can easily be estimated by human drivers but are not 
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efficiently anticipated by automated vehicles. Nevertheless, the approach needs 

extensive training and extensive data acquisition to train the models. 

 

Ontology, a formal description of entities, hierarchies and interrelationships used in 

computer and information science, is used by Armand et al. (2014) to reason about 

the behaviour of traffic participants. Only a limited number of situations (going 

straight, following and reaching a vehicle or pedestrian) are evaluated using few 

rules and time efficiency issues are also noticed. 

 

Recent approaches were formulated to better describe the traffic environment by 

including network-related information. Gindele et al. (2015), for instance, included 

information on car-following models and the interactions among the vehicle in the 

adjacent lanes so as to faster recognise the intention of each vehicle and assessed risk 

using the TTC metric. Their DBN approach requires many variables which 

consequently need to be trained to efficiently describe, for example, the relationship 

between traffic participants, the influence of traffic rules to traffic participants and 

the influence of the geometry of the road on the actions. In order to address some of 

these issues, Kuhnt et al. (2015) proposed to use a static street model in order to 

provide an extra hint to a motion model. Their approach, however, fails to provide an 

efficient description of the inter-vehicle dependencies. Recently, Bahram et al. 

(2016) showed that even without vehicular communications, if the knowledge of the 

road geometry and traffic rules is available, the prediction time for anticipating the 

manoeuvres of other vehicles can be significantly improved. Nevertheless, network-

level knowledge was limited to train classifiers that have the capability of detecting 

any manoeuvre associated with the acceleration and deceleration of vehicles as well 

as lateral offsets in relation to the centre-line of a lane. 

2.4.1.2. Decision-theoretic approaches 

Furda and Vlacic (2011) use Multiple Criteria Decision Making (MCDM) and 

Deterministic Finite Automata (DFA) for driving manoeuvre execution. The inputs 

come from a priori known data, sensor measurements and vehicular communications. 

Traffic rules and a hierarchy of objectives during driving are considered for decision 

making (namely, motion within road boundaries, safety distances, collision 

avoidance and minimisation of waiting time). The approach needs accurate 
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information and manually specified weights for each objective in the decision-

making routine.  

 

In Hardy and Campbell (2013), driving corridors are constructed according to the 

predicted motion of dynamic obstacles and the presence of static ones. Vehicles are 

modelled as rectangles; their trajectories are clustered for easier identification and 

conflicting trajectories are used to estimate the risk at each moment. In this work, 

planning is seen as a non-linear constrained optimisation problem. The function 

which is to be optimised includes terms for static and dynamic obstacles, possible 

collisions and distance to goal. Single and multiple obstacles are considered but 

building the driving corridor increases the computational effort linearly (as described 

in section 2.2.2.), according to the number of obstacles and interactions between cars 

that are ignored. 

 

A similar approach is used by Ziegler et al. (2014b) where hierarchical concurrent 

state machines are used with respect to static and dynamic obstacles, as well as yield 

and merge rules. Driving corridors are also indicated in order for the car to have 

optimal free space for each part of the journey, while avoiding collisions. The main 

drawback of this technique, however, is that other cars are presumed not to accelerate 

and to keep safe distances from the road boundaries. 

 

Kala and Warwick (2013) consider a relatively unstructured road environment. They 

assume that no road lanes exist and that the majority of the traffic participants are 

non-autonomous and that there exists no communication between vehicles. At each 

moment, the vehicle is supposed to display certain behaviour according to the motion 

of vehicles nearby. Obstacle avoidance, centring (driving in the centre of the 

road/lane), lane changes, overtaking and being overtaken, slowing down, detecting 

conflicting behaviours and travelling straight are the pre-designed behaviours. 

Distance and velocity constraints are used to classify different behaviours online. 

This work studies only straight roads with infinite length and shows that there is a 

delay in the decision making of the car in cases such as centring on curvy roads or 

overtaking. The fast and correct identification of conflicting behaviours between road 

users is another drawback of this approach. 
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A Prediction and-Cost-function Based (PCB) approach is adopted by Wei et al. 

(2014). Using a reference trajectory, as well as static and dynamic obstacles as inputs, 

multiple candidate trajectories are generated and, after predicting the evolution of the 

traffic environment, the best strategy is chosen according to comfort
8
, safety, fuel 

consumption and the progress towards the goal. The motion of the vehicle in the 

vicinity of other cars is considered, and controller reactions and time delays are also 

simulated for better performance.  The approach was validated with simulation and 

on-road testing and leads to smoother results, as compared to the spatio-temporal 

lattice planner and with a reduction of 90% on computational cost. However, only 

single lane behaviours are considered. 

 

White and White (1989) employ Markov Decision Processes (MDPs) in estimating 

the best manoeuvre for the vehicle to undertake. MDPs incorporate a presumed set of 

actions which are performed under uncertainty and try to maximise the total rewards 

or weights for every action.  MDPs work on the state space to try to determine a rule 

which describes the decision to act from one state to another.  

Unlike MDPs, which assume that the states are fully observable, partially observable 

Markov Decision Processes (POMDPs) assume that the state of a robot or a vehicle 

is not known (Ong et al., 2010). Thus, POMDPs transform the state space into a 

belief space, which contains all the possible probability distributions for every 

possible state of the system that is being modelled. If, however, some features of the 

state of a vehicle are known (for example, the orientation is known but the position is 

not), we are referring to mixed observability MDPs or MOMDPs (Ong et al., 2010). 

 

In the work of Bandyopadhyay et al. (2012), intention prediction about human traffic 

participants is embedded into planning. A discrete Mixed-Observability Markov 

Decision Process (MOMDP) models the interaction between the autonomous vehicle 

and pedestrians, while making a prediction about the pedestrians’ intentions. The 

behaviours of the ego-car towards the pedestrians that are considered include: 

‘Reasonable but Distracted’, ‘Oblivious’, ‘Impatient’ and ‘Opportunistic Driving’. 

Experiments are carried out with simulations and a real-world golf-cart; wherein it is 

                                                 
8
 In the study of Wei et al. (2014), comfort is evaluated according to the acceleration of the car. 
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assumed that information about pedestrians’ positions and velocity is perfectly 

known. Furthermore, instead of simultaneously treating the set of pedestrians, a 

MOMDP is separately calculated for each pedestrian and it is assumed that intentions 

do not change over time. Lastly, experiment results are presented for only half of the 

behaviours considered. 

 

In contradiction with the previous work, Brechtel et al. (2014) implement a 

continuous partially- observable MDP, assuming that the belief state is infinitely 

large because driving is a continuous-space problem. The inputs are the position and 

velocities of the traffic participants, which are presumed known. Merging scenarios 

are simulated where the ego-car has occluded vision due to a hypothetically illegally 

parked car. Having a continuous belief space may lead to a large number of samples 

needed to make the autonomous vehicle decide. This large number of samples may 

consequently lead to large computational effort and may also increase the number of 

close calls for decision making.  

 

Game Theory has also been used by researchers to take into account the interactions 

between vehicles. For example, Aoude et al. (2010a) examine an intersection 

environment and try to formulate a perfect information game between traffic 

participants. Each game terminates if a collision happens, and each vehicle tries to 

maximise the time to collision, while all other vehicles take on the role of ‘enemies’ 

which try to minimise this time. This threat assessment model is then embedded into 

an RRT-like global planner which generates the path to follow. Real-time 

capabilities of the approach are provided by evaluation which takes place with two 

model cars with maximum speeds of 0.5m/sec.  

 

The same concept of Game Theory is followed in the work of Martin (2013) where, 

again, a perfect information game is used to predict the motion of other vehicles for 

planning on highways. For the payoff function to be maximised by the ego-car, 

position, speed and accelerations are taken as input, producing as output the best 

possible manoeuvre, using a manoeuvre set which includes driving straight, as well 

as left or right lane changes. The road is assumed to be infinitely straight and 

simulations are carried out with up to 4 vehicles in the traffic scene. 
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Planning approaches which emphasise obstacle prediction and decision making are 

summarised in Table 2.2. 

 

Table 2. 2 Planning approaches with emphasis on obstacle prediction and 

decision making 

Study Method Criteria 
Environment 

description 
Drawbacks 

Furda and 

Vlacic (2011) 

Multiple 

Criteria 

Decision 

Making 

Traffic rules 

Road 

boundaries 

Safety 

distance 

Collisions 

Waiting time 

Non-intersection 

segments 

Need precise information and 

manually specified weight for each 

criterion 

Hardy and 

Campbell 

(2013) 

Driving 

Corridors and 

Non-Linear 

Constrained 

Optimisation 

Behaviour 

towards static 

and dynamic 

obstacles 

Vehicle 

dynamics 

Distance to 

obstacles 

Distance to 

goal 

Intersections 

Computational effort rises with 

number of obstacles 

 

Ignorance of social interactions 

between traffic participants 

Ziegler et al. 

(2014b) 

Driving 

Corridors and 

Hierarchical 

State 

Machines 

Static and 

dynamic 

obstacles 

behaviour 

Yield and 

Merge rules 

Intersections and 

non–intersection 

segments 

Other cars are presumed not to 

accelerate and to keep safe distances 

from road boundaries 

Kala and 

Warwick 

(2013) 

Behaviour 

Choice 

according to 

Obstacle 

Motion 

Distance and 

velocity 

constraints 

No road lanes 

Infinite straight roads 

 

Problems on curvy roads, overtaking 

and conflicting behaviours 

Wei et al. 

(2014) 

Prediction and 

Cost-function  

Comfort, 

safety, fuel 

consumption, 

distance to 

goal 

Straight roads Only single-lane behaviours tested 
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Bandyopadhyay 

et al. (2012) 

Mixed-

Observability 

MDP 

Pedestrian 

position and 

velocity 

Pedestrian 

crossings 

Different modelling required for each 

pedestrian 

 

Intentions are assumed unchangeable 

Brechtel et al. 

(2014) 

Partially 

Observable 

MDP 

Vehicle 

position and 

velocity 

Merging 

scenarios with 

occluded vision 

Continuous belief space may lead to 

large number of samples and large 

computational effort. 

Aoude et al. 

(2010a) 
Game Theory 

Time to 

collision 
Intersections 

Model-car evaluation at low speeds 

Perfect information assumed 

Martin (2013) Game Theory 

Position, 

speed, 

acceleration 

and 

manoeuvre 

choice 

Straight roads Perfect information required 

 

To summarise, manoeuvre planning relies heavily on the relative positions of other 

traffic participants at the moment of making a decision and estimating the risk of a 

certain situation. Risk estimation can be performed using risk indicators, such as the 

Time-to-Collision (TTC), as suggested by Ward et al. (2014; 2015), probabilistic gap 

acceptance models, as proposed by Lefevre (2012), or by forming situation 

assessment and choosing the best manoeuvre as a decision theoretic problem (using 

Markov decision processes or Game Theoretic principles). In the first category of 

planning (obstacle prediction and risk assessment), more accurate results are 

provided but context is often omitted from planning. Heavy computational burden 

may also arise while predicting the motion of the obstacles in the vicinity of the 

autonomous vehicle. Decision-theoretic approaches cope well with context and may 

provide solutions to problems like negotiating intersections (such as in urban or 

suburban environments) or complying with manoeuvres on a highway.  

 

Constraints and Limitations 2.5.

The approaches discussed in the previous section have potential to work well in 

choosing the best manoeuvre and constructing a feasible trajectory. However, 

limitations still exist and autonomous driving is yet to achieve the levels of human 

driving competence. This section describes   the most significant of the identified 

limitations. 
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  Obstacle Handling 2.5.1.

In terms of handling obstacles, existing approaches primarily rely on predicting the 

trajectories of other traffic participants, either by taking their trajectories into account, 

or by making assumptions of constant velocities or constant accelerations 

(Kushleyev and Likhachev, 2009). This leads to a huge computational power 

requirement, since the obstacles’ trajectories need to be calculated and checked at 

each moment. Such trajectory predictions are performed while disregarding the 

context within the traffic environment; thereby, leading to interactions between cars 

or other traffic participants being ignored. Some of the approaches (e.g. Aoude et al., 

2010a; 2010b; Bandyopadhyay et al., 2012; Martin, 2013) also assume that there is 

no uncertainty in the obstacles’ motions; this assumption is not valid in real-world 

situations, especially in a mixed traffic scenario with the presence of human drivers. 

The lack of understanding between autonomous vehicles and human drivers can be 

demonstrated by recent experiments conducted by Google (2015). In these 

experiments, the Google autonomous vehicle could not ascertain the intention of 

human drivers in its vicinity and this confusion resulted in minor collisions.  

 

Another important limitation of the existing approaches is the simple representation 

of obstacles as rectangles or circles. In the latter case, the problem is that close 

proximity motions cannot be performed, due to lack of accuracy in the 

approximation (as shown in Ziegler et al., 2014a). Interaction-aware models, as 

presented in Lefèvre et al. (2014) can take interaction between traffic participants 

into account, but pre-suppose perfect knowledge or communication between the cars. 

Furthermore, motorcycles and non-motorised traffic participants are usually ignored 

in most approaches. Another major limitation in terms of obstacle handling is the 

inability to see around corners and detect obstacles such as pedestrians and bicycles 

approaching from blind corners. Such a disadvantage leads the planning algorithm to 

take a ‘cautious’ and hence inefficient approach, such as slowing down even in the 

absence of any obstacle. 

 

  Sensing and Perception 2.5.2.

Sensing and perception within existing approaches treat the car as an individual and 

isolated entity; limiting the perception horizon of autonomous vehicles to the 
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perception horizon of its individual sensors. Furthermore, most approaches either 

assume perfect knowledge of the environment (e.g. Aoude et al., 2010b; 

Bandyopadhyay et al., 2012; Brechtel et al., 2014) or depend on expensive sensing 

(e.g. Ziegler et al., 2014b) to perceive near-perfect knowledge of the environment 

and the obstacles. Approaches fail to take into account the limited field of view that 

driverless cars have and possible blind-spots that may occur, for example, in curved 

road segments or blind and closed intersections (i.e. intersections with restricted 

views). 

 Summary  2.6.

Planning for an autonomous vehicle can be divided into three main levels: search for 

the best path, search for the best manoeuvre and search for the best trajectory. 

Searching for the best path can be further divided into searching for the best series of 

paths towards the goal and searching within a limited ‘local’ time and space horizon. 

As far as manoeuvre planning is concerned, obstacle prediction and risk assessment 

are employed, while decision-theoretic approaches (such as Markov decision 

processes and game theory) have recently emerged to account for interactions within 

the traffic environment. Lastly, in trajectory planning, the chosen geometric path is 

bounded with kinematic and motion model constraints and further optimised to 

assure a smooth and feasible journey along it. This optimisation is based either on the 

choice of geometric curve to represent the path or on model predictive control. It 

should be noted that these approaches are rarely treated independently in current 

research; instead they are typically combined in order to provide a complete plan for 

the vehicle. 

 

This chapter critically examined existing planning approaches applied to autonomous 

on-road driving after the milestone of the DARPA Urban Challenge with an 

emphasis on manoeuvre planning because this subsection of motion planning was 

deemed the most suitable to accommodate NLCP information. Through manoeuvre 

planning an AV needs to account for the behaviour of other traffic participants and 

evaluate the traffic scene, hence collision risk assessment is crucial in order for 

safety to be assured.  
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The most important limitations in collision risk assessment by AVs were found to 

concern the handling of obstacles and their perception capabilities. The majority of 

existing risk assessment approaches treat traffic participants as independent entities, 

predict their trajectories and then detect potential collisions. However, such an 

approach incurs significant computational cost generation through checking of all 

possible trajectories. Instead of exhaustively calculating and predicting the 

trajectories of other traffic participants at each epoch (i.e. sensing cycle), a useful 

proposition would be to perform the trajectory calculation and collision checking 

only if unusual or dangerous manoeuvres are detected as suggested by Lefèvre et 

al.,(2012). Interaction-aware motion models take context into account but in many 

cases perfect communications or sensing is assumed. Hence, alternative 

methodologies should be formulated which can realistically represent the traffic 

environment and enhance the perception horizon of AVs.  
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3.  Literature review of network-level collision prediction 

approaches 

 

 Introduction 3.1.

In order for traffic engineering principles to be incorporated in the risk assessment 

module of autonomous vehicles, real-time traffic safety modelling needs to be 

reviewed so as to comprehend the emerging gaps in the current literature. Therefore, 

in this chapter the literature regarding NLCP as studied in the area of ITS is 

thoroughly reviewed and synthesised. This chapter will also review approaches on 

the use of traffic microsimulation as a possible solution to some of the drawbacks of 

existing methods on real-time NLCP. 

 

 Typical collision prediction and real-time collision prediction 3.2.

Conventionally, approaches regarding network-level safety aimed at predicting 

collision rates by road segment, based on the traffic characteristics, its geometrical 

characteristics (e.g. inclination, curvature) and environmental conditions (e.g. 

weather or visibility conditions). To accomplish this, researchers initially employed 

the Average Annual Daily Traffic (AADT) as it was widely recorded and publicly 

available. Other traffic related variables contained in safety analyses included vehicle 

composition, speed limits and congestion indices. As Abdel-Aty and Pande (2007) 

state, these approaches addressed the issue of identifying locations where most 

collisions are likely to occur. Such approaches are termed as “collective” or 

“macroscopic” (Abdel-Aty and Pande, 2007). However, approaches that utilise 

AADT along with historical collision databases induce a highly aggregated manner 

of investigating collision occurrence, thus deeming themselves inappropriate for real-

time risk assessment and traffic management. 

 

The advances in data collection and management technologies (e.g. installation of 

loop detectors, automatic vehicle identification (AVI) devices, probe vehicles and 

traffic cameras) led researchers to the exploration of more microscopic traffic data 

for traffic collision prediction. Simultaneously, the purpose of safety studies moved 

from detecting “collision-hotspots” (i.e. locations which tend to have more collisions) 
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to detecting “collision-prone” traffic conditions (i.e. traffic conditions which may 

lead to a collision). In more detail, research was not exclusively focused on 

predicting how many collisions were going to happen during a particular period of 

time based on aggregated traffic characteristics like AADT or the ratio of Heavy 

Goods Vehicles (HGVs), but was also into discovering if the traffic conditions at a 

specific time moment resembled the traffic conditions before a collision or 

not(Abdel-Aty et al., 2010). The latter type of studies is widely termed as real-time 

collision prediction or proactive safety studies in the ITS community. In this thesis 

NLCP is used to denote real-time collision prediction models, as mentioned in the 

previous chapters.  

 

NLCP models are usually part of road safety systems i.e. systems that monitor the 

risk of collision using traffic data in real-time and apply all the necessary 

interventions to smooth traffic after a collision occurrence (Hossain, 2011). Hossain 

(2011) defines NLCP as follows: “A NLCP model predicts the chance of a crash 

occurrence within a short time window in the near future for a specific road section 

mainly using instantaneous traffic flow data (e.g. speed, flow, occupancy) and their 

descriptive statistics”. This definition of a NLCP model will also be used in this PhD 

thesis. 

 

This literature review focuses on studies aiming at NLCP as part of traffic 

management systems. These studies form the state-of-the-art in network-level 

collision detection and will therefore be reviewed in order to fully understand the 

underpinning methodology, as well as identify potential knowledge gaps for further 

research and their incorporation into the respective modules of an autonomous 

vehicle. More specifically, the studies included in the review are examined with 

regards to their methodological approaches, the data that they used and their 

applications. 

 Review of real-time collision prediction studies 3.3.

NLCP models statistically connect real-time traffic measurements with the 

probability of a traffic collision. Figure 3.1 depicts a typical topology of traffic data 

collection devices used to build NLCP models. As Figure 3.1 shows, after the 

location of the collision has been determined, the closest loop detectors (either 
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upstream only or on both flow directions) are identified and are marked as collision 

detectors. The data from the conflict detectors during a certain time period before a 

collision are used as an example for collision-prone conditions, while data from the 

same detectors at other time intervals illustrate normal driving conditions. 
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Figure 3. 1 Topology of loop detectors used in NLCP studies 

  Early approaches 3.3.1.

Early studies of NLCP models concentrate on analysing traffic data from the 

upstream segment of a collision location only (e.g. Oh et al., 2001; Lee et al 2002; 

Golob & Recker, 2004)). Using relatively simple statistical techniques such as non-

parametric Bayesian filters (Oh et al., 2001), log-linear modelling (Lee et al., 2002) 

and non-linear canonical correlation analysis(Golob and Recker, 2004) those studies 

succeeded in linking the probability of a collision with real-time traffic data obtained 

from loop detectors. 

 

The study by Oh et al. (2001) is considered to be one of the primary studies on 

NLCP models. Using traffic data aggregated at 5-minute intervals they proved that 

the most important predictor of disruptive traffic conditions on motorways was the 

standard deviation of speed. They also demonstrated that a system which combines 

real-time traffic data and historical collision data could potentially reduce the 
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likelihood of a collision occurrence. On the same principle, Lee et al. (2002) and 

Golob and Recker (2004) demonstrated that within-lane and between-lane variations 

of speed, volume and traffic density prove to be important variables in real-time 

crash prediction models. The highlight of the research by Lee et al. (2002), however, 

was their insistence that studies which aim at detecting collision potential in real-

time should be of a proactive nature and looking at identifying disruptive traffic 

conditions before a collision rather than being reactive, focusing on investigating 

traffic oscillations after a collision event. The difference between proactive and 

reactive traffic safety and management systems is depicted in Figure 3.2.  On the 

other hand, Golob and Recker only used collision-related traffic data to develop their 

model, failing to represent “normal” traffic operations.  
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Although the above mentioned studies accomplished a statistical relationship 

between real-time traffic and collision occurrences, they lacked in terms of sample 

size, classification accuracy and transferability issues and the implementation of their 

results was is not suggested by  other researchers(Abdel-Aty and Pande, 2005, Xu et 

al., 2016a). 

 State-of-the-art approaches 3.3.2.

Most recent approaches in NLCP modelling require the utilization of data just before 

a collision occurrence (termed as collision-prone) as well as data of collision-free 

(also termed as normal) traffic conditions. The two types of data (collision-free and 

collision-prone), need to be acquired for both upstream and downstream of the 

collision’s location so as to capture the effect of traffic oscillations in both flow 

directions. These data categories describe traffic conditions on a road segment where 

a collision took place. Traffic data resembling collision-prone and normal traffic are 

usually employed as a matched-case control methodology, in which every collision-

prone traffic condition is matched with a number of normal traffic cases. This is so as 

to single out collision precursors (i.e. traffic indications of an imminent collision). 

The technique of matched-case control for NLCP studies was initially introduced by 

Abdel-Aty et al. (2004) and has thereafter been used massively because it eliminates 

the effects of location, time and weather conditions on the probability of a collision 

occurrence.  In studies employing matched-case control research design, the ratio of 

collision-prone to safe traffic conditions varies from 1:4 (e.g. Ahmed and Abdel-Aty, 

2013) and 1:5 (e.g. Abdel-Aty et al., 2008; Ahmed and Abdel-Aty, 2012) to 1:34 (e.g. 

Hossain and Muromachi, 2012).  In the literature, there is no set rule for choosing a 

ratio between cases and controls as normally the number depends on the available 

data. However, according to Roshandel et al., (2015) ratios greater than 1:5 do not 

result in a statistically significant difference in predicting performance.  

3.3.2.1. Traffic data considerations 

Regardless of the methodology chosen for real-time NLCP analyses, the traffic data 

and their quality form the most important factor for the predictive performance of the 

model. As mentioned before, NLCP models are part of traffic safety management 

systems, specifically proactive traffic safety management systems. As a result, the 

aim of such models is to predict a collision occurrence on a road segment, so that 
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drivers on that segment are informed (through Video Message Signs) of the 

hazardous traffic conditions and therefore will become more cautious, adjust their 

speeds and adopt a safer driving behaviour.  

 

3.3.2.2. Temporal Aggregation of traffic data 

As the application of NLCP models is the proactive identification of collision-prone 

traffic conditions, researchers aggregate the raw traffic data coming from various 

traffic sensors into different intervals of temporal aggregations. Oh et al. (2001), for 

instance, aggregated traffic data into 5-minute intervals and suggested that 5 minutes 

just before the collision occurrence should represent hazardous traffic conditions 

while 30 minutes of aggregated traffic data before the crash should imply  safe traffic. 

Golob and Recker (2004) discarded 2.5 minutes of data just before the collision 

event and utilised 30 minutes of aggregated traffic data for modelling real-time 

collision risk. Abdel-aty and Pande, (2005) stated that raw data (e.g. 20-second, 30-

second or 1-minute data) from loop detectors or other traffic measuring devices 

include random noise and therefore their utilization in collision prediction modelling 

is burdensome. They divided the 30-minute interval just before a collision into six 5-

minute time intervals and concluded that the best results for collision prediction are 

obtained using traffic data 5-10 minutes before a collision. The same authors (Pande 

and Abdel-Aty, 2005) utilised 3-minute traffic data aggregation and concluded that it 

performed worse than 5-minute aggregation. In the study of Ahmed and Abdel-

Aty(2012) 1-minute speed data were aggregated to four different levels (2,3,5 and 10 

minutes) to estimate the best accuracy for the model and again 5-minute aggregation 

resulted in the best results. 

 

In the following years, the vast majority of the literature on real-time NLCP (Abdel-

Aty and Pande, 2005, Pande and Abdel-Aty, 2006, Abdel-Aty and Pemmanaboina, 

2006, Ahmed et al., 2012b, 2012a, Hossain and Muromachi, 2012, Shew et al., 2013, 

Yu et al., 2013, Hassan and Abdel-Aty, 2013, Wu et al., 2013, Xu et al., 2015b, 

Wang et al., 2015, Fang et al., 2016, Xu et al., 2016b) followed similar 

methodologies; traffic data are aggregated in 5-minute intervals and the five-minute 

interval 5-10 minutes before the crash is used for predicting if a collision is imminent 

or not. The only differentiations from the majority of studies were found in Xu et al. 
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(2012) who utilised traffic data from the interval 0-5 minutes before the collision and 

Xu et al., (2013b), Lin et al., (2015), where traffic data from the interval 10-15 

minutes before each collision were used for modelling. Figure 3.3. summarises the 

temporal variance of the data used to predict collisions in real-time from the 

reviewed literature. As it can be seen from Figure 3.3., the prediction of each 

approach is relative to the traffic data used to calibrate the model. For example, if the 

model is calibrated using data 5-10 minutes before the collision, the model would be 

able to identify whether the traffic conditions at a specific time moment are 

hazardous enough to cause a collision in the next 10 minutes. 
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Figure 3. 3 Summary of temporal aggregation used for predicting collisions in 

real-time and the corresponding predicting horizon 

More recently, Peng et al. (2017) attempted to correlate collision risk with 

microscopic traffic data (raw loop detector data) along with surrogate safety 

measurements (e.g. Time-to-Collision or TTC). However, their focus was the 

identification of weather and kinematic characteristics leading to fog-related 

collisions only and not the identification of collision-prone traffic conditions. 
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3.3.2.3. Predictors included in real-time collision prediction models 

NLCP models utilise traffic surveillance devices which measure speed and count of 

overpassing vehicles over time. In the case of loop detectors occupancy is also 

measured. As a result, the traffic variables included in models are temporal 

aggregations or transformations (linear or logarithmic) of the above-mentioned 

measurements. When raw traffic data are aggregated, the average and standard 

deviations are calculated according to the temporal aggregation interval. The relative 

difference of the traffic measurements between the closest upstream and downstream 

detectors to a collision location (e.g. detectors U1 and D1 in Figure 3.1)  is also 

usually employed to identify the traffic oscillations prior to a collision occurrence 

and has been found to increase the probability of a collision occurrence (Roshandel 

et al., 2015). The coefficient of variation (i.e. the standard deviation of a variable 

divided by the average of the same variable) is a typical transformation used in the 

NLCP analyses (Abdel-Aty and Pande, 2005, Pande and Abdel-Aty, 2006, Yu et al., 

2013). Within the literature, the coefficient of variation of speed has been found to be 

associated with an increase in collision probability (Lee et al., 2002, 2003, Abdel-

Aty et al., 2004, Ahmed and Abdel-Aty, 2012, Xu et al., 2015b). In order to account 

for the effect of lane changes, some studies (e.g. Pande and Abdel-Aty, 2006, Xu et 

al., 2013b, 2014) consider the difference in traffic variables between adjacent lanes 

as a predictor. The difference in volume between adjacent lanes was associated with 

secondary collision probability as demonstrated by Xu et al. (2016b) and was 

explained by the tendency of drivers to change lanes if the number of cars is 

imbalanced across lanes. In those studies, it was found that the difference in 

occupancy between adjacent lanes led to increased collision probability. In the study 

by Hossain and Muromachi (2012) congestion index
9
 was also utilised but was not 

found to be significant in predicting collisions.  

 

It should be noted here that although the average and standard deviation of a traffic 

variable as well as its transformation are heavily used, there are differences in the 

spatial aggregation of the measurement. Some of the studies aggregate the 

measurement of a traffic variable over all the lanes of the motorway (e.g. Pande and 

Abdel-Aty, 2005, Ahmed and Abdel-Aty, 2012) to avoid having to deal with missing 

                                                 
9
 𝐶𝑜𝑛𝑔𝑒𝑠𝑡𝑖𝑜𝑛 𝐼𝑛𝑑𝑒𝑥 =

𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑−𝑠𝑝𝑒𝑒𝑑

𝑓𝑟𝑒𝑒 𝑓𝑙𝑜𝑤 𝑠𝑝𝑒𝑒𝑑
 (Hossain, 2011) 
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values or an erroneous detector at a specific moment of time. Other studies only 

employ the measurements of the lane where the collision happened and thus traffic 

data are aggregated temporally by lane.  The advantage of using lane-based data is 

that the level of detail in the analyses increases and as a result, specific spatial 

differences can be further explored more without problems such as the shockwave 

effect (Abdel-Aty et al., 2005). 

 

3.3.2.4. Variable space reduction 

In order to improve the predictability and interpretability of the proposed NLCP 

models, researchers often perform a technique for the variable selection (Guyon and 

Elisseeff, 2003). This is a procedure for selecting a subset of predictors from a 

dataset in order to construct a simpler model which consequently needs less training 

time and can be generalised more easily (Guyon and Elisseeff, 2003). Variable 

selection is a more robust technique to select the predictors included in the model 

compared to engineering judgement and statistical tests such as the t-test (Hossain 

and Muromachi, 2012). 

 

Regarding the techniques employed in the variable selection procedure, the trend in 

the literature is to use classification tree algorithms to rank the importance of 

variables so as to include them in the model. Examples of such algorithms are 

Classification and Regression Trees (CART) (e.g. Pande and Abdel-Aty, 2005, 

2006a, Yu and Abdel-Aty, 2013a),  Random Forests (RF) (e.g. Ahmed and Abdel-

Aty, 2012, Hassan and Abdel-Aty, 2013, Xu et al., 2013b), Random Multinomial 

Logit (RMNL) (e.g. Hossain and Muromachi, 2012) and Frequent Pattern Trees 

(FPT) (e.g. Lin et al., 2015). CART and RFs are usually biased towards variables that 

have the largest presence in the dataset or have many categories (Strobl et al., 2007) 

and thus the latter two approaches provide better results than the former. However, it 

is considered questionable by some researchers (Saeys et al., 2007,Lin et al., 

2014)whether the RMNL and FPT can overcome a known drawback of trees, namely 

the classifier-dependent selection  and if their performance is hindered in 

computationally constrained applications . 

Another approach to reduce the variable space in NLCP models is to use clustering 
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methods like k-means (e.g. Golob and Recker, 2004, Xu et al., 2012, Lin et al., 2015) 

or Principal Component Analysis (PCA) (e.g. Golob and Recker, 2004, Golob et al., 

2008, Wu et al., 2013).  The underlying scope is to replace individual traffic 

measurements into groups of observations (i.e. traffic states or traffic congestion 

levels) and correlate these groups with the probability of a collision. Nevertheless, 

microscopic traffic characteristics might be neglected if collision probability is 

linked with groupings of traffic variables. Furthermore, if traffic variables are to be 

grouped before their utilization, valuable computational time might be lost in real-

time. 

 

3.3.2.5. Methods utilised for analysis 

Methodologically, recent real-time NLCP approaches are divided into two broad 

categories: (1) statistical (e.g. Abdel-Aty et al. 2004, Xu et al., 2014)) and (2) 

artificial intelligence (AI) or machine learning (e.g. Abdel-Aty and Pande, 2005, 

Pande and Abdel-Aty, 2006, Hossain and Muromachi, 2012, Yu and Abdel-Aty, 

2013a, Xu et al., 2013b, Sun and Sun, 2015). 

 

With regards to statistical approaches, traditional binary logit (Abdel-aty and Pande, 

2005) and Bayesian logit ;  (Yu et al., 2013) as well as and random parameters logit 

models (Yu and Abdel-Aty, 2013c, Xu et al., 2015b)) have been applied. In a 

traditional logit model (i.e. with fixed effects) the estimated coefficients correspond 

to averaged effects without considering individual diversity. Random parameter 

models can account for the heterogeneity of road geometry, weather conditions or 

driving behaviour and have superior performance when compared to traditional logit 

(Yu and Abdel-Aty, 2014).However, regression models require the determination of 

a critical odds ratio as a threshold for the identification of collision-prone traffic 

conditions (Xu et al., 2013a) and also rely heavily on distribution assumptions for 

both the collision frequency and the traffic parameters. 

 

The first approaches within the machine learning domain for NLCP were concerned 

with Neural Network (NN) applications. For example,  a number of studies (Pande 

and Abdel-Aty, 2006, Abdel-Aty and Pande, 2005, Pande, 2005) utilised three types 

of NNs: (i)  Probabilistic (Abdel-Aty and Pande, 2005), (ii) Radial Basis Function 
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(Pande and Abdel-Aty, 2006, Pande, 2005) and (iii) Multilayer Perceptron (Pande 

and Abdel-Aty, 2006, Pande, 2005)) for real-time collision estimation on American 

freeways, demonstrating that NNs which do not require any distributional 

assumptions outperform statistical approaches. NNs usually require a large dataset 

for training (Vogt and Bared, 2008). However, their major drawback is related to the 

incorporation of the “black-box” effect, which  prevents clear understanding of the 

model’s underpinning properties, interpretation of the model’s results  and model 

transferability (Sargent, 2001). Furthermore, NN models often suffer from over-

fitting (Yu and Abdel-Aty, 2013b) and require extra computational resources to 

overcome(Vogt and Bared, 2008). The same “black-box” effect was also 

documented as a problem for other machine-learning approaches such as Support 

Vector Machines (SVMs) (Yu and Abdel-Aty, 2013b), although SVMs usually do 

not result in over-fitting and are flexible with the incorporation of predictors 

(Dreiseitl and Ohno-Machado, 2002). 

 

Genetic Programming, an extension of Genetic Algorithms (Holland, 1992),  was 

proposed by (Xu et al., 2013b) to remove the “black-box” effect of machine learning 

approaches, but their model faced difficulties with regards to transferability and 

practical implementation. In another attempt to tackle the effect of “black-box” Lv et 

al. (2009) and Lin et al. (2015) utilised the non-parametric algorithm of k-Nearest 

Neighbours (k-NN).  kNN is a simple “data-driven” classifier which provides 

explanation on classification results, addresses the black-box effect and is easily 

transferrable because it does not require prior knowledge of any datasets. 

 

In order to deal with the drawbacks of previous approaches (both logistic regression 

and machine learning ones), Hossain and Muromachi proposed Bayesian Networks 

(Hossain and Muromachi, 2012). They investigated collision prediction on main 

motorway segments and ramp vicinities by using traffic flow variables and finding 

an ideal arrangement of detectors for data collection, after hypothesizing that the 

collision mechanism is different on main segments and ramps. Their study, however, 

had limited transferability. Sun and Sun (2015) implemented Dynamic Bayesian 

Networks, an extension of Bayesian Network able to model temporally sequential 

data. The focal point of their approach is that they treated collisions as an event 
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triggered by dynamically changing precursors, which is a more realistic view of 

investigating collision probability over focusing on making point predictions based 

on aggregated traffic data. Bayesian Networks combine the probability and the graph 

theory to represent dependencies between predictors and the dependent variable. In 

order to be able to represent the probabilities of each of the included variables, 

Bayesian Networks require a sufficiently large dataset which makes them difficult to 

be implemented with small and unbalanced datasets. 

 

 Drawbacks of existing approaches 3.4.

NLCP approaches have been constantly improving over time. They have been tested 

on a variety of motorways (mostly in the U.S.A and China) and have incorporated 

new types of data due to the improvements in data collection technologies. However, 

there are some issues that prevent these models from being widely utilised by traffic 

management agencies. The following subsections aim to identify the particular 

drawbacks based on the findings from the literature review.  

  Modelling methods 3.4.1.

As more data become available in traffic management, machine learning and data 

mining techniques are becoming more and more of an option in handling large 

datasets with highly correlated variables in comparison with statistical methods (i.e. 

logistic regression). On the other hand, the main drawback of machine learning is 

that their results incorporate the “black-box” effect. NNs and SVMs have provided 

results of sufficient accuracy (i.e. above 75% according to Abdel-Aty et al., 2005) 

and low false-alarm rates. However, the interpretation of their classification results is 

a challenging task. Bayesian Networks may seem a more transparent technique. Yet 

they require high representations of both collision and safe traffic conditions. In 

Hossain and Muromachi (2012), for example, 722 collisions and 26,899 normal 

traffic conditions were used to build the model which shows that requirements for an 

effective Bayesian Network model might not work in segments with a low number of 

collisions. Consequently, alternative classifiers within the machine learning domain 

should be researched to tackle the black-box effect and provide interpretable results. 
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Furthermore, as the matched-case control study design is the most prominent in 

NLCP studies, the ratio between control and cases differs significantly. As discussed 

in the introduction of section 3.3.2, in some cases the ratio was 1:4 (dangerous: 

normal conditions) while in others it was 1:34. Nonetheless, the ratio between cases 

and controls can prove essential for the classification results (He and Garcia, 2009, 

Xu et al., 2016a). The importance of the ratio for the classification results is derived 

from the fact that if one of the classes (i.e. collision-prone or safe traffic conditions) 

is overrepresented, the classifier would easily recognise cases of that class and will 

fail to recognise the class which is underrepresented. It goes without saying that in 

NLCP studies the underrepresented class is the one associated with collision-prone 

traffic conditions because of the rarity of collision events. Thus, a potential real-time 

NLCP classifier needs to be performed well without over-representing safe traffic 

conditions. This could be done with special imbalanced data classification techniques 

(He and Garcia, 2009) but has not yet been researched in NLCP models as  also 

suggested by a meta-analysis from Roshandel et al. (2015). 

 

  Temporal aggregation of traffic data 3.4.2.

As discussed in section 3.3.2.1, the majority of the studies aggregate the raw data 

coming from loop detectors every 20 or 30 seconds into 5-minute intervals. After the 

aggregation, the time interval 5-10 minutes before a collision is utilised for building 

the model. The justification behind  the 5-minute aggregation is that raw data include 

random noise and are difficult to implement in a modelling framework. The 

aggregation, on the other hand, does not reflect the vehicles’ trajectories efficiently 

and also highlights the absence of an underpinning theory of selecting temporal 

aggregation intervals for NLCP models (Roshandel et al., 2015). Moreover, it is 

argued that the interval 0-5 minutes before a collision is not a sufficient one for 

effective traffic management interventions to prevent a collision and smooth traffic 

after an occurrence. As depicted in Figure 3.3., the prediction horizon is relative to 

the upper limit of the time interval of which traffic data are utilised. Thus, the 

majority of approaches are looking into predicting a collision occurring in the next 

10 minutes.  
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In the current era, where autonomous vehicles are closer to reality, it becomes 

essential that collision prediction should utilise more disaggregated data and should 

aim at a reduction of the prediction horizon. If transport engineering methods are to 

be incorporated into autonomous vehicles’ planning, then prediction should be 

performed in a second-base rather than a 5-minute base. If, for example, NLCP 

classifiers were calibrated using the raw detector data (e.g. with 20-second or 30-

second data) or even traffic data aggregated every minute, then the prediction 

horizon would decrease significantly. A potential collision would be predicted not 

for the next 5 or 10 minutes, but for a time interval of a few seconds, which is much 

more essential for applications in autonomous vehicles, vehicular communication 

and modern ITS. The advances in machine learning research should also become 

easier in the tasks of reducing noise in raw traffic data and utilizing them in collision 

prediction. As a result, researching the use of highly disaggregated traffic data should 

be further explored.  

 

  Temporal precision and underreporting 3.4.3.

Traffic data used in NLCP models are in accordance with historical collision data 

that exist in national databases. These databases include the reported collision time 

and this time is used in the modelling process as the starting point for traffic data 

aggregation. However, a known problem regarding the reported time of collision is 

that its correct reporting is in the volition of the officer who is first on the spot of the 

collision. The reported time is usually rounded up to the nearest 5-minute time period 

(Kockelman and Ma, 2007, Imprialou, 2015, Roshandel et al., 2015). Consequently, 

this leads to traffic data which are misrepresenting the traffic conditions just before a 

collision. It also induces ambiguity in the comparison between traffic conditions that 

lead to a collision versus the traffic conditions under normal operations. Moreover, 

another limitation of existing collision databases is that only serious or fatal 

collisions are usually reported. Slight collisions or near misses are not easily 

documented(Yamamoto et al., 2008, Tsui et al., 2009, Department for Transport, 

2016) and thus they are not included in safety databases. Thus, documentation of 

these cases and their utilization in safety analyses should enhance proactive real-time 

collision modelling.  
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 Safety analyses using traffic microsimulation 3.5.

Traffic simulation models provide a mathematical or logical representation of a 

traffic network in order to quantitatively describe the performance of a network and 

that of a user. In theory, they could provide a potential solution to the problems of 

collision underreporting and erroneously reported collision time. Hence in this 

section safety analyses based on traffic microsimulation will be critically reviewed. 

 

 In general, there are two types or abstraction levels for modelling traffic; 

macroscopic and microscopic. The former, is usually termed as traffic 

macrosimulation and the latter is known as traffic microsimulation. Macrosimulation 

follows a top-to-bottom approach focusing on modelling traffic as combined clusters 

of vehicles. More specifically, traffic dynamics are characterised by the spatial 

vehicle density and the average vehicle speed as a function of a motorway location 

and time (Helbing et al., 2002). In other words, traffic microsimulation aims at 

describing the time-space evolution of the fundamental traffic variables (i.e. speed, 

volume and density) and analysing traffic flow in a way analogous to that in which 

fluids are studied in hydrodynamics  (Barcelo, 2011).  However, this high-level 

description does not allow looking at the independent movement of vehicles and the 

acquisition of highly disaggregated data. 

 

On the other hand, traffic microsimulation analyses the independent vehicle motion 

within a specific traffic course. Accelerations, decelerations, lane changing 

behaviour, gap acceptance and car-following models are conceived as integral parts 

of the modelling procedure. Microsimulation models have primarily been developed 

in order to evaluate alternative treatments at sites and as an essential part of 

designing and visualizing transport designs so as to optimise traffic operations. 

However, transport research has recently begun to utilise traffic microsimulation for 

safety assessment.  

 

  Conflicts as a surrogate for collisions 3.5.1.

Recent research on traffic microsimulation and road safety (e.g. El-Basyouny and 

Sayed, 2013, Shahdah et al., 2015) showed that it is possible to estimate surrogate 

measures of safety performance based on dangerous vehicle interactions. If these 
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risky vehicle interactions are filtered with established risk indicating thresholds, they 

are termed as “traffic conflicts”. The traffic conflict technique (TCT) was a 

procedure firstly described by Perkins and Harris (1967) which quantified evasive 

manoeuvres as a surrogate to reduce safety-critical situations. Amundsen and Hyden 

(1977) provided the definition of traffic conflicts. According to that definition, traffic 

conflicts occur when two or more road vehicles are in such a collision course that a 

high probability of a collision exists if their motion remains uninterrupted.  

 

TCT has been criticised because traffic conflicts need to be validated from on-spot 

observers and usually the quantity of conflicts is subjective to the observer’s 

judgement and hence it is difficult to link conflicts with observed crash data (Cunto, 

2008). 

 

Hyden (1987) introduced the renowned pyramid which depicts the transition from 

normal vehicle interactions to collisions as seen in Figure 3.4 indicating that  the 

largest proportion of vehicle interactions are safe and that collisions are only a small 

fraction of serious conflicts. The representation of traffic interactions as a continuum 

leads to a conclusion that there exists a relationship between the number of serious 

conflicts and collisions (Yang, 2012). In the same work of Hyden (1987), it is stated 

that the collision severity distribution is similar between traffic conflicts and traffic 

collisions. This is also supported by other studies (Archer and Kosonen, 2000, 

Shahdah, 2014) which showed that a higher rate of traffic conflicts at a specific 

location indicates a lower level of safety.  

 

Figure 3. 4 Hyden’s Pyramid depicting the proportion of safe and dangerous 

traffic incidents (Hyden, 1987)  
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Using traffic conflicts can, therefore, address issues related to traffic collisions such 

as the incorrectly reported collision time as discussed above. Furthermore, studying 

conflicts can enhance the understanding of the specific characteristics that lead road 

users to drive unsafely and cause collisions (Yang, 2012, El-Basyouny and Sayed, 

2013). Approaches that use traffic conflicts are, however, criticised in the literature, 

because the correlation between traffic conflicts and traffic collisions on a segment 

may be low (Shahdah et al., 2015). Nevertheless, it is also admitted that the 

mechanism that triggers collisions and conflicts is analogous (Shahdah et al., 2015, 

El-Basyouny and Sayed, 2013).  

 

In all traffic microsimulation platforms, simulating traffic collisions is not possible 

because such software is programmed according to a number of safety-related 

parameters. These parameters include the free-flow speed of cars, inter-vehicle 

headways, acceleration or deceleration profiles, the interaction between priority and 

non-priority vehicles, appropriate overtaking and lane-changing gaps as well as the 

obedience of traffic regulations (Bonsall et al., 2005). Despite these safety related 

constraints, the fact that vehicles can come very close to each other and the 

information on vehicles’ exact positions, speeds, headings and accelerations can 

provide a relevant safety index for vehicle interactions (Huguenin et al., 2005).  

 

Minderhoud and Bovy (2001) suggested that traffic micro-simulation can overcome 

the need to collect collision data and also provide alternatives to the safety evaluation 

of ITS technologies. They indicated that safety indexes, such as TTC and the 

vehicles’ headway distribution as provided by traffic microsimulation software, can 

reveal safe and unsafe driving patterns. Likewise, Archer (2005) stated that the 

traffic conflict technique based on the results from micro-simulation could have a 

practical impact and provide an insight into the identification of safety problems in 

real-world traffic environments. Archer indicated that a simulation model represents 

in great detail the geometric, traffic control and traffic flow characteristics of a 

location, parameters which directly influence traffic safety.  In order to assess safety 

within traffic microsimulation environments, Gettman and Head (2003) investigated  

the potential of detecting traffic conflicts from surrogate safety indicators such as 

TTC, PET, the maximum speed of the vehicles, the deceleration rate and the speed 
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differential between the vehicles. Their work was reflected in the development of 

SSAM, a post-processing software which investigates simulated vehicle trajectories 

and detects the number and severity of traffic conflicts accompanied by surrogate 

safety measures for each conflict.  Currently, SSAM is probably the only exceptional 

tool for exploiting traffic conflicts from microsimulation (Huang et al., 2013). 

 

The convenience in terms of the reduced need for on-field data collection and the 

relatively easy identification of hazardous vehicle encounters through safety indices 

led to several safety-related microsimulation studies. A detailed overview of 

approaches concerning safety-related traffic simulation was published by Young et 

al. (2014). In their review, it is revealed that researchers are looking to establish a 

correlation between the numbers of simulated conflicts with the number of expected 

real-world collisions. El-Basyouny and Sayed (2013) justified the attempt to link 

conflicts with collisions by indicating that conflicts are based on vehicle interactions 

compared to typical collision predictors such as exposure. Essa and Sayed (2015a) 

and Huang et al (2013) however emphasised that the link between conflicts and 

collisions depends heavily on the calibration of the simulation model. On the same 

principle, Fan et al. (2013), who investigated the safety of motorway merging areas, 

suggested that SSAM should be used with caution because of the purely stochastic 

nature of real-world collisions. 

 

  Surrogate safety measures  3.5.2.

The use of traffic conflicts in road safety assessment using traffic microsimulation 

has gained popularity within the ITS research community over the recent years due 

to the development of SSAM as a post-processing tool. The underpinning nature of 

safety studies using microsimulation is based on using the trajectories of the 

simulated vehicles and filtering them with safety indicators, so as to extract conflicts.  

TTC and Post-Encroachment Time (PET) are the two mostly utilised safety 

indicators and the two measures that are utilised from SSAM as thresholds to filter 

trajectories. Other surrogate safety measures across the literature include the 

Deceleration Rate to Avoid a Crash (DRAC) (Cunto and Saccomanno, 2008), Time-

to-Accident (TTA) (Archer and Young, 2010) Time Exposed Time-to-Collision 

(TET) (Minderhoud and Bovy, 2001) and Time Integrated Time-to-Collision (TIT) 
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(Minderhoud and Bovy, 2001). However, DRAC is usually used to account for the 

severity of the conflict while TTA requires estimation of trained observers on the 

studied site. Furthermore, TET and TIT require the initial identification of TTC for 

all the vehicles on the study site along with further computation, something which 

makes them useful mostly for post-processing rather than utilization in real-time 

studies. 

 

The most frequently used metric acting as a surrogate measure of conflict is TTC. 

Hayward (1972) and Hyden (1987) initially utilised TTC as a surrogate measure and 

defined it as the time required by two vehicles to collide if they continue having the 

same speed on the same path. Due to the necessity that speed is kept constant TTC is 

meaningful if a positive difference between vehicle speeds exists (Yang, 2012). 

Moreover, as pointed out by Ward et al. (2015), TTC is used only for car-following 

scenarios. Regarding thresholds that indicate conflicts Sayed and Zein(1999) 

suggested that TTC values between 1.6 and 2.0 indicate low collision risk, TTC 

between 1 and 1.5 seconds are associated with moderate risk, while values below 1 

second suggest high risk of collision. On the same principle, Archer (2005) 

suggested an upper threshold of 1.5 seconds should be indicative of dangerous 

vehicle encounters. Most recently, Dijkstra (2013) defined a threshold of 2.5 seconds 

to indicate conflicts which is indicative of commercially available forward collision 

warning systems (Scanlon et al., 2016). 

 

PET is defined as the temporal difference between the moment  an “aggressive” 

vehicle departs from a potential collision area and the moment another vehicle 

arrives at the same spot (Cunto, 2008). PET is more easily extracted than TTC 

because it does not require the indication of a collision course between vehicles, nor 

any relative speed or distance data (Archer, 2005).To elaborate more on the 

definition of PET, at a specific intersection or road segment, a stationary conflict area 

is defined and the time difference between two vehicles passing over this conflict 

area is used to extract PET. However, PET utility is limited to vehicle trajectories 

that interfere with each other and this originates from the fact that the collision area 

should be stationary and not dynamically changing per the vehicles’ kinematics. 
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 Microsimulation in safety analyses 3.5.3.

The underpinning nature of using traffic microsimulation for safety analyses is the 

use of TCT for identifying traffic conflicts on a network that has been coded and 

simulated.  

 

As it can be interpreted from the previous sections, traffic microsimulation 

overcomes drawbacks of safety analyses related to underreporting and erroneous 

collision times. However, one of the main concerns in the use of microsimulation is 

the connection that surrogate safety measures have with actual crashes. It has been 

argued among researchers (e.g. Archer, 2005, Cunto and Saccomanno, 2008, Dijkstra 

et al., 2010) that there is an actual relationship but at the same time a part of the 

research (e.g. Sharma and Collins, 2014) suggests that the randomness of conflicts 

and collisions affects a correct TCT-based collision prediction. This ambiguity is 

also based on the fact that microsimulation models are built on car-following, gap 

acceptance or lane changing models, which do not allow actual collisions. The 

underpinning models allow for a pseudo-realistic motion of the vehicles inside the 

simulation but the reliability of those models in user-defined parameters might result 

in debatable results which do not resemble human driving behaviour (Huang, F. et al., 

2013, Yang, 2012).  

 

Furthermore, although SSAM utilises only TTC and PET, a tide of research aims at 

developing new surrogate safety measures. This leads to the fact that there is still not 

a specific surrogate measure validly correlated with collision occurrence. On the 

other hand, SSAM’s acceptability as a post-processing tool has undoubtedly 

enhanced safety analyses of microsimulation data.  

 

Perhaps the greatest distress of using microsimulation is the calibration and 

validation of the traffic data used. In order to extract conflicts, the simulation model 

needs to be well validated. According to FHWA guidelines (Dowling et al., 2004) 

the validation should be done mainly in terms of volume and travel times. However, 

according to the same guidelines, the performance of the vehicles in the simulation is 

up to the analyst’s opinion, which can be differentially interpreted. Nevertheless, if 
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the simulation model is well calibrated, then its use in safety analyses is generally 

accepted (Young et al., 2014, Shahdah et al., 2015). 

 

Finally, the number of simulation runs needs to be such so as to ensure stochasticity 

in the model. Multiple runs are crucial so as to ensure that the behaviour of simulated 

vehicles for each model is different, thus resembling the randomness in human 

driving behaviour(Dowling et al., 2004). The number of runs, however, differs 

significantly among studies. For example, Sobhani et al. (2013) used three runs for 

their research, Dijkstra et al., (2010) used 36 runs while Shahdah et al. (2014) and 

Habtemichael and De Picado Santos, (2014) ran their model 50 and 60 times 

respectively. Consequently, it is understood that the higher the number of runs, the 

more random will the resulting model be and thus more representative of real-world 

traffic environments. 

 

A thorough examination of papers attempting to link conflicts with collisions (e.g. 

(El-Basyouny and Sayed, 2013, Essa and Sayed, 2015b, Shahdah et al., 2015) reveals 

that the primary aim of these papers is the before-and-after evaluation of new 

technologies or infrastructure modifications with regards to safety. More specifically, 

these approaches seek to estimate if alterations to the current state of (a part of) the 

traffic environment will increase or reduce the number of collisions on specific spots.  

 

As a consequence, an emerging research gap is that of using the simulated conflicts 

for the identification of real-time conflict-prone traffic conditions. Although vehicles 

in microsimulation do not collide, they have abundant interactions with each other 

and their motions are realistic because of the built-in car-following and lane-

changing models. Hence, if proper attention to the correct calibration of the 

microsimulation model is given, traffic conditions before a traffic conflict can be 

used as a surrogate measurement to identify traffic collisions. 

 Summary 3.6.

This chapter presented a literature review of studies researching network-level 

collision prediction models. The models were reviewed with regard to the methods 

utilised for the study, the traffic data and their prediction horizon, as well as the 

variables included in the models. 
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As far as the applied methods are concerned, machine learning approaches have 

recently become more popular due to their effectiveness in handling correlated 

predictors and erroneous or missing data. However, their weakness lies in the fact 

that most of the methods act as “black-boxes” and do not allow an easy interpretation 

of their results.  

 

The traffic data utilised in the studies are obtained from data collection devices every 

20 or 30 seconds. These traffic data are later aggregated in 5-minute intervals and the 

time interval 5-10 minutes before a collision is used to build the models and predict 

future collisions. As a result, the prediction horizon of current studies aims to predict 

collisions in the future 5 or 10 minutes and warn drivers to adjust their driving 

attitude. 

 

Regarding the variables utilised in the models, they usually include the 5-minute 

average and standard deviation of speed and volume. More importantly, standard 

deviation of speed and the coefficient of variation of speed are mostly correlated with 

high collision probability. Additionally, recent studies utilise variable selection 

methods to reduce the variable space with Random Forests being the most utilised 

method for that task. 

 

Current approaches concerned with real-time NLCP are mainly limited due to three 

problems: 

 The imbalance of the traffic datasets which over-represent safe traffic 

conditions and underrepresent collision-prone traffic conditions 

 The failure to utilise raw traffic data or traffic data aggregated at time 

intervals smaller than 5-minutes  

 The problem of erroneous reporting of the time of collisions by attending 

police officers and the underreporting of slight collisions and near-misses. 

Traffic microsimulation can provide highly disaggregated details on the vehicle 

motions within a coded network. The vehicles inside a simulation environment are 

bounded by car-following, lane-changing and gap-acceptance models and therefore 

cannot collide with each other. The development of SSAM, however, brought about 
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a boost in safety-related studies along with microsimulation. These studies use the 

traffic conflict technique to obtain “dangerous” vehicle encounters but to date are 

limited to before-after studies which attempt to correlate the total number of crashes 

at a site based on simulated conflicts. Nonetheless, simulated vehicles’ motion is 

realistic and the exact time of a conflict could be obtained from SSAM.  Hence the 

study of traffic conditions just before a conflict and its use as a surrogate for 

representing collision-prone traffic conditions should be investigated. 

 

Identification of research gap 3.7.

As reviewed in Chapter 2, the planning module of an autonomous or self-driving car 

should ensure safety and comfort for the passengers. It should also put the car in the 

right behaviour with respect to the kinematic and motion model constraints 

surrounding the car. Many of the collisions taking place today are as a result of 

imprecise perception and decision making on the part of the human driver. 

Autonomous driving is envisaged to drastically reduce such mistakes since accurate 

risk assessment is vital for preventing collisions. Although current AV systems have 

been successfully applied to finding paths and detecting obstacles in real 

environments, collisions still occur. Hence, greater emphasis must be given to 

accurate risk assessment in real-time.  

 

Existing approaches to the problem of planning originate from earlier developments 

within robotics which treat the car as an individual isolated entity. An autonomous 

vehicle will be a participant of a wider (mixed) traffic system. Complex traffic 

scenarios are difficult to tackle and learning specific manoeuvres of the drivers and 

classifying them as safe or dangerous are time-consuming due to the massive 

datasets needed. In order to address these challenges traffic–related information is 

starting to become part of risk assessment models.  Nevertheless, the complexity of 

the proposed models is high and assumptions regarding the communications between 

vehicles may hinder a comprehensive but simple representation of the traffic 

environment. Last but not the least, existing planning approaches incorporating 

traffic-related information is limited to road geometry and the obedience to traffic 

rules which do not provide a wider picture regarding the safety level of traffic 

conditions.  
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The literature review in Chapter 3 revealed that NLCP is a problem that has been 

researched by ITS experts for many years; resulting in tried and tested methods 

which indicate network-level collision risks (Figure 3.5). The extensive research on 

NLCP has provided techniques which have been tested on ATM systems and can 

predict and prevent actual collisions in real-time (e.g. Xu et al., 2016a, Hossain, 2011 

Abdel-aty and Pande, 2005). As real-time highly disaggregated traffic flow data and 

historical collision data are publicly available, the indication of hazardous situations 

can be implemented relatively easy and support the planning module of autonomous 

vehicles.  If the NLCP problems of data imbalance, traffic data aggregation and 

misreported collision time, are addressed, it could lead to a potential improvement in 

AV decision making as an early indication of dangerous road segments would be 

provided. Moreover, it could ease the computation and evaluation of hazardous 

situations for AVs in real-time, and, at the same time, increase their perception 

horizon. This can be achieved if NLCP models were to be incorporated within 

autonomous vehicle planning modules and more specifically manoeuvre planning 

modules. However, an integrated approach to bridge vehicle-level and network-level 

risk assessment is yet to be fully understood and utilised. 

 

Dangerous 

road segment
Dangerous 

road user
 

Figure 3.5 From network level risk to vehicle level risk 
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4. Research Methodology 

Introduction 4.1.

The body of research reviewed in the previous chapters indicated that there are two 

main approaches in predicting a collision in real-time, namely network-level (i.e. 

NLCP) and vehicle-level (i.e. collision risk assessment within AV manoeuvre 

planning).  

 

NLCP is the outcome of traffic engineering research attempts to identify patterns of 

traffic dynamics which may lead to traffic collisions. More specifically, the temporal 

horizon of collision prediction in NLCP models has been found to correspond to the 

aggregation interval of traffic data that has been collected and collated so as to 

denote collision-prone or safe traffic.  

 

However, as yet, this approach has not been integrated within the risk assessment 

module of an autonomous vehicle. Vehicle - level collision prediction is mainly 

based on the classical trajectory prediction and collision detection process which 

may introduce complexity to the computation in estimating the probability of a 

collision. In the majority of the techniques every vehicle is assumed to be an 

independent entity. Only a limited number of the most recent approaches (e.g. 

Lefèvre, 2012, Ward et al., 2014), indicate the importance of taking the context into 

account while assessing risk. The term “risk” henceforth will represent the 

probability of a collision happening.  

 

One of the primary ambitions of this work is to formulate a framework where 

network-level risk and vehicle-level risk are simultaneously taken into account, so as 

to examine the influence, for instance the improvement/decline of correct predictions, 

that network-level risk assessment can have in predicting or mitigating a collision in 

autonomous driving applications. This framework is based on the interaction-aware 

motion models that were found in Chapter 2 to be the state-of-the-art in risk 

assessment for autonomous vehicles. 

 



60 

 

The most important problems of current NLCP models relate to the erroneous 

reporting of collisions, the temporal aggregation of traffic data and the imbalance of 

datasets. To improve the interpretability of NLCP models a machine learning 

classifier which combines the prediction of a collision with an associated probability 

is developed. In order to overcome the problem of the erroneous collision reporting, 

simulated traffic data in conjunction with available real-world data are utilised. 

Moreover, in order to enhance NLCP, so as to tackle the data imbalance problems, 

imbalanced learning is applied.  

 

The developed models will assist the incorporation of NLCP models in autonomous 

vehicles applications considering their more robust and interpretable predictions. The 

development of a framework in which NLCP models can be included in the routines 

of autonomous vehicles will also be described, in an attempt to bridge the gap 

between the vehicle-level and network-level perception of collision prediction. 

 

Research Design 4.2.

The aim of this PhD study, as described in Chapter 1 has been divided into 6 

objectives. Table 4.1 illustrates the objectives and methods utilised to accomplish the 

aim of this PhD study.  
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Table 4. 1 Research objectives, methods and corresponding chapters 

Objective 

ID 
Objectives Methods Chapter 

1 

To investigate existing 

motion planning and 

collision risk assessment 

for autonomous vehicles 

Literature review  
Chapter 

2 

2 
To explore factors and 

methods related to NLCP 
Literature review  

Chapter 

3 

3 

To refine traffic and 

collision data so as to 

enhance the quality of the 

analysis  

Utilization of highly 

aggregated and disaggregated 

data from real-world 

databases and traffic 

microsimulation  

Chapter 

5  

4 

To formulate a framework 

for the incorporation of 

NLCP within the risk 

assessment module of an 

AV  

Development of a collision 

risk assessment framework 

based on an interaction-aware 

model  

Chapters 

4 

5 

To enhance the 

performance and 

interpretability of current 

machine learning classifiers 

used for NLCP 

 

Utilization of probabilistic 

machine learning algorithms 

and imbalanced learning 

Chapters 

6 

6 
To evaluate the framework 

for risk assessment of AVs 

Estimation of the expected 

changes in collision prediction 

using the integrated collision 

risk assessment model 

Chapter 

7 

 

Objectives 1 and 2 have been discussed earlier in Chapters 2 and 3 which reviewed 

the relevant literature. The following sections will be discussing the methods used to 

approach the remaining objectives.  
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 Integration of network-level and vehicle-level collision prediction  4.3.

(Objective 4) 

 

 Introduction 4.3.1.

As mentioned before, this work aims to enhance the estimation of network-level 

collision risk so that it can be incorporated into vehicle-level collision risk 

assessment modules. Interaction-aware motion models which perform under the 

Bayesian principle and take the traffic into account are a potential candidate for the 

formulation of an integrated risk assessment framework, as found in the literature 

review of Chapter 2. 

 

Time-varying traffic scenes have to be modelled appropriately so that an ego-AV is 

able to reliably estimate the risk of a collision according to the surrounding vehicles, 

as well as the interactions between them. Therefore, an appropriate framework for 

modelling dynamic systems (i.e. systems with characteristics that change through 

time such as a continuously changing traffic scene) must be applied. 

 

Data acquisition for AVs is dependent on the temporal frequency of their built-in 

sensor unit. As a result, input data to the risk assessment algorithm are inherently 

sequential. Approaches for handling such data can be divided into two parts 

according to Murphy (2002):  

 

 Classical approaches such as ARIMA, ARMAX, Neural Networks (NNs) and 

Decision Trees; 

 State-space models such as Hidden Markov Models (HMMs) and Kalman 

Filter Models (KFMs) 

 

State-space models outperform classical approaches in problems associated with 

finite-time windows, discrete and multivariate inputs or outputs and they can be 

easily extended (Murphy, 2002). A known drawback of HMMs is that they suffer 

from high sample and high computational complexity. More specifically, consider 

the problem of modelling the motion of objects through a camera images sequence. 

If there are M objects, each of which has k positions and orientations, there are k
M
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possible states of the underlying system. An HMM would require k
M 

distinct states to 

model the system and the necessary parameters would need to be fully described by 

the available data or severe over-fitting might occur (Ghahramani, 2001).This means 

that learning the structure of the model and inferring the required probability 

necessitates more time to accomplish. Furthermore, simple HMMs require a single 

discrete random variable, which cannot cope with the description of a constantly 

changing environment, such as a traffic scene. Although, factorial HMMs and 

coupled HMMs enable the use of multiple data streams, the former has problems 

related to the correlation between the hidden variables, while the latter needs the 

specification of many parameters in order to perform an inference (Murphy, 2012). 

Finally, KFMs rely on the assumption that the system is jointly Gaussian which 

makes it inappropriate to jointly accommodate both discrete and continuous variables 

(Murphy, 2002).  

 

In order to overcome the above limitations in handling sequential data, Murphy  

(2002) proposed the use of DBNs. DBNs are an extension of Bayesian Networks ,a 

graphical representation of a joint probability distribution of random variables, to 

handle temporal sequential data (Koller and Friedman, 2009). DBN representation of 

the probabilistic state-space is straightforward and requires the specification of the 

first time slice, the structure between two time slices and the form of the Conditional 

Probability Distribution (CPDs). A crucial part in defining a DBN is the declaration 

of hidden (i.e. latent) and observed variables.  

 

When applied for the anticipation of the motion of the vehicles and risk assessment 

for automated driving, a typical DBN layout that takes the inter-vehicle dependencies 

into account is shown in Figure 1a (Lefèvre, 2012). The DBN requires the definition 

of three layers as seen in Figure 1:  

 

Layer 1: the top level corresponds to the context of the vehicle’s motion. It can be 

seen as a symbolic representation of the state of the vehicle (Agamennoni et al., 

2012). It can contain information about the manoeuvre that the vehicle performs as 

seen in Lefèvre (2012  or the geometric and dynamic relationships between vehicles 

as seen in Agamennoni et al. (2012). The variables contained in this level are usually 
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discrete and hidden. The variables of the layer are discrete, since they usually denote 

categorical variables such as manoeuvre undertaken, (e.g. “going straight”, 

“overtaking”, “lane change”) or the compliance to traffic rules (e.g. “safe lane 

change” or “illegal left turn”). The hidden nature of the variables corresponds to the 

fact that they describe quantities not directly observable by the vehicle’s sensor 

systems, and hence need to be inferred by other measurements. For example, the 

category of the manoeuvre can be inferred, based on the kinematic characteristics (i.e. 

vehicle position, speed and acceleration). 

 

Layer 2: this level corresponds to the physical state of the vehicle, more particularly, 

the kinematics and dynamics of the vehicle). It usually includes information about 

the position, the speed and the heading of the vehicle, but can accommodate 

information coming from a dynamic model for the motion of the vehicle such as the 

bicycle model. The variables contained in this level are usually continuous because 

they refer to physical quantitative measurements (e.g. speed, position, acceleration) 

and hidden because they describe filtered or edited measurements which are inferred 

from the corresponding raw sensor measurements. 

 

Level 3: the lowest level corresponds to the raw sensor measurements that are 

accessible (e.g. measured speed). In turn, these measurements are processed in order 

to remove noise and create the physical state subset in Layer 2.  The variables at this 

level are observable. 
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Figure 4. 1 Graphical representation of a typical DBN-based interaction aware 

model 

In Figure 4.1, it is noticeable that for every time moment, the specific context of each 

vehicle influences the physical state of the vehicle and consequently the physical 

state is depicted on the observations from the sensors. Accordingly, it is noticeable 

when focussing on the thick solid arrows that the context of each vehicle at a specific 

time slice is dependent on the context and the physical state of every vehicle in the 

traffic scene at the previous time slice. This means that the probability of a vehicle 

belonging to a specific context in the next time slice requires the estimation of the 

union of probabilities which describe the context for each of the vehicles in the scene 

along with the probability distributions of variables related to their physical states. 

To clarify, assume that an ego-vehicle is travelling in the middle lane of a motorway 

and senses that a lead vehicle on the left lane intends to change its lane. Based on the 

traffic rules, it is logical to assume that the ego-vehicle would slow down or change 

its lane to the right. If a vehicle already occupies the right lane, then the context of 
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“slowing-down” would have a higher probability than the context of “change its lane 

to the right” or “change its lane to the left” and the differences in the context would 

depend on the physical measurements of all vehicles in the scene (i.e. the position 

and speed of the ego-vehicle and the other two vehicles). 

 

As discussed in Chapter 2, however, this form of DBN is either based on the 

assumption that vehicular communications are enabled (Lefèvre, 2012) or presents 

problems in complex traffic scenarios (Agamennoni et al., 2012). To enhance risk 

assessment for automated driving without increasing the complexity of such DBN-

based interaction-aware motion models, a new DBN structure is proposed in this 

PhD project.  This is briefly discussed below.  

 

 Proposed DBN model for motion prediction and risk assessment 4.3.2.

In order to include the NLCP in the motion prediction and risk assessment routine, a 

new layer and the corresponding dependencies of this specific layer need to be added 

to the model as depicted in Figure 4.2.  
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Figure 4. 2 Proposed DBN Network 

When comparing Figures 4.1 and 4.2, it can be observed that the context layer is 

divided into two distinct safety-related contexts: (i) network-level collision risk and 

(ii) vehicle-level collision risk. The DBN is designed in such a way to represent the 

dependencies between the layers: i) If there is a safety risk at the network-level, it 

should be depicted at the vehicle-level, ii) the vehicle-level safety risk is depicted on 

the motion of the vehicles and iii) the motion of the vehicles is depicted on the 

observations from the sensors. To elaborate more on the structure of the network, in 

a potential situation, where traffic dynamics are deemed as collision-prone, the 
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vehicle-level safety will also be compromised because one or more vehicles will 

have such a behaviour that may cause a collision. As a result, CRN affects the CRV 

level. Due to the fact that CRN heavily depends on loop detector or other traffic 

measurement devices which are sparsely located and because the event of a collision 

at a time moment is independent of a collision occurring at another time moment, the 

CRN context is independent at each time moment. Moreover, the safety level of each 

individual vehicle depends on the motion and the safe or dangerous driving 

behaviour of other vehicles in its vicinity and therefore CRV depends on the CRV 

and K probabilities of all the vehicles in the traffic scene as shown with the bold red 

arrows in Figure 4.1. Furthermore, if the driving behaviour of a vehicle is 

“dangerous” then the vehicle’s motion would also have “dangerous” characteristics 

such as high speeds or small time and space headways. Hence, the kinematics level 

of a specific vehicle depends on its current and previous vehicle-level safety context, 

as well as its previous motion characteristics. Finally, all of the characteristics 

needed to define the motion of vehicles and their safety context would be depicted on 

the measurements that the ego-vehicle is receiving through its sensors (i.e. Z depends 

on K). 

The model presented above could, in theory, be applied to any traffic situation by 

defining the variables CRN, CRV, K, and Z accordingly. However, it is common 

knowledge that traffic data are mostly available for motorways where magnetic loop 

detectors and automatic vehicle identification devices exist. These data are utilised to 

develop NLCP models as described in chapter 2 and hence are necessary to define 

CRN. Therefore, the developed method is demonstrated for the case of motorway 

driving, while risk assessment of AVs at junctions is not considered as an example 

having been the focus of previous research (Lefèvre, 2012, Ward et al., 2014a). 

4.3.2.1.Variable definitions 

Network-level real-time collision risk (CRN): Represents the safety context of the 

road segment on which the ego-vehicle is currently travelling on (i.e. whether the 

traffic conditions on the road segment are collision-prone or safe). For real-time 

Bayesian modelling the use of discrete variables is preferable compared to the use of 

continuous probability distributions as it reduces complexity and enhances 

computational speed (Bessiere et al., 2013). Hence, the variable in this layer is 

discrete assuming two values: 
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1. Safe traffic conditions 

2. Collision-prone traffic conditions  

As a result, (CRNn
t ) indicates the probability that the traffic conditions of a road 

segment on which a vehicle n travels at time t are “collision-prone” or “safe” based 

on traffic dynamics. The input variables for estimating network-level collision risk 

consist of the aggregated traffic conditions data of the road segment (e.g. the mean 

speed of the vehicles, the mean number of the vehicles and the mean occupancy). 

Since many vehicles are travelling on the road segment, it is implicit that once the 

network-level collision risk is estimated for the segment, then its value is the same 

for all the vehicles travelling on the same segment during the temporal aggregation 

interval of the network-level prediction. 

 

Vehicle-level risk (CRV): Represents the safety context of a vehicle in a traffic 

scene, i.e. whether a vehicle can potentially cause a collision with the ego-vehicle.  

The variable in this layer is also discrete for ease of computations and better real-

time results, however it requires four values describing the safety context of each 

vehicle depending on the network-level safety context:  

1. Safe driving in a road segment having safe traffic conditions 

2. Safe driving in a road segment having collision-prone traffic conditions  

3. Dangerous driving in a road segment having safe traffic conditions  

4. Dangerous driving in a road segment having collision-prone conditions 

As stated, this work is focused on the applications of autonomous driving on 

motorways. The terms “Safe” and “Dangerous” driving characterise the manoeuvres 

undertaken by the vehicle in the traffic scene. More specifically, safe driving does 

not pose a threat to the ego-vehicle, while dangerous driving indicates that the 

motion of the vehicle could be considered unsafe for another vehicle in the traffic. 

 

In Figure 4.2 it can also be observed that the estimation of the vehicle-level safety 

context depends on the network-level safety context as well as the union of safety 

contexts and kinematics of all the vehicles in the vicinity of the ego-vehicle. Hence, 
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NLCP provides a hint to the estimation of vehicle-level collision probabilities in 

which the multi-vehicle dependencies are taken into consideration.  

 

Sensor measurements (Z): Represents the available observations derived from the 

sensors of the ego-vehicle. Zn
t  denotes the available measurements that describe the 

state of the vehicle n at time t.  The variables in this layer are continuous.  

The measurements for each vehicle are assumed to include: 

𝑃𝑚𝑡
𝑛 = (Xn

t , Yn
t , θn

t )  ∈ ℝ3  : the measured lateral and longitudinal position (Xn
t , Yn

t)  

and heading of the vehicle (θn
t ).  

𝑉𝑚𝑡
𝑛 ∈ ℝ: the measured speed of the vehicles 

To distinguish between the raw measurements and the filtered ones, the subscript m 

denotes the measured physical quantities. 

 

Kinematics of the vehicles (K):  Represents the physical state of a vehicle, i.e. all 

the variables that need to be specified in order to localise traffic participants in the 

vicinity of the ego-vehicle. Specifically, 𝑲𝒏
𝒕  denotes the conjunction of all the 

variables that describe the physical state of the vehicle n at time t. The variables in 

this layer are continuous as they are referring to continuously measured quantities 

such as position and speed. 

 

Based on the available measurements described previously, the following variables 

are selected to represent the physical state of a vehicle: 

 

Pn
t = (𝑋𝑛

𝑡 , 𝑌𝑛
𝑡 , 𝜃𝑛

𝑡)  ∈ ℝ3: the real values of the position and heading of the vehicle 

𝑉𝑛
𝑡  ∈ ℝ: the real value of the speed of the vehicle  

4.3.2.2.Joint Distribution 

For the proposed DBN depicted in Figure 4.2  the joint distribution of all the vehicles 

is estimated as :  
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𝑷(𝑪𝑹𝑵𝟎:𝑻, 𝑪𝑹𝑽𝟎:𝑻, 𝑲𝟎:𝑻, 𝒁𝟎:𝑻)

= 𝑷(𝑪𝑹𝑵𝟎, 𝑪𝑹𝑽𝟎, 𝑲𝟎, 𝒁𝟎) ∏∏𝑃(𝐂𝐑𝐍𝒏
𝒕 )

𝑵

𝒏

𝑻

𝒕=𝟏

× 𝑃(CRV𝒏
𝒕|𝐂𝐑𝐕𝑵

𝒕−𝟏𝐊𝑵
𝒕−𝟏CRN𝑛

𝑡 ) × 𝑃(K𝒏
𝒕 |CRV𝑛

𝑡−1 K𝑛
𝑡−1CRV𝑛

𝑡)

× 𝑃(Z𝑛
𝑡 |K𝑛

𝑡 )                                                                                               (4.1) 

where n is the vehicle ID in the vicinity of the ego-vehicle, t is the time moment, T is 

the total time duration of the measurements, i.e. the length of the time buffer or the 

sensor measurements and N is the total number of vehicles that are observed in the 

traffic scene. Equation 4.1 is derived from the DBN in Figure 4.1 by defining the 

initial state of the network (i.e. 𝑷(𝑪𝑹𝑵𝟎, 𝑪𝑹𝑽𝟎, 𝑲𝟎, 𝒁𝟎) ) and multiplying the 

probabilities of every node given its parents (i.e. the nodes which affect each 

probability level) for every vehicle n and for every time moment t. As an example, 

the parents of the CRV node of vehicle n at time t, is the network-level risk context 

(i.e. CRN𝑛
𝑡 ), and the vehicle-level risk context (i.e. 𝐂𝐑𝐕𝑵

𝒕−𝟏) and kinematics (i.e. 

𝐊𝑵
𝒕−𝟏) of all the vehicles in time t-1. Bold letters denote that the indicated layers are 

calculated for all the vehicles. For example, 𝐂𝐑𝐕𝑵
𝒕−𝟏 indicates the vehicle-level risk 

context for time t-1 for all the vehicles in the traffic scene. 

4.3.2.3.Estimating the risk of collision using network-level collision prediction 

information  

Modelling the motion of the vehicles with regards to network- and vehicle-level risks 

requires that a new estimation framework should be developed. In order to quantify 

the influence that the network-level risk estimation has on assessing the vehicle-level 

collision risk, it is essential to infer the probability that there is a vehicle-level 

“unsafe” situation, given the hint from the network and the measurements from the 

sensors.  

 

In the majority of recent studies on NLCP (e.g. Sun and Sun, 2015), traffic 

conditions at 5-10 minutes prior to a collision are deemed to be the most suitable for 

the identification of collision events in time and the initiation of an intervention by 

the responsible traffic agencies. However, a 5 to 10-minute aggregation may not be 

adequate for the real-time safety assessment of AVs where sensor information is 

available at a higher sampling frequency (e.g. 1 Hz, 0.1 Hz). It is, however, a reality 
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that traffic agencies aggregate traffic data at pre-defined time intervals (e.g. 30-

second or 1-minute, 5-minute and 15-minute). Because of the difference at the 

temporal horizon between NLCP and vehicle-level measurements, it is assumed that 

the CRN layer is an observable layer while CRV and K are hidden layers since the 

variables in these layers are inferred through the sensor measurements. The sensor 

measurements layer (Z) is obviously an observable layer. 

 

Exact inference in such non-linear and non-Gaussian models is not tractable. 

Therefore, in order to estimate the probability of a “dangerous” vehicle-level context 

given the traffic situation and the sensor measurements the use of particle filters  is 

proposed (Merwe et al., 2000) as they have been proven to perform well in similar 

situations (Lefèvre, 2012, Murphy, 2002). 

 

If an inference algorithm is chosen, then the probability to be inferred is as follows:  

𝑃([𝐶𝑅𝑉𝑛
𝑡 ∈ {𝑑𝐶𝑃, 𝑑𝑆𝐴}]|𝐶𝑅𝑁𝑡, 𝑍0:𝑡)  > 𝜆 (4.2) 

where:  

 𝑪𝑹𝑽𝒏
𝒕
 denotes the vehicle-level safety context of vehicle n at time t; 

 𝒅𝑪𝑷, 𝒅𝑺𝑨 denote a “dangerous” vehicle travelling on a road segment with 

Collision-Prone traffic conditions and a “dangerous” vehicle travelling on a 

road segment with SAfe traffic conditions respectively; 

 𝑪𝑹𝑵𝒕  denotes the network-level collision risk for all the vehicles on a 

specific road segment; 

 𝒁𝟎:𝒕 denote the sensor measurements until time moment t; 

 𝝀 is a threshold to identify “dangerous” encounters between the surrounding 

traffic participants and the ego-vehicle.  

 

In order to infer the probability in Equation 4.2, the DBN in Figure 4.1 needs to be 

defined through the joint distribution in equation 4.1 by providing information on the 

network-level and vehicle-level nodes. Information on NLCP would be provided by 

traffic management agencies through a communication channel or VMS messages 

and information on the vehicle-level would be inferred through the sensor 
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measurements of the ego-vehicle, or would be transmitted by other vehicles through 

vehicular communications. Equation 4.2 indicates that given a hint for the safety 

assessment of a road segment, the motion of the vehicles in that specific segment is 

affected. This resembles how human drivers are also affected when the information 

of traffic incidents such as a broken vehicle on the roadway or a queue formation in 

the downstream is displayed via Variable Message Signs.   

The following section (i.e. 4.3.2.4) describes how each probability in equation 4.1. is 

estimated. 

4.3.2.4.Parametric forms 

In order to estimate the joint distribution of the DBN network for inference, the 

functions for the probabilistic distributions of each layer need to be defined. Since a 

large number of variables exist in the problem and the focus of the approach is the 

incorporation and enhancement of NLCP into existing motion models for automated 

driving, a brief description of the parametric forms for vehicle-level risk, kinematics 

and sensor measurements is presented. A more analytic description of the parametric 

form for network-level collision risk estimation is presented in section 4.3.2.4.4. 

4.3.2.4.1. Vehicle-level risk 𝑃(𝐶𝑅𝑉𝑛
𝑡) 

The context of vehicle-level risk is derived from the previous vehicle-level risk 

context and kinematics of all the vehicles on the scene and is influenced by the 

current NLCP. For the initiating step, it is assumed that the vehicle-level risk for all 

the vehicles is “safe driving on a road segment having safe traffic conditions”. The 

estimation of the probability that the motion of a vehicle is considered “dangerous” 

or “safe” is derived through a feature function that receives as input to the current 

network-level risk, the previous vehicle-level risk context of the vehicle and the 

previous vehicle kinematics of all the vehicles in the scene: 

 

𝑃(CRV𝒏
𝒕|𝐂𝐑𝐕𝑵

𝒕−𝟏𝐊𝑵
𝒕−𝟏CRN𝑛

𝑡 ) = 𝒇(𝐂𝐑𝐕𝑵
𝒕−𝟏, 𝐊𝑵

𝒕−𝟏, CRN𝑛
𝑡 )  (4.3) 

In order for this feature function to be defined, three steps need to be considered: 

a) Using a Kalman Filter (Murphy, 2012), the physical state of the vehicles in a 

traffic scene can be estimated. For example, after applying a Kalman Filter 
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algorithm the elements {𝑋𝑒𝑔𝑜
𝑡 , 𝑌𝑒𝑔𝑜

𝑡 , 𝜃𝑒𝑔𝑜
𝑡 , 𝑣𝑒𝑔𝑜

𝑡 }  and {𝑋𝑛
𝑡 , 𝑌𝑛

𝑡 , 𝜃𝑛
𝑡 , 𝑣𝑛

𝑡}  will be 

known.  𝑣𝑒𝑔𝑜
𝑡  𝑎𝑛𝑑 𝑣𝑛

𝑡  denote the speeds of ego-vehicle and vehicle-n 

respectively. 

If  𝑝𝑒𝑔𝑜
𝑡  indicates the position of the ego-vehicle and 𝑝𝑛

𝑡  indicates the position of 

vehicle n, whereas Δvt  denotes the speed difference between the ego-vehicle and 

vehicle n, then the distance-to-collision (δ) and the time-to-collision (TTC) between 

the ego-vehicle and vehicle n are expressed as follows (Agamennoni et al., 2012): 

Distance to collision: δn
t = 𝑝𝑛

𝑡 − 𝑝𝑒𝑔𝑜
𝑡  (4.4) 

Time to collision: 𝑇𝑇𝐶𝑛
𝑡 =

δn
t

∆𝑣𝑡
𝑇 (4.5) 

 

If  𝑃𝑛
𝑡 = (𝑋𝑛

𝑡 , 𝑌𝑛
𝑡, 𝜃𝑛

𝑡) denote the position and heading of vehicle n at time moment t 

and  vn
t  denotes the speed of the vehicle, an indicator function (𝑓𝐾) can display if 

vehicle n brakes dangerously, changes lane dangerously or drives safely with regard 

to the ego-vehicle. TTC-based thresholds such as the one in (Toledo et al., 2003) 

could be of use to detect dangerous driving behaviours: 

 

𝑓𝐾 = 𝑓(TTCn
t−1) = {

1: dangerous 𝑖𝑓 TTCn
t < 𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑇𝑇𝐶

0: 𝑠𝑎𝑓𝑒; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (4.6) 

 

b) If a vehicle in the previous time epoch was identified as “dangerous” in the 

road segment that the ego-vehicle is driving on, then it is assumed that the 

CRV context was “dangerous”. Otherwise, it is assumed that the motion of all 

the vehicles was “safe”. Thus, another indicator function that takes the 

previous vehicle-level risk of all vehicles into account can be defined as: 

𝑓𝐶𝑅𝑉𝑁 = {
1 𝑖𝑓 ∑ 𝐶𝑅𝑉𝑛

𝑡−1𝑁
𝑛=1 > 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (4.7) 

where N is the total number of vehicles that the ego-vehicle can sense. 
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c) In order to take network-level collision risk into consideration and easily 

identify dangerous traffic participants, the network-level classification 

metrics are considered as a coefficient: 

d) 𝑓𝐶𝑅𝑁𝑛 =

{
 
 

 
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑅𝑒𝑐𝑎𝑙𝑙

2
 𝑖𝑓 CRN𝑁

𝑡 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁
𝑡−1 = 1 

1 −
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 𝑖𝑓 CRN𝑁

𝑡 = 𝑠𝑎𝑓𝑒 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁
𝑡−1 = 0

1 − 𝑟𝑒𝑐𝑎𝑙𝑙 𝑖𝑓 CRN𝑁
𝑡 = 𝑠𝑎𝑓𝑒 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁

𝑡−1 = 1

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑖𝑓 CRN𝑁
𝑡 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁

𝑡−1 = 0

 

 (4.8) 

By that definition if a vehicle is detected as dangerous and the traffic conditions are 

collision-prone, a compromise between the accuracy of the classifier and its recall is 

enhancing the identification of hazardous road users. If traffic conditions are 

indicated as safe, then the compromise is made between the accuracy and the 

specificity of the classifier which exhibits its ability to correctly classify safe traffic 

conditions. Afterwards, this compromise is subtracted from 1 to indicate the 

probability of a vehicle being dangerous. When the network-level classifier indicates 

safe traffic but a vehicle is sensed to be posing a “threat” to the ego-vehicle, then the 

prediction is boosted by the false negative rate given by the formula: 1 − 𝑟𝑒𝑐𝑎𝑙𝑙. 

Lastly, when traffic conditions are indicated as dangerous but no vehicle posing a 

threat exists, then the vehicle-level risk is boosted by the false alarm rate (i.e. 

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦). 

 

Having all three indicative functions, the probability of the current vehicle-level 

collision risk context could be calculated as in the following example: 

𝑃(CRV𝒏
𝒕 = "𝑑𝐶𝑃 𝑜𝑟 𝑑𝑆𝐴"|CRV𝑁

𝑡−1K𝑁
𝑡−1CRN𝑛

𝑡 ) =
∑ (𝑓𝐾𝑛=1)+∑ (𝑓𝐶𝑅𝑉𝑛=1)

𝑁
𝑛=1 +𝑓𝐶𝑅𝑁𝑁

𝑁
𝑛=1

3𝑁

  (4.9) 

where N is the total number of vehicles that the ego-vehicle can sense. 3N is chosen 

as a normalising factor, in order for the probability to be within [0,1], even when one 

vehicle is posing a threat (i.e. ∑ (𝑓𝐾𝑛) = 1, ∑ (𝑓𝐶𝑅𝑉𝑛)
𝑁
𝑛=1 = 1 𝑎𝑛𝑑 𝑓𝐶𝑅𝑁𝑁

𝑁
𝑛=1 = 1). 

Equation 4.9 was derived after trials with the three indicative functions (i.e. 

𝑓𝐾 , 𝑓𝐶𝑅𝑉, 𝑓𝐶𝑅𝑁) and its purpose is to resemble the dependence between the current 
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vehicle-level risk context with the kinematics and vehicle-level context of the all the 

vehicles in the previous time slice, as well as the NLCP predictions at the current 

time slice.  It is assumed that the sampling and risk estimation frequencies will be 

adjusted as soon as a risk is estimated in a timestep.  

4.3.2.4.2. Kinematics 𝑃(𝐾𝑛
𝑡|𝐶𝑅𝑉𝑛

𝑡−1 𝐾𝑛
𝑡−1𝐶𝑅𝑉𝑛

𝑡) 

The variables describing the kinematics layer must contain all the information 

needed in order to characterise the contexts. In this work, it was explained that the 

physical state vector will contain information on the position of a vehicle in an 

absolute reference system, its heading and its speed. It is assumed that vehicles move 

according to the bicycle model as shown in Figure 4.3 (Snider, 2009). The kinematic 

bicycle model merges the left and right wheels of the car into a pair of single wheels 

at the centre of the front and rear axles as seen in Figure 4.3. Finally, it is assumed 

that wheels have no lateral slip and only the front wheel is steerable. 

 

Figure 4. 3 Bicycle model kinematics  

The equations of motion for all vehicles in the traffic scene can be integrated over a 

time interval Δt using a simple forward Euler integration method (Press et al., 1993) 

in order to acquire the evolution of kinematics over time.  

 

In the proposed model as shown in Figure 4.2 and in its joint distribution as shown in 

equation (4.1) it is observed that the current kinematics depend on the previous and 

current vehicle-level risk context as well as on the current kinematics of the vehicle. 

It is assumed that vehicles moving in a specific context will follow kinematics 
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according to that context. As a result, the parametric forms of the position, heading, 

and speed of each of the vehicles should be defined according to the current vehicle 

context and the previous kinematics only.  For example: 

 

P(P𝑛
𝑡|CRV𝑛

𝑡−1 K𝑛
𝑡−1CRV𝑛

𝑡) = 𝑃(P𝑛
𝑡|CRV𝑛

𝑡K𝑛
𝑡−1)  (4.10) 

 

In order to expose the dependency of current kinematic measurements on the 

previous vehicle-level safety context, context-specific constraints (e.g. constraints on 

the TTC between ego-vehicle and another vehicle) should be defined so as to 

distinguish between contexts. For example, if the derived TTC is below 1 second, 

this could indicate a “dangerous driving” in a road segment with safe or collision-

prone traffic conditions. The parametric forms of the probability distribution of 

position and speed of the vehicles can be assumed to follow normal distributions 

(Lefèvre, 2012).  

 

For example, the likelihood of the position and heading of a vehicle is defined as a 

tri-variate normal distribution with no correlation between x, y, and θ  

 

𝑃(P𝑛
𝑡|[CRV𝑛

𝑡−1 = 𝐶𝑖][P𝑛
𝑡−1 = 𝑋𝑛

𝑡−1𝑌𝑛
𝑡−1, 𝜃𝑛

𝑡−1][V𝑛
𝑡−1 = 𝑣𝑛

𝑡−1]) =

𝑁(𝝁𝒙𝒚𝜽(𝑋𝑛
𝑡−1𝑌𝑛

𝑡−1, 𝜃𝑛
𝑡−1, 𝐶𝑛), 𝝈𝒙𝒚𝜽) (4.11) 

where 𝝁𝒙𝒚𝜽(𝑋𝑛
𝑡−1𝑌𝑛

𝑡−1, 𝜃𝑛
𝑡−1, 𝐶𝑛) is a function which computes the mean position and 

heading of the vehicle (𝜇𝑥, 𝜇𝑦, 𝜇𝜃) according to the bicycle model and the context-

specific constraints, 𝐶𝑛denotes the context of vehicle-n  and 𝝈𝒙𝒚𝜽 = (𝜎𝑥, 𝜎𝑦, 𝜎𝜃) is 

the standard deviation which can be acquired from the covariance matrix of the 

Kalman Filter algorithm. 

4.3.2.4.3. Sensor measurements (𝑍𝑛
𝑡 |𝐾𝑛

𝑡) 

The sensor model used is adopted from Agamennoni et al.(2012) due to the use of 

the Student t- distribution, which performs better with outlier data. The sensor model 

can be defined as: 
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𝑃(𝑍𝑛
𝑡 𝐾𝑛

𝑡⁄ )~ 𝑆𝑡𝑢𝑑𝑒𝑛𝑡(𝐶𝑇𝐾𝑛
𝑡 , 𝜎2𝛪, 𝜈) (4.12) 

where C is a rectangular matrix that selects entries from the kinematic (physical 

state), ν are the degrees of freedom, Ι is the identity matrix and  σ is related to the 

accuracy of the sensor system.  

4.3.2.4.4. Network-level collision risk 𝑃(𝐶𝑅𝑁𝑛
𝑡) 

In theory, every technique which can be utilised for NLCP can be applied to estimate 

the probability of a road segment having collision-prone traffic conditions in the 

proposed DBN. As the problem of identifying whether the traffic conditions at a 

specific road segment are collision-prone or safe is a binary classification problem, 

the outcome of every technique would be a binary indication (e.g. 1 for collision-

prone conditions and 0 for safe traffic). 

In order to transform the classification result, a probability of a road segment having 

collision-prone traffic conditions can be estimated as: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = (

𝐴𝑐𝑐+𝑅𝑒𝑐

2
), if CR = 1  (4.13) 

where CR is the classification result for the aggregated traffic conditions in real-time 

(i.e. 0 or 1), and Acc and Rec are accuracy and recall of the calibrated classifier 

respectively. The accuracy metric shows the general classification performance of 

the classifiers and the recall metric shows the ability of the classifier to detect 

collision-prone conditions. It can be observed from equation 4.13 that if the classifier 

indicates a collision-prone situation then the probability of the road segment being 

“dangerous” is estimated by taking into account the overall accuracy of the classifier 

and its performance in identifying conflict-prone conditions (i.e. recall). It is worth 

mentioning that when CR=1 the probability of the road segment being safe is: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑠𝑎𝑓𝑒") = 1 − 𝑃(𝐶𝑅𝑁𝑛

𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") (4.14) 

Accordingly, for CR=0: 𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑠𝑎𝑓𝑒") = (

𝐴𝑐𝑐+𝑆𝑝𝑒𝑐

2
) (4.15) 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = 1 − 𝑃(𝐶𝑅𝑁𝑛

𝑡 = "𝑠𝑎𝑓𝑒") (4.16) 
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where Spec is the specificity of the classifier (i.e. the classifier’s performance in 

identifying safe traffic conditions). The metrics of accuracy, specificity and recall 

will be explicitly described in section 4.5. 

Based on equations (4.13) - (4.16), the importance of building robust classifiers with 

fewer false alarms and solid identification of both normal and collision-prone traffic 

is observable.  

Figure 4.4(left) gives a simple flowchart of the procedures and data needed to infer 

the probability of a “dangerous” road user and Figure 4.4(right) depicts the 

necessary online steps analytically for updating the joint distribution in Equation 

4.1.  identifying hazardous vehicles. 

The next sections will describe the procedures undertaken in this work to overcome 

the limitations of existing NLCP classifiers and consequently fulfil objective 5 of this 

thesis.

Classification of traffic data  P(CRN)

Autonomous Vehicle

Travel Management Agency

Communication or VMS

Dangerous vehicle 
behaviour at t-1

fCRV=1 fCRV=0

Dangerous vehicle 
motion at t-1

fK=1 fK=0

Traffic conditions 
at t-1

fCRN according to NLCP 
classifier

P(CRV|CRNt,CRVt-1,Kt-1)

Real-time traffic data

P(K|CRVt,Kt-1) ~ N(μxyθ,σxyθ) 

Sensor measurements

Equation 4.1 Joint Distribution 
Estimation (inference) of “dangerous” road users

End

Start

Start

Learn joint 
distribution

NLCP 
Information

Sensor 
measurements

Update conditional 
probabilities

Equation 4.1. 
Infer probability of “dangerous” road user 

given CRN, Z 

End

Figure 4.4 Flowcharts of DBN joint distribution estimation 
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4.3.2.5.Note on the similarities and differences with other probabilistic models 

The model depicted in Figure 4.2 bears a resemblance to a Switching State Space 

Model (SSSM) with regard to the explanation of the dynamics of the traffic scene by 

switching between a discrete number of contexts. In SSSMs the switching process 

would be regulated by a discrete Markov process indicating which context is active 

at every time step. However, in the proposed model, this switching process is 

conditionally Markov, because the context variable in the vehicle level (CRV) 

depends not only on the discrete variable of the previous time step but also on the 

continuous kinematics of the vehicles at the previous time step. 

 

The structure of the proposed model also resembles a Coupled Hidden Markov 

Model (CHMM) (Brand et al., 1997) given the way the different time slices connect. 

In CHMMs the current hidden layer depends on the hidden layer in the previous time 

step as well as the hidden layer of a neighbouring Markov Chain.  However, 

CHMMs are usually intended for the maximum posterior inference, while this work 

places emphasis on prediction.  The obvious difference is that the proposed model 

accommodates continuous nodes, whereas CHMMs only function with discrete-

valued variables. Furthermore, the use of CHMMs so as to solve the problem this 

PhD work addresses, introduces computational complexity, since a different CHMM 

should be constructed for each interaction between two vehicles. 

 

For comparison reasons, the CHMMs and the SSSMs adjusted to the problem of this 

work are presented in Figure 4.5.  
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Figure 4. 5 Graphical representation of similar models applied to the problem 

tackled in this work: a) CHMMs b) SSSMs 

 

 Improving interpretability of machine-learning classifiers for real-time 4.4.

NLCP (objective 5) 

 

As concluded in Chapter 3, which reviewed approaches concerned with NLCP, 

machine learning approaches are deemed better than classical regression methods to 

model and analyse highly disaggregated traffic data with respect to the estimation of 

network-level collision risk. However, the lack of interpretability is a well-

b 
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documented disadvantage of machine-learning classifiers. Therefore, the literature 

was explored to identify methods which overcome this deficiency.  

 

Machine learning approaches aim at identifying a vigorous description of a dataset 

given a limited sample (Herbrish, 2002). Machine learning is usually divided into 

two clusters, namely supervised and unsupervised learning.  

 

In supervised learning, a given dataset is labelled regarding the interested response 

variable. For example, in a collision prediction dataset, traffic variables at a specific 

time moment are labelled according to their existence in collision-prone or safe time 

periods. If the response variable in supervised learning is categorical, the problem is 

known as classification or pattern recognition (Murphy, 2012). More specifically, in 

supervised classification for every data point, the output is known a-priori and 

learning aims at discovering an underpinning function so that if new data become 

available, they can be correctly labelled. After learning, the predicted response of a 

data point is contrasted with the initial one in order to assess the classification 

performance. 

If the aim is to discover underpinning patterns in the dataset without labels or any a-

priori known information, then learning is termed as “unsupervised”. Unsupervised 

learning, otherwise known as knowledge discovery, usually includes grouping data 

according to similar characteristics (i.e. clustering) or indicating a specific data 

distribution (i.e. density estimation) (Bishop, 2006). As to the nature of collision 

prediction is to state if the traffic conditions at a specific time moment could trigger a 

collision, the collision prediction problem is a classification one with two outputs, 

namely collision-prone and safe traffic as mentioned earlier. Hence, supervised 

learning classifiers were reviewed. 

 

One of the most appraised classifiers in machine-learning literature ( Dreiseitl and 

Ohno-Machado, 2002, Ben-Hur and Weston, 2010) are Support Vector Machines 

(SVMs). SVMs have proven to perform efficiently in collision prediction tasks (e.g. 

Xu et al., 2012, Yu and Abdel-Aty, 2013, Wang et al., 2013). Even though SVMs 

result in less over-fitting according to Dreisetl and Ohno-Machado (2002), the 

incorporation of the “black-box” effect is prominent. That is due to the fact that 
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SVMs aim at aiding decision-making thus providing an indication of which option is 

correct or not. For example, in the case of collision-prediction, the decision to be 

made is if the current traffic conditions reflect collision-prone conditions or not. 

However, a number of significant and practical disadvantages are also identified in 

the literature  regarding SVMs (Tipping, 2001, Bishop, 2006): 

 

1) The number of Support Vectors (SVs) usually grows linearly with the size of 

the training set, and the use of basis functions
10

 is considered rather liberal;  

2) Predictions are not probabilistic, and classification problems which require 

the estimation of posterior probabilities for each class membership are 

sometimes intractable; 

3) SVMs require a cross-validation procedure which can lead to misuse of data 

and computational time; 

4) The kernel function must satisfy the Mercer’s condition (i.e. it must be a 

continuous symmetric kernel of a positive integral operator). 

Relevance Vector Machines (RVMs) are a sparse Bayesian supervised machine 

learning algorithm which resembles SVM characteristics (Bishop, 2006). The output 

of RVMs is a posterior probability and not only a suggestion of the preferred class of 

a specific data point. The need for probabilistic machine learning prediction has been 

declared by authors such as Murphy, (2012), however, it has not been widely 

implemented for NLCP. RVMs have been applied in many different areas of pattern 

recognition and classification including channel equalisation (Chen et al., 2001), 

feature selection (Carin and Dobeck, 2003), hyperspectral image classification 

(Demir and Ertürk, 2007), as well as biomedical applications (Wei et al., 2005, 

Phillips et al., 2011).  

 

Gaussian Processes (GPs) belong to the same group of kernel methods which can 

provide probabilistic predictions According to Rasmussen (2006),  GPs form a 

Bayesian framework for regression and classification and perform similarly to SVMs. 

Moreover, the power and efficiency of GPs in binary classification is further justified 

in Williams and Barber, (1998) where it is concluded that SVMs and GPs predict in 

                                                 
10

 In SVMs and RVMs, a basis function is defined for each of the data points using a kernel. More 

explanation is given in the following section, which describes the RVM algorithm. 
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the same fashion although GPs usually require more computational power. Hence 

GPs will also be tested for comparison reasons with RVMs and SVMs. 

 RVMs description 4.4.1.

In this study, RVMs are going to be utilised in comparison with SVMs in order to 

improve interpretability of NLCP models. Both techniques belong to the greater 

group of supervised learning algorithms as well as kernel methods.  

 

In supervised learning, there exists a set of example input vectors {𝒙𝑛}𝑛=1
𝑁  along with 

corresponding targets {𝒕𝑛}𝑛=1
𝑁 , the latter of which corresponds to class labels. In this 

study, the two classes are defined as dangerous when t=1 and safe when t=0. The 

purpose of learning is to acquire a model of how the targets rely on the inputs and 

use this model to classify or accurately predict future and previously unseen values 

of 𝒙.  

 

For SVMs and RVMs these classifications or predictions are based on functions of 

the form:  

y = 𝑓(𝑥;𝑤) = ∑ 𝑤𝑖𝐾(𝑥, 𝑥𝑖) + 𝑤0
𝑁
𝑖=1 = 𝑤𝑇𝜑(x)  (4.17) 

where 𝐾(𝑥, 𝑥𝑖) is a kernel function, which defines a basis function for each data 

point in the training set, 𝑤𝑖 are the weights (or adjustable parameters) for each point, 

and 𝑤0 is the constant parameter. The output of the function is a sum of M basis 

functions (𝜑(x) = [𝜑1(x), 𝜑2(x),… , 𝜑𝑀(x)] ) which is linearly weighted by the 

parameters w. 

 

SVM, through its target function, tries to find a separating hyperplane to minimise 

the error of misclassification while simultaneously maximising the distance between 

the two classes (Yu and Abdel-Aty, 2013b). The produced model is sparse and relies 

only on the kernel functions associated with the training data points which lie either 

on the margin or on the wrong side. These data points are referred to as “Support 

Vectors” (SVs). 

 

RVMs use a similar target function as in Equation 4.17, but introduce a prior 

distribution over the model weights, which are governed by a set of hyperparameters. 

Every weight has a corresponding hyperparameter and the most probable values of 



86 

 

those are estimated from the training data during each iteration. Finally, RVMs, in 

most cases, use fewer kernel functions compared to SVMs, without compromising 

the performance. 

 

In the binary classification problem ({𝒕𝑛}𝑛=1
𝑁 = {0,1}), a Bernoulli distribution is 

adopted for the prior distribution  p(t|𝐱). The logistic sigmoid function 𝜎(𝑦) =
1

1+𝑒−𝑦
 

is applied to y(x) so as to combine random and systematic components. This leads to 

a generalised linear model such that: 

𝑓(𝑥;𝑤) = 𝜎(𝑤𝑇𝜑(x)) =
1

1+𝑒−𝑤
𝑇𝜑(x)

  (4.18) 

 

It should be noted here that there is no constant weight (e.g. noise variance). By 

making use of the Bernoulli distribution, the likelihood of the training data set is 

defined as: 

p(t|x, w) = ∏ 𝜎(𝑤𝑇𝜑(x𝑛))
𝑡𝑛
(1 −𝑁

𝑛=1 𝜎(𝑤𝑇𝜑(x𝑛)))
1−𝑡𝑛  (4.19) 

 

 

Using a Laplace approximation to calculate the weight parameters and for a fixed 

value of hyperparameters (α), the mode of the posterior distribution over w is 

obtained by maximizing: 

log(p(w|x, t, α) = log(p(t|x, w) p(w|α)) − log(p(t|x, α)) =

∑ (𝑁
𝑛=1 t𝑛 log 𝑓(𝑥𝑛; 𝑤) + (1 − t𝑛) log (1 −𝑓(𝑥𝑛; 𝑤))) −

1

2
𝑤𝑇𝐴𝑤 + 𝑐 (4.20) 

where A=diag(αο α1 ,…, αΝ) and 𝑐 is a constant. 

 

The mode and variance of the Laplace approximation for w are: 

 w𝑀𝑃 = 𝛴𝛭𝛲𝛷
tBt  and 𝛴 𝛭𝛲 = (𝛷

tB𝛷 + 𝛢 )−1  (4.21) 

where B is an NxN diagonal matrix with:  

 𝛽𝑛𝑛 =  𝑓(𝑥𝑛; 𝑤)(1 − 𝑓(𝑥𝑛; 𝑤) (4.22) 

 

p(t|x, α) = ∫ p(t|x, w) p(w|α)dw = p(t|x, w𝑀𝑃)p(w𝑀𝑃|α)(2𝜋)
𝛭/2|𝛴𝛭𝛲|

1/2  (4.23) 

 

By maximising the previous equation, with respect to each 𝛼i, the update rules are 

obtained as shown below: 
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𝛼𝑖
𝑛𝑒𝑤 =

1−α𝑖𝛴𝑖𝑖

𝑚𝑖
2  (4.24) 

(𝛽new)−1 =
‖𝑡−𝛷𝑚‖2

𝑁−∑ (1−α𝑖𝛴𝑖𝑖)
𝑁
𝑖=1

 (4.25) 

where 𝑚𝑖 is the i-th element of the estimated posterior weight w and 𝛴𝑖𝑖 is the i-th 

diagonal element of the estimated posterior covariance matrix 𝛴𝛭𝛲. 

 GPs brief description 4.4.2.

Similar to RVMs, GPs model the posterior probability of the target variable (which 

in this thesis are collisions) for every new input vector given a set of training data.  

Firstly, consider a target variable 𝑡 ∈ {0,1}. A GP aims to estimate the probability 

𝜋(x) = 𝜎(y(x)),  where 𝜎(y) =
1

1+𝑒−𝑡
 , x are the predictors and y is the response in 

the classification task. The probability 𝜋(x) denotes the probability that an input x 

belongs to class 1. If we consider that y(x) = 𝑤𝑇𝑥 + 𝑏, where b denotes a bias, 

using a GP allows y(x) to be non-linear.  The required predictive distribution for new 

data is given by: 

𝑝(𝑡𝑛+1|𝑡𝑛) = ∫𝑝(𝑡𝑛+1 = 1|𝑎𝑛+1) 𝑝(𝑎𝑛+1|𝑡𝑛)  𝑑𝑎𝑛+1 (4.26) 

where 𝑝(𝑡𝑛+1 = 1|𝑎𝑛+1)= 𝜎(𝑎𝑛+1). 

As the integral is analytically intractable usually a Laplace approximation is 

commonly used to estimate the posterior distribution(Bishop, 2006, Rasmussen, 

2006). 

 Improving performance of machine-learning classifiers for real-time NLCP 4.5.

(objective 5) 

One of the primary limitations of NLCP models as indicated in Chapter 3 is the 

imbalance of the datasets used in NLCP modelling where safe traffic condition cases 

are over-illustrated against collision-prone conditions due to the rarity of collision 

events. This subsection will discuss the methods used to improve the performance of 

real-time NLCP classifiers. 

 

To begin with, consider a training dataset 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1,…𝑁  being 

available where 𝑥𝑛 is a predictor variable and 𝑦𝑛={0,1} is a response. A binary 

classification problem is the one attempting to build a function f which, given new 



88 

 

data instances will assign them to the correct class. Moreover, the classification 

performance of every classifier is initially assessed through the confusion matrix as 

seen in Table 4.2. In a confusion matrix, the predictions of each data instance are 

contrasted with the original class to which they belonged, so as to ascertain whether 

they are correctly classified. In the NLCP task, the binary classification problem is 

concerned with the identification of collision-prone traffic, hence Class 1 in Table 1 

represents “collision-prone” traffic and Class 0 represents “safe” traffic. 

Table 4. 2: A confusion matrix example 

 Predicted Class 

Actual (True) Class 0 1 

0 True Negative (TN) False Positive (FP) 

1 False Negative (FN) True Positive (TP) 

 

A similar performance metric is the area under the Receiver Operating 

Characteristics (ROC) curve, which plots the true positive rate against the true 

negative rate.  

 

Based on the confusion matrix, other widely used metrics include: 

Recall = 
TP

TP+FN
  (4.27) 

Specificity = 
TN

TN+FP
 (4.28) 

Precision = 
TP

TP+FP
 (4.29) 

G-means= √𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡y (4.30) 

F-measure= 
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 (4.31) 

 

The recall statistic shows the correct classification accuracy with respect to collision-

prone traffic conditions, while the specificity statistic shows the classification 

accuracy in terms of safe conditions. Precision is used for identifying the 

classification accuracy among the classes. G-means is used to ensure whether the use 

of an imbalance dataset (1:3; conflicts vs safe) has any negative impact on the 

balanced qualification accuracy. Lastly, the F-measure is a metric which resembles 

the conflict-prone classification ability of the classifier models(Sun and Sun, 2015). 
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Classification of imbalanced datasets is a documented problem in data mining (He 

and Garcia, 2009, Sun et al., 2009, López et al., 2013). The most important problem 

with imbalanced data is the high misclassification rate for the under-represented class, 

because the classifier favours the majority class. To overcome this problem proposed 

solutions from the literature can be grouped into three groups: 

1) Data sampling 

2) Algorithm alteration 

3) Cost-sensitive learning 

 

The first solution requires that the sampling of training cases should be modified to a 

certain extent, in order for a more balanced dataset to be produced. Next, the 

algorithm alterations solution relates to modifications made in learning algorithms 

e.g. in the kernels for kernel-based approaches such as SVMs or RVMs or in the 

construction of trees for tree-based approaches such as Random Trees or Random 

Forests (RFs).  The third solution applies higher misclassification costs for instances 

of the minority class (i.e. for false positives) and lower misclassification costs for the 

majority class (i.e. for false negatives). 

 Data Sampling 4.5.1.

In order to obtain a less imbalanced dataset, a low cases to controls ratio (e.g. 1:3 or 

1:4) between hazardous and safe traffic is going to be investigated in this thesis.  

This will result in a more balanced dataset than the ones used in recent literature and 

will potentially help in identifying collision-prone conditions more reliably. In order 

to achieve this objective, He and Garcia (2009) propose random oversampling or 

undersampling. Random oversampling is a technique which artificially appends data 

in the original dataset while random undersampling is a technique that randomly 

selects cases from the majority class so that a more balanced dataset is acquired. 

However, it is suggested in He and Garcia (2009) that oversampling might lead to 

over-fitting. Thus, undersampling would be preferable for the purposes of this thesis. 

However, data cleansing in conjunction with oversampling is also suggested as a 

solution to address over-fitting and hence it will also be utilised in this thesis. 
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Reviewing the literature in undersampling and oversampling with data cleansing, it 

was found that Repeated Edited Nearest Neighbours (RENN) (Tomek, 1976), its 

integration with Synthetic Minority Oversampling TEchnique (SMOTE) (Chawla et 

al., 2002) and  neighbourhood cleaning (Laurikkala, 2001) performed well for 

classes that are difficult to recognise (Batista et al., 2004). 

 

RENN utilises the Edited Nearest Neighbour (ENN) algorithm (Wilson, 1972) 

repeatedly until all the instances in the dataset have a majority of their neighbours 

within the same class. ENN applies the kNN algorithm and removes all misclassified 

instances from the training dataset. In this way, the difference between classes is 

more obvious and a smooth decision threshold is obtained. The RENN algorithm 

developed by Guan et al., (2009)is briefly discussed below:  

 

 If 𝐷𝑒 is the dataset acquired from the ENN algorithm and 𝐷𝑜 is the original 

dataset repeat: 

o At every iteration i for each instance 𝑥𝑖  in 𝐷𝑒  discard 𝑥𝑖  if it is 

misclassified using kNN 

 Until 𝐷𝑒
𝑖 = 𝐷𝑒

𝑖−1 where 𝐷𝑒
𝑖  is the edited dataset in iteration i and 𝐷𝑒

𝑖−1 is 

the edited dataset in Iteration i-1. 

SMOTE integrated with ENN aims at producing well-defined class clusters which 

can potentially improve classification results. After artificially generating instances 

of the minority class through SMOTE, ENN is implemented to conduct the data 

cleaning in depth and removes data instances from both classes when the three 

nearest neighbours of a data instance are misclassified (Batista et al., 2004). This is 

beneficial, especially for datasets with a small number of instances in the positive 

class, for instance collision-prone traffic, in datasets containing collision data which 

are rare events.  

 

Neighbourhood cleaning rule splits the dataset according to the class of interest. If 

there are noisy data exist within the dataset, they are identified using ENN. After the 

identification of noisy data for every data instance belonging to the minority class 

(e.g. 𝑥𝑚𝑖𝑛) its 3-nearest neighbours are tested. If these three neighbours misclassify 

𝑥𝑚𝑖𝑛 , then any neighbours of 𝑥𝑚𝑖𝑛 belonging to the majority class are removed. 
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 Algorithmic treatment 4.5.2.

In addition to data sampling approaches, ensemble learning has been argued to work 

perform well with imbalanced datasets (Galar et al., 2012). This is further justified in  

Sun et al. (2009) and López et al. (2013), where it is stated that ensemble classifiers 

form a potential solution to the class imbalance problem. Therefore, an ensemble-

based classifier such as RFs is going to be tested for the first time in collision 

prediction studies at the network-level.  

 

RF has mainly been applied in the area of NLCP for variable selection purposes. Its 

purpose within NLCP was to select the most important variables to be used in the 

subsequent modelling. Abdel-Aty et al. (2008) initially combined RF for variable 

selection with NNs and suggested that the resulting classifiers can efficiently 

differentiate collision-prone traffic conditions. Moreover, improved classification 

results were also demonstrated when RF was combined with logistic regression 

(Hassan and Abdel-Aty, 2013) and genetic programming (Xu et al., 2013b), in order 

to identify important variables to be used in real-time collision models. To the 

author’s knowledge, however, there is no study employing RF for distinguishing 

between collision-prone and safe traffic conditions. 

4.5.2.1. RFs Description, 

In order to understand how RFs function, a brief description of the algorithm is given 

in this section.  

 

A base classifier or weak learner is a predicting function 𝑓(𝓍, 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔)  which 

performs slightly better than random chance. Boosting is the combination of base 

classifiers in order to acquire a committee of classifiers which outperforms any of the 

base classifiers (Rokach, 2010). In addition, Bagging is the technique of using 

bootstrap datasets to assess the performance of a classifier. A bootstrap dataset 𝑋𝐵  is 

a dataset created by randomly choosing n points from 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 such that points in 

𝑋𝐵 may or may not co-exist in 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔. In bagging separate training takes place for 

every bootstrap dataset and a “committee” gathers the training results into a 

unanimous prediction (Breiman, 1996). Both techniques are used in ensemble 

learning which, as stated before, describes the procedure of constructing a predictive 
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model by consolidating multiple individual ones so as to improve predictability 

(Rokach, 2010).  

 

RFs are an ensemble classifier using Classification and Regression Trees (CART) as 

a base classifier. In particular, CART is a nonparametric method, used for 

classification and regression purposes which divides the data space into smaller 

subspaces in order to obtain concise blocks of limited size, which are descriptive of 

one dominant class (Hossain, 2011). CART operates based on recursive partitioning 

and is described by the following sub-tasks which are usual in constructing tree-

based algorithms: 

1. The best split for each predictor is found. The best split indicates the value of 

the predictor that leads to the biggest separation on the response variable 

2. Start with one predictor and divide into two “sub-groups” according to the 

splitting threshold. Divide each of the sub-groups into two subgroups 

according to another predictor and its splitting threshold 

3. Repeat for all the predictors until a finishing threshold is reached 

If the size of the resulting tree is larger than the requested ones, the tree is pruned and 

the best sub-tree is chosen so that it can act as a classifier for new data. 

 

RFs combine CARTs in such a way that each tree grows dependent on values from 

an independently sampled random vector. Its performance improves on CART 

regarding stability and incorporation of correlated predictors. 

 

RF use the bagging algorithm in conjunction with the random subspace method 

proposed by Ho (Ho, 1998). Each tree is built using  the impurity Gini index 

(Breiman, 2001). Nevertheless, only a random subset of the input features is used for 

the construction of the tree and no pruning occurs. For each new training dataset, 

one-third of the samples is randomly neglected and forms the out-of-bag (OOB) 

samples. Next, the samples that are not neglected are used for building the tree. For 

every constructed tree, the OOB samples are used as a validation dataset and the 

misclassification OOB error is estimated. When a new data record needs to be 

classified, it is run through all the constructed trees and a classification result for 

every tree is obtained. Following this, the majority vote over all the classification 
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results from all the constructed trees is chosen as the classified label for that specific 

data record (Verikas et al. 2011). However, an appropriate value for the number of 

features used for splitting a node of a tree needs to be tuned by the user in order for 

the OOB misclassification error to be as low as possible (Verikas et al., 2011). 

 

To elaborate more on the steps followed for the construction of an RF: 

1. For the training dataset 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 = {(𝑥𝑛, 𝑦𝑛), 𝑛 = 1,…𝑁 as described before, 

let 𝑋𝑏  be the b-th bootstrap sample which is constructed through random 

selection from n samples out of 𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . The rest of the data (i.e. 

𝑋𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 − 𝑋𝑏 ) are considered the OOB sample  

2. For each tree 𝑇𝑏, m number of predictors are randomly selected at every node 

and the one that results in maximum two pure nodes is used for splitting. A 

pure node is one that contains data belonging to the same class. Thus, a pure 

node does not require further splitting. 

3. In order to make predictions new data are ran down through every grown tree. 

The predicted class is the class of the leaf where the data instance ended up. 

4. During every iteration, the OOB sample is ran down 𝑇𝑏 and the class of every 

data instance is obtained through majority voting and the error rate is 

calculated for every tree. The aggregation of the misclassification errors 

defines the OOB error rate. 

 Cost-effective classification 4.5.3.

In order to take into consideration all the options available for disaggregated traffic 

data classification, the assignment of weights to misclassifications was also 

preliminary tested but did not yield sufficient result and therefore was discarded. 

However, for completion, cost-effective classification will be described in this 

section.  

 

An integral part of cost-sensitive learning is the cost matrix which is actually a 

numerical representation of the penalties given if a data instance belonging to one 

class is classified to the other (i.e. in the binary classification problem). To elaborate 

more, let 𝐶(𝑚𝑖𝑛,𝑚𝑎𝑗)  denote the cost of misclassifying a majority class data 

instance as one of the minority class and 𝐶(𝑚𝑎𝑗,𝑚𝑖𝑛)  indicate the cost of 

misclassifying a minority class data instance as of one belonging to the majority class. 
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A typical example of a cost matrix is given in Table 4.3. Usually in cost-sensitive 

learning, the cost of the misclassifying minority class data instances is significantly 

higher than its majority class counterpart (He and Garcia, 2009). According to He 

and Garcia, (2009) in order to find the optimal ratio for misclassifications (i.e. the 

relationship between 𝐶(𝑚𝑖𝑛,𝑚𝑎𝑗) and 𝐶(𝑚𝑎𝑗,𝑚𝑖𝑛)), an initial approach is to apply 

the costs on the data and select the best training distribution for the classifier. Other 

solutions include the combination of meta-techniques
11

 and ensemble classifiers as

well as the incorporation of cost-sensitive functions into the classification example so 

as to “adapt” cost-sensitive principles to the classifiers. 

Table 4. 3 A cost matrix example 

Predicted Class 

True Class Majority class Minority class 

Majority class 0 𝐶(𝑚𝑖𝑛,𝑚𝑎𝑗) 

Minority class 𝐶(𝑚𝑎𝑗,𝑚𝑖𝑛) 0 

Addressing misreported collision time and traffic data aggregation 4.6.

(Objective 3) 

The problem associated with erroneous collision time reporting as well as the 

underreporting issue of less serious collisions are attempted to be solved through the 

use of traffic microsimulation. More specifically, in microsimulation, traffic 

characteristics and vehicle kinematics are explicitly documented for every time 

moment, and can be linked to the time of traffic conflicts which is also accurately 

recorded as described in Chapter 3 (Section 3.5.3). Therefore, it is assumed that the 

problem of erroneous collision time is addressed by the temporal precision of the 

recorded conflicts while underreporting is not a matter of concern because the 

extraction of conflicts is the outcome of a computer software and does not relate to 

the severity of the conflict.  

Archer (2005) reviewed the microsimulation platforms of VISSIM (PTV Planug 

Trasport Verker AG, 2013), HUTSIM (Kosonen, 1996) and PARAMICS (SYSTRA 

Limited, 2009) and concluded that VISSIM is the most appropriate option for 

11
 Metatechniques: Metalearning techniques, i.e. techniques which study and learn the effect of 

classification procedure and the estimated results, rather than aiming at learning the underpinning 

patterns from data. 
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modelling traffic with regards to safety. Archer, also, stated that the main advantages 

of VISSIM were a) the high-level of detail in defining road-user behaviour 

parameters and the underpinning models (i.e. car-following, gap-acceptance, lane-

changing), b) the feasibility of defining time-specific traffic inputs and detailed rules 

for the interaction of different traffic participants (e.g. lane changing or car-following 

rules), c) the high-level of detail regarding the simulation output and the simulation 

resolution which is 1𝐻𝑧 and d) the capability of using an Application Programmer 

Interface (API) for enhanced functionality. In the report of Gettman and Head (2003), 

VISSIM is also praised for the high-level representation of vehicles’ motion state and 

vehicles’ interaction rules. In the same report, in the summary of the comparison 

between several traffic microsimulation software, it is also affirmed that VISSIM 

supports most of the necessary features to obtain surrogate safety measures. This is 

further supported by Shahdah (2014) who employed VISSIM for traffic safety 

analysis and selected it due to  its flexibility and easy manipulation of built-in 

features for representing driving behaviour. A recent comparison of traffic simulators 

by Saidallah et al. (2016) demonstrated that VISSIM exceeds the capabilities of other 

simulators because it can continuously simulate traffic, is flexible, allows easy 

coding of the traffic network and can accommodate Geographic Information System  

(GIS) maps.  

 

The outlined advantages of VISSIM in comparison with other microsimulation 

software as recommended by the literature, led to its choice as the platform to be 

utilised for real-time NLCP. 

 

 Description of VISSIM micro-simulation software 4.6.1.

VISSIM is a time-based microscopic traffic simulator which utilises several driver 

behaviour and vehicle performance sub-models to efficiently model traffic (Archer, 

2005). The user needs to construct the network based on a series of aerial 

photographs or maps and add the necessary objects (e.g. data collection points or 

traffic signals) to the necessary points. Following the construction of the network, 

traffic flow and speed distributions of the vehicles need to be inputted. In order to 

input traffic flow, the user initially must define the vehicle composition (e.g. the 

percentage of cars, heavy goods vehicles and other traffic). With vehicle composition 
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known, then a desired speed distribution needs to be defined so as to imitate the 

speed of the vehicles in the real-world. This speed distribution is the cumulative 

distribution of all the vehicles on the road segment that is studied (Yu, 2013). 

Moreover, the behaviour of vehicles is configured according to car-following and 

lane changing models.  A brief description of the car-following and lane-changing 

models employed for motorway environments is given below.  

 

4.6.1.1.Car-following in VISSIM 

For motorway environments, the Wiedemann 99 car-following model is indicated as 

the appropriate one by the VISSIM manual. In the Wiedemann psycho-physical car-

following model, four driving states or regimes are considered: a) un-influenced 

driving, b) closing process, c) following process and d) emergency braking. In un-

influenced driving, a vehicle is attempting to reach its desired speed if there is no 

lead vehicle within 150m. If the longitudinal distance between a leading and a 

following vehicle is less than 150m and the longitudinal speed difference is greater 

than a “safe” threshold, the following vehicle enters the “closing” phase. During the 

closing phase, the driver of the following vehicle realises an approach towards a 

slower vehicle and begins to decelerate in order to reach a desired following distance 

safely separating the two vehicles. In the following scenario, the following vehicle 

attempts to retain the same speed of the lead vehicle without reacting to the motion 

of the leading vehicle while in the emergency braking regime the drivers react in 

order to avoid an imminent collision. 

 

In VISSIM,  three parameters need to be specified correctly to calibrate the car-

following model (PTV Planug Trasport Verker AG, 2013). These parameters include:  

 The standstill distance (in ft or m): the average desired distance between two 

vehicles (i.e. the distance between the front bumper of the rear vehicle to the 

rear bumper of the leading vehicle), as seen in Figure 4.6 

Standstill Distance
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Figure 4. 6 Standstill Distance illustration 

 The following distance or time headway (in seconds): the distance in seconds 

which a vehicle needs to maintain when having a certain speed (see Figure 

4.7). A higher headway is an indicator of a more cautious driver. 

If the following and the standstill distance are given, then the safety distance 

can be calculated as: 

𝑑𝑠𝑎𝑓𝑒 = 𝑑𝑠𝑡𝑎𝑛𝑑𝑠𝑡𝑖𝑙𝑙 + 𝑡ℎ𝑒𝑎𝑑𝑤𝑎𝑦 ∗ 𝑣 (4.32)  

where 𝑑𝑠𝑎𝑓𝑒 denotes the safety distance, 𝑑𝑠𝑡𝑎𝑛𝑑𝑠𝑡𝑖𝑙𝑙  is the standstill distance, 

𝑡ℎ𝑒𝑎𝑑𝑤𝑎𝑦is the following distance and 𝑣 is the speed of the vehicle 

 

Standstill Distance (m)Following Distance (sec)

Safety Distance
  

Figure 4. 7 Following Distance and Safety Distance illustration 

 The following variation: the longitudinal fluctuation during a car-following 

scenario (e.g. a scenario where a vehicle follows the leading one and attempts 

to maintain a similar speed as well as a safe distance). More specifically, the 

following variation indicates the extra distance that a driver is willing to 

provide before moving within the safety distance area. The concept is 

illustrated in Figure 4.8. 
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Following Variation

Safety Distance
 

Figure 4. 8 Following Variation illustration 

4.6.1.2.Lane changing in VISSIM 

Regarding lane changing, VISSIM differentiates between two scenarios, namely 

necessary lane changing and free lane changing. Necessary lane changing refers to 

scenarios where one vehicle needs to reach a connecting road to fulfil its route, while 

free lane changing occurs when more space and higher speeds are at present. For free 

lane changing VISSIM investigates if the distance between the lane-changing vehicle 

and a vehicle in the destination lane is sufficient or not.  

To model lane changing more realistically, VISSIM offers the cooperative lane 

changing option as depicted in Figure 4.9. Let a vehicle A driving on lane 𝑙𝐴 

understand that a preceding vehicle B driving on lane 𝑙𝐵 wants to change lanes to get 

to 𝑙𝐴. If vehicle A changes lanes to 𝑙𝐵 in order to stimulate the initial lane changing 

of vehicle B, then the scenario is termed as cooperative lane changing.  In VISSIM 

the options are free lane selection (i.e. vehicles can overtake on any lane) or 

right/left-side rule lane changing. For this thesis, the right-side rule was chosen as 

this is the practice in UK motorways.   
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Vehicle A

Vehicle B

1) Vehicle B wants to perform a 
right lane change

2) Vehicle A performs a left lane 
change to enable the lane 

change from Vehicle B 

 

Figure 4. 9 Cooperative lane changing in VISSIM 

After defining the driving behaviour, the vehicle composition and the vehicles’ speed 

distribution the simulation needs to be run and validated. The following section will 

describe how the simulation is validated. 

 

 Validation of the simulation 4.6.2.

According to Barcelo (2011), a methodological flow chart to validate a traffic 

simulation can be depicted in Figure 4.10. 
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Figure 4. 10 Methodological approach to validating traffic microsimulation 

The crucial question of the flowchart presented in Figure 4.10 is the one concerned 

with the proximity of the measured “real-world” data and the simulated ones. To 

quantify this proximity, traffic agencies (e.g. FHWA - Dowling et al., 2004, 

Transport For London, 2010) have proposed several metrics regarding the simulated 

traffic volumes, travel times or speeds of the vehicles. More specifically, the 

Wisconsin Department of Transportation (WDOT) (Dowling et al., 2004) has 

proposed using the GEH Statistic(Transport For London, 2010) and the travel times 

to account for the validity of the model.  

 

The GEH-statistic is given by the formula (Dowling et al., 2004): 

𝐺𝐸𝐻 = √
(𝑆𝑉−𝑇𝑉)2

(𝑆𝑉+𝑇𝑉)

2

 (4.33)  

where SV is the estimated volume from the simulated model and TV is the real-world 

traffic volume. According to the Wisconsin Department of Transportation (WDOT, 

2014) if the value of the GEH statistic is less than 5 for at least 85% of the time for 



101 

 

all individual link flows, then it is assumed that the simulated model is well 

calibrated. If the GEH-statistic is between 5 and 10 it is assumed that there is a 

possible model error or bad data, whereas if GEH is greater than 10 there is a high 

probability of modelling error or bad data. 

 

Regarding link travel times, if the difference between the simulated link travel time 

and the real-world travel time is within 15% then the model is considered calibrated 

satisfactorily. 

 

As a result, the two criteria used for validating the simulation results in this thesis are 

going to be the GEH-statistic for the traffic volume and the difference between the 

simulated and observed link travel times. According to WDOT, (2014), during the 

simulation, the queuing patterns should be realistic, there should be no bottleneck in 

free flow conditions, and the freeway lane choices should be consistent with real-

world observations. 

 

After the simulation and validation has been completed, the next step should be the 

extraction of conflicts from the simulated traffic data. The literature review revealed 

that simulated traffic data can be filtered through SSAM. As mentioned in Chapter 3 

(section 3.5.2.) SSAM is the only post-processing software which investigates 

simulated vehicle trajectories and detects the number and severity of traffic conflicts, 

accompanied by surrogate safety measures for each conflict. 

 

 SSAM description 4.6.3.

After the completion of a simulation session, VISSIM outputs a number of files 

regarding the simulation results. These include files describing the individual (raw) 

and aggregated traffic data collection measurements, the travel time measurements 

and the vehicle trajectories file among others. Simultaneously, SSAM utilises the 

vehicle trajectories file to output conflicts.  
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Using thresholds on TTC
12

 and PET
13

, SSAM filters the trajectories to detect conflict 

events. Furthermore, analysing the angle between the vehicles, SSAM can classify if 

the conflict is a rear end, crossing or lane-changing one. As this thesis studies 

motorway environments, only rear-end and lane-changing conflicts were analysed. 

For each conflict event the exact time of the event as well as the speeds, and the 

accelerations/decelerations of the vehicles are documented.  Figure 4.11 illustrates 

the timeline of a conflict between two vehicles (A and B) as well as the major 

variables used and outputted.   

 

 

Figure 4. 11 Timeline of a conflict event in SSAM 

 (from Gettman and Head, 2003) 

 

                                                 
12

 TTC is a proximal safety indicator showing the remaining time until a potential collision 

between two vehicles if the collision course and speed difference remain 

unchanged(Hayward, 1972) 

13
 PET is used to measure the temporal difference between two road users over a common 

point or area.  It does not require that the vehicles are on a collision course but does require 

transversal trajectories (Archer, 2005) 
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In Figure 4.11, t1 is the time when vehicle A enters the encroachment area (i.e. starts 

its turn to the left), while t2 is the time vehicle B realises a potential collision and 

begins braking. Next, t3 is the time the corner of the rear bumper of the crossing 

vehicle leaves the encroachment point and t4 is the time the vehicle B was projected 

to arrive at the conflict point if it kept its speed and trajectory constant while t5 is the 

time vehicle B arrives at the conflict point. Additionally, maxS is the maximum 

speed of either vehicle during the conflict event and DeltaS is the difference in 

vehicle speeds at the time of the minimum TTC (Gettman and Head, 2003, Pu and 

Joshi, 2008). 

 

After the identification of conflict events from SSAM, knowing the exact time of the 

conflict as well as the vehicles that were involved, the traffic conditions before the 

incident can be obtained using the raw traffic data measurements from VISSIM. 

Figure 4.12 provides a flow chart of the procedure which can lead to the 

identification of pre-conflict conditions. If several simulations runs are performed, 

then one run in conjunction with its conflict data could set the example from where 

pre-conflict traffic can be exported, while the other runs would be the normal traffic 

paradigms. Figure 4.13 provides a visual insight into the procedure.  

 

 

Real-World 
traffic data
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and 
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Trajectory Data
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SSAM
Conflict 

Data
Time of Conflict

Vehicles involved

Identification of pre-conflict 
detector

Identification of pre-conflict 
traffic conditions

 

Figure 4. 12 Flowchart for identifying pre-conflict traffic conditions from 

VISSIM and SSAM 
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Figure 4. 13 Example flowchart for creating pre-conflict and normal traffic 

datasets 

After the identification of conflict events and their matching with representative 

traffic conditions, machine learning classifiers can be trained to detect conflict-prone 

conditions in real-time.  

Summary 4.7.

This chapter provided a discussion of the methodology to be followed in this work. 

Following the research design, a method to incorporate NLCP in current autonomous 

vehicles’ risk assessment modules was introduced. In order for NLCP models to be 

incorporated in such modules, however, problems with the performance and 

interpretability of machine learning classifiers as well as the erroneous collision time 

reporting should be addressed. 

 



105 

 

The theoretical model is based on interaction-aware models which were found to be 

the state-of-the-art in risk assessment for autonomous vehicles. The model is based 

on a Dynamic Bayesian Network, a graphical probabilistic model, and incorporated 

layers describing the network-level and vehicle-level risk as well as the vehicles’ 

motion characteristics and sensor-measurements. The description of each variable as 

well as the estimation of each variable’s probability was explained in depth in section 

4.3.  

 

To improve the interpretability of current machine-learning classifiers used for 

NLCP, RVMs a Bayesian counterpart of the popular SVM algorithm, were tested for 

their performance in NLCP. Furthermore, to address the problem of imbalanced 

collision datasets, where safe traffic conditions form the vast majority of the dataset 

and collision-prone traffic is under-presented, this thesis explored two solutions 

inspired by imbalanced learning literature. These solutions include a) the 

construction of a more balanced dataset using RENN, NC and SMOTE-ENN and b) 

the utilization of RFs which are an ensemble classifier and potentially perform better 

when classifying imbalanced datasets. 

 

Finally, to overcome the problem of existing collision databases, which include 

erroneous collision time and underreporting of less serious collisions, simulation data 

obtained from the traffic microsimulation software VISSIM are going to be utilised. 

The traffic data from VISSIM are going to be used along with SSAM, a post-

processing software, which outputs traffic conflicts. The methods to obtain pre-

conflict and normal traffic conditions through VISSIM and SSAM were also 

described in section 4.6. 

 

In conclusion, Figure 4.13 presents a flowchart of the overall methodology followed 

in this thesis. 
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Figure 4. 14 Flowchart of the methodology followed in the present thesis 
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5. Data description and Pre-Processing 

Introduction 5.1.

In safety-critical applications such as NLCPs and collision risk assessment for 

autonomous vehicles, the quality and availability of data are crucial. In order to 

implement all the classifiers and assess the impact on AV risk estimation, traffic data 

and the corresponding collision data as well as vehicle-level data need to be collected, 

processed and analysed. 

 

This chapter describes the features and limitations of the datasets which were 

employed in the analysis. Due to the fact that simulated traffic data will also be 

utilised in this thesis, a part of this chapter will be dedicated to these simulated data 

and their validation.  

 

Network-level data description 5.2.

This section will describe the network-level data utilised in this PhD thesis. The data 

include: 

 15-minute UK traffic and the corresponding collision data (Dataset 1) 

 5-minute traffic and corresponding collision data from Athens, Greece 

(Dataset 2) 

 30-second, 1-minute,3-minute,5-minute simulated traffic and the 

corresponding conflict data based on a section of the M62 UK motorway 

(Dataset 3) 

 UK traffic and collision data 5.2.1.

The first dataset which was utilised in this work derives from the Strategic Road 

Network of England (SRN). The SRN consists of all the motorways and major A-

roads as depicted in Figure 5.1. Since 2006, the governing unit of SRN (i.e. 

Highways England formerly known as Highways Agency) has been operating the 

Smart motorways programme  (Highways Agency , 2014).  The scheme of smart 

motorways is the state-of-the-art in traffic management and aims at increasing 

capacity, addressing the issue of congestion and increasing safety. These aims 

resemble the aspirations of autonomous vehicles which could potentially enhance 

traffic flow and road safety. Hence, traffic data from smart motorways along with the 
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corresponding collision data would provide detailed insight into the pre-collision 

conditions on a continuously monitored environment. To keep up with the state-of-

the-art on network-level data and since the aim of the study is the incorporation of 

network-level information in AVs it was decided to choose segments from smart 

motorways for the analysis.  

5.2.1.1.UK traffic data 

In this thesis, SRN traffic data are obtained through the HATRIS (Highways Agency 

Traffic Information System, which is the base network of the TRAffic flow Data 

System (TRADS) and the Journey Time Database (JTDB). Traffic data for this study 

were obtained through the HATRIS JTDB query tool. Traffic data were extracted for 

2012 and 2013 (01/01/2012 – 31/12/2013) for junctions J10-J13 of the M1 motorway 

as well as segments AL634 and AL2291 of the A3 and A12 roads respectively. This 

dataset was later enhanced with traffic data from junctions J25-J30 from M62 during 

the time period from 01/01/2012 to 31/12/2014. JTDB provides traffic data for 15-

minute intervals aggregated for all lanes of the road segment. More specifically, the 

average travel time, travel speed and total flow are provided for every requested link, 

date and time period. Moreover, information is given on the day type, such as 

weekday, weekend day, school or bank holiday. 

 

Figure 5. 1 Map of the Strategic Road Network (SRN) of England 

(Highways England, 2017) 
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5.2.1.2.UK collision data 

Data from collisions occurring on the links described in the previous sections were 

obtained from the national collision database STATS 19. STATS 19 include all road 

collisions on public highways that are reported to the police and involve human 

injury or death. For every collision dataset included in STATS19 the most crucial 

variables consist of: 

 The collision reference number, which is a unique seven-digit string utilised 

to differentiate road collisions 

 The date of the collision 

 The time of the collision 

 The location of the collision in terms of easting and northing 

 The class of the road where the collision occurred (e.g. M for motorway or A 

for main single carriageway) 

 The road number which corresponds to the road segment that the collision 

took place 

 The speed limit, which corresponds to the posted speed limit on the road 

where the collision took place 

5.2.1.3.Combining traffic and collision data 

For the development and testing of machine-learning algorithms discussed in 

Chapter 4, traffic conditions related to non-collision cases (i.e. normal driving) and 

collision-prone cases need to be extracted. The number of collision and non-collision 

cases was derived using the following process: 

 

15-minute aggregated traffic data (i.e. 96 unique observations per day) from 2012 – 

2014 were available for the entire SRN. In order to obtain traffic conditions for each 

of the collision cases, traffic data associated with the two unique observations were 

extracted: (i) the observation that coincides with the time of the collision and (ii) the 

observation of the 15-minute time period before (i). These traffic conditions would 

represent ‘collision-prone’ situations. Similarly, in order to represent ‘safe’ traffic 

conditions, the JTDB measurements for the same two 15-minute intervals 

representing traffic conditions at one week before and after the collision, as well as 

two weeks before and after the collision, were extracted. For example, if a collision 

happened at 14:08 on the 25
th

 of June, the traffic conditions from the 15-minute 

interval beginning at 14:00 and 13:45 were matched to the collision case, while 

traffic conditions on the 11
th

 of June and the 18
th

 of June (i.e. before the collision 
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date) and the 2
nd

 of July and the 9
th

 of July (following the collision date) at 14:00 and 

13:45 were matched to the non-collision case if no collisions happened on these dates 

and times. As a result, each collision case was matched with two 15-minute intervals 

which indicate the traffic conditions immediately before the collision, and eight 15-

minute intervals which exhibit ‘safe’ traffic conditions at the same time on a similar 

day. 

 

In order to have one value for each of the traffic variables, (e.g. flow), a weighted 

average for the two 15-minute intervals was calculated using the same aggregation 

technique as in Imprialou et al. (2015): 

 

  𝐹𝑙𝑜𝑤𝑤 = 𝛽1 ∙ 𝐹𝑙𝑜𝑤𝑡 + 𝛽2 ∙ 𝐹𝑙𝑜𝑤𝑡−1                                  (5.1) 

 

where 𝛽1 and 𝛽2 are the weighting parameters that satisfy the following conditions: 

𝛽1 =
𝑡

𝑇
 ;    𝛽1 + 𝛽2 = 1;   𝑇 = 15  

where t is the time difference between the reported collision time and the beginning 

of the corresponding 15-minute interval; 𝐹𝑙𝑜𝑤𝑤  is the weighted 15-minute flow, 

𝐹𝑙𝑜𝑤𝑡 is the 15-minute flow at the interval when the collision has occurred, 𝐹𝑙𝑜𝑤𝑡−1 

is the 15-minute flow at the preceding interval.  

 

By using the matched-case control structure indicated, the influence of road 

geometry on the collisions is assumed to be eradicated, because each collision case is 

matched with variables related to the entire length of the link and not to a limited 

area of it (e.g. neighbouring loop detectors). 

 

The collision data corresponding to J10-J13 of the M1 Motorway, the AL634 link of 

the A3 road and the AL2291 link on the A12 road are shown in Table 5.1. The 

explanatory variables of average speed (km/h) and total traffic flow (vehicles) were 

chosen.  

 

The total collision and non-collision cases which were taken into account for the 

development of the models are shown in Table 5.1. 
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Table 5. 1 Collision and non-collision cases for each of the studied links 

Road Non-collision Cases Collision Cases Total 

M1 (Junctions 10-13) 344 86 430 

A3 (Link AL634) 96 24 120 

A12 (Link AL2291) 88 22 110 

M62 (Junctions 25-30) 620 155 775 

Total 1148 287 1435 

 

The scatterplots (Figures 5.2.-5.5) as well as the average and standard deviation 

(Tables 5.2.-5.5) for the 15-minute average traffic speed and flow among collision 

and non-collision cases for every road are presented next. 

 

 

Figure 5. 2 Scatterplot of speed and flow of collision and non-collision cases for 

M1 (j10-j13)  
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Table 5. 2 Average and standard deviation of speed and flow for collision and 

non-collision cases for M1 (j10-j13) 

Cases Average of 

Speed 

Average 

of Flow 
StdDev of Speed StdDev of Flow 

Non-collision 

cases 
82.1175 922.9011 21.7252 332.1784 

Collision cases 85.2015 934.4552 35.7459 331.0074 

Grand Total 82.7343 925.2119 25.1639 331.7631 

 

Figure 5. 3 Scatterplot of speed and flow of collision and non-collision cases for 

A3 (Link AL634) 

Table 5. 3 Average and standard deviation of speed and flow for collision and 

non-collision cases for A3 (Link AL634) 

Cases 
Average of 

Speed 

Average of 

Flow 

StdDev of 

Speed 

StdDev of 

Flow 

Non-Collision 

cases 
77.6636 487.1825 8.7199 307.9262 

Collision Cases 64.7316 429.4403 16.6802 288.0735 

Grand Total 75.0555 475.5370 11.9146 303.7270 
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Figure 5. 4 Scatterplot of speed and flow of collision and non-collision cases for 

A12 (Link AL2291)  

Table 5. 4 Average and standard deviation of speed and flow for collision and 

non-collision cases for A12 (Link AL2291) 

Cases Average of Speed 
Average 

of Flow 
StdDev of Speed StdDev of Flow 

0 93.3453 380.1909 7.4704 145.3434 

1 86.6384 362.5479 16.9364 147.9691 

Grand 

Total 
92.0039 376.6623 10.3424 145.3271 

 

 

Figure 5. 5 Scatterplot of speed and flow of collision and non-collision cases for 

M62 (J25-30)  
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Table 5. 5 Average and standard deviation of speed and flow for collision and 

non-collision cases for M62(J25-30) 

Cases 
Average 

of 

Speed 

Average 

of Flow 

StdDev 

Speed 

StdDev 

Flow 

Non-Collision 

cases 
82.1175 922.9011 21.7252 332.1784 

Collision-cases 85.2015 934.4552 35.7459 331.0074 

Grand Total 82.7343 925.2119 25.1639 331.7631 

 

  Traffic and Collision data from Athens, Greece 5.2.2.

Due to the fact that traffic data from the UK were highly aggregated, alternatives 

were sought to locate and utilise disaggregated traffic data. As a result, traffic and 

collision data were provided by the Department of Transportation Planning and 

Engineering of the National Technical University of Athens. The data contain traffic 

and collision information during a 6-year period (2006-2011). Collision and traffic 

data concerned two major roads of the metropolitan area of Athens (i.e. Mesogeion 

and Kifisias avenues).   

 

The collision database that was provided included the following variables:  

 Collision : 0 for non-collision cases and 1 for collision cases 

 Average of speed, occupancy and volume upstream and downstream of the 

collision location (3 * 2 locations= 6 traffic variables) in 5-minute intervals 

for 1-hour before the collision time 

It should be noted that the 5-minute average correspond to the closest upstream 

detection from the location of the collision. For more information on the dataset the 

reader is referred to Theofilatos  (2015). 

 

As the focus of this thesis is the analysis of disaggregated traffic data, only the 5-

minutes prior to the collision were extracted and used for the development of the 

models. The distribution of the crucial variables for the analysis is given in Figure 

5.6. 
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Figure 5. 6 Distribution of the interested variables in the Athens dataset  

(blue: collision-free cases, green: collision cases) 
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In order to obtain a clean dataset, rows with blank cells were deleted. The collision 

and non-collision cases from the obtained dataset are presented in Table 5.6 while 

the descriptive statistics of the included variables are presented in Table 5.7.  

 

Table 5. 6 Total number of collision and non-collision cases in the Athens 

dataset 

Cases Total 

Non-

collision 
917 

Collision 472 

Grand Total 1389 

 

Table 5. 7 Descriptive statistics of the included variables for collision and non-

collision cases of the Athens dataset 

Statistic 
Non-collision 

cases 

Collision 

cases 

Grand 

Total 

Average of Speed upstream 45.80529 42.36091 44.63485 

Average of Speed downstream 47.01363 46.22566 46.74587 

Average of Occupancy upstream 15.50844 17.43996 16.16479 

Average of Occupancy 

downstream 
14.97205 15.10947 15.01875 

Average of Volume upstream 801.8975 771.6759 791.6278 

Average of Volume downstream 824.8129 806.8646 818.7138 

StdDev of Speed upstream 19.6904 20.82605 20.14223 

StdDev of Speed downstream 20.22874 21.16537 20.54758 

StdDev of Occupancy upstream 12.47717 14.22642 13.12463 

StdDev of Occupancy 

downstream 
12.00751 12.5671 12.19619 

StdDev of Volume upstream 313.406 305.7688 311.0514 

StdDev of Volume downstream 337.4028 339.6497 338.1526 

Min of Speed upstream 0 0 0 

Min of Speed downstream 0 0 0 

Min of Occupancy upstream 0 0 0 

Min of Occupancy downstream 0 0 0 

Min of Volume upstream 0 0 0 

Min of Volume downstream 0 0 0 

Max of Speed upstream 109.5 105 109.5 

Max of Speed downstream 110 110 110 

Max of Occupancy upstream 73.33 68.67 73.33 

Max of Occupancy downstream 64 63.33 64 

Max of Volume upstream 1886 1897.34 1897.34 

Max of Volume downstream 1773.84 1849.34 1849.34 
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Figures 5.7. and 5.8. illustrate the relationship between speed and volume upstream 

and downstream of a collision location respectively. These figures depict the 

difficulty of the classification task between collision and safe cases as the data points 

overlap in the majority of the scatter plot. 

 

Figure 5. 7 Scatterplot of speed and volume upstream of the collision location 

for collision and non-collision cases in the Athens dataset 

 

Figure 5. 8 Scatterplot of speed and volume downstream of the collision location 

for collision and non-collision cases in the Athens dataset 

 

 Simulated traffic and conflicts data 5.2.3.

As the UK dataset contains highly aggregated data, it was decided to utilise these 

data to obtain highly disaggregated data for real-time safety evaluation. 
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A 4.52-km section of the M62 motorway between junctions 25 and 26 in England 

was selected as the study area. In order to build a robust micro-simulation model, the 

JTDB traffic data were split into four scenarios for the years 2012 and 2013: 

 Morning peak hours (06:00 – 09:30) 

 Morning off-peak hours (09:30-13:00) 

 Afternoon off-peak hours (13:00-15:45) 

 Afternoon peak hours (15:45-19:15) 

For each of these scenarios the 15-minute traffic volumes and the cumulative speed 

distribution of the roadway segment were extracted and employed as input to 

VISSIM. An example of how the cumulative speed distribution was entered into 

VISSIM is shown in Figure 5.9. 

 

Figure 5. 9 Definition of cumulative speed distribution in VISSIM 
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Furthermore, the vehicle composition for 2012 and 2013 was also obtained from the 

UK Department of Transport (Department of Transport, 2012) and was used to build 

a micro-simulation model. The vehicle composition for the studied road segment is 

shown in Table 5.8. 

 

Table 5. 8 Vehicle composition for the studied link segment (M62 motorway, 

junctions 25-26) 

Year 2012 2013 

Vehicle 

category 

Number of 

vehicles 
Ratio 

Number of 

vehicles 
Ratio 

Cars and 

LGV 
57136 0.84100209 62591 0.85727 

HGV 10643 0.156657541 10238 
0.14022

4 

Buses 159 0.002340369 183 
0.00250

6 

Total 67938 1 73012 1 

 

The road segment was manually coded in VISSIM using a background image from 

OpenStreetMap (OpenStreetMap®, 2016) as seen in Figure 5.10. It was decided to 

allocate data collection detectors every 300m in order to acquire detailed traffic data. 

The spacing of the detectors was inspired by previous studies on NLCP on 

motorways (e.g. Hossain and Muromachi, 2012, Yu and Abdel-Aty, 2013). 
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Start/End point 

of the studied area
 

Figure 5. 10 The studied area viewed in OpenStreetMaps 

In order for the micro-simulation to be initiated, the car-following model needed to 

be defined in VISSIM. The Wiedemann 99 model was selected because it applies to 

motorway scenarios (PTV Planug Trasport Verker AG, 2013). The Wiedemann 

model is characterised mainly by three parameters in VISSIM; the standstill distance, 

the headway time and the following variation (PTV Planug Trasport Verker AG, 

2013). The standstill distance describes the average standstill distance between two 

vehicles. The headway time is the time gap (in seconds) which a driver wants to 

maintain at a certain speed. On the other hand, the following variation defines the 

desired safety distance a driver allows before moving closer to a car in front. 

 

According to the guidelines from the Federal Highway Administration (FHWA) 

(Dowling et al., 2004) in order to validate the simulation results the GEH-statistic 

(Transport For London, 2010) and the link travel time were used. The GEH statistic 

correlates the observed traffic volumes with the simulated volumes, as shown below: 

𝐺𝐸𝐻 =  √
(𝑉𝑠𝑖𝑚−𝑉𝑜𝑏𝑠)

2

𝑉𝑠𝑖𝑚+𝑉𝑜𝑏𝑠
2

 (5.2) 
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where 𝑉𝑠𝑖𝑚 is the simulated traffic volume and 𝑉𝑜𝑏𝑠 is the observed traffic volume. 

 

After a number of trial simulations, the best GEH values were obtained by using the 

following parameters for the Wiedemann 99 car following model: 

 Standstill distance: 1.5 m 

 Headway time: 0.9 sec 

 Following variation: 4 m 

 

For the simulation to efficiently resemble real-world traffic it is essential that 

(Dowling et al., 2004): 

1. GEH statistic < 5 for more than the 85% of the cases  

2. The difference between observed and simulated travel times is equal or 

below 15% for more than 85% of the simulated cases.  

The validation results are summarised in Fig. 5.11 and 5.12, and the comparison 

between traffic flow and travel time in simulation and reality are depicted in Figures 

5.13 and 5.14.  
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Figure 5. 11 GEH statistic and Travel time validation for each time interval and 

year. 

 

Figure 5. 12 Percentage of unaccepted cases for each year regarding the GEH 

statistic and travel time. 
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Figure 5. 13 Observed vs Simulated Traffic flow for each year 

 

Figure 5. 14 Observed vs Simulated travel time for each year 
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In the simulations that were undertaken, the GEH values for most of the time 

intervals were found to be less than five. However, there were intervals where GEH 

values were found to be between 5 and 10. According to the Wisconsin Department 

of Transportation (WDOT, 2014) these values indicated either a calibration problem 

or a data issue. Because of the large number of simulations undertaken (~1000 for 

every scenario) it was assumed that the bad GEH values related to the bad quality of 

the available data (i.e. 15-minutes aggregated road-level traffic data). Therefore, it 

was decided to keep the simulation results for the corresponding intervals where 

GEH was slightly higher than the required value. 

 

After calibrating the simulations, three additional simulations with different random 

seeds were run, resulting in a total of four different simulation results for each of the 

scenarios. The number of additional runs was chosen in order to address the 

imbalance between conflict and safe conditions which can prove essential for 

classification purposes (He and Garcia, 2009). The four different simulations were 

used for the matched-case control structure, where the first simulation was used to 

acquire the traffic conflicts and the other three were used to resemble the normal 

traffic conditions. 

 

For the extraction of traffic conflicts, the vehicle trajectory files exported from 

VISSIM were inputted into the SSAM. Conflicts were detected if the TTC value 

between two vehicles was below 1.5 seconds and the PET value was below 4 

seconds, which are the default values used in SSAM (Pu and Joshi, 2008). In the last 

step of the data processing, a MATLAB (Mathworks, 2016) code was developed in 

order to match the conflicts, exported from the SSAM, with the traffic conditions, 

acquired from VISSIM. The estimated conflicts were filtered again to identify 

conflicts with TTC below 1.3 seconds and PET below 1 second in order to obtain 

conflicts which are difficult to avoid. That is because TTC below 1.3 seconds is 

lower than the average human reaction time (Triggs and Harris, 1982) and PET 

values close to zero show imminent collisions (Pu and Joshi, 2008). Conflicts with 

TTC=0 and PET=0 are software errors according to the SSAM manual, as they 

resemble virtual crashes which are erroneously detected by  SSAM and the 
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simulation model (Gettman et al., 2008). Therefore, such cases were also eliminated 

from the final dataset. 

 

In order for the conflicts to be validated, the Crash Potential Index (CPI) was used as 

suggested by Cunto, (2008). CPI is calculated through the equation: 

𝐶𝑃𝐼𝑖 =
∑ (𝑃(𝑀𝐴𝐷𝑅(𝑎1,𝑎2,…,𝑎𝑛)≤𝐷𝑅𝐴𝐶𝑖,𝑡)
𝑡𝑓𝑖
𝑡=𝑡𝑖𝑖

∙𝛥t∙𝑏 

𝑇𝑖
 (5.3) 

where  𝐶𝑃𝐼𝑖 is the CPI for vehicle i, while 𝐷𝑅𝐴𝐶𝑖,𝑡 is the deceleration rate to avoid 

the crash (m/s
2
). Also, 𝑀𝐴𝐷𝑅(𝑎1,𝑎2,…,𝑎𝑛)  is a random variable following normal 

distribution for a given set of environmental attributes, 𝑡𝑖𝑖 and 𝑡𝑓𝑖are the initial and 

final simulated time intervals for vehicle i. In addition, 𝛥t is the simulation time 

interval (sec) and 𝑇𝑖 is the total travel time for vehicle i while b is a binary state 

variable denoting a vehicle interaction. For MADR according to Cunto, (2008), a 

normal distribution with average of 8.45 for cars and 5.01 for HGVs with a standard 

deviation of 1.4 was assumed  for daylight and dry pavements.  The results for the 

calibration of the conflicts are shown in Figure 5.15 

 

 

Figure 5. 15 Conflicts validation 

Figure 5.15 shows that for the majority of the time intervals, CPI is similar to the 

simulated CPI of the NGSIM dataset and close to the values of the observed NGSIM 
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CPI. Therefore, it was assumed that the simulated conflicts resembled realistic 

hazardous scenarios. 

 

As conflicts extracted by SSAM and traffic conditions acquired by VISSIM were 

time stamped, it was concluded that the issue of incorrectly reported collision times 

has been resolved. The overall methodology of capturing the required data for 

classification purposes is shown in Figure 5.16. 
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Figure 5. 16 Flow chart of the procedure followed to classify traffic conditions 

from simulated data 

To elaborate more on the procedure followed to obtain collision and non-collision 

cases, for every conflict, the nearest upstream detector on the road segment was 

identified by comparing the time of the conflict with the time the vehicles passed 

from every detector. This specific detector was marked as “conflict detector”. Traffic 
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data were extracted for every conflict detector, the corresponding upstream and 

downstream detectors on the same lane and the detector in the adjacent lane for every 

time interval. The traffic measurements for these detectors were marked as “conflicts” 

because they represent the traffic conditions near the time when the conflict occurred.  

 

In order to obtain the non-collision cases for every conflict detector the conflicts for 

the other three simulation runs were assessed to see if any conflicts occurred in their 

vicinity in these runs. If there was no conflict, the traffic measurements from that 

detector were obtained to represent safe conditions. Otherwise the detector was 

discarded.  

 

For each of the detectors and for every time interval the number of vehicles, the 

vehicle speeds and the vehicle accelerations were extracted. The traffic data exported 

from VISSIM were then aggregated in 30-second, 1-minute, 3-minute and 5-minute 

intervals prior to the conflict occurrence. The 30-second measurements were 

considered the “raw” traffic measurements and hence for the 30-second data only the 

average 30-second measurements from the detectors mentioned above were used. For 

the 1-minute, 3-minute and 5-minute aggregation intervals, the average and standard 

deviation of the 30-second raw measurement was estimated for every detector. As 

four simulations were run, having used one simulation for the extraction of conflict-

prone conditions and the three other simulations for the extraction of collision-free 

conditions, the procedure was repeated an additional three times so that every 

simulation run was used for the extraction of both conflict-prone and safe conditions. 

After extracting the safe and conflict-prone conditions the final dataset contained 

7800 conflicts and the corresponding 23400 non-conflict cases. The descriptive 

statistics of the raw 30-second measurements are given in Table 5.9. The predictors 

used for the 30-second dataset, as well as the 1-minute, 3-minute and 5-minute 

datasets, is given in Table 5.10. Moreover, the distribution of the raw 30-second 

measurements for conflict and non-conflict cases is shown in Figure 5.17. Finally, to 

illustrate the massive scale and complexity of the 30-second raw measurements a 

scatterplot of speed and flow at the conflict detector is presented in Figures 5.18. 
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Table 5. 9 Descriptive statistics for the simulation dataset 

Collision speed_30sec vehicles_30sec acceleration_30sec 

Non-Conflict 
cases 

Mean 37.398 9 0.011 

Std. 
Dev 

24.281 5 0.472 

Min 1.000 0 -3.440 

Maxi 103.290 25 2.430 

Conflict cases 

Mean 43.581 11 -0.011 

Std. 
Dev 

20.201 4 0.516 

Min 5.630 0 -3.070 

Max 102.130 25 2.110 

Total 

Mean 38.944 10 0.005 

Std. 
Dev 

23.481 5 0.483 

Min 1.000 0 -3.440 

Max 103.290 25 2.430 

Collision 
speed_30sec_downstr

eam 
vehicles_30sec_downstrea

m 
acceleration_30sec_downstrea

m 

Non-Conflict 
cases 

Mean 37.467 9 0.015 

Std. 
Dev 

24.329 6 0.479 

Min 1.000 0 -4.740 

Max 105.280 24 1.990 

Conflict cases 

Mean 44.098 10 0.019 

Std. 
Dev 

21.742 4 0.489 

Min 5.310 0 -2.970 

Max 103.880 26 1.820 

Total 

Mean 39.124 10 0.016 

Std. 
Dev 

23.882 5 0.481 

Min 1.000 0 -4.740 

Max 105.280 26 1.990 

Collision 
speed_30sec_upstrea

m 
vehicles_30sec_upstream acceleration_30sec_upstream 

Non-Conflict 
cases 

Mean 37.816 9 -0.001 

Std. 
Dev 

24.346 5 0.473 

Min 1.000 0 -6.870 

Max 103.140 25 2.110 

Conflict cases 

Mean 45.958 10 -0.017 

Std. 
Dev 

22.255 4 0.482 

Min 7.810 0 -2.760 

Max 99.080 23 2.420 

Total 

Mean 39.852 9 -0.005 

Std. 
Dev 

24.100 5 0.476 

Min 1.000 0 -6.870 

Max 103.140 25 2.420 
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Collision 
speed_30sec_adjacen

tlane1 
vehicles_30sec_adjacentla

ne1 
acceleration_30sec_adjacentla

ne1 

Non-Conflict 
cases 

Mean 38.550 9 0.026 

Std. 
Dev 

24.833 6 0.497 

Min 1.000 0 -6.180 

Max 104.570 25 2.480 

Conflict cases 

Mean 44.838 11 0.018 

Std. 
Dev 

20.848 4 0.532 

Min 4.820 0 -2.970 

Max 104.440 25 2.310 

Total 

Mean 40.122 10 0.024 

Std. 
Dev 

24.054 5 0.506 

Min 1.000 0 -6.180 

Max 104.570 25 2.480 

 

Table 5. 10 Description of the variables included in the simulation dataset  

Dataset Variable Description 

30-

second 

Collision 

Conflict case (1) or non-conflict case 

(0) 

speed_30sec 

Average 30-second speed at the 

conflict detector 

vehicles_30sec 

Average 30-second flow at the 

conflict detector 

acceleration_30sec 

Average 30-second acceleration at 

the conflict detector 

speed_30sec_next 

Average 30-second speed at the 

downstream detector 

vehicles_30sec_next 

Average 30-second flow at the 

downstream detector 

acceleration_30sec_next 

Average 30-second acceleration at 

the downstream detector 

speed_30sec_previous 

Average 30-second speed at the 

upstream detector 

vehicles_30sec_previous 

Average 30-second flow at the 

upstream detector 

acceleration_30sec_previous 

Average 30-second acceleration at 

the upstream detector 

speed_30sec_nextlane1 

Average 30-second speed at the 

detector in the adjacent lane 

vehicles_30sec_nextlane1 

Average 30-second flow at the 

detector in the adjacent lane 

acceleration_30sec_nextlane1 

Average 30-second acceleration at 

the detector in the adjacent lane 

1-

minute 

3-

Collision 

Conflict case (1) or non-conflict case 

(0) 

speed_1min Average 1-minute speed at the 
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minute 

5-

minute 

conflict detector 

vehicles_1min 

Average 1-minute flow at the conflict 

detector 

acceleration_1min 

Average 1-minute acceleration at the 

conflict detector 

speed_1min_next 

Average 1-minute speed at the 

downstream detector 

vehicles_1min_next 

Average 1-minute flow at the 

downstream detector 

acceleration_1min_next 

Average 1-minute acceleration at the 

downstream detector 

speed_1min_previous 

Average 1-minute speed at the 

upstream detector 

vehicles_1min_previous 

Average 1-minute flow at the 

upstream detector 

acceleration_1min_previous 

Average 1-minute acceleration at the 

upstream detector 

speed_1min_nextlane1 

Average 1-minute speed at the 

detector in the adjacent lane 

vehicles_1min_nextlane1 

Average 1-minute flow at the 

detector in the adjacent lane 

acceleration_1min_nextlane1 

Average 1-minute acceleration at the 

detector in the adjacent lane 

speed_1min_stddev 

1-minute standard deviation of speed 

at the conflict detector 

vehicles_1min_stddev 

1-minute standard deviation of flow 

at the conflict detector 

acceleration_1min_stddev 

1-minute standard deviation of 

acceleration at the conflict detector 

speed_1min_stddev_next 

1-minute standard deviation of speed 

at the downstream detector 

vehicles_1min_stddev_next 

1-minute standard deviation of flow 

at the downstream detector 

acceleration_1min_stddev_next 

1-minute standard deviation of 

acceleration at the downstream 

detector 

speed_1min_stddev_previous 

1-minute standard deviation of speed 

at the upstream detector 

vehicles_1min_stddev_previous 

1-minute standard deviation of flow 

at the upstream detector 

acceleration_1min_stddev_previous 

1-minute standard deviation of 

acceleration at the upstream detector 

speed_1min_stddev_nextlane1 

1-minute standard deviation of speed 

at the detector in the adjacent lane 

vehicles_1min_stddev_nextlane1 

1-minute standard deviation of flow 

at the detector in the adjacent lane 

acceleration_1min_stddev_nextlane1 

1-minute standard deviation of 

acceleration at the detector in the 

adjacent lane 
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Distribution of the variables included in the 30-second simulation dataset 

(blue: non-conflict cases, green:conflict cases) 

  

 

  

Figure 5. 17 Distribution of the variables included in the 30-second 

simulation dataset (blue: non-conflict cases, green: conflict cases) 
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Figure 5. 18 Scatterplot of 30-second speed and flow at the conflict detector  for 

conflict and non-conflict cases 

 

Limitations of the network-level datasets 5.3.

 Limitations of the UK dataset 5.3.1.

The UK dataset comprises of highly aggregated traffic data both temporally and 

spatially. Although this type of aggregation enables the creation of a flexible and 

small dataset, it inevitably leads to loss of data comprehensiveness. 15 minutes is not 

representative of the traffic conditions just before a collision because traffic 

conditions can vary significantly in between. Furthermore, one observation per an 

entire motorway segment cannot explicitly describe traffic conditions. Therefore, 

such temporal and spatial resolution cannot precisely define pre-collision conditions 

and may potentially lead to a lot of misclassifications. 

 

Regarding the collision data, the largest problem is the effect of the reported collision 

time. As also seen in the literature erroneous reporting time is prominent in collision 

databases (Kockelman and Ma, 2007, Imprialou, 2015). STATS 19 data include that 

error as well and nothing can be done to correct such a mistake. However it is argued 

by the literature (i.e. Imprialou, 2015) that using 15-minute traffic data 

counterbalances the existing error in the reported collision time.  
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 Limitations of the Athens dataset 5.3.2.

The Athens dataset was obtained in its entirety after pre-processing as it has been 

used in previous research from the National Technical University of Athens. Hence 

erroneous traffic data had already been dismissed from the dataset. However, access 

to the raw traffic data was not possible, thus limiting the predictors which could be 

used for the analysis to only the 5-minute averages of speed, volume and occupancy. 

Regarding the collision data, it is assumed that the issue of erroneous collision time 

reporting has not been resolved in the Athens dataset either. 

 

 Limitations of the simulated dataset 5.3.3.

The dataset provided by the simulations from VISSIM has been calibrated and 

validated. It contains highly disaggregated traffic data as realistic as possible, 

however it is the outcome of computer software and as much realistic as it can be, it 

could never replace real-world traffic data. Furthermore, the fact that the simulation 

was based on highly aggregated traffic data does not allow the simulated 

environment to be described in much detail and more thorough calibrated.  

 

Furthermore, the fact that microsimulation cannot result in the extraction of 

collisions but only conflicts limits the classifiers to predict only conflict events. In 

order for collisions to be predicted, the conflict events extracted from SSAM need to 

be validated with real-world observations from the same site, however this was not 

inside the scope of this study. Hence, the simulation dataset was utilised only for 

predicting the traffic conditions which lead to conflicts within the simulation 

software.   

 

Vehicle –level data 5.4.

In order to integrate NLCP and vehicle-level risk assessment as needed by AVs, 

vehicle-level data need to be collected. This section will describe the data-collection 

platform and the available data. 
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 Data collection platform 5.4.1.

All the vehicle-level data was collected using the instrumented vehicle of the School 

of Civil and Building Engineering of Loughborough University. The vehicle is 

equipped with the following sensors: 

 a PointGrey
©

 Grasshopper3 4.1 MP Near InfraRed (NIR) Camera 

 an ARS 308-21 short and long-range Continental
©

 automotive radar  

 a u-blox
©

 NEO M8-L GNSS and 3D Dead Reckoning system 

 a Mobileye
©

 560 lane-departure and forward collision warning camera 

system 

All the sensors are aligned along the centre of the longitudinal axis of the car. The 

position of the sensors and the experimental vehicle are depicted in Figure 5.19. 

GNSS system
Forward collision camera 

system Monocular camera Automotive radar  

Figure 5. 19 The experimental vehicle along with its sensors 
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For the purposes of this thesis, only data from the GNSS system and the automotive 

radar have been used.  

 Available vehicle data 5.4.2.

The vehicle data were collected on April 23
rd

, 2017, between 10:53 am and 11:51 am 

on the M1 motorway (J23-J18) from Loughborough to the Watford Gap service 

station.  The route that was followed is depicted in Figure 5.20 

 

Figure 5. 20 The driving route for the vehicle-level data collection 

The speed of the ego-vehicle as measured by the GNSS module during the driving 

trip is depicted in Figure 5.21 
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Figure 5. 21  Ego-vehicle speed during the driving trip 

 

5.4.2.1.Radar data 

For the purposes of this PhD research project, the data from the radar sensor have 

been primarily used. The long range sensor of the radar can detect objects with a 

field of view of 17° up to 200 m away, and its short-range sensor can detect with a 

field of view 54° up to 60 m away. The radar identifies targets and objects. A target 

can be anything which reflects radar waves. An object is a target which has been 

traced by the software used by the radar sensor over a few measurements. Only the 

object measurements have been used, as they are more representative of the vehicles 

and obstacles surrounding the ego-vehicle. The radar sensor cycle is 15.15 Hz and 

the variables of interest are depicted in Figure 5.22 and are: 

 NoOfObjectsTime and NoOfObjectsY: Number of objects which have been traced 

in this measurement cycle; the value indicates how many rows of the output 

dataset include recognised objects, and which rows have been filled with 

random numbers 

 Obj_AccelLongTime and Obj_AccelLong[m/s2]: Relative longitudinal 

acceleration of an object in m/s2 

 Obj_DynPropTime and Obj_DynPropY:Movement of the object; 0: unclassified, 1: 

standing, 2: stopped (never moved before), 3: moving, 4 oncoming 

 Obj_IDTime and Obj_IDY:Identification number of the object; all objects, which 

have an identification number, that is higher than the value of NoOfObjectsY, 

are not a traced object and the row is filled with random numbers 
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 Obj_LatDisplTime and Obj_LatDispl[m]: Lateral displacement in m 

 Obj_LatSpeedTime and Obj_LatSpeed[m/s]: Object lateral velocity; negative value 

means that the object moves to the right; positive value means that the object 

moves to the left in m/s 

 Obj_LengthTime and Obj_LengthY:Length of the Object; 0: unknown;1: < 0.5 m; 

2: < 2 m; 3: < 4 m; 4: < 6 m; 5: < 10 m; 6: < 20 m;7: exceeds 6m 

 Obj_LongDisplTime and Obj_LongDispl[m]: Longitudinal displacement of the 

object in m 

 Obj_MeasStatTime and Obj_MeasStatY:Object measurement status; 0: no object, 1: 

new object, 2: object not measured, 3: object measured 

 Obj_ObstacleProbabilityTime and Obj_ObstacleProbability: Probability that the 

object is an obstacle 

 Obj_ProbOfExistTime and Obj_ProbOfExistY: Probability of the existence of an 

object 

 Obj_VrelLongTime and Obj_VrelLong[m/s]: Object relative longitudinal velocity 

in m/s 

 Obj_WidthTime and Obj_WidthY:Width of the object; 0: unknown; 1: < 0.5 m 

(pedestrian); 2: < 1 m (bike); 3: < 2 m (car); 4: < 3m (truck); 5: < 4 m; 6: < 6 m; 

7: exceeds 6m 

  
Figure 5. 22 Illustration of the variables measured by the 

sensor(Schnieder, 2017) 

The total number of vehicles sensed by the ego-one during the driving trip is 

depicted in Figure 5.23 
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Figure 5. 23 Number of objects detected by the radar sensor per measurement 

cycle 

 Estimation of Time-To-Collision(TTC) 5.4.3.

The next step of the vehicle data-processing was to estimate the TTC of the ego-

vehicle regarding the vehicles in its vicinity. The approach used to estimate TTC was 

obtained from a European short project report within Loughborough University.  

(Schnieder, 2017). Similar to Ward et al., (2014, 2015) critical encounters between 

vehicles based on the bearing angle, the loom angle and the yaw rate were detected. 

The bearing angle 𝛾 is defined as the angle between the velocity vector of the ego-

vehicle’s loom point and the vector at the closest point of the target vehicle. The 

loom angle 𝜃 is the angle between the furthest left and furthest right point from the 

loom point on the ego-vehicle. The yaw rate 𝜔 is the change of the heading angle of 

the ego-vehicle. The bearing angle, loom angle and yaw rate are depicted in Figure 

5.24 
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Figure 5. 24 Illustration of bearing angle (γ), loom angle (θ) and yaw rate (ω) 

 

For the first measurement, every relevant object is identified and the angles 𝛼, 𝛽, the 

bearing angle 𝛾 as well as the distance d is calculated for each object; 𝛼 and 𝛽 are the 

angles between the velocity vector of the loom point on the green ego-vehicle and 

the furthest left and furthest right point of the red target-vehicle, respectively, as 

illustrated in Figure 5.25. In Figure 5.25a the angles 𝛼, 𝛽, and 𝛾 as well as the 

distance d are illustrated if the target object is on the left-hand side. The 

corresponding angles if the target object is on the right-hand side are depicted in 

Figure 5.25b. In order to estimate these angles, the required measurements from the 

radar sensor are: 

𝑜𝑤: Width of the object 

𝑜𝑙𝑎,: Lateral displacement 

𝑣𝑤: Width of the ego-vehicle including buffer area (here 2.1 m) 

𝑜𝑙𝑜,:   
Longitudinal displacement of the object 

𝑜𝑙: Object length 

𝑏𝑤: Object buffer area: if the target object is a bicycle, the side buffer area is 3 
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feet; otherwise the buffer area depends on the ego-vehicle’s velocity 

𝑏𝑓: Object front buffer area according to the velocity of the ego-vehicle 

The above required variables are depicted in Figure 5.26. 
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Figure 5. 25 Illustration of angles α,β,γ for the estimation of TTC 
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Figure 5. 26 Illustration of the required measurements to estimate the looming 

angles 

If a vehicle were on the left-hand side of the ego-vehicle then the following formulas 

were used to estimate the angles α,β and γ as well as the distance d according to 

simple trigonometric and geometrical rules: 

𝛼n,t = tan
−1 (

(
1

2
𝑜𝑤𝑛,𝑡)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡−𝑏𝑓
) (5.4) 

𝛽n,t = tan
−1 (

(−
1

2
𝑜𝑤𝑛,𝑡−𝑏w)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡+𝑜𝑙𝑛,𝑡
) (5.5) 

𝛾n,t = tan
−1 (

(−
1

2
𝑜𝑤𝑛,𝑡−𝑏w)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡−𝑏𝑓
) (5.6) 

dn,t = √(𝑜𝑙𝑜,𝑑𝑛,𝑡 − 𝑏𝑓)
2 + (|𝑜𝑙𝑎,𝑑𝑛,𝑡| −

1

2
𝑉𝑤 −

1

2
𝑜𝑤𝑛,𝑡 − 𝑏w)

2 (5.7)  

where n denotes the vehicle ID and t is a specific time moment. 

Accordingly, if a vehicle is on the right-hand side of the ego-vehicle the following 

formulas are utilised: 

𝛼n,t = tan
−1 (

(−
1

2
𝑜𝑤𝑛,𝑡−𝑏w)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡+𝑜𝑙𝑛,𝑡
) (5.8) 

𝛽n,t = tan
−1 (

(
1

2
𝑜𝑤𝑛,𝑡)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡−𝑏𝑓
) (5.9) 
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𝛾n,t = tan
−1 (

(−
1

2
𝑜𝑤𝑛,𝑡−𝑏w)+|𝑜𝑙𝑎,𝑑𝑛,𝑡|−

1

2
𝑉𝑤

𝑜𝑙𝑜,𝑑𝑛,𝑡−𝑏𝑓
) (5.10) 

dn,t = √(𝑜𝑙𝑜,𝑑𝑛,𝑡 − 𝑏𝑓)
2 + (|𝑜𝑙𝑎,𝑑𝑛,𝑡| −

1

2
𝑉𝑤 −

1

2
𝑜𝑤𝑛,𝑡 − 𝑏w)

2  (5.11) 

The loom angle θ was then calculated by subtracting α from β: 

𝜃n,t = |𝛼n,t − 𝛽n,t|  (5.12) 

 

TTC for every vehicle was estimated if the loom angle θ is increasing over time and 

one of the following conditions were true: 

1. The bearing angle is decreasing while the ego-vehicle is driving on a curve 

2. The bearing angle is constant while the ego-vehicle is driving in a straight 

line 

3. The bearing angle is decreasing while the yaw rate is decreasing to 0 

4. The bearing angle is first increasing and then decreasing or is staying 

constant while the yaw rate is increasing from 0 to a higher value. 

 

The estimation of TTC was performed by taking into account the relative 

acceleration between the ego-vehicle and a vehicle n. The equations are similar to 

the ones used by Brown, (2005), Ozbay et al., (2008), Saffarzadeh et al., (2013) and 

Ward et al., (2015), however the definition of relative velocity and acceleration is 

different than the definition used in this PhD thesis.  

 

In this research, relative velocity is simply defined as 𝛥𝑣 = |𝑣𝑙 − 𝑣𝑓| where 𝑣𝑙  is 

the speed of the leading vehicle and 𝑣𝑓  is the speed of the following vehicle. 

Accordingly, relative acceleration is simply defined as 𝛥𝑎 = |𝛼𝑙 − 𝛼𝑓| 

 

If the relative acceleration between vehicle n and the ego-vehicle is non-zero then 

TTC is estimated as:  

𝑇𝑇𝐶𝑛−𝑒𝑔𝑜 = min (
𝛥v+√𝛥v2+𝛥𝛼d

𝛥𝛼
,
𝛥v−√𝛥v2+𝛥𝛼d

𝛥𝛼
)  (5.13) 
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Otherwise if 𝛥𝛼 = 0 and 𝛥𝑣 < 0: 𝑇𝑇𝐶𝑛−𝑒𝑔𝑜 = −
𝑑

𝛥v
  (5.14) 

Where, ∆𝑎 is the relative acceleration between the ego-vehicle and vehicle n, ∆𝑣 is 

the relative velocity between the ego-vehicle and the target-object n, 𝑑 is the distance 

between the loom-point (i.e. the furthest right or left point as depicted in Figure 5.25) 

on the ego-vehicle and the closest point of the vehicle n. 

 

To summarise, the above described algorithm estimates TTC in car-following 

situations, taking into account the acceleration of vehicles which is advantageous for 

safety applications (Ward et al., 2015). It also utilises a safety buffer area around 

every obstacle which considers the size of the obstacle/vehicle, accounts for 

measurement inaccuracies and allows for safe vehicle interactions with the ego-

AV(Hou et al., 2014).  

 

Figure 5.27 gives the distribution of TTC values for the motorway driving data 

collection trip used for the purposes of this PhD research project. 

 

Figure 5. 27 Illustration of the TTC distribution for the motorway driving data 

collection trip 

 Limitations of the vehicle-level dataset 5.4.4.

The dataset provided by the radar sensor of the Loughborough University 

instrumented vehicle provides frequent and robust measurements. These 

measurements in conjunction with the measurements from the camera system and the 
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lane departure and collision warning system could result in a rich dataset for vehicle 

motion prediction and risk assessment. However, for the purpose of this PhD only 

the radar sensor measurements were utilised. Moreover, only TTC was estimated 

from the radar data in order to distinguish between safe and “hazardous” road users. 

Ideally, the vehicle-level data could be obtained by several driving trips, and the 

characteristics of safe and road users could be classified according to trajectory 

features and more sophisticated metrics than the simplistic TTC used in this thesis.   

 

Summary 5.5.

This chapter presented the datasets that will be utilised to develop the classification 

models for NLCP, as well as vehicle-level data coming from the sensors of an 

instrumented vehicle.  

 

Three different datasets were deployed for the estimation of the network-level risk. 

The first one comprises of highly aggregated traffic data in 15-minute intervals and 

the corresponding collision data from two motorways and two A-roads included in 

the Strategic Road Network (SRN) of England. The second dataset contains 

disaggregated traffic data just 5 minutes before collision events having occurred at 

two major roads within the metropolitan area of Athens, Greece. The use of such 

disaggregated data will enhance the development of NLCP models with lower 

prediction horizon in order for them to be utilised in AV risk assessment modules. 

The Athens dataset contains 472 collision-cases and 917 non-collision cases. The 

third dataset was obtained by using the PTV VISSIM microsimulation software and 

the Surrogate Safety Assessment Model (SSAM). Highly aggregated traffic data 

from the first dataset (i.e. from M62) were used to calibrate and validate the 

simulation and conflict data were retrieved from SSAM. After the calibration and 

validation of the microsimulation the traffic data were aggregated in 30-second, 1-

minute, 3-minute and 5-minute intervals so as to investigate the effect of temporal 

aggregation on the classification results. The traffic conditions were then matched 

with the conflict events. For every simulation run, three additional runs were 

conducted to obtain non-conflict traffic data. This procedure was repeated a further 

three times to provide a larger dataset which is essential for classification purposes. 
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The final dataset contains 7800 conflicts and the corresponding 23400 non-conflict 

cases. 

 

Finally, vehicle-level data were obtained from the Loughborough University 

instrumented vehicle. The dataset was collected during a one-hour driving trip on the 

M1 motorway (J23-J18). TTC values were estimated by only using the radar data 

from the trip. These values will be used in order to identify potential safe and 

dangerous road users. This will enhance the analysis in order to estimate the impact 

that network-level collision information will have on the identification of hazardous 

traffic participants. 
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6. Network-level collision prediction results 

 

Introduction 6.1.

This chapter presents the classification results for the NLCP models developed in the 

methodology chapter using both real-world (from UK and Greece) and simulated 

datasets. As different models are going to be investigated, a comparison between 

methods and results is carried out. Furthermore, some insights for identifying the 

optimal temporal resolution of traffic data will be offered so as to be employed in a 

NLCP model. 

 

Initially, the potential of RVMs for classification of 15-minute traffic data from the 

UK Strategic Road Network (SRN) is going to be tested. This is followed by an 

analytic comparison of machine learning classifiers (i.e. RVMs, SVMs, kNN, GPs 

and RFs), utilised for classifying motorway traffic data into collision-prone and safe. 

After comparing these classifiers, imbalanced learning techniques are implemented 

to quantify the difference in the classification results.  

 

Following the classification results for the real-world data, the same classification 

algorithms are tested on a highly disaggregated dataset, obtained from simulating 

traffic on the M62 motorway in the UK. Consequently, traffic conditions which 

potentially cause conflicts in traffic microsimulation models could be identified 

through these models.  

 

 RVMs in NLCP 6.2.

This section investigates if RVMs could be utilised in predicting collision-prone 

traffic in real-time. For that purpose, the traffic and collision data from J10-J13 of the 

M1 Motorway (430 collision and non-collision cases) and the AL634 link of the A3 

road (119 collision and non-collision cases) were collected and utilised as the 

training datasets, while the validation dataset was obtained from part of A12 road 

(105 collision and non-collision cases). Two key explanatory variables - average 

speed (km/h) and traffic flow were included in the classifiers whereas average travel 

time was omitted because it was not considered as an important indicator for 

predicting collision-prone conditions. 
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 Results for the preliminary dataset 6.2.1.

RVMs and SVMs classification methods have been applied to the datasets in order to 

solve the binary classification problem in distinguishing between safe and collision-

prone conditions. 

 

As mentioned before, both SVMs and RVMs rely on kernel functions to perform 

regression or classification. The most popular kernels used are the linear, polynomial 

and Gaussian or radial basis function (RBF). In this study the Gaussian kernels have 

been used, as they provide more powerful results (e.g. Yu and Abdel-Aty, 2013).  

 

The Gaussian kernel is calculated through the equation 𝐾(𝑥𝑖 , 𝑥𝑗) = exp (−𝛾‖𝑥𝑖 −

𝑥𝑗‖
2
), where 𝛾 determines the width of the basis function. The coefficient 𝛾 was set 

to 0.5 as obtained by an optimization technique in MATLAB (Statistics and Machine 

Learning Toolbox™) (Mathworks, 2016) .  

 

In order to test the performance of RVMs for classifying traffic conditions, two 

MATLAB implementation algorithms were employed, namely SparseBayes v1 and 

v2 (Tipping, 2009, Michael E. Tipping, 2009). Although both algorithms perform the 

same task, the difference lies in the fact that v1 has a built-in function to develop 

RVMs, while the second version is more ‘general-purpose’ and requires that the user 

defines the basis functions to be used. Furthermore, the hyperparameters 𝛼𝑖  are 

updated in v1 at each iteration using the formula  𝛼𝑖 =
𝛾𝑖

𝜇𝑖
2
 , where 𝜇𝑖  is the i-th 

posterior mean weight and 𝛾𝑖 ≡ 1 − 𝛼𝑖𝛴𝑖𝑖  with 𝛴𝑖𝑖being the i-th diagonal element of 

the posterior weight covariance used. This update technique, although simplistic, is 

not the most optimal (Tipping, 2009). On the contrary, the marginal likelihood 

function with regards to the  hyperparameters is efficiently optimised continuously in 

v2 and individual basis functions can be discretely added or deleted as described in 

Tipping and Faul (2003). In that way, algorithm v2 converges faster but can prove 

greedy with respect to the classification results. 

 

For the RVM models the maximum iterations were set to 100,000 with monitoring at 

every 10 iterations, the Gaussian kernel width was set to 0.5 and the initial 𝛽 value 
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was set to zero. The first version of the RVM algorithm was initialised with 𝑎 =
1

𝑁2
, 

where N is the size of the dataset. The algorithm terminates if the largest change in 

the logarithm of any hyperparameter α is less than 10
-3

. On the other hand, the 

second version of RVM initialises with a 𝑎 value which is automatically calibrated 

according to the size of the dataset used. The v2 algorithm terminates if the change in 

the logarithm of any hyperparameter α is less than 10
-3

 and the change in the 

logarithm of β parameter is less than 10
-6

.  SVMs were developed using the Statistics 

and Machine Learning Toolbox™ of MATLAB, with the Gaussian kernel width of 

0.5 and the Box constraint level set of 1. The linear kernel for SVMs (𝐾(𝑥𝑖, 𝑥𝑗) =

𝑥𝑖  ∙  𝑥𝑗), is also tested for comparison reasons. 

 

In order to test the performance of the three different algorithms (i.e. RVM_v1, 

RVM_v2 and SVMs), two criteria were used: 

i) the classification error 

ii) the decision vectors used during the training of the model, as well as 

when tested using the validation dataset 

The training datasets consist of the 430 traffic conditions of M1 (J10-J13) and the 

119 traffic conditions from link AL634 of A3 road. These training and validation 

datasets are relatively small. However, collision occurrence is a rare event and it is 

not unusual for traffic safety experts to deal with small samples (Yu and Abdel-Aty, 

2013b). Furthermore, other studies on RVM classification such as Demir and Ertürk 

(2007) have tested training datasets of the same sample size. 

 

Results for the training datasets are summarised in Table 6.1, while results for the 

validation dataset are summarised in Table 6.2. 
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Table 6. 1 Classification Accuracy during Training and Number of Decision 

Vectors for RVMs and SVMs 

Method Kernel Training Sample Size Training Error Decision Vectors 

RVM_v1 Gaussian 

430 

4.88% 358 

RVM_v2 Gaussian 19.53% 93 

SVM 
Gaussian 15.80% 204 

Linear 20.00% 203 

RVM_v1 Gaussian 

120 

0.84% 116 

RVM_v2 Gaussian 18.49% 6 

SVM 
Gaussian 11.80% 6 

Linear 15.1% 42 

 

As can be seen from Table 6.1., training for RVMs is slower than that of SVMs and 

this is in-line with  the results of other RVM classification  algorithms (Tipping, 

2001, Demir and Ertürk, 2007). The delay in training for RVMs is triggered by the 

iterated need for calculating and inverting the Hessian matrix and which leads to 

more computational time as sample size increases. The best classification is 

performed by the RVM_v1 algorithm, with a large margin (of about 10%) to the next 

more successful algorithm which is the SVM with a Gaussian kernel. However, it is 

noticeable that this successful rate of classification by the RVM_v1 algorithm is due 

to the large number of decision vectors, which is about 1.5 to 2 times higher than the 

decision vectors used by RVM_v2 and SVM. The efficient RVM_v2 is about 4% 

less accurate than SVMs, however the interesting fact is that it uses less than a half of 

the decision vectors utilised by SVMs to perform the training classification. This 

classification is also performed in a non-critical time interval which can be utilised in 

real-time (i.e. 8 seconds). In the smaller sample size, it can also be seen that 

RVM_v2 uses only 6 vectors to perform the classification, while the other two 

approaches require a much larger number. Comparing training classification results 

between the small and the bigger sample size, it can be seen that all three algorithms 

perform better on the small sample, which also agrees with the literature (Phillips et 

al., 2011, Demir and Ertürk, 2007). Training time for SVMs is notably faster because 

of the fact that the RVMs learning algorithm is more computationally complex 

(Tipping, 2001). 



151 

 

Table 6. 2 Validation results of the algorithms using an independent sample  

Datasets with sample size Method Kernel Classification error (%) 

Training dataset: 430 cases from 

a motorway;                                                

Validation dataset: 110 

observations from A-class roads                                            

RVM_v1 Gaussian 25.71 

RVM_v2 Gaussian 20 

SVM 
Gaussian 18.09 

Linear 20 

Training dataset: 120 cases from 

A-class road;                                                  

Validation dataset: 110 

observations from A-class roads  

RVM_v1 Gaussian 21.9 

RVM_v2 Gaussian 20 

SVM 
Gaussian 10.47 

Linear 20 

 

Looking at the validation results of the classification algorithm that was trained with 

the larger sample (Table 6.2), it is shown that RVM_v1 is no longer the most 

accurate classifier. SVMs with Gaussian kernel produce the most successful result, 

followed by RVM_v2 and SVM with a linear kernel. RVM_v1 probably leads to 

worse results due to the fact that it requires a lot of decision vectors and these 

classifier vectors cannot perform well when applied to an unknown independent 

dataset. When the classifier was trained with a small sample and the algorithm was 

applied to a relatively small sample, the results show that SVMs with Gaussian 

kernel outperform RVMs with a classification error which is a half of the 

classification error found in each of the RVMs algorithms.  

 

To further investigate the classification performance of the three algorithms
14

, the 

measures of sensitivity and specificity were employed. For that purpose, four 

commonly employed terms as defined below are employed.  

 

 True Positive (TP): Dangerous (collision-prone) conditions (treal=1) correctly 

identified as dangerous (tclassified=1) 

 False Positive (FP): Dangerous (collision-prone) conditions (treal=1) 

incorrectly identified as safe (tclassified=0) 

                                                 
14

 SVM with linear kernel was excluded in Table 6.3 because it did not provide better results than the 

other algorithms 
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 True Negative (TN): Safe traffic conditions (treal=0) correctly identified as 

safe (tclassified=0) 

 False Negative (FN): Safe traffic conditions (treal=0) incorrectly identified as 

dangerous (tclassified=1) 

 

By making use of the known formula for sensitivity and specificity (Powers, 2011), 

the performance of these algorithms for the larger training dataset and the validation 

dataset are presented in Table 6.3: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁+𝐹𝑃
 (6.1) 

 

Table 6. 3 Sensitivity and Specificity of RVMs and SVMs 

Method Kernel Sensitivity (%) Specificity (%) 

RVM_v1 Gaussian 88.4 91.5 

RVM_v2 Gaussian 66.67 80.26 

SVM Gaussian 73.8 84.6 

 

It is noticeable from Table 6.3 that the RVM_v1 algorithm performs well in 

identifying the traffic conditions that lead to a collision. RVM_v1 is the best 

classifier with a 88.4% sensitivity and a 91.5% specificity implying minimum Type I 

and Type II errors. The RVM_v2 algorithm underperforms in terms of sensitivity and 

specificity between the two datasets. This is probably a result of the greediness of the 

algorithm which converges fast but at the expense of a large number of false 

positives. 

 

The reason for these misclassification rates associated with all of the algorithms, 

especially with RVM may relate to the use of highly aggregated (i.e. 15-minute) 

traffic data, relatively small sample size and the use of only two variables (i.e. 

average speed and traffic flow) for representing traffic. In addition, the algorithm 

was primarily trained with traffic data from a motorway (M1 J10 – J13) but validated 

with traffic data from A-class roads. Traffic dynamics between these two classes of 

roads are quite different from each other.  
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Classification results for M1 and M62 6.3.

As RVMs proved to perform well compared to SVMs, it was chosen to re-check its 

performance in the dataset containing only motorway traffic from M1 and M62 along 

with other classifiers. The dataset contains average 15-minute traffic speed and flow 

as described in section 6.2. 

 

The algorithms tested were SVMs and NNs which have been previously applied to 

NLCP, RVMs and GPs (in order to obtain probabilistic predictions), RFs (an 

ensemble powerful classifier) and kNN (a simple data-driven classifier). 

 

Before the initiation of each algorithm, an optimization routine was run along with 

10-fold cross-validation in order to find the optimal parameters for each algorithm. In 

order to avoid over-fitting and assure optimal results, 2/3 of the dataset were used for 

training the classifiers and 1/3 of the dataset was used for testing the classification 

results. The models were developed in Python 2.7 using the scikit-learn (Pedregosa 

et al., 2012) and the sklearn-bayes (Shaumyan, 2016) packages. 

 

 Results for the joined dataset 6.3.1.

Tables 6.4 and 6.5 present the confusion matrix and the classification metrics for the 

dataset containing traffic from M1 and M62. This is followed by Figure 6.1 which 

depicts the ROC curve for all the estimated classifiers.  

 

Table 6. 4 Confusion matrix for the dataset utilizing traffic from M1 and M62 

Classifier TN FP FN TP Sum 

kNN 279 4 77 1 361 

RVM 283 0 78 0 361 

SVM 283 0 78 0 361 

GP 283 0 78 0 361 

RF 283 0 74 4 361 

NN 283 0 78 0 361 
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Table 6. 5 Classification metrics for the dataset utilizing traffic from M1 and 

M62 

Algorithm Accuracy Precision Recall Specificity f1-score 
G-

Means 

kNN 0.775623 0.2 0.012821 0.985866 0.024096 0.050637 

RVM 0.783934 NA 0 1 NA NA 

SVM 0.783934 NA 0 1 NA NA 

GP 0.783934 NA 0 1 NA NA 

RF 0.795014 1 0.051282 1 0.097561 0.226455 

NN 0.783934 NA 0 1 NA NA 

 

 

Figure 6. 1 ROC curve of classifiers using 15-minute traffic data from M1 and 

M62 

From Table 6.5 and Figure 6.1 it can be observed that all of the classifiers are close 

to random guessing, which consequently indicates that their performance is not good. 

This is probably due to the use of only two predictors (i.e. average speed and flow) 

that are highly aggregated. The 15-minute traffic data cannot efficiently capture the 
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traffic dynamics leading to a collision and this is depicted in the classifiers 

performance. What can also be observed is the superiority of Random Forests in 

classifying for the case of aggregated data. More specifically, only RFs and kNN 

could predict at least one collision case, while RVMs, SVMs, GPs and NNs failed. 

kNN is a data-driven algorithm and, hence, they can easily adapt to every dataset. 

That is probably the underlying reason for kNN’s recognition of some collision-

prone instances.  However, as the classification results are not promising, the dataset 

was treated with undersampling and data-cleaning techniques in order to enhance 

classification performance. 

 

 Classification results with imbalanced learning 6.3.2.

As the prediction presented in section 6.3.1 did not match the expectations (i.e. a 

high recall with a low false alarm rate) for a successful real-time classifier, 

imbalanced learning approaches such as undersampling and the integration of 

oversampling and undersampling were tested for the same dataset. The imbalanced-

learn package in python offers a variety of undersampling as well as combined 

(oversampling along with undersampling) techniques. After testing all of them, the 

best results were given for the Repeated Edited Nearest-Neighbours (RENN) 

regarding undersampling and the combination of SMOTE and Edited Nearest 

Neighbours (ENN). The algorithm will be henceforth termed as SMOTE-ENN. The 

results for these two techniques are presented in the subsequent sections. Each 

algorithm was trained with the balanced dataset and its performance was tested on 

the original (imbalanced) dataset. By testing the performance on the original dataset, 

it is ensured that the validation of the classification results is not based on artificially 

created instances from SMOTE-ENN or a smaller sample acquired through RENN, 

but is directly acquired from the original dataset. 

 

6.3.2.1.Classification results for M1-M62 after undersampling 

Tables 6.6 and 6.7 present the confusion matrix and the classification metrics of the 

aforementioned six classifiers (i.e. kNN, RVMs, SVMs, RFs and NNs), while Figure 

6.2 presents the ROC curve of the classifiers. 
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Table 6. 6 Confusion Matrix of the classifiers using undersampling (RENN) 

Classifier TN FP FN TP Testing sample size 

kNN 468 493 92 149 

1202 (961 safe + 241 collision-

prone) 

 

RVM 294 667 14 227 

SVM 282 679 6 235 

GP 346 615 19 222 

RF 540 421 80 161 

NN 952 9 239 2 

 

Table 6. 7 Classification metrics of the classifiers using undersampling (RENN) 

Classifier Accuracy Precision Recall Specificity f1-score G-means 

kNN 0.5133 0.2321 0.6183 0.4870 0.3375 0.3788 

RVM 0.4334 0.2539 0.9419 0.3059 0.4000 0.4890 

SVM 0.4301 0.2571 0.9751 0.2934 0.4069 0.5007 

GP 0.4725 0.2652 0.9212 0.3600 0.4119 0.4943 

RF 0.5832 0.2766 0.6680 0.5619 0.3913 0.4299 

NN 0.7937 0.1818 0.0083 0.9906 0.0159 0.0388 

 

  

Figure 6. 2 ROC curve of classifiers for the M1-M62 dataset with RENN 

From Table 6.6 the improvement of classification results can be easily identified. In 

the imbalanced dataset, the majority of the classifiers can predict most of the 

collision-prone conditions successfully. This is further resembled in the classification 

metrics in Table 6.7. All the classifiers, except NNs, can now identify both collision-

prone and safe traffic much more efficiently. The failure of NNs could be an effect 
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of the dataset sample size as NNs are usually more powerful when bigger datasets 

are at hand (Karlaftis and Vlahogianni, 2011). Furthermore, as the G-means metric 

suggests, this prediction does not favour safe traffic conditions but is weighted 

sufficiently for both safe and dangerous traffic. Regarding the ROC curve, it is 

depicted that SVMs, GPs and RFs are the top classifiers while RVMs follow.  The 

superiority of SVMs is once again assured while GPs and RVMs which can provide 

probabilistic predictions along with RF as an ensemble method show a good 

performance. 

 

6.3.2.2.Classification results for M1 and M62 after oversampling integrated with 

undersampling. 

Tables 6.8 and 6.9 present the confusion matrix and the classification metrics for the 

studied classifiers while Figure 6.3 presents the ROC curve of the classifiers after the 

use of oversampling along with undersampling. As mentioned previously, the 

algorithm which produced the best results were obtained using SMOTE-ENN.  

 

Table 6. 8 Confusion Matrix of the classifiers using SMOTE-ENN 

Classifier TN FP FN TP Testing sample size 

kNN 877 84 158 83 

1202 (961 safe + 241 collision-prone)  

 

RVM 942 19 162 79 

SVM 935 26 155 86 

GP 961 0 241 0 

RF 960 1 229 12 

NN 961 0 241 0 

 

Table 6. 9 Classification metrics of the classifiers using SMOTE-ENN 

Classifier Accuracy Precision  Recall Specificity f1-score G-Means 

kNN 0.7987 0.4970 0.3444 0.9126 0.4069 0.4137 

RVM 0.8494 0.8061 0.3278 0.9802 0.4661 0.5141 

SVM 0.8494 0.7679 0.3568 0.9729 0.4873 0.5235 

GP 0.7995 NA 0.0000 1.0000 NA NA 

RF 0.8087 0.9231 0.0498 0.9990 0.0945 0.2144 

NN 0.7995 NA 0.0000 1.0000 NA NA 

 

Tables 6.8, 6.9 also demonstrate that using oversampling integrated with 

undersampling improves classification results. Four of the classifiers (i.e. kNN, 

RVMs, SVMs and RFs) identified safe and collision-prone traffic while the rest 

failed to identify collision-prone traffic. This is probably due to the failure of GPs to 
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estimate the prior probability from the SMOTE instances (Elrahman and Abraham, 

2013) and the inability of NNs to work with relatively small datasets (Zhu et al., 

2006, Karlaftis and Vlahogianni, 2011). 

 

Figure 6. 3 ROC curve of classifiers for the M1-M62 dataset with SMOTE-ENN 

From Tables 6.6. – 6.9 it can be observed that most of the classifiers (specifically 

SVMs, RVMs and RFs) under RENN perform well with respect to the recall statistic. 

Observing the f1-score in the aforementioned tables it is evident that the performance 

of all the classifiers is relatively poor in identifying relevant instances which is 

probably due to the poor data quality. On the other hand, it is shown in Tables 6.7 

and 6.9 that after the treatment with imbalanced learning the classifiers are able to 

detect both safe and collision-prone conditions more efficiently.  

 

Classification results for the Athens dataset 6.4.

To further explore the capabilities of the classifiers as well as the power of 

imbalanced learning in the classification performance, the previously tested classifier 

algorithms and the techniques for under-sampling along with its integration with 

oversampling were tested for the dataset containing more disaggregated (i.e. 5-

minute) traffic data from Athens, Greece. 
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 Results for the original Athens dataset 6.4.1.

Similarly, with the 15-minute dataset from the UK, the performance of the classifiers 

is evaluated through the confusion matrix (Table 6.10), the classification metrics 

(Table 6.11) and the ROC curve (Figure 6.5).  

 

Table 6. 10 Confusion Matrix of the classifiers using 5-minute traffic data from 

Athens, Greece 

Classifier TN FP FN TP Test Sample size 
kNN 249 53 129 28 

459 (302 safe and 157 collision-prone) 

 

RVM 302 0 157 0 

SVM 302 0 157 0 

GP 290 12 142 15 

RF 290 12 148 9 

NN 273 29 145 12 

 

From Table 6.10, it is observed that the distinction between safe and collision-prone 

traffic is troublesome for traffic data aggregated at 5-minute intervals. Safe traffic 

can easily be identified as the numbers for TN and FP suggest, but hazardous 

conditions are usually incorrectly classified. The simple data-driven approach of 

kNN detects the largest number of collision cases while the probabilistic 

classification of GPs and NNs also performed well compared to the other classifiers.  

 

Table 6. 11 Classification metrics of the classifiers using 5-minute traffic data 

from Athens, Greece 

Classifier Accuracy Precision Recall Specificity f1-score G-Means 

kNN 0.6035 0.3457 0.1783 0.8245 0.2353 0.2483 

RVM 0.6580 NA 0.0000 1.0000 NA NA 

SVM 0.6580 NA 0.0000 1.0000 NA NA 

GP 0.6645 0.5556 0.0955 0.9603 0.1630 0.2304 

RF 0.6492 0.3750 0.0382 0.9669 0.0694 0.1197 

NN 0.6558 0.4545 0.0318 0.9801 0.0595 0.1203 

 

Table 6.11 reflects the limited identification of collision-prone conditions, already 

identified by the confusion matrix (i.e. Table 6.10). Accuracy is generally low in 

comparison with some existing studies (e.g. Abdel-Aty et al., 2004, Hossain and 

Muromachi, 2013). Furthermore, the high specificity rates show that safe traffic is 

conveniently identified, which is additionally observable from the very low rates of 

recall and f1-score. Precision rates are slightly higher compared to recall and f1-score 

which shows that whenever an actual collision is detected, it more likely to be a 
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collision than a false alarm. Nevertheless, the precision rates are still low. RVMs and 

SVMs could not predict a single collision as shown by Tables 6.10 and 6.11 probably 

due to their sparsity in decision making and therefore their performance cannot be 

evaluated properly. Finally, the low G-means metric shows that even though the 

dataset is quite balanced (i.e. the ratio of safe to collision prone traffic is 

approximately 2:1) the classification is not. 

 

 

Figure 6. 4 ROC curve of classifiers for the Athens dataset 

To illustrate the classification performance of the classifiers, the ROC curve was 

utilised as seen in Figure 6.4. From the ROC curve, the ill-defined performance of 

the classifiers is visible. If the area under the ROC curve is utilised as a performance 

metric, then NNs and RFs perform the best with 51% which is due to their (relatively) 

high specificity along with their recall. Overall, however, the classifiers perform 

similarly or just above the random guess curve which indicates that they cannot be 

used in safety critical applications. 
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 Results for the Athens dataset after undersampling  6.4.2.

To improve the classification performance, undersampling is utilised in a similar 

manner as in the case of the 15-minute traffic dataset from the UK. After comparing 

different outcomes from the undersampling techniques provided in the imbalanced 

learn package, the best results were acquired for undersampling using the 

neighbourhood cleaning rule (NC) (Laurikkala, 2001).   

 

Table 6.12 presents the confusion matrix for all the classifiers. This is followed by 

the classification metrics (Table 6.13) and the ROC curve (Figure 6.5).  

Table 6. 12 Confusion Matrix of the classifiers using 5-minute traffic data from 

Athens, Greece after the treatment with NC 

Classifier TN FP FN TP Test Sample size 

kNN 444 473 140 332 

1389 (917 safe and 472 collision-prone) 

RVM 300 617 89 383 

SVM 487 430 75 397 

GP 841 76 147 325 

RF 171 746 38 434 

NN 395 522 170 302 

 

Comparing Table 6.12 with Table 6.10, the increase in the identification of collision-

prone traffic is obvious. On the other hand, this increase is accompanied by the 

disadvantage of having a large number of false alarms (i.e. FP).  

 

Table 6. 13 Classification metrics for the Athens dataset after the treatment 

with NC 

Classifier Accuracy Precision Recall Specificity f1-score G-Means 

kNN 0.5587 0.4124 0.7034 0.4842 0.5200 0.5386 

RVM 0.4917 0.3830 0.8114 0.3272 0.5204 0.5575 

SVM 0.6364 0.4800 0.8411 0.5311 0.6112 0.6354 

GP 0.8395 0.8105 0.6886 0.9171 0.7446 0.7470 

RF 0.4356 0.3678 0.9195 0.1865 0.5254 0.5815 

NN 0.5018 0.3665 0.6398 0.4308 0.4660 0.4843 

 

The number of false alarms affected the classifiers accuracy which was generally 

reduced as seen in Table 6.13. Moreover, by observing precision it can be detected 

that although collision-prone cases are correctly identified the rates are relatively low 

due to the false alarms. The balanced dataset also induced an increase in false 

negatives which is resembled in the recall metric. Recall however has significantly 
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increased compared to the original dataset. Specificity results validate the above 

statement, as it is demonstrated that identifying safe traffic is no longer an easy task 

for the classifiers which is probably due to the loss of classification accuracy after 

the balanced learning.  Regarding the f1-score it can be observed that SVMs and GPs 

perform well in distinguishing between collision and safe-traffic cases while NNs 

encounter difficulties due to their complexity. The increased G-means shows that all 

the classifiers perform a much more balanced prediction however NNs and kNN 

perform the worst due to the large number of false classifications. 

 

 

Figure 6. 5 ROC curve of classifiers for the Athens dataset after undersampling 

When plotting the false positive rate against the false negative rate in Figure 6.5, the 

improved performance of all the classifiers is observed. Comparing the classifiers, it 

is evident that GPs have the better AUC, therefore, assuring best classification results 

without false alarms. SVMs also adapt well to the dataset while RFs and RVMs 

perform relatively well to the rest of the classifiers.  

 

 Results for the dataset after oversampling integrated with undersampling 6.4.3.

The treatment of the 5-minute traffic data with undersampling effectively increased 

the number of correctly identified collision-prone traffic, however the number of 
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misclassification necessitates the utilization of other solutions. Hence, it was decided 

that undersampling along with oversampling should be applied. The SMOTE-ENN 

algorithm produced the best results from the imbalanced-learn package and is 

presented in the following subsections. Tables 6.14, 6.15 and Figure 6.6 summarise 

the results. 

 

Table 6. 14 Confusion Matrix of the classifiers using 5-minute traffic data from 

Athens, Greece after undersampling integrated with oversampling 

Classifier TN FP FN TP Testing sample size 

kNN 813 104 345 127 

1389 (917 safe + 472 collision-prone) 

RVM 917 0 400 72 

SVM 917 0 369 103 

GP 910 7 333 139 

RF 915 2 448 24 

NN 817 100 399 73 

 

After applying SMOTE along with ENN, the classification results are not 

significantly enhanced compared to the original dataset. GPs, SVMs and kNN 

perform better than the rest of the classifiers in identifying hazardous traffic, 

however a large number of false negatives is obvious for all algorithms.  

 

Table 6. 15 Classification metrics for the Athens dataset after the treatment 

with SMOTE-ENN 

Classifier Accuracy Precision  Recall Specificity f1-score G-Means 

kNN 0.6767 0.5498 0.2691 0.8866 0.3613 0.3846 

RVM 0.7120 1.0000 0.1525 1.0000 0.2647 0.3906 

SVM 0.7343 1.0000 0.2182 1.0000 0.3583 0.4671 

GP 0.7552 0.9521 0.2945 0.9924 0.4498 0.5295 

RF 0.6760 0.9231 0.0508 0.9978 0.0964 0.2166 

NN 0.6407 0.4220 0.1547 0.8909 0.2264 0.2555 

 

By comparing Table 6.15 with Tables 6.11 and 6.13, it is clear that the overall 

accuracy for all the classifiers is improved compared to the original dataset but does 

not achieve such positive results as the dataset treated with NC. The low metrics of 

recall and f1-score along with the high numbers of specificity demonstrate that the 

classifiers and especially GPs and SVMs, can distinguish safe traffic cases easily but 

fail to identify the majority of conflict-prone traffic. Observing the G-means metric 

further justifies the enhanced balanced classification of SVMs and GPs. The figures 
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on precision for most classifiers, additionally demonstrate that when a collision-

prone case is detected, it is most likely for it to be a real collision case rather than a 

false alarm. On the other hand, the classifiers show high precision and low recall and 

hence the results are not credible enough. 

  

From Tables 6.11, 6.13 and 6.15 it can be concluded that the best results for all the 

classifiers are achieved using the NC technique. As the balanced classification of the 

original dataset is small, undersampling the majority class along with oversampling 

the minority class is not able to solve the classification problems. However, when 

only undersampling the minority class is applied then the learned classifiers perform 

better. Through looking at the overall classification performance of the classifiers as 

given by the f1-score it is shown that GPs and SVMs perform better when used with 

undersampling. The same algorithms are the ones that provide the most balanced 

classification as seen from the G-means metric. GPs along with SVMs also achieve 

the best classification scores in the original datasets however as explained in the 

previous subsections these results are not reliable because of the generally poor 

performance of all the classifiers for the original dataset. 

 

 

Figure 6. 6 ROC curve of classifiers for the Athens dataset after SMOTE-ENN 
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The prevalence of GPs and SVMs for the classification of collision cases is obvious 

when observing the ROC curves and the area under them for the dataset obtained 

from SMOTE-ENN.  kNN, although simple as an algorithm, is shown to perform 

well achieving a high AUC percent while RVMs and RFs fall behind due to the large 

number of false negatives as seen in Tables 6.14 and 6.15. Finally, the poor 

performance of NNs is further validated as it does not achieve a high AUC rate 

compared to the other classifiers. 

 

Comparison of classifiers using real-world data with literature 6.5.

To further validate the performance of the classifiers and techniques presented in this 

chapter, a comparison is provided with results from the literature. A brief review of 

performance comparison between classification approaches in recent literature 

demonstrated that the most important parameters in a NLCP model are recall and 

false alarm rate. Table 6.16 summarises the prediction performance of previous 

literature along with the best classifiers developed in this chapter. 

 

Table 6. 16 Recall and false-alarm rate of classifiers in the literature and the 

best of the developed classifiers 

Previous literature Classification method Recall 
False Alarm 

Rate 

Abdel-Aty (2004) Logistic Regression 0.69 N/A 

Pande and Abdel-Aty (2006) NN 0.57 0.29 

Abdel-Aty (2008) NN 0.61 0.21 

Hossain and Muromachi (2012) Bayesian Network 0.66 0.20 

Ahmed and Abdel-Aty (2012) 
Matched case-control logistic 

regression 
0.68 0.46 

Lin et al (2015) Bayesian Network and kNN 0.61 0.38 

Sun and Sun (2015) Dynamic Bayesian Network 0.76 0.24 

Dataset utilised in this thesis Classification method Recall 
False Alarm 

Rate 

15-minute UK traffic data RF 0.05 0 

15-minute UK traffic data with 

undersampling  
RF 0.67 0.43 

5-minute Athens traffic data GP 0.1 0.23 

5-minute Athens traffic data  with 

undersampling 
SVM 0.84 0.46 

5-minute Athens traffic data  with 

undersampling  
GP 0.69 0.08 

 

Table 6.16 demonstrates that the classifiers developed in this Chapter perform 

equally well or better than the classifiers in the literature. The best recall in 
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conjunction with low false alarm rate was achieved by Sun and Sun (2015) with 76% 

and 24% respectively. Although the original datasets of 15-minute traffic data from 

the UK and 5-minute traffic data from Athens, Greece performed poorly the 

performance dramatically increased when these data were treated with 

undersampling of the majority class.  For example, GPs could predict 69% of the 

collision-prone cases in the undersampled Athens dataset with a very small false 

alarm rate (~8%) while RFs identified correctly most of the hazardous traffic in the 

UK dataset after the treatment with RENN and performed similarly to the majority of 

findings in the existing literature. However further research is required to reduce the 

high rates of false alarms in the undersampled Athens dataset. 

 

Utilizing microsimulation for real-time conflict prediction 6.6.

This section discusses the classification results from the models discussed in the 

methodology chapter using data from a highly disaggregated dataset obtained from 

simulating traffic on the M62 motorway in the UK. Traffic conditions which 

potentially cause conflicts in traffic microsimulation models could be identified 

through these models.  Similarly, to the previous chapter, different classifiers are 

going to be utilised, so that a comparison between methods and results is possible. 

 

The machine learning classifiers (i.e. RVMs, SVMs, kNN, NN and RF), which were 

utilised for classifying motorway traffic data into collision-prone and safe are going 

to be employed to identify conflict-prone conditions. After the comparison of 

classifiers, imbalanced learning techniques will again be implemented in order to 

critically compare and contrast the results before and after the treatment with 

imbalanced techniques.  

 

Similar to the previous section, all the classifiers were developed in Python 2.7 using 

the scikit-learn (Pedregosa et al., 2012), the sklearn-bayes (Shaumyan, 2016) and the 

imbalanced-learn (Lemaitre et al., 2016) packages. Next, the classifiers were 

optimised using 10-fold cross validation and 1/3 of the dataset was used for testing to 

avoid overfitting. For the imbalanced learned classifiers, the testing dataset was the 

original simulated dataset, so as to quantify the effect of imbalanced learning on the 

classification performance. 
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 Results for the original simulation dataset 6.6.1.

Tables 6.17 and 6.18 present the confusion matrix and the classification metrics for 

the simulation dataset. Figure 6.7 illustrates the ROC curve of the classifiers for 

every temporal aggregation.  

 

Table 6. 17 Confusion matrix of all the classifiers for the full simulation dataset 

Classifier TN FP FN TP Testing sample size 

30-second data 

10296 (2607 conflict cases and 7689 non-

conflict cases) 

kNN 6981 708 1992 615 

RVM 7689 0 2604 3 

SVM 7607 82 2331 276 

RF 7689 0 2607 0 

NN 7519 170 2105 502 

1-minute data 

kNN 7071 588 2031 606 

RVM 7659 0 2632 5 

SVM 7656 3 2505 132 

RF 7659 0 2637 0 

NN 7263 396 1670 967 

3-minute data 

kNN 7230 492 1670 904 

RVM 7722 0 2567 7 

SVM 7722 0 2431 143 

RF 7501 221 2119 455 

NN 7374 348 1158 1416 

5-minute data 

kNN 7349 348 1463 1136 

RVM 7697 0 2592 7 

SVM 7697 0 2456 143 

RF 7427 270 1726 873 

NN 7621 76 1394 1205 

 

Table 6. 18 Classification metrics for the simulation dataset  

Classifier Accuracy Precision  Recall Specificity f1-score 
G-

Means 

30-second data 

kNN 0.7378 0.4649 0.2359 0.9079 0.3130 0.3312 

RVM 0.7471 1.0000 0.0012 1.0000 0.0023 0.0339 

SVM 0.7656 0.7710 0.1059 0.9893 0.1862 0.2857 

RF 0.7468 NA 0.0000 1.0000 NA NA 

NN 0.7790 0.7470 0.1926 0.9779 0.3062 0.3793 

1-minute data 

kNN 0.7456 0.5075 0.2298 0.9232 0.3164 0.3415 

RVM 0.7444 1.0000 0.0019 1.0000 0.0038 0.0435 

SVM 0.7564 0.9778 0.0501 0.9996 0.0952 0.2212 

RF 0.7439 NA 0.0000 1.0000 NA NA 
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NN 0.7993 0.7095 0.3667 0.9483 0.4835 0.5101 

3-minute data 

kNN 0.7900 0.6476 0.3512 0.9363 0.4554 0.4769 

RVM 0.7507 1.0000 0.0027 1.0000 0.0054 0.0521 

SVM 0.7639 1.0000 0.0556 1.0000 0.1053 0.2357 

RF 0.7727 0.6731 0.1768 0.9714 0.2800 0.3449 

NN 0.8537 0.8027 0.5501 0.9549 0.6528 0.6645 

5-minute data 

kNN 0.8241 0.7655 0.4371 0.9548 0.5565 0.5784 

RVM 0.7483 1.0000 0.0027 1.0000 0.0054 0.0519 

SVM 0.7615 1.0000 0.0550 1.0000 0.1043 0.2346 

RF 0.8061 0.7638 0.3359 0.9649 0.4666 0.5065 

NN 0.8572 0.9407 0.4636 0.9901 0.6211 0.6604 

 

Figure 6. 7 ROC curve of the classifiers for the original simulation dataset 

(a: 30-second, b: 1-minute, c: 3-minute, d: 5-minute data) 

a 

b 

c d 



169 

 

From the confusion matrix (i.e. Table 6.17) it can be observed that the classification 

results improve with higher temporal aggregation. This is more straightforward for 

the conflict-prone cases as the number of TP increases when moving from the raw 

data to 1-minute, 3-minute and 5-minute aggregated traffic. For safe traffic cases, the 

classifiers in general perform well, as the total number of TN is high, while the 

number of false alarms (i.e. FP) drops throughout the temporal aggregation intervals. 

 

The performance of the classifiers is further reflected in the classification metrics. 

From Table 6.18 it can be observed that when using 30-second data, mostly safe 

traffic conditions are being recognised from the classifiers which results in high 

specificity. When traffic data aggregation increases, both the conflicts classification 

accuracy (i.e. recall) and the effective detection of conflict cases (i.e. precision) 

increase for most of the classifiers. This is further justified by the increase in the f1-

score figures, which is the harmonic mean of precision and recall. Regarding 

balanced classification results, the G-means for most of the classifiers decreases 

when 1-minute data aggregation is utilised, but increases for higher temporal 

aggregation promising balanced classification results for both conflict-prone and safe 

traffic conditions. 

 

Looking at Table 6.18 in more detail it is also evident that the best accuracy is 

achieved by NNs and kNN when using 5-minute traffic data. The highest precision 

scores are derived from the RVM models, however when observing recall and 

specificity, it is shown that this is due to the correct identification of safe traffic only 

as the recall statistic is zero for RVMs using every temporal aggregation intervals. 

Moreover, the most effective classification using the f1-score as a criterion is given 

by NNs using 3-minute or 5-minute aggregation as well as kNN using 5-minute 

traffic data. The same two algorithms result in the most balanced classification result 

given by the G-mean metric 

 

By observing Figure 6.7 which illustrates the ROC curves for the classifiers it is 

noticeable that all the curves move towards the left corner of the diagram which 

indicated that the overall performance of the classifiers is improved for highly 

aggregated traffic. Comparing the classifiers, it is shown that NNs have the best 
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performance throughout the aggregation intervals and justifies its use in several 

NLCP works (e.g. Pande and Abdel-Aty, 2006). Additionally, RFs perform slightly 

worse than NNs but indicate that the technique should be utilised in further studies as 

it performs well when 1-minute, 3-minute and 5-minute aggregated traffic data.  

Regarding 30-second data, the second-best classifier is SVMs occupying 76% under 

the ROC curve which indicates its classification power even with highly 

disaggregated data.  

 

 Results from the simulation dataset with imbalanced learning 6.6.2.

This section presents the classification results for all the temporal aggregation 

intervals after the datasets have been treated with imbalanced learning techniques to 

acquire more accurate and balanced results. Similar to the corresponding real-world 

dataset from M62, the Repeated Edited Nearest Neighbours (RENN) and the 

SMOTE-ENN techniques yielded the best results. Every temporal aggregation 

interval was included in a different dataset; hence the classifiers and imbalanced 

learning techniques were applied to four different datasets. Imbalanced learning aims 

at producing a more balanced dataset, therefore, the cases used for the analysis were 

different between datasets. 

 

6.6.2.1.Classification results for the simulated datasets after undersampling 

Tables 6.19 and 6.20 present the confusion matrix and the classification metrics for 

the simulation dataset using RENN. Figure 6.9 illustrates the ROC curve of the 

classifiers for every temporal aggregation interval.  
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Table 6. 19 Confusion matrix of all the classifiers for the full simulation dataset 

under RENN 

Classifier TN FP FN TP Testing sample size 

30-second data 

31200 (23400 non-

conflict cases and 7800 

conflict cases) 

 

kNN 13825 9575 1443 6357 

RVM 6725 16675 281 7519 

SVM 12928 10472 1552 6248 

RF 8594 14806 612 7188 

NN 11290 12110 1116 6684 

1-minute data 

kNN 14896 8504 1758 6042 

RVM 23400 0 7589 211 

SVM 23391 9 2429 5371 

RF 10839 12561 923 6877 

NN 14592 8808 2017 5783 

3-minute data 

kNN 16524 6876 1644 6156 

RVM 23400 0 7592 208 

SVM 23398 2 2425 5375 

RF 15657 7743 2218 5582 

NN 15029 8371 1144 6656 

5-minute data 

kNN 17989 5411 1536 6264 

RVM 23400 0 7586 214 

SVM 23400 0 2346 5454 

RF 19204 4196 2671 5129 

NN 18323 5077 1587 6213 
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Table 6. 20 Classification metrics for the simulation dataset under RENN 

Classifier Accuracy Precision Recall Specificity f1-score G-Means 

30-second data 

kNN 0.6469 0.3990 0.8150 0.5908 0.5357 0.5703 

RVM 0.4565 0.3108 0.9640 0.2874 0.4700 0.5473 

SVM 0.6146 0.3737 0.8010 0.5525 0.5096 0.5471 

RF 0.5058 0.3268 0.9215 0.3673 0.4825 0.5488 

NN 0.5761 0.3556 0.8569 0.4825 0.5027 0.5521 

1-minute data 

kNN 0.6711 0.4154 0.7746 0.6366 0.5408 0.5672 

RVM 0.7568 1.0000 0.0271 1.0000 0.0527 0.1645 

SVM 0.9219 0.9983 0.6886 0.9996 0.8150 0.8291 

RF 0.5678 0.3538 0.8817 0.4632 0.5050 0.5585 

NN 0.6530 0.3963 0.7414 0.6236 0.5165 0.5421 

3-minute data 

kNN 0.7269 0.4724 0.7892 0.7062 0.5910 0.6106 

RVM 0.7567 1.0000 0.0267 1.0000 0.0519 0.1633 

SVM 0.9222 0.9996 0.6891 0.9999 0.8158 0.8300 

RF 0.6807 0.4189 0.7156 0.6691 0.5285 0.5475 

NN 0.6950 0.4429 0.8533 0.6423 0.5832 0.6148 

5-minute data 

kNN 0.7773 0.5365 0.8031 0.7688 0.6433 0.6564 

RVM 0.7569 1.0000 0.0274 1.0000 0.0534 0.1656 

SVM 0.9248 1.0000 0.6992 1.0000 0.8230 0.8362 

RF 0.7799 0.5500 0.6576 0.8207 0.5990 0.6014 

NN 0.7864 0.5503 0.7965 0.7830 0.6509 0.6621 
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Figure 6. 8 ROC curve of the classifiers simulated traffic data under RENN 

(a: 30-second, b: 1-minute, c: 3-minute, d: 5-minute data) 

 

Initially, a comparison between Table 6.19 and Table 6.17 shows that the 

undersampled dataset resulted in better classification results regarding the 

identification of conflict-prone traffic conditions, however there is an increase in 

false alarms. This is normal since the datasets obtained after undersampling are 

balanced and hence, it is not that obvious for classifiers to distinguish between the 

two categories. Nevertheless, in general the correct classifications (i.e. TP and TN) 

a 
b 

c d 
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are generally more than the corresponding misclassifications (i.e. FN and FP). It is 

also noticeable that even when using highly disaggregated data (e.g. 30-second or 1-

minute) the rate of correct classification is high as well as comparable to the results 

from the 5-minute aggregated traffic.  

 

The overall accuracy of the classifiers is generally lower than the accuracy achieved 

in the original dataset, reaching its highest rate when 5-minute aggregated data are 

used. The best accuracy scores are obtained using kNN, RFs and NN when utilizing 

5-minute data. For the majority of the classifiers, except RVMs, relatively high recall 

along with low precision is observed. This indicated that conflict-prone conditions 

are correctly identified but whenever a case is classified as conflict-prone it most 

probably is a false alarm. Only SVMs in all temporal aggregation intervals result in 

high precision and recall assuring robust classification results. kNN, RFs and NNs in 

1-minute, 3-minute and 5-minute data also achieve credible classification outcomes 

Regarding f1-score and G-means, the scores increase in general when temporal 

aggregation increases but without significant differences. Moreover, after 

overviewing Tables 6.19 and 6.20 it can be observed that when RENN is utilised 

with 1-minute data, the classification algorithms yield similar results to higher 

temporal aggregation intervals, a fact crucial for real-time safety assessment.  

 

The ROC curves under RENN provide further insight regarding the comparison of 

classification results before and after undersampling. When highly disaggregated 

data are employed, the AUC is similar to the one occupied by classifiers trained on 

the original dataset. However, as data aggregation increases, the AUC increases for 

all classifiers in the undersampled dataset. The simple classification rules of kNN, 

resulted in the largest AUC score of 0.76 for 30-second data aggregation, while 

SVMs and NNs follow. In the ROC curves of the 1-minute, 3-minute data and 5-

minute data, SVMs capture the largest area under the ROC curve. NNs, kNN and 

RFs also demonstrate good results while the poor performance of RVMs is further 

validated. 
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6.6.2.2. Classification results for the simulated datasets after oversampling 

integrated with undersampling 

Tables 6.21 and 6.22 present the confusion matrix and the classification metrics for 

the simulation dataset under SMOTE-ENN. Figure 6.10 illustrates the ROC curve of 

the classifiers for every temporal aggregation interval.  

 

Table 6. 21 Confusion matrix of all the classifiers for the full simulation dataset 

under SMOTE-ENN 

Classifier TN FP FN TP Testing sample size 

30-second data 

31200 (23400 non-

conflict cases and 

7800 conflict cases) 

kNN 18183 5217 1783 6017 

RVM 16283 7117 3782 4018 

SVM 23399 1 3273 4527 

RF 17760 5640 3669 4131 

NN 18351 5049 3575 4225 

1-minute data 

kNN 17468 5932 1482 6318 

RVM 23399 1 7617 183 

SVM 23399 1 3321 4479 

RF 17020 6380 3241 4559 

NN 18825 4575 2684 5116 

3-minute data 

kNN 18681 4719 1214 6586 

RVM 23400 0 7627 173 

SVM 23400 0 2800 5000 

RF 18500 4900 2885 4915 

NN 20141 3259 2113 5687 

5-minute data 

kNN 19568 3832 1088 6712 

RVM 23400 0 7621 179 

SVM 23400 0 2455 5345 

RF 20055 3345 2369 5431 

NN 18516 4884 1338 6462 
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Table 6. 22 Classification metrics of all the classifiers for the full simulation 

dataset under SMOTE-ENN 

Classifier Accuracy Precision Recall Specificity f1-score G-Means 

30-second data 

kNN 0.7756 0.5356 0.7714 0.7771 0.6322 0.6428 

RVM 0.6507 0.3608 0.5151 0.6959 0.4244 0.4311 

SVM 0.8951 0.9998 0.5804 1.0000 0.7344 0.7617 

RF 0.7016 0.4228 0.5296 0.7590 0.4702 0.4732 

NN 0.7236 0.4556 0.5417 0.7842 0.4949 0.4968 

1-minute data 

kNN 0.7624 0.5158 0.8100 0.7465 0.6302 0.6463 

RVM 0.7558 0.9946 0.0235 1.0000 0.0458 0.1528 

SVM 0.8935 0.9998 0.5742 1.0000 0.7295 0.7577 

RF 0.6916 0.4168 0.5845 0.7274 0.4866 0.4936 

NN 0.7673 0.5279 0.6559 0.8045 0.5850 0.5884 

3-minute data 

kNN 0.8098 0.5826 0.8444 0.7983 0.6895 0.7014 

RVM 0.7555 1.0000 0.0222 1.0000 0.0434 0.1489 

SVM 0.9103 1.0000 0.6410 1.0000 0.7813 0.8006 

RF 0.7505 0.5008 0.6301 0.7906 0.5580 0.5617 

NN 0.8278 0.6357 0.7291 0.8607 0.6792 0.6808 

5-minute data 

kNN 0.8423 0.6366 0.8605 0.8362 0.7318 0.7401 

RVM 0.7557 1.0000 0.0229 1.0000 0.0449 0.1515 

SVM 0.9213 1.0000 0.6853 1.0000 0.8132 0.8278 

RF 0.8169 0.6188 0.6963 0.8571 0.6553 0.6564 

NN 0.8006 0.5695 0.8285 0.7913 0.6750 0.6869 
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Figure 6. 9 ROC curves of the classifiers using simulated traffic data under 

SMOTE-ENN (a: 30seconds, b: 1-minute, c: 3-minute, d: 5-minute data) 

 

By observing Table 6.21 it is obvious that the results of the classifiers are enhanced 

compared to Tables 6.17 and 6.19 for both conflict-prone and safe conditions. The 

number of false alarms generally decreases with higher temporal aggregation. An 

initial impression is than kNN and SVMs perform well regardless of the temporal 

aggregation while NNs and RFs improve significantly when temporal aggregation 

increases.  

 

a b 

c d 
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Table 6.22 indicates an enhanced performance of classifiers regarding most of the 

classification metrics. More specifically, recall along with precision, is generally 

increased which leads to the conclusion that when a conflict-prone case is identified 

then it is not a false alarm. Upon comparing recall and specificity it is demonstrated 

that for kNNs conflict-prone conditions are favoured more, while the opposite occurs 

for SVMs, RFs and NN regardless of the temporal aggregation. This is probably due 

to the fact that safe traffic conditions are the majority in the tested dataset and the 

data-driven approach of kNN can easily adjust the learned classifier to the testing 

dataset. Furthermore, the f1-score and the G-means score are enhanced as temporal 

aggregation increases. The reason behind that is that traffic data of higher temporal 

aggregation may capture traffic fluctuations that are not visible in less aggregated 

data. By comparing G-means it is demonstrated that the obtained classifiers lead to 

balanced classification results meaning both conflict-prone and safe traffic conditions 

could be correctly classified. 

 

The comparison of the ROC curves (Figure 6.9) illustrates that the curves should be 

used with some caution. Although SVMs perform better than the other classification 

techniques, regarding the ratio between precision and recall, their performance does 

not fully justify such high AUC. However, this is a known problem of ROC curves 

(Fawcett, 2006, Hajian-Tilaki, 2013, Saito and Rehmsmeier, 2015) which is due to 

the fact that SVMs have a very low number of false alarms combined with a high 

number of specificity, leading to the ROC curve being slightly biased. Regarding the 

rest of the classifiers it is shown that kNN perform best, while NNs and RFs follow. 

This is due to the fact that kNN adapt better to datasets than the rest of the classifiers. 

 

 Comparison of conflict-detection classifiers  6.6.3.

In order to compare the performance of the classifiers for the simulated dataset 

regarding all the temporal aggregation intervals and the imbalanced learning 

techniques used comparative figures were constructed. The measures of recall (i.e. 

the identification of conflict-prone conditions), false alarm rate (i.e. the 

supplementary of specificity) and the G-means (which shows the balanced 

classification ability of the classifiers) were utilised. Figures 6.10 – 6.12 illustrate the 

performance of the classifiers regarding these three metrics. 
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Figure 6. 10 Comparison of the recall scores between classifiers for the 

simulated datasets 

 

Figure 6. 11 Comparison of the false alarm scores between classifiers for the 

simulated datasets 
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Figure 6. 12 Comparison of the G-means scores between classifiers for the 

simulated datasets 

Figure 6.10 demonstrates that the highest recall scores when 30-second data are 

utilised are obtained from RVM and RF with RENN, as well as kNN and NNs 

utilised with SMOTE-ENN. The same algorithms, except RVMs, result in the best 

outcome for the 1-minute temporal aggregation equally. If higher temporal 

aggregation is used, undersampling utilised with NN and RF and SVMs results in the 

identification of more conflict-prone conditions while oversampling integrated with 

undersampling performs better when utilised with kNN. For the majority of the 

classifiers, higher temporal aggregation results in most conflicts becoming correctly 

classified.  

 

However, when comparing the results from Figure 6.10 to the false alarm rates in 

Figure 6.11, the best classifiers become obvious through their low false alarm rates 

which are important for real-time applications. In general, the combination of 

undersampling with kNNs, RFs and NN has the best performance while 

oversampling integrated with undersampling works better when temporal 

aggregation increases and SVMs are used. Finally, looking at the G-means 

comparison in Figure 6.12 the superiority of SVMs regarding a balanced 

classification is distinct for all the temporal aggregation when imbalanced learning 

techniques are applied.  
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The results indicate the importance of data balancing techniques for acquiring better 

classifiers. Undersampling the majority class (i.e. safe traffic conditions) performs 

better than oversampling integrated with undersampling for the majority of the 

classifiers in identifying conflict-prone conditions and especially when higher 

temporal aggregation is used. On the other hand, classifiers trained with SMOTE-

ENN combine good recall with low false alarm rate and are, therefore, preferable. 

Although more interpretable approaches such as RVMs did not yield good results, 

powerful classifiers such as SVMs and NNs can identify conflicts with very low false 

alarm rates even when raw 30-second data are provided. This is especially important 

for real-time and AV applications where the prediction horizon needs to be as low as 

possible to avoid imminent dangerous encounters.  

 

 Comparison of real-time conflict detection classifiers with literature 6.6.4.

In order to further support the obtained classifiers which used simulated data, it was 

decided to compare and contrast them with NLCP models which use more 

aggregated data. The classifiers which are presented in Table 6.23 were compared 

regarding the recall and false alarm rates. These two metrics were selected because it 

is important for real-time collision or conflict prediction that the majority of 

dangerous traffic is correctly predicted without false alarms. Figure 6.13 illustrates 

the comparison between the literature and the developed classifiers for the simulated 

data.  

Table 6. 23 Comparison of previous literature on NLCP with the classifiers 

using simulated data 

Literature Classifier Recall False Alarm rate 

Abdel-Aty (2004) Logistic Regression 0.69 N/A 

Pande and Abdel-Aty (2006) NN 0.57 0.29 

Abdel-Aty (2008) NN 0.61 0.21 

Hossain and Muromachi 

(2012) 
Bayesian Network 0.66 0.20 

Ahmed and Abdel-Aty 

(2012) 

Matched case-control 

logistic regression 
0.68 0.46 

Lin et al (2015) 
Bayesian Network & 

kNN 
0.61 0.38 

Sun and Sun (2015) 
Dynamic Bayesian 

Network 
0.76 0.24 

Aggregation Classifier Recall False Alarm rate 

30-second data SVM_RENN 0.801 0.4475 

30-second data kNN_SMOTE-ENN 0.7714 0.2229 

30-second data SVM_SMOTE-ENN 0.5804 0 
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1-minute data kNN_SMOTE-ENN 0.81 0.2535 

1-minute data SVM_RENN 0.6886 0.0004 

1-minute data RF_SMOTE-ENN 0.5845 0.2726 

3-minute data NN_RENN 0.8533 0.3577 

3-minute data kNN_SMOTE-ENN 0.8444 0.2017 

3-minute data SVM_RENN 0.6891 1E-04 

5-minute data kNN_SMOTE-ENN 0.8605 0.1638 

5-minute data NN_SMOTE-ENN 0.8285 0.2087 

5-minute data SVM_RENN 0.6992 0 

5-minute data RF_RENN 0.6576 0.1793 

 

 

Figure 6. 13 Comparison of the recall and false alarm rates of previous 

literature and the best of the developed classifiers 

Table 6.23 and Figure 6.13 confirm that the classifiers obtained when treating the 

dataset with imbalanced learning techniques outperform classifiers in the literature 

which used real collision data and more detailed traffic conditions datasets. The best 

ratio between precision and recall was found for the Dynamic Bayesian Network 

developed by Sun and Sun (2015). The simulation datasets without imbalanced 

learning treatment did not result in good classification results however it is shown 

that highly disaggregated traffic data can be efficiently used for classifying conflict-

prone conditions with low false alarm rates. SVMs, NNs and RFs combined with 
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imbalanced learning and trained on simulated data are shown to predict conflict-

prone traffic better than traditional techniques (e.g. Logistic Regression) and more 

complicated ones (e.g. static and dynamic Bayesian Networks) used in the literature. 

The fact that good results are obtained even when using traffic data aggregated in 30-

second or 1-minute intervals and that the developed classifiers perform better than 

the literature exhibits two potential improvements in real-time safety studies; the 

potential of using highly disaggregated traffic data for collision prediction and the 

utilization of simulated data as a precursor for collisions.  

 

Summary 6.7.

This chapter presented the results of the classifiers that have been developed to 

predict collision-prone traffic conditions based on traffic characteristics. Three 

datasets were employed: (i) one from two UK motorways containing aggregated data, 

(ii) one from two urban motorways in Athens, Greece containing traffic data only 5-

minutes before a collision occurrence and (iii) one from four calibrated simulations 

of a section of the M62 smart motorway in the UK which contained traffic 

aggregated in 30-second, 1-minute, 3-minute and 5-minute intervals. The 

corresponding conflicts for the simulated dataset were obtained using SSAM. Six 

classification algorithms were utilised for the task of predicting hazardous traffic 

conditions: k-NN, a simple data-adaptive classifier, SVMs and their Bayesian 

counterpart RVMs which provides probabilistic predictions, GPs another 

probabilistic classifier, RFs an ensemble classifier and NNs a powerful classifier 

which has been frequently used in real-time collision-prediction. All of the above 

classifiers were tested on the datasets after they had been cross-validated, keeping 

2/3 of the dataset for learning and the remaining 1/3 for testing in order to avoid 

over-fitting. As the datasets include more normal traffic conditions compared to 

collision-prone ones, imbalanced learning was also utilised to improve the 

classification results and achieve balanced classification performance. Two 

imbalanced learning techniques were utilised, namely undersampling of the majority 

class (i.e. safe traffic conditions) and oversampling of the minority class (i.e. 

collision-prone traffic) integrated with undersampling. The imbalanced learning 

classifiers were trained using balanced datasets and were tested on the original 

imbalanced datasets. 
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The main findings for the UK dataset are the following: 

 RFs showed the best performance for the original dataset and the dataset 

treated with imbalanced learning  

 Undersampling the majority class achieved better classification performance 

than oversampling integrated with undersampling regarding the imbalanced 

learning techniques. 

 Imbalanced learning achieved high classification of conflict conditions in 

spite of many false alarms for the majority of the classifiers. 

The main findings for the Athens dataset are the following: 

 It is difficult to predict collision-prone traffic just 5 minutes before a collision, 

however data-driven approaches such as kNN provide the best results 

 Undersampling the majority class enables a much better classification 

performance in terms of recognising hazardous traffic without many false 

alarms 

 SVMs and GPs showed the best classification performance among all the 

imbalanced learning techniques.  

The main findings for the simulated datasets are: 

 For all the temporal aggregation intervals, the original datasets performed 

worse than the datasets treated with imbalanced learning techniques. 

 kNN performed better than the rest of the classifiers because its simple non-

parametric nature adapts better to the applied dataset. The more robust 

techniques of RFs, SVMs and NNs could be utilised for every temporal 

aggregation interval as they perform similarly to kNN 

 Oversampling the minority class works better in highly disaggregated data 

while undersampling the majority class resulted in better results when data 

were aggregated at 3-minute or 5-minute intervals. 

 The higher the temporal aggregation interval, the highest the ratio between 

recall and false alarm rate, ensuring correct identification of conflict-prone 

traffic 

Finally, a comparison between the models developed and classifiers already 

published in the literature revealed that the original datasets containing real-world 

traffic data 15-minute and 5-minute before a collision occurrence performed worse 

than the models developed in the literature. On the other hand, when imbalanced 

learning aids the classifiers, the developed models regarding real-world traffic data 

are similar or better than the literature. This way a good recall: false alarm ratio is 

achieved, which makes them eligible for NLCP. A comparison between the conflict 

prediction classifiers and previous literature in NLCP revealed that the majority of 



185 

 

the developed classifiers performed similarly or better than existing classifiers. This 

is especially important for classifiers utilizing the 30-second highly aggregated 

traffic data as it opens the possibility of using highly disaggregated real-world data in 

collision prediction as well as that of using conflicts obtained from microsimulation 

as a precursor of real-world collision-prone traffic.  
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7.  Integrated risk assessment results 

7.1. Introduction 

The classifiers developed and presented in Chapter 6 are capable of estimating 

whether traffic conditions at a specific time could cause a collision or a conflict 

between vehicles. With the use of the proposed DBN model developed in the 

methodology chapter, the network-level risk assessment has been integrated with the 

vehicle-level risk assessment to estimate what level of impact an efficient network-

level prediction model could have in distinguishing “safe” from “dangerous” traffic 

participants. The methodology has been implemented by using both simulated and 

real-world data.  

 

7.2.The impact of NLCP on vehicle-level risk assessment 

The developed DBN network which integrates network-level and vehicle-level 

collision prediction has been presented in Figure 4.2. The part that is of interest to 

this chapter and to this thesis in general is the top part of the graph as reproduced in 

Figure 7.1. More specifically, the estimation is correlated with the way a better 

collision prediction by a network-level classifier enhances or reduces the 

identification of a dangerous road user, given that the measurements about vehicle-

level and kinematics at a previous time epoch are known. 

 

In order to demonstrate how the network-level hint on collision risk can be employed 

in real-time risk assessment for autonomous driving, the vehicle-level risk in this 

section has been estimated with and without the network-level risk.  
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Figure 7. 1 The proposed DBN for collision risk assessment revisited 

(the highlighted section indicates the variables of interest)  

7.2.1. Estimation of the vehicle-level risk context probability  

According to equation 4.9, the probability of a vehicle-level collision risk context is 

given as: 

𝑃(CRV𝒏
𝒕 = "𝑑𝐶𝑃 𝑜𝑟 𝑑𝑆𝐴"|CRV𝑁

𝑡−1K𝑁
𝑡−1CRN𝑛

𝑡 )

=
∑ (𝑓𝐾𝑛 = 1) + ∑ (𝑓𝐶𝑅𝑉𝑛 = 1)𝑁

𝑛=1 + 𝑓𝐶𝑅𝑁𝑁
𝑁
𝑛=1

3𝑁
 

where:  

 𝑪𝑹𝑽𝒏
𝒕
 denotes the vehicle-level safety context of vehicle n at time t; 

 𝒅𝑪𝑷, 𝒅𝑺𝑨 denote a “dangerous” vehicle travelling on a road segment with 

Collision-Prone traffic conditions and a “dangerous” vehicle travelling on a 

road segment with SAfe traffic conditions respectively; 
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 𝑪𝑹𝑵𝒕  denotes the network-level collision risk for all the vehicles on a 

specific road segment; 

 𝑓𝐾𝑛, 𝑓𝐶𝑅𝑉𝑛 ,  𝑓𝐶𝑅𝑁𝑛  are functions which indicate the safety context of the 

corresponding variables (e.g. 𝑓𝐶𝑅𝑉𝑛  takes the value 1 if there was a 

“dangerous” traffic participant in the vicinity of the ego-vehicle at the 

previous time moment); 

 N is the number of vehicles that the ego-vehicle is sensing. 

The function 𝑓𝐶𝑅𝑁𝑛, which boosts the identification of the vehicle-level safety 

context per the network-level risk, is given by the formula below, which 

considers the accuracy, recall and specificity of the network-level classifier, as 

well as the misclassification rates: 

 

𝑓𝐶𝑅𝑁𝑛 =

{
  
 

  
 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑅𝑒𝑐𝑎𝑙𝑙

2
 𝑖𝑓 CRN𝑁

𝑡 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁 = 1 

1 −
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
 𝑖𝑓 CRN𝑁

𝑡 = 𝑠𝑎𝑓𝑒 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁 = 0

1 − 𝑟𝑒𝑐𝑎𝑙𝑙 𝑖𝑓 CRN𝑁
𝑡 = 𝑠𝑎𝑓𝑒 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁 = 1

1 − 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 𝑖𝑓 CRN𝑁
𝑡 = 𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠 𝑎𝑛𝑑 𝑓𝐶𝑅𝑉𝑁 = 0

 

 

Moreover, according to equations 4.13 – 4.16, the probability of a road segment 

having “hazardous" or “safe” traffic conditions is given by the formulas: 

 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = (

𝐴𝑐𝑐+𝑅𝑒𝑐

2
), if CR = 1  

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑠𝑎𝑓𝑒") = 1 − 𝑃(𝐶𝑅𝑁𝑛

𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") if CR=1   

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑠𝑎𝑓𝑒") = (

𝐴𝑐𝑐+𝑆𝑝𝑒𝑐

2
) if CR=0 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = 1 − 𝑃(𝐶𝑅𝑁𝑛

𝑡 = "𝑠𝑎𝑓𝑒") if CR=0 

 

where CR is the classification result for the aggregated traffic conditions in real-time 

(i.e. 0 or 1), Acc and Rec are the accuracy and recall of the calibrated classifier, while 

Spec is the specificity of the classifier. 
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7.2.2. Estimation of vehicle-level risk using simulated data 

In this section, the results from two classifiers utilised in Chapter 6 are going to be 

utilised for the estimation of vehicle-level risk. The classifiers which are going to be 

initially tested are the kNN classifier under SMOTE-ENN utilised with the 30-

second simulated data and the GP classifier of the 5-minute Athens dataset under NC. 

These classifiers are examples of the best classification results in the previous 

chapters and were chosen in order to estimate vehicle-level risk with as little 

prediction horizon as possible using disaggregated traffic data. 

 

Assuming that vehicle-level measurements were not available, the following 

artificial scenarios are formulated for the estimation of the vehicle-level risk: 

 

7.2.2.1.Traffic data aggregated at 30-second intervals 

It is assumed that once traffic conditions are classified, the prediction is broadcasted 

for a time interval equal to the traffic data aggregation. Therefore, if the traffic data 

aggregation is 30-seconds, every NLCP prediction lasts for 30 seconds. In this 

scenario, it is assumed that traffic conditions are classified as conflict-prone and at 

time 𝑡1=10seconds after the beginning of the NLCP prediction there is a traffic 

participant which poses a threat to the ego-vehicle. Furthermore, it is assumed that 

this “dangerous” vehicle has kinematics that indicate an imminent danger for the 

ego-vehicle. Hence, according to equations 4.6 and 4.7: 𝑓𝐾𝑁
𝑡=10 = 1  and 

𝑓𝐶𝑅𝑉𝑁
𝑡=10

=1. It should be noted here that 10 indicates the time moment occurring ten 

seconds after the network-level prediction and hence 20 seconds remain for the end 

of the temporal aggregation interval. 

 

The kNN classifier under SMOTE-ENN with 30-seconds temporal aggregation 

resulted in 77.56% accuracy, 77.14% recall and 77.71% specificity.  

 

Scenario 1: Traffic conditions are predicted as conflict-prone 

According to the formula that gives the network-level collision risk: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = (

𝐴𝑐𝑐+𝑅𝑒𝑐

2
) =

0.7756+0.7714

2
= 0.7735=77.35% 
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Furthermore, as the traffic conditions are estimated as dangerous and 𝑓𝐶𝑅𝑉𝑁
𝑡=10

=1, 

the boosting parameter for the vehicle-level safety context 𝑓𝐶𝑅𝑁𝑁  is equal to 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠"). Consequently, 𝑓𝐶𝑅𝑁𝑁

𝑡=10 = 0.7735. 

 

Figure 7.1. illustrates the estimation of vehicle-level risk context when the ego-

vehicle is sensing 1, 3, 5 and 10 vehicles in its vicinity, with and without the 

network-level hint. 

  

 

Figure 7. 2 Estimation of P(CRV=dangerous|CRN=dangerous)for a multiple 

vehicle scenario  

From Figure 7.2 the potential enhancement of the vehicle-level safety context could 

be observed. First of all, if network-level safety information is available, the 

probability of a vehicle being considered as a threat is higher, which may be 

conservative as an approach but induces a hint to the ego-vehicle that a danger is 

imminent. Moreover, it is shown that this extra hint results in a faster increase of 

probability when a vehicle is sensed to be performing a dangerous manoeuvre, which 

could lead to the faster identification of a dangerous road user and an earlier 

initiation of the manoeuvre to avoid the danger. If, for example, a threshold is 

defined (e.g. if probability is over 65%) in order to raise a warning to the risk 
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assessment module the AV, then figure 7.2 demonstrates that the threshold is raised 

faster if network-level information is available.  

 

To further demonstrate how vehicle-level safety is affected, a second scenario was 

investigated. This relates to the probability of a vehicle driving dangerously, given 

that the network-level collision risk is predicted as safe.  

Scenario 2: Traffic conditions are predicted to be “safe” 

According to the formula that gives the network-level collision risk: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑠𝑎𝑓𝑒") = (

𝐴𝑐𝑐 + 𝑆𝑝𝑒𝑐

2
) =

0.7756 + 0.7771

2
= 0.77635 

Because in this scenario the traffic conditions are estimated as safe and 𝑓𝐶𝑅𝑉𝑁
𝑡=10

=1, 

the boosting parameter for the vehicle-level safety context 𝑓𝐶𝑅𝑁𝑁 is equal to: 

 𝑓𝐶𝑅𝑁𝑁 = 1 − 𝑟𝑒𝑐𝑎𝑙𝑙 in order to represent the false negative rate i.e. the probability 

that the traffic conditions are falsely identified as safe.  

Hence, 𝑓𝐶𝑅𝑁𝑁
𝑡=10 = 1 − 𝑟𝑒𝑐𝑎𝑙𝑙 = 1 − 0.7714 = 0.2286%=22.86%. 

 

Figure 7.3 illustrates the estimation of the probability of the vehicle-level risk context 

being dangerous when the ego-vehicle is sensing 1, 3, 5 and 10 vehicles in its 

vicinity with and without the network-level hint. 

 

 

Figure 7. 3 Estimation of P(CRV=dangerous|CRN=safe) for a multiple vehicle 

scenario  
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From Figure 7.3 it is shown that the estimation of the probabilities without the 

network-level hint results in higher rates and a faster identification of the dangerous 

road user. Only when just one vehicle is in the vicinity of the ego-one and the 

dangerous road user is obvious, the two approaches (i.e. with and without network-

level information) yield similar results. This indicates that when NLCP indicates safe 

traffic conditions, more trust should be given to the vehicle measurements rather than 

the network traffic information. 

7.2.2.2. Traffic data aggregated at 5-minute intervals 

In order to further test the impact of network-level collision information on vehicle-

level collision risk, the classifier developed on the 5-minute aggregated data from 

Athens was utilised. The classifier achieved 83.95% accuracy, 91.71% specificity 

and 68.86% recall. For this scenario, the number of vehicles was randomly sampled 

for each time moment. It was also assumed that a vehicle performs dangerous 

manoeuvres starting from t=180 before the end of the temporal aggregation to t=100 

seconds before the end of the temporal aggregation interval. Hence, 𝑓𝐾𝑁
𝑡=180:100 = 1 

and 𝑓𝐶𝑅𝑉𝑁
𝑡=180:100

=1.  

 

Scenario 1: Traffic conditions are predicted as collision-prone 

According to the formula that gives the network-level collision risk: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = (

𝐴𝑐𝑐+𝑅𝑒𝑐

2
) =

0.8395+0.6886

2
= 0.7641=76.41% 

Furthermore, for the time intervals t=300:180 and t=100:0 the traffic conditions are 

estimated as dangerous but there is no vehicle performing dangerous manoeuvres. 

Therefore, the boosting parameter for the vehicle-level safety context during these 

intervals is: 

𝑓𝐶𝑅𝑁𝑁
𝑡=300:180 & 𝑡=100:0 = 1 −

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

2
=0.1217 

For the time interval t=180:100 traffic conditions are estimated as collision-prone 

and there is only one vehicle performing a hazardous manoeuvre. Therefore, the 

boosting parameter for the vehicle-level safety context during these intervals is: 

 

𝑓𝐶𝑅𝑁𝑁
𝑡=180∶100 =

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑅𝑒𝑐𝑎𝑙𝑙

2
= 76.41% 
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Figure 7.3 illustrates the estimation of the probability of a vehicle being dangerous 

during the 5-minute traffic data temporal aggregation interval in a multiple vehicle 

scenario.  

 

Figure 7. 4 Estimation of P(CRV=dangerous|CRN=dangerous) for a 5-minute 

traffic data aggregation interval 

From Figure 7.4 it is further justified that knowing the NLCP estimation enhances 

the probability of another vehicle driving dangerously with respect to the ego-vehicle. 

From t=180 seconds until t=100, when a nearby vehicle is assumed to perform 

dangerous manoeuvres, the probability of the vehicle being dangerous given the 

network-level hint is higher than the corresponding probability without the network-

level information. Moreover, it is demonstrated that the lower the number of vehicles, 

the more obvious it is to recognise the vehicle which is driving “dangerously”. This 

is normal because with fewer vehicles, the one responsible for triggering an accident 

is easier to detect. Nevertheless, it is advantageous that the line representing the 

probability P(CRV|CRN) is above the corresponding probability graph which does 

not take into account network-level collision information. It is also observed that at a 

time moment when no danger is imminent the probability is increased, which is a 

potential drawback. However, this can be utilised as extra caution by an AV’s 

planning module.  

Scenario 2: Traffic conditions are predicted as safe 

The classifier achieved 83.95% accuracy, 91.71% specificity and 68.86% recall. 

Given that the traffic conditions are predicted safe, the network-level collision risk 

can be estimated as: 

𝑃(𝐶𝑅𝑁𝑛
𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") = 1 − (

𝐴𝑐𝑐+𝑆𝑝𝑒𝑐

2
) = 1 −

0.8395+0.9171

2
= 0.1217=12.17% 
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Furthermore, for the time intervals t=300:180 and t=100:0, the traffic conditions are 

estimated as safe without a vehicle perceived as a threat. Therefore, during these 

intervals: 

𝑓𝐶𝑅𝑁𝑁
𝑡=300:180 & 𝑡=100:0 = 𝑃(𝐶𝑅𝑁𝑛

𝑡 = "𝑑𝑎𝑛𝑔𝑒𝑟𝑜𝑢𝑠") =0.1217 

For the time interval t=180:100 traffic conditions are estimated as safe but there is 

one vehicle performing hazardous manoeuvres. Therefore, the boosting parameter for 

the vehicle-level safety context during these intervals is: 

𝑓𝐶𝑅𝑁𝑁
𝑡=180∶100 = 1 − 𝑅𝑒𝑐𝑎𝑙𝑙 = 1 − 0.6886 = 0.3114 

Figure 7.4 illustrates the estimation of the probability of the vehicle-level risk context 

being dangerous during the traffic data temporal aggregation interval and according 

to the vehicles sensed.  

  

Figure 7. 5 Estimation of P(CRV=dangerous|CRN=safe)for a 5-minute traffic 

data aggregation interval  

Like the case when traffic data were aggregated in 30-seconds intervals and the 

traffic conditions were assumed to be safe, Figure 7.5 illustrates that, when a danger 

is sensed by the ego-AV, network-level information does not contribute to the 

enhancement of the corresponding probability.  

7.2.3. Estimation of vehicle-level risk using real-world data 

In order to validate the credibility that network-level information has on the 

estimation of vehicle-level collision prediction, the vehicle-level data as described in 

Chapter 5 were utilised. 
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More specifically, the available TTC measurements were filtered in order to identify 

hazardous road users. According to the same principle as the one used in SSAM to 

derive conflicts, TTC values below 1.5 seconds were flagged as “hazardous” because 

1.5 is the average human reaction time (Triggs and Harris, 1982). The number of 

hazardous vehicles during the trip is given in Figure 7.6. 

 

 

Figure 7. 6 Number of dangerous vehicles with respect to the ego-vehicle 

The time interval from 11:05:37 to 11:06:25 was used in the analysis as the highest 

number of “hazardous” road users was observed during that one minute. 

 

The classifiers that were tested for the estimation of CRV based on the network-level 

information and their characteristics are described in Table 7.1. For each of the 

classifiers the probability that a vehicle drives dangerously was estimated given that 

the NLCP points towards collision-prone and safe traffic. For the estimation of 

vehicle-level risk context the formulas 4.13-4.16 were used. For every vehicle with 

TTC<1.5 seconds it was assumed that the vehicle’s kinematics were also dangerous 

so as to have 𝑓𝐾𝑁=1.  
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Table 7. 1 NLCP classifiers used for vehicle-level risk estimation 

Traffic data 

aggregation 
Classifier Accuracy Recall Specificity 

30-seconds 
kNN with SMOTE-

ENN 
0.8395 0.6886 0.9171 

1-minute SVM with RENN 0.9219 0.6886 0.9996 

3-minute SVM with RENN 0.9222 0.6891 0.9999 

5-minute 
NN with SMOTE-

ENN 
0.8006 0.8285 0.7913 

 

7.2.3.1.Estimation of vehicle-level risk given traffic conditions are collision-prone 

Figures 7.7-7.10 illustrate the results for the probability that a vehicle poses a threat 

to the ego-one, given the available network-level information and the vehicle-level 

data.  

 

Figure 7. 7 Estimation of vehicle-level risk using 30-seconds network-level 

information (conflict-prone conditions) 
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Figure 7. 8 Estimation of vehicle-level risk using 1-minute network-level 

information (conflict-prone conditions) 

 

Figure 7. 9 Estimation of vehicle-level risk using 3-minute network-level 

information (conflict-prone conditions) 
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Figure 7. 10 Estimation of vehicle-level risk using 5-minute network-level 

information (conflict-prone conditions) 

After observing Figures 7.7-7.10 it is further validated that, when traffic conditions 

are predicted as conflict-prone, it is easier to identify if there is an imminent danger 

for the ego-vehicle. Even when highly disaggregated traffic data are utilised, the 

probability of a dangerous vehicle being dangerous is enhanced when compared to 

the probability obtained only from vehicle-level measurements. When the number of 

vehicles sensed is high the enhancement in the probability is lower. However, the 

plot of CRV|CRN is always higher than the one of CRV without network-level 

information, assuring a greater level of safety for the ego-vehicle.  

To illustrate the effect of network-level information on vehicle-level risk estimation, 

Figure 7.11 presents a plot of the percentage difference between the estimation of the 

probability that a vehicle drives in a “hazardous” way with regards to the ego-vehicle 

with and without NLCP.   
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Figure 7. 11 Difference (%) between vehicle-level risk estimation with and 

without network-level information (conflict-prone conditions) 

From Figure 7.11 it can be concluded that the greater influence came from the 5-

minute classifier. This is probably due to the ability of the classifier to better detect 

conflict-prone and safe traffic efficiently as observed from its recall and sensitivity 

statistics. When there is at least one dangerous vehicle, the estimation of a dangerous 

vehicle-level safety context is enhanced by up to 9%, ensuring safer navigation. 

When no dangerous vehicles are detected, the difference can reach up to 14%. This 

shows that, when traffic conditions are predicted as dangerous, the ego-vehicle can 

adjust to a more cautious behaviour as a conflict or collision might occur.  

Overall, when traffic conditions are predicted as hazardous, the ego-vehicle can 

better estimate if a vehicle is driving dangerously, even when highly disaggregated 

traffic data information is available. Furthermore, the fact that, a small probability of 

a dangerous vehicle is assigned even when no dangerous vehicles are around, can be 

exploited in an AV risk assessment module. 
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7.2.3.2.Estimation of vehicle-level risk given traffic conditions are safe 

Figures 7.12-7.15 illustrate the results for the probability that a road user is driving 

dangerously towards the ego-vehicle, given the available network-level information 

and the vehicle-level data if the traffic conditions are indicated as safe.  

 

 

Figure 7. 12 Estimation of vehicle-level risk using 30-seconds network-level 

information (safe conditions) 

 

Figure 7. 13 Estimation of vehicle-level risk using 1-minute network-level 

information (safe conditions) 
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Figure 7. 14 Estimation of vehicle-level risk using 3-minute network-level 

information (safe conditions) 

 

Figure 7. 15 Estimation of vehicle-level risk using 5-minute network-level 

information (safe conditions) 
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Similar to the case of simulated data, Figures 7.12-7.15 demonstrate that, if real-time 

network-level information points towards safe traffic conditions, then the 

measurements from the sensors of the ego-vehicle are more reliable to detect 

dangerous traffic participants. The differences between the two different ways to 

estimate the vehicle-level safety context probabilities are more obvious when better 

NLCP classifiers are used, such as the 5-minute classifier demonstrated in this 

chapter. Even when no dangerous vehicles are detected and traffic conditions are 

predicted as safe, the probability that a vehicle could be dangerous is elevated due to 

the possibility that the network-level information is falsely classified. 

As with the conflict-prone conditions, Figure 7.16 demonstrated the percent 

difference between the two different approaches to estimate the probability that a 

vehicle is driving dangerously towards the ego-one.  

 

Figure 7. 16 Difference between vehicle-level risk probability with and without 

network-level information (safe conditions) 

From Figure 7.16 it is noticeable that network-level information does not enhance 

AV risk assessment when traffic conditions are predicted as conflict-prone. As 

mentioned before, network-level information induces a slight probability that the 

network-level prediction is wrong when no vehicle is detected as dangerous. On the 
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other hand, in cases when there is an imminent danger, utilizing vehicle-level 

information only, results in a better hazard recognition than the proposed 

methodology, reaching up to 8% more confidence in estimating a dangerous traffic 

participant.  

It should be noted that the extracted probabilities for all the scenarios are not high 

enough. The scenarios developed in this chapter were built on many assumptions and 

without highly detailed vehicle-level data. For the scenarios where traffic conditions 

were indicated as collision- or conflict-prone the probability of another vehicle being 

dangerous was higher when CRN was available, however further work is needed to 

calibrate the proposed DBN model in the cases when NLCP indicates safe traffic.  

Nevertheless, the enhanced probability for the dangerous road user when collision-

prone traffic was predicted shows that the method has potential for utilization in AV 

risk assessment. 

 

7.3.Summary 

This chapter presented the potential impact that the network-level classifiers 

developed in Chapter 6 would have on the identification of “dangerous” road users 

using artificial data and the vehicle-level data collected for this thesis. Initially, using 

two of the best classifiers (i.e. the kNN classifier under SMOTE-ENN utilised with 

30-second simulated data and the GP classifier of the 5-minute Athens dataset under 

NC) and randomly sampling a number of vehicles sensed by an ego-AV, the 

probability of estimating a “dangerous” road user was estimated through the DBN 

model formulas suggested in Chapter 4. It was shown that both in the case of 30-

seconds data as well as the case of 5-minute traffic data, the probability of 

identifying a traffic participant was enhanced if NLCP indicated collision or conflict-

prone traffic. On the other hand, when traffic conditions were indicated as safe, the 

prediction did not enhance the probability that a road user was a “threat” for the ego-

vehicle.  

 

The artificial data indicated the potential of using network-level information on AV 

risk assessment and hence the DBN was further tested using the vehicle-level data 

collected for the purpose of this thesis. Using real-world data and the classifiers 

trained on highly disaggregated traffic data it was validated that when traffic 
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conditions are classified as hazardous, then the identification of dangerous traffic 

participants is significantly enhanced. This enhancement is greater when 5-minute 

traffic data are utilised for predicting network-level collisions. Nevertheless, even 

when highly disaggregated traffic data (i.e. 30-seconds) were used, the probability of 

a traffic participant posing a threat to the ego-vehicle was enhanced. However, more 

work is needed to assure that even when NLCP indicates safe traffic, aggressively 

driving traffic participants are more robustly identified.  
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8. Conclusion and Discussion 

Summary 8.1.

Traffic collisions have been a significant problem for decades, because they are a 

major cause of deaths and injuries, as well as a cause of significant traffic delays and 

congestion. Although environmental and vehicle reasons have been found to 

contribute to collision occurrences, traffic dynamics and human error are the most 

dominant origins of such events.  

 

To increase road safety, the automotive and research community has recently begun 

to move towards autonomous or robotic vehicles, which remove the human element 

from the task of driving. A safe navigation is ensured by the motion planning module 

which is part of an AV’s software architecture and aims at providing a collision free 

path for the vehicle to follow. Within the motion planning module, an AV creates a 

trail to follow, specifies the necessary manoeuvres to efficiently follow the trail, 

operates among obstacles and controls its trajectory according to its dynamics. 

However, current AV applications cannot cope well with the complexity of the 

traffic environment which has led them to cause several collisions. This is because in 

most of the literature regarding the anticipation of risk from AVs, the traffic 

participants are considered to move independently and the traffic context (e.g.  traffic 

rules or lane structure) is not considered.  

 

Over the past decades, the advances in ITS and data collection technologies have 

initiated research on the identification of specific traffic conditions which potentially 

cause collisions in real time. The objective of real-time collision prediction is to 

classify current traffic into collision-prone traffic and safe traffic, based on the 

comparison of traffic conditions that were dominant just before historical collision 

occurrences and during normal operations. More specifically, ITS experts investigate 

real-time traffic, geometry or weather characteristics to define if the conditions on a 

link could potentially cause enough traffic turbulence to trigger a collision.  

 

Potentially these network-level collision prediction (NLCP) approaches could 

enhance the perception and risk assessment modules of AVs. However, due to the 

sparse nature of collision events, models tend to over-represent safe traffic conditions 



206 

 

unlike collision-prone conditions and this hinders the performance of collision 

prediction classifiers. Additionally, the traffic conditions based on which real-time 

collision prediction models are developed, correspond to historical collision times 

which may falsely be reported. Lastly, the traffic data utilised currently for real-time 

prediction are aggregated usually at 5-minute intervals and make predictions for a 

15-minute temporal horizon, something which does not correspond to the second-

level safety analysis which needs to be undertaken by AVs.  

 

As NLCP is believed to enhance the awareness level of AV risk assessment, this 

research pursued to bring together real-time collision prediction with risk assessment 

modules of AVs.  

 

Initially, after reviewing current AV motion planning and risk assessment methods 

applied in the literature, interaction-aware models were identified as the best to 

accommodate network-level information, because they take context into account and 

are easily extendable. For the scope of this thesis, an interaction-aware model based 

on a Dynamic Bayesian Network was explicitly described in order to integrate NLCP 

with the estimation of the vehicle-level safety context, the motion properties of 

adjacent vehicles and an AV’s sensors measurements.  

 

The main part of this thesis was dedicated to improving network-level classifiers in 

order for them to contribute to the safety assessment of AVs. The problem of the 

asymmetry between safe and collision-prone traffic cases in collision prediction 

databases was tackled by introducing imbalanced learning techniques. Such 

techniques take into account the imbalance of the dataset and produce classifiers 

which can efficiently predict cases belonging to both classes (i.e. safe and collision-

prone traffic). Two imbalanced learning approaches were utilised; undersampling the 

majority class (i.e. safe traffic) and its integration with oversampling the minority 

class (i.e. collision-prone traffic). An additional method to counterbalance the 

disproportion of safe and collision-prone traffic was the utilization of Random 

Forests (RFs), an ensemble classifier which literature suggested that works well with 

imbalanced datasets. In order to not only have individual predictions but also to 

make classification results more interpretable, probabilistic machine learning 
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classifiers such as Relevance Vector Machines (RVMs) and Gaussian Processes 

(GPs) were utilised. This way, a probability can be associated with each prediction.  

 

The methods used to enhance NLCP were originally applied on three datasets. The 

first dataset contained highly aggregated traffic data in 15-minute intervals 

corresponding to historical collisions and normal traffic on two motorways (i.e. M1 

and M62) and two A-roads (i.e. A3 and A12) of the Strategic Road Network of 

England. In order to investigate the performance of the classifiers on disaggregated 

data, the second dataset contained traffic data corresponding to the time interval 5 

minutes before collisions occurred at two major arteries inside the metropolitan area 

of Athens, Greece. 

 

To correct the reported collision time error in existing collision databases, traffic 

microsimulation was utilised and traffic conflicts were extracted for a segment of the 

M62 motorway. The traffic conditions were obtained through the VISSIM 

microsimulation software and the conflicts were derived from SSAM, a post-

processing tool which investigated simulated vehicle trajectories and filtered them to 

obtain traffic conflicts. The simulation was intensively calibrated in order to 

represent real-world traffic, based on the traffic measurements and travel times of 

M62. This led not only to the acquisition of highly disaggregated traffic data which 

were used for traffic safety analysis, but to timestamped conflicts with highly 

representative traffic conditions too. The 30-second raw data obtained from 

microsimulation were further aggregated in 1-minute, 3-minute and 5-minute 

intervals, so as to investigate the effect of temporal aggregation on the classification 

results. 

 

Six classification algorithms were tested in general for the task of distinguishing 

between hazardous and safe traffic conditions; k-Nearest Neighbours (kNN), a 

simple data-adaptive classifier, RVMs and GPs which provide probabilistic 

predictions, RFs to test ensemble learning and Support Vector Machines (SVMs) 

along Neural Networks (NNs) which are powerful classifiers and have 

been frequently used in real-time collision prediction. To avoid overfitting, all the 

algorithms were optimised using 10-fold cross validation before their application. 
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Moreover, 2/3 of the datasets were used for learning and the remaining l/3 was used 

for testing. The imbalanced classifiers constructed a balanced dataset i.e. containing 

roughly the same number of collision-prone and safe traffic conditions and were 

tested on the original imbalanced data. 

  

The results indicated the importance of the data quality and the choice of temporal 

aggregation intervals for the correct identification of collision-prone traffic, as well 

as the power of imbalanced learning in acquiring better classification results.  

 

Regarding the 15-minute UK dataset, it was found that although the original dataset 

could not predict collision cases efficiently, its treatment with undersampling 

techniques resulted in the identification of 67% of collisions with a relatively low 

false alarm rate when RFs were utilised. Undersampling also worked better with the 

5-minute data of the Athens dataset, achieving correct identification of 70% of the 

collision-prone conditions with GPs with only 8% false alarms. This result 

demonstrated that even though traffic data before a collision occurrence include 

noise, the treatment with imbalanced learning can achieve excellent classification 

results. Comparing the results of the classifiers with the findings of existing literature, 

it was found that the developed classifiers when integrated with imbalanced learning 

techniques outperform existing approaches. Therefore, this makes them eligible for 

real-time collision prediction. However, as 15 minutes is a high temporal aggregation 

interval, the use of 15-minute data is not recommended. 

 

The importance of imbalanced learning was further justified in the simulated dataset. 

The results from the simulated dataset confirmed existing literature, as the temporal 

aggregation interval increased the ratio between recall (i.e. the correct identification 

of conflict-prone conditions) and the false alarm rate increases achieving robust 

classification results. Nevertheless, when imbalanced learning aided the classifiers, 

an increase in the classification results was obvious. This was especially the case 

when the integration of oversampling the minority class along with undersampling 

the majority class was utilised. kNN, RFs and SVMs achieved the best results in 

recognizing traffic conditions just before conflicts and it was demonstrated that, even 
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when raw 30-second data were used, the classification performance was better than 

the state-of-the-art in the literature.  

For the final part of the thesis, the results of the best network-level classifiers were 

imported to the recommended interaction-aware model to detect the impact on the 

estimation of the probability of a road user being a hazard to an AV, given the NLCP 

information.  

 

Initially, two artificial scenarios with random number of vehicles were tested with 

two NLCP classifiers (i.e. the kNN classifier under SMOTE-ENN utilised with 30-

second simulated data and the GP classifier of the 5-minute Athens dataset utilised 

with undersampling). It was found that, if the collision prediction indicated collision- 

or conflict-prone conditions, then hazardous road users were easier identified. This 

showed the potential of the approach in enhancing AV risk assessment in the case of 

“hazardous” traffic conditions.  

 

Vehicle-level data were obtained from the Loughborough University instrumented 

vehicle during a one-hour driving trip on the M1 motorway (J23-J18). These data 

were used to validate the fact that network-level collision information can assist in 

identifying dangerous road users. Using only the radar data from the trip, TTC values 

were estimated and used to identify potential safe and dangerous road users. After 

importing the vehicle-level information, into the interaction-aware DBN, the 

probability of a dangerous road user was estimated for every measurement cycle in 

the cases of conflict-prone and safe traffic conditions.  

 

Using real-world data and the classifiers trained on highly disaggregated traffic 

data, it was validated that when traffic conditions are classified as hazardous, then 

the identification of dangerous traffic participants is significantly enhanced.  Εven 

when highly disaggregated traffic data (i.e. 30-second) were utilised, the 

identification of a traffic participant posing a threat to the ego-vehicle was 

significantly assisted. However, when NLCP indicated safe traffic, the results 

demonstrated that dangerously driving traffic participants were identified better when 

network-level information was not provided.   
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Finally, suggestions were made on the use of network-level information to enhance 

safe motion planning and to assist in the case of a failure or obstruction of the 

sensing system of AVs, thus improving mobility and road safety in general.  

Discussion 8.2.

 Discussion framework 8.2.1.

This thesis attempted to integrate real-time NLCP models with collision risk 

assessment models for autonomous vehicles. This has been achieved by 

concentrating on two focal points: 

 The enhancement of real-time NLCP models regarding their prediction 

horizon, the use of noisy and disaggregated data as well as the imbalance of 

current real-time NLCP datasets. 

 The benefits obtained by taking real-time NLCP information into account in 

autonomous vehicles risk estimation models 

 

Appropriate machine learning models were employed to distinguish between safe 

and collision-prone traffic conditions using a variety of traffic, collision and conflict 

data as well as a mixture of data aggregation intervals in Chapter 6. Next, the results 

from the most efficient NLCP models were input in the proposed interaction-aware 

model which utilises network- and vehicle-level information and the results were 

presented in Chapter 7. This section aims to critically synthesize and discuss the 

results regarding both real-time NLCP as well as its conjunction with AV risk 

assessment models, so as to provide a better understanding. Following the discussion 

on each subject, implementation recommendations are also presented. 

 

 Discussion on the developed real-time collision/conflict prediction models 8.2.2.

The machine learning models developed in this PhD were applied on real-world 

datasets from the UK and Greece in Chapter 6, as well a large simulated dataset with 

highly disaggregated traffic and conflict data obtained from traffic microsimulation 

software. To overcome the imbalance problem between safe and collision-prone 

cases in current NLCP datasets, imbalanced learning was applied. The estimation 

results between the original datasets and the ones treated with imbalanced learning 
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were compared and contrasted so as to observe the effect of imbalanced techniques 

on the identification of collision-prone traffic  

 

Taking into account that NLCP literature was found (i.e. in Chapter 3) to be moving 

towards machine learning approaches, six different algorithms were tested for the 

purposes of this thesis. In contrast with recent on real-time NLCP studies (e.g. Xu et 

al., 2013, Hossain and Muromachi, 2013, Lin et al., 2015; Sun and Sun, 2015;Xu et 

al., 2015b), which compared their proposed approaches with only one or two 

different methodologies, this PhD study offers a comprehensive comparison between 

initially used (i.e. RVMs, GPs and RFs) and previously studied methodologies in 

real-time NLCP (i.e. kNN, NNs and SVMs).  

 

Although RFs were primarily utilised for variable selection in previous literature (e.g. 

Hossain and Muromachi, 2013), it was found that its classification performance is 

powerful, regardless of the temporal aggregation of traffic data in terms of 

identifying hazardous traffic conditions. Therefore, its utilization for real-time NLCP 

is suggested by the results of this study.  

 

To address the issue of model interpretability and transferability that characterises 

machine learning approaches, the probabilistic machine learning techniques of 

RVMs and GPs were employed for the first time in real-time NLCP studies. These 

approaches can correlate a “stationary” prediction regarding the occurrence of 

collision-prone traffic conditions in real-time with the probability that the prediction 

is correct. Hence, predictions with larger confidence can be performed and 

broadcasted to traffic participants and autonomous vehicles. However, in the 

majority of datasets utilised by this study, these two approaches did not yield 

sufficient classification results. The performance of RVMs can be justified from its 

general instability and suboptimal learning of kernel parameters as suggested by 

Chen et al., (2014) as well as its  poor performance on large sample sizes as 

suggested by Yu et al., (2004). The performance of GPs is probably a result of their 

computational limitations (Rasmussen, 2006) as well as their problematic 

conjunction with the imbalanced learning technique of SMOTE (Elrahman and 

Abraham, 2013).  
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In consistency with previous studies on real-time NLCP (Li et al., 2008, Yu and 

Abdel-Aty, 2013), SVMs result in good classification performance. Additionally, 

NNs perform well in the simulated dataset, however fail to work well with the 

smaller sample sizes of the UK and Athens datasets, a fact which can be found in the 

findings of previous studies (Karlaftis and Vlahogianni, 2011).  

The most interesting findings relate to the use of imbalanced learning and traffic 

microsimulation for developing real-time NLCP models.  

 

The use of microsimulation for safety studies is generally debated in the literature, 

because collisions cannot be obtained inside the simulation and it is difficult to 

correlate the obtained conflicts with actual collisions. Through intensive calibration 

and validation for both the traffic conditions and the obtained conflicts, it was 

demonstrated that datasets containing realistic conflict-prone conditions can be 

formulated. These datasets contain traffic conditions labelled as conflict-prone or 

safe and can be utilised for real-time conflict prediction in a similar procedure as 

real-time collision prediction datasets are employed. The benefit is that the 

documented conflict events are explicitly time-stamped and described as they are the 

output of computer software. Moreover, instead of utilizing microsimulation 

exclusively for before-after studies regarding the total number of collisions at a site 

based on the number of simulated conflicts (e.g. Shahdah et al., 2015), the 

identification of pre-conflict conditions is investigated.  

 

Existing literature on real-time collision prediction suggests that traffic data should 

be aggregated at 5-minutes intervals and the time interval corresponding to 5-10 

minutes before a collision should be employed to build NLCP models. The reason 

behind this suggestion is that raw traffic data from loop detectors (i.e. 20-second or 

30-second data) and traffic data 0-5 minutes before a collision are noisy and do not 

facilitate a timely intervention from traffic management authorities. The superiority 

of traffic data aggregated in 5-minute intervals was validated in Chapter 6, where it 

was demonstrated that using that temporal aggregation interval led to the best 

classification results. However, the use of imbalanced learning techniques resulted in 

significant enhancements for the classifiers employing highly disaggregated traffic 
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data or traffic data obtained 0-5 minutes before collision events. As shown in Tables 

6.16 and 6.23, as well as Figure 6.13, classifiers utilizing traffic data 0-5 minutes 

before a collision as well as simulated traffic data even at 30-second or 1-minute 

intervals performed better than existing literature in identifying collision or conflict-

prone traffic with a low false alarm rate. Therefore, the use of imbalanced learning 

and especially the undersampling of  the majority class, should be employed in future 

NLCP studies even when highly disaggregated or noisy data are available. 

 

The results from the models developed in this thesis offer a new awareness level for 

the use of traffic data and their temporal aggregation. This thesis utilised real-world 

traffic data both highly aggregated as well as disaggregated five minutes before 

collision occurrences. The classifiers developed here could become a tool guide for 

Active Traffic Management (ATM) agencies. These agencies could apply the 

developed classifiers utilizing traffic data at a preferred temporal aggregation and 

issue warnings if needed. Specifically, if traffic conditions are classified as collision-

prone, then warning messages could be presented through VMS or broadcasted to the 

AVs communication system, prompting the passenger to take control until the 

network-level prediction horizon is exceeded and safety is ensured. Moreover, as 

imbalanced learning and especially undersampling was found to contribute to the 

improvement of classification results, the use of imbalanced learning is highly 

suggested as collision-prone conditions detection significantly improved. The 

application of NLCP models is not limited to AVs only, as these predictions could 

initiate traffic calming schemes, such as variable speed limits (VSL). The VSL 

schemes work on the basis that, if external conditions (such as adverse weather or 

road works) exist on a motorway, then speed limits are adjusted appropriately to 

control for congestion and traffic violations. On the same principle, if the classifiers 

indicate traffic conditions which are collision-prone, then VSL could be initiated in 

order to decrease the general vehicle speed and thus traffic violations.   

 

Furthermore, as simulated data were utilised in this paper, traffic agencies could 

benefit in areas where no data collection measuring devices exist or traffic data are 

sparsely collected and aggregated. As the use of microsimulation in this thesis was 

aimed at looking at the pre-conflict conditions, traffic environments of interest could 
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be simulated and validated in order to identify conflict-prone conditions. After the 

detection of conflict-prone traffic, ATM could issue warnings about potential 

conflicts, in order to enhance driver attention on the road. For instance, an early-

warning for detecting conflict-prone traffic conditions could be broadcasted first and 

could be followed by a collision-prone traffic warning if the conflict-prone and 

collision-prone traffic classifiers indicate abnormal traffic.   

 

 Discussion on the integrated collision risk model  8.2.3.

The method developed in section 4.3 of the methodology and evaluated in Chapter 7 

is an initial step in the incorporation of NLCP models into risk assessment modules 

for AVs. The evaluation in Chapter 7 demonstrated that, when “dangerous” (i.e. 

conflict or collision-prone) traffic conditions were detected by the network-level 

classifiers, then the probability of detecting a vehicle-level “dangerous” traffic user 

was enhanced. On the other hand, in cases when traffic conditions are deemed safe, 

network-level information did not provide assistance in identifying hazardous traffic 

participants. As the model is constructed in order to resemble human-like driving and 

perception, safe traffic conditions lead the model to be biased towards safe traffic 

participants. As a result, because the vehicle-level safety context is dependent on the 

network-level collision risk, the identification of dangerous vehicles is hindered.  

More sophisticated functions which can be learned from data so as to take into 

account network-level information could result in better probability estimation for 

the cases when traffic conditions are classified as safe. As real-world vehicle-level 

data were obtained from only one driving trip, a larger dataset would further enhance 

the performance of the model. 

 

The model was not compared with other state-of-the-art algorithms in this thesis. As 

also indicated by Lefèvre, (2012), such collision risk assessment models need to be 

evaluated on the same dataset. Although there are publicly available datasets such as 

the NGSIM dataset (FHWA, 2006) or the Warrigal dataset (Ward et al., 2014b), 

these do not meet the requirements for the model proposed in this PhD. This is due to 

the fact, that NGSIM contain network- and vehicle-level data from only 15 minutes 

and the Warrigal dataset contains vehicle-level information from a mining site. 
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As the literature review on motion planning methods revealed in Chapter 2, dealing 

with complex traffic scenarios and multiple obstacles is troublesome for AVs, the 

next paragraphs will describe scenarios where the methods presented in this thesis 

could become of assistance.  

 

Using NLCP information, AVs could adjust their motion planning routine. Risk 

assessment is part of the manoeuvre planning routines as it was found in Chapter 2 

and as a result the most prominent advantages relate to adjusting or changing the 

current manoeuvre planned by an AV. For example, AVs could slow down when 

entering road segments which are predicted to have collision-prone traffic. This 

would benefit them in two ways: i) by slowing down, a safer journey would be 

assured and ii) AVs would have more time to detect and avoid dangerous traffic 

users with the enhanced vehicle-level safety context probability. Moreover, when 

network-level information indicated that the traffic conditions at a road segment 

could cause a collision, an alternative route or lane could be chosen to avoid 

hazardous encounters.  

 

Autonomous lane changing (Lefèvre,2012; Thrun 2010) is an important aspect of 

autonomous vehicles that potentially could prevent a number of collisions by 

changing the trajectory that a vehicle is following in order for it not to collide with an 

obstacle. This aspect of AVs was not taken into account when developing the DBN, 

as this work’s primary contribution was a methodology which brings together traffic 

engineering and AV risk assessment. However, autonomous lane changing usually 

requires harsh accelerations or decelerations which would not provide a sufficient 

level of comfort to the passengers. NLCP information could enable slower speeds 

and hence slower accelerations as discussed in the previous paragraph. In that way 

the comfort of passengers during these harsh acceleration or deceleration events 

would be enhanced. 

 

AVs require a lot of information from multiple sensor platforms (Polychronopoulos 

et al., 2007, Huang, E. et al., 2013). Most of AVs utilise cameras (Bertozzi et al., 

2000) and laser scanners (Jiménez et al., 2012, Mertz et al., 2013) to scan the 

surroundings and estimate a safe path for the vehicle. However, it is unknown how 



216 

 

AVs are going to cope with system failure (Koopman and Wagner, 2016, Dixit et al., 

2016). In that perspective, the method developed in this project and the incorporation 

of network-level information in general could be advantageous. As NLCP utilises 

more macroscopic data compared to the data received by the sensor systems of AVs 

and have sub-second frequency, the network-level prediction will be known a-priori 

for specific time periods. Hence, if the majority of the sensing systems fail, then, 

according to the network-level information, the AV can slow down, as in the case of 

collision-prone traffic conditions indicated in the previous paragraph, until it reaches 

a safe point or the system error is fixed. This applies also in cases where the sensor 

system and especially the vision-based systems become obstructed (e.g. from a big 

truck in front of the vehicle or from adverse weather conditions). Consequently, 

NLCP could assist not only the identification of “dangerous” road users but could act 

as a safety net for all the motion planning levels i.e. from routing to manoeuvre 

planning.  

 Discussion synopsis 8.2.4.

This section critically discussed the results presented in Chapters 6 and 7 of this 

thesis. Regarding the NLCP models, the most interesting findings relate to the power 

of imbalanced learning, the employment of RFs as well as the use of highly 

disaggregated and simulated data. As traffic data were aggregated in different 

temporal aggregation intervals and real-time conflict detection classifiers were 

developed, ATM systems could benefit in terms of issuing warnings for conflict and 

collision-prone traffic, as well as ensuring proper traffic flow through variable speed 

limits according to the road safety level at a specific time moment. The discussion of 

the integrated collision risk model for AVs, demonstrated that the findings of this 

thesis could enhance AV motion planning and general road safety. Network-level 

predictions utilise aggregated data at higher temporal interval than the frequency of 

the sensors of an AV and hence provide a broader perception horizon. If NLCP is 

available, then AVs could reduce speeds, change routes or prompt a passenger to 

take control in order to ensure a safe journey, even when other sensor systems fail.  
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Contribution to knowledge 8.3.

This research has provided new methodological and quantitative outcomes which 

could enhance future safety analyses. The main contributions to knowledge are: 

 

1.The integration of NLCP along vehicle-level risk assessment by AVs 

Perhaps the most interesting contribution of the present PhD thesis is the proposed 

interaction-aware model, which integrates network-level and vehicle-level collision 

prediction. Α part of this thesis is dedicated to estimating the probabilities of vehicle-

level collision risk, given NLCP and it was demonstrated that a quicker identification 

of dangerous traffic participants is possible. As also described in the methodology 

chapter, the way in which the DBN model is constructed, makes it easily extensible 

to accommodate more sophisticated probability functions. These functions could 

explicitly consider the dynamics and the behaviour of traffic participants, as long as 

they are appropriately defined. The fact that the estimated model is mathematically 

sound supports the argument that it could become a tool which combines motion 

prediction and risk assessment by AVs with real-time NLCP as studied in the past 

decades by traffic engineers. The integrated approach could enhance the perception 

horizon and safety assessment by AVs, as pointed out in previous sections of this 

thesis.  

 

2.The effect of imbalanced learning in tackling the corresponding problem of 

existing collision-traffic databases 

This research extensively utilised imbalanced learning techniques to obtain 

classifiers which perform well, both in the task of identifying dangerous traffic 

conditions as well as in the identification of normal traffic operations. Imbalanced 

learning achieved high classification rates with a few false alarms, even when highly 

aggregated or highly disaggregated traffic data were utilised. This is especially 

important for real-time safety assessment, as traffic management agencies need to 

timely identify hazardous or safe traffic in a timely manner and perform the 

necessary actions to ensure safe and smooth traffic flow. Although the initial 

approach of safety experts should be to build classifiers using the original datasets, 

the aiding nature of imbalanced learning could cope with inherent difficulties in 
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acquiring balanced classification results. As it was demonstrated in this thesis, even 

when 15-minute traffic data were utilised, some of the classifiers integrated with 

imbalanced learning managed to detect the majority of the collision-prone traffic 

conditions. 

 

3.The utilization of simulated traffic and conflict data for use in real-time safety 

assessment 

One of the datasets presented in the present thesis was acquired from traffic 

microsimulation. Although the use of simulation in safety analysis has been 

generally debated, the present study utilised it in a different way than the literature 

has. Usually, simulated traffic and the obtained conflicts from SSAM are employed 

for before-after analyses of interventions at intersections or motorways, as well as the 

estimation of the number of collisions based on the number of simulated conflicts. In 

the present thesis, the traffic conditions before each conflict event were sampled in 

order to develop the classifiers. More specifically, the classifiers aimed at identifying 

conflict-prone conditions within the simulation model to enhance understanding of 

the precise traffic conditions that trigger conflict events. Thus, the scope of 

microsimulation was not the estimation of collisions or the validation of conflicts 

happening at a specific location, but rather the acquisition of disaggregated traffic 

data at a very high level and the tackling of the misreported collision time in collision 

databases. This enables traffic data collection in cases where traffic measurements 

are unavailable or highly aggregated (such as the 15-minutes data utilised in this 

work). Moreover, it enables the use of microsimulation software for real-time safety 

assessment as the results from the classifiers could be used in order to test if real-

world conflict-prone conditions are correctly identified. 

 

4.The utilization of disaggregated traffic data close to the collision event time 

Most of the classifiers developed and presented in this thesis made use of traffic data 

just before a collision or a conflict. In the Athens dataset, traffic data were 

aggregated in 5-minute intervals but the data corresponding to just 5 minutes before 

collisions were employed. This is not the first time that traffic data have been 

aggregated at 5-minute intervals, and used in real-time collision prediction. However, 
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the vast majority utilises traffic data 5-10 minutes prior to the collision events. 

Moreover, even when 30-second or 1-minute simulated traffic data were utilised, it 

was demonstrated that traffic conflicts could also be efficiently detected if the dataset 

was treated with imbalanced learning techniques. Traffic data from a time interval 

close to the collision or conflict event include random noise. However, it is possible 

to build effective classifiers which can distinguish between collision events and 

normal traffic operations. Of course, predictions with such prediction horizon (e.g. 

30 seconds to 5 minutes before collisions) might not give enough time to traffic 

management agencies to intervene and prevent collisions nowadays. However, with 

the advances in communication technologies, except for the AV application which 

was demonstrated in this work, vehicle-to-vehicle (V2V) or vehicle-to-infrastructure 

(V2I) communication applications could bring about the application of such limited 

time predictions.  

 

Study limitations 8.4.

The research presented in this thesis is not without shortcomings. It includes 

limitations, the most important of which are outlined below: 

 

 Collision time inaccuracies for the real-world datasets: The 15-minute UK 

dataset and the Athens dataset incorporate the error regarding the exact time 

of the collision. As a result, the traffic measurements which were used as 

collision-prone might not be as representative of the traffic conditions leading 

to the collision as possible. 

 

 Traffic data aggregation: Traffic data for the UK dataset as well as the 

Athens dataset were provided in 15-minute and 5-minute averages. Such data 

are not detailed enough to describe the pre-collision conditions. Furthermore, 

more detailed data could lead to a better calibrated simulation model to obtain 

the conflict-prone conditions used in this work. 

 

 On-site conflicts validation: The traffic microsimulation model was 

intensively calibrated regarding the traffic conditions (i.e. with the use of the 

GEH-statistic) the travel times corresponding to the real-world traffic 
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measurements and the crash potential index of the NGSIM data. However, 

the traffic conditions leading to conflicts were not validated using conflict 

observations from the same site that was simulated. This could lead to 

discarding several traffic conditions and the corresponding “conflicts”, which 

are not consistent with real-world observations. 

 

 Omitted variables: The developed NLCP models did not consider some 

significant factors which have been found to contribute to collision 

occurrences, such as weather and lighting conditions, time of the day and day 

of the week, road pavement conditions and others. The inclusion of these 

variables in the analysis would describe collision and normal traffic more 

explicitly and hence may have improved the classification results. 

 

 Spatial and temporal transferability: The classifiers developed in this work 

were tested in a part of the original dataset. Testing the learned classifiers of 

the obtained datasets on different motorways and during different time 

periods could enhance the results and give a clearer picture of their 

performance. 

 

 Variable selection: For the task of classification, none of the available 

variables were excluded. If variable or feature selection was utilised, the 

classification results might have been improved.  

 

 Limited vehicle-level data: The influence of NLCP on vehicle-level risk 

assessment was estimated using artificial data and data from one driving trip. 

For the full validation of the model, data from a variety of sensors need to be 

employed in order to investigate a more realistic impact of real-time collision 

prediction on vehicle-level risk. Moreover, if a large vehicle-level dataset is 

available, then the functions which indicate a dangerous road user or 

dangerous vehicle kinematics could be learned from the data. The indicative 

functions used in this thesis are a simple approach in order to demonstrate the 

potential of such a model. Data driven functions based on gap-acceptance 
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models or vehicle trajectories would definitively enhance the quality of the 

DBN outcomes and consequently vehicle-level safety assessment. 

 

 Limited traffic information provided to the DBN: NLCP was 

demonstrated to assist vehicle-level risk assessment, especially when traffic 

conditions were deemed as collision-prone. However, it is not known if 

information only on occupancy, flow, and average speeds without 

supplementary variables such as weather conditions or road geometry, can 

provide assistance online to AV motion planning routines. 

 

 Limited testing of the DBN: Only a relative comparison of the estimated 

probability of vehicle-level risk with and without the NLCP information was 

performed in this thesis. In order to demonstrate the full potential of the 

proposed DBN methodology the full network needs to be calibrated and 

utilized online for AV motion planning using a test vehicle. 

 

 Omission of traffic rules and signs in the DBN: The proposed DBN model 

characterises the vehicle-level safety context based only on the kinematic 

properties of the motion of vehicles. Nevertheless, in everyday traffic, users 

are frequently described as both safe and dangerous, according to the 

obedience to traffic rules and traffic signs. 

 

 Online calibration of the DBN:  The probabilities from the proposed DBN 

model were estimated after the driving session. In order to test its capabilities 

for real-time collision risk assessment, its online application should be tested. 

Extensions and suggestions for future research 8.5.

The work that has been presented in this thesis, both in terms of the NLCP as well as 

its integration with vehicle-level risk assessment in the interaction-aware DBN 

model, can easily be extended and transferred to other study areas. Building more 

robust network-level classifiers, as well as expanding and enhancing the DBN model, 

can increase the accuracy and safety perception of AV planning modules. 

Considering the limitations of the current study as described in the previous sub-

section, several improvements can be made. 
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Regarding NLCP the current work utilised six classifiers (i.e. kNN, RVMs, SVMs, 

GPs, RFs and NNs) which are all frequently used in the machine learning literature. 

An extension to this part could be to incorporate alternative machine learning and 

data mining techniques. More efficient and newer techniques such as Deep Learning, 

Deep Neural Networks, ensembles of SVMs, information-theoretic clustering and 

feature selection can be tested and compared with the classifiers presented in this 

work. Furthermore, kernel-based methods (such as RVMs and SVMs) can be further 

enhanced with transport-related kernel functions in order to obtain better 

classification results. Moreover, it should be interesting to explore the use of raw 

traffic data to detect collision-prone conditions as the utilised classifiers using 30-

seconds simulated data resulted in good classification rates after the treatment with 

imbalanced learning. The incorporation of real-time weather characteristics or 

pavement conditions could also be taken into consideration in future work to 

explicitly describe the conditions before a collision. The application of the cost-

sensitive classification, which was an imbalanced learning technique not utilised in 

this study, should also be an interesting extension of the current work. 

 

As far as the simulation modelling is concerned, simulation of autonomous or 

connected vehicles could be incorporated in the models along with their sensor 

systems. This will result in conflict-based models which could be easily applied into 

the interaction-aware model because they would be based on representative traffic 

conditions in the presence of automated vehicles.  

 

Regarding the incorporation of NLCP into AV risk assessment modules, an obvious 

extension is the utilization of vehicle-level data acquired online, so as to have 

information on all four layers of the proposed DBN and enable a ground truth 

validation of the DBN results, thus enhancing the robustness of the model. As 

mentioned in the limitations section, the functions indicating dangerous road users 

according to their kinematics should be learned from sensor data and vehicle 

trajectories. Moreover, the obedience to traffic rules, lane markings and traffic 

signals or signs should be researched in order to cope with the traffic environment in 

every detail.  
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Finally, as risk assessment is a part of AVs motion planning routine, the 

incorporation of NLCP in path or trajectory planning could be investigated. For 

example, imagine a Rapidly exploring Random Tree (RRT) which grows edges 

according to the network and vehicle-level collision risks or a costmap built 

according to different NLCP risk levels. The potential of collaboration between 

NLCP and AV risk assessment methods was slightly shown in this thesis, but 

relevant research can certainly lead to enhanced safety in a highly automated traffic 

environment in the future. 

  



224 

 

References 

Abdel-Aty, M. a. & Pemmanaboina, R. (2006) Calibrating a Real-Time Traffic 

Crash-Prediction Model Using Archived Weather and ITS Traffic Data. IEEE 

Transactions on Intelligent Transportation Systems. 7 (2), 167–174. 

 

Abdel-aty, M. & Pande, A. (2005) 'The viability of real-time prediction and 

prevention of traffic accidents', in Al-Qadi, Tarek Sayed, Alnuaimi, & Massad (eds.) 

Efficient Transportation and Pavement Systems. Taylor & Francis Group, London. 

pp. 215–226. 

 

Abdel-Aty, M. & Pande, A. (2007) Crash data analysis: collective vs. individual 

crash level approach. Journal of safety research. 38 (5), 581–7. 

 

Abdel-Aty, M. & Pande, A. (2005) Identifying crash propensity using specific traffic 

speed conditions. Journal of safety research. 36 (1), 97–108. 

 

Abdel-Aty, M., Pande, A., Das, A. & Knibbe, W.J. (2008) Assessing safety on Dutch 

freeways with data from infrastructure-based intelligent transportation systems. 

Transportation Research Record. 2083 (2083), 153–161. 

 

Abdel-Aty, M., Pande, A. & Hsia, L. (2010) The concept of proactive traffic 

management for enhancing freeway safety and operation. ITE Journal (Institute of 

Transportation Engineers). 80 (4), 34–41. 

 

Abdel-Aty, M., Pande, A., Hsia, L.Y. & Abdalla, F. (2005) 'The Potential for Real-

Time Traffic Crash Prediction', in ITE Journal on the web. 2005 pp. 69–75. 

 

Abdel-Aty, M., Uddin, N., Pande, A., Abdalla, F. & Hsia, L. (2004) Predicting 

Freeway Crashes from Loop Detector Data by Matched Case-Control Logistic 

Regression. Transportation Research Record. 1897 (1), 88–95. 

 

Ackerman, E. (2016) Fatal Tesla Self-Driving Car Crash Reminds Us That Robots 

Aren’t Perfect -. IEEE Spectrum 



225 

 

Agamennoni, G., Nieto, J.I., Nebot, E.M. & Member, S. (2012) Estimation of 

Multivehicle Dynamics by Considering Contextual Information. IEEE Transactions 

on robotics. 28 (4), 855–870. 

 

Ahmed, M. & Abdel-Aty, M. (2013) A data fusion framework for real-time risk 

assessment on freeways. Transportation Research Part C: Emerging Technologies. 

26, 203–213. 

 

Ahmed, M., Abdel-Aty, M. & Yu, R. (2012a) A Bayesian Updating Approach for 

Real-Time Safety Evaluation using AVI Data. Transportation Research 

Record,Journal of the Transportation Research Board. 2450. 

 

Ahmed, M., Abdel-Aty, M. & Yu, R. (2012b) Assessment of the Interaction between 

Crash Occurrence , Mountainous Freeway Geometry , Real-Time Weather and AVI 

Traffic Data. TRB 2012 Annual Meeting. 2450. 

 

Ahmed, M.M. & Abdel-Aty, M. (2012) The Viability of Using Automatic Vehicle 

Identification Data for Real-Time Crash Prediction. IEEE Transactions on Intelligent 

Transportation Systems. 13 (2), 459–468. 

 

Alin, A., Butz, M. V. & Fritsch, J. (2012) 'Incorporating environmental knowledge 

into Bayesian filtering using attractor functions', in IEEE Intelligent Vehicles 

Symposium. [Online]. 2012 pp. 476–481. 

 

Amundsen, F. & Hyden, C. (1977) Proceeding of First Workshop on Traffic 

Conflicts. First Workshop on Traffic Conflicts. 

 

Aoude, G., Luders, B.D., Levine, D.S. & How, J.P. (2010a) 'Threat-aware path 

planning in uncertain urban environments', in 2010 IEEE/RSJ International 

Conference on Intelligent Robots and Systems. October 2010 pp. 6058–6063. 

 

Aoude, G.S., Luders, B.D., How, J.P. & Pilutti, T.E. (2010b) 'Sampling-based threat 

assessment algorithms for intersection collisions involving errant drivers', in IIFAC 



226 

 

Symposium on Intelligent Autonomous Vehicles. 2010. 

 

Archer, J. (2005) Indicators for traffic safety assessment and prediction and their 

application in micro-simulation modelling: A study of urban and suburban 

intersections. Doctoral Thesis, KTH Royal Institute of Technology, Sweden. 

 

Archer, J. & Kosonen, I. (2000) The potential of micro-simulation modelling in 

relation to traffic safety assessment. ESS conference proceedings. 

 

Archer, J. & Young, W. (2010) The measurement and modelling of proximal safety 

measures. Proceedings of the Institution of Civil Engineers. Transport (November 

TR4), 191–201. 

 

Armand, A., Filliat, D. & Ibanez-Guzman, J. (2014) 'Ontology-based context 

awareness for driving assistance systems', in IEEE Intelligent Vehicles Symposium. 

2014 pp. 227–233. 

 

Asimov, I. (1950) I , Robot. Spectra. 

 

Astarita, V., Giofre, V., Guido, G. & Vitale, A. (2011) Investigating road safety 

issues through a microsimulation model. Procedia - Social and Behavioral Sciences. 

20226–235. 

 

Bacha, A., Bauman, C., Faruque, R., Fleming, M., Terwelp, C., Hong, D., Wicks, A., 

Alberi, T., Anderson, D., Cacciola, S., Currier, P., Dalton, A., Farmer, J., Hurdus, J., 

Kimmel, S., King, P., Taylor, A., Covern, D. Van & Webster, M. (2008) Odin : 

Team VictorTango ’ s Entry in the DARPA Urban. Journal of Field Robotics. 25 (8), 

467–492. 

 

Bahram, M., Hubmann, C., Lawitzky, A., Aeberhard, M. & Wollherr, D. (2016) A 

Combined Model- and Learning-Based Framework for Interaction-Aware Maneuver 

Prediction. IEEE Transactions on Intelligent Transportation Systems. 17 (6), 1538–

1550. 



227 

 

 

Bandyopadhyay, T., Won, K.S., Frazzoli, E. & Hsu, D. (2012) 'Intention-Aware 

Motion Planning', in Proc. of the 10th Workshop on the Algorithmic Foundations of 

Robotics. [Online]. 2012 pp. 475–491 

. 

Barcelo, J. (2011) NULL. Fundamentals of Traffic Simulation. Vol. 108 Springer-

Verlag New York. 

Batista, G.E.A.P.A., Prati, R.C. & Monard, M.C. (2004) A Study of the Behavior of 

Several Methods for Balancing Machine Learning Training Data. SIGKDD Explor. 

Newsl. 6 (1), 20–29. 

 

Ben-Hur, A. & Weston, J. (2010) A user’s guide to support vector machines. 

Methods in molecular biology (Clifton, N.J.). 609,223–239. 

 

Bertozzi, M., Broggi, A. & Fascioli, A. (2000) Vision-based intelligent vehicles : 

State of the art and perspectives ଝ . Robotics and Autonomous Systems. 321–16. 

 

Bessiere, P., Mazer, E., Ahuactzin, J.-M. & Mekhnacha, K. (2013) Bayesian 

Programming,CRC Press . 

 

Bishop, C.M. (2006) Pattern Recognition and Machine Learning. Springer New 

York. 

 

Bohren, J., Foote, T., Keller, J., Kushleyev, A., Lee, D., Stewart, A., Vernaza, P. & 

Satterfield, B. (2008) Little Ben : The Ben Franklin Racing Team ’ s Entry in the 

2007 DARPA Urban Challenge. Journal of Field Robotics. 25 (9), 598–614. 

 

Bonsall, P., Liu, R. & Young, W. (2005) Modelling safety-related driving behaviour 

- Impact of parameter values. Transportation Research Part A: Policy and Practice. 

39 (5), 425–444. 

 

Brand, M., Oliver, N. & Pentland, A. (1997) Coupled hiddenMarkov models for 

complex action recognition. International Conference on Computer Vision and 



228 

 

Pattern Recognition. 1–6. 

 

Brechtel, S., Gindele, T. & Dillmann, R. (2014) 'Probabilistic Decision-Making 

under Uncertainty for Autonomous Driving using Continuous POMDPs', in 2014 

IEEE 17th International Conference on Intelligent Transportation Systems (ITSC). 

2014 Qingdao, China: . pp. 392–399. 

 

Breiman, L. (1996) Bagging Predictors. Machine Learning. 24 (421), 123–140. 

 

Breiman, L. (2001) Random Forests. Machine learning. 45.15–32. 

 

Broggi, A., Medici, P., Zani, P., Coati, A. & Panciroli, M. (2012) Autonomous 

vehicles control in the VisLab Intercontinental Autonomous Challenge. Annual 

Reviews in Control. 36 (1), 161–171. 

 

Brown, M., Funke, J., Erlien, S. & Gerdes, J.C. (2017) Control Engineering Practice 

Safe driving envelopes for path tracking in autonomous vehicles. Control 

Engineering Practice. 61,307–316. 

 

Brown, T.L. (2005) Adjusted Minimum Time-To-Collision (TTC): A Robust 

Approach to Evaluating Crash Scenarios. DSC North America. 40–48. 

 

Burns, L.D. (2013) A vision of our transport future. Nature. 497, 181–182. 

 

Carin, L. & Dobeck, G.J. (2003) Relevance vector machine feature selection and 

classification for underwater targets. Oceans 2003. Celebrating the Past ... Teaming 

Toward the Future (IEEE Cat. No.03CH37492).  

. 

Chawla, N. V., Bowyer, K.W., Hall, L.O. & Kegelmeyer, W.P. (2002) SMOTE: 

Synthetic minority over-sampling technique. Journal of Artificial Intelligence 

Research. 16,321–357. 

 

Chen, H., Tino, P. & Yao, X. (2014) Efficient probabilistic classification vector 



229 

 

machine with incremental basis function selection. IEEE Transactions on Neural 

Networks and Learning Systems. 25 (2), 356–369. 

 

Chen, S., Gunn, S.R. & Harris, C.J. (2001) The relevance vector machine technique 

for channel equalization application. IEEE Transactions on Neural Networks. 12 (6), 

1529–1532. 

Commission, E. & Sheet, F. (2016) 2015 road safety statistics : What is behind the 

figures ? (March), 2016–2019. 

 

Cunto, F. (2008) Assessing Safety Performance of Transportation Systems using 

Microscopic Simulation. Doctoral Thesis,University of Waterloo, Ontario, Canada. 

 

Cunto, F. & Saccomanno, F.F. (2008) Calibration and validation of simulated vehicle 

safety performance at signalised intersections. Accident Analysis and Prevention. 40 

(3), 1171–1179. 

 

Demir, B. & Ertürk, S. (2007) Hyperspectral Image Classification Using Relevance 

Vector Machines. 2007 IEEE International Geoscience and Remote Sensing 

Symposium. 4 (4), 586–590. 

 

Department for Transport (2012) GB Road Traffic Counts - Datasets - DGU. [Online] 

[online]. Available from: http://data.gov.uk/dataset/gb-road-traffic-counts. 

 

Department for Transport (2016) Reported Road Casualties Great Britain: 2015 

Annual Report. (September), 1–409. 

 

Di, A. & Sacco, N. (2016) Open problems in transportation engineering with 

connected and autonomous vehicles. Transportation Research Procedia. 14,2255–

2264. 

 

Dijkstra, A. (2013) Assessing the safety of routes in a regional network. 

Transportation Research Part C: Emerging Technologies. 32,103–115. 

 



230 

 

Dijkstra, A., Marchesini, P., Bijleveld, F., Kars, V., Drolenga, H. & van Maarseveen, 

M. (2010) Do Calculated Conflicts in Microsimulation Model Predict Number of 

Crashes? Transportation Research Record: Journal of the Transportation Research 

Board. 2147 (January 2016), 105–112. 

 

Dixit, V. V, Chand, S. & Nair, D.J. (2016) Autonomous Vehicles : Disengagements , 

Accidents and Reaction Times. PLoS ONE 11(12): e0168054 1–14. 

 

Dolgov, D., Thrun, S., Montemerlo, M. & Diebel, J. (2010) Path Planning for 

Autonomous Vehicles in Unknown Semi-structured Environments. The International 

Journal of Robotics Research. 29 (5), 485–501. 

 

Dowling, R., Skabardonis, A. & Alexiadis, V. (2004) Traffic Analysis Toolbox 

Volume III : Guidelines for Applying Traffic Microsimulation Modeling Software. 

Report. No. FHWA-HRT-04-040, U.S. DOT, Federal Highway Administration, 

Washington, D.C. III (July), 146. 

 

Dreiseitl, S. & Ohno-Machado, L. (2002) Logistic regression and artificial neural 

network classification models: A methodology review. Journal of Biomedical 

Informatics. 35 (5–6), 352–359. 

 

El-Basyouny, K. & Sayed, T. (2013) Safety performance functions using traffic 

conflicts. Safety Science. 51 (1), 160–164. 

 

Elrahman, S.M.A. & Abraham, A. (2013) A Review of Class Imbalance Problem. 

Network and Innovative Computing. 1,332–340. 

 

Eskandarian, A. (2012) Handbook of Intelligent Vehicles. Azim Eskandarian (ed.). 

Springer London. 

 

Essa, M. & Sayed, T. (2015a) Simulated Traffic Conflicts Do They Accurately 

Represent Field-Measured Conflicts? Transportation Research Record: Journal of 

the Traportation Research Board. 2514. 



231 

 

 

Essa, M. & Sayed, T. (2015b) Transferability of calibrated microsimulation model 

parameters for safety assessment using simulated conflicts. Accident Analysis & 

Prevention. 84,41–53. 

 

Fagnant, D.J. & Kockelman, K. (2015) Preparing a nation for autonomous vehicles : 

opportunities , barriers and policy recommendations. Transportation Research Part 

A. 77,167–181. 

 

Fan, R., Wang, W., Liu, P. & Yu, H. (2013) Using VISSIM simulation model and 

Surrogate Safety Assessment Model for estimating field measured traffic conflicts at 

freeway merge areas. IET Intelligent Transport Systems. 7 (1), 68–77. 

 

Fang, S., Xie, W., Wang, J. & Ragland, D.R. (2016) Utilizing the eigenvectors of 

freeway loop data spatiotemporal schematic for real time crash prediction. Accident 

Analysis and Prevention. 94,59–64. 

Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters. 27 

(6), 861–874. 

 

Ferguson, D. & Likhachev, M. (2008) 'Efficiently Using Cost Maps For Planning 

Complex Maneuvers', in International Conference on Robotics and Automation 

Workshop on Planning with Cost Maps. 2008. 

 

Fernandez, C., Dominguez, R., Fernandez-Llorca, D., Alonso, J. & Sotelo, M.A. 

(2013) Autonomous Navigation and Obstacle Avoidance of a Micro-bus. 

International Journal of Advanced Robotic Systems. 10 (212), 1–9. 

 

FHWA, Halkias, J. & Colyar, J. (2006) NGSIM Overview. Federal Highway 

Administration, Technical Report. 

 

Fletcher, L., Teller, S., Olson, E., Moore, D., Kuwata, Y., Leonard, J., Miller, I., 

Campbell, M., Nathan, A. & Kline, F. (2008) The MIT – Cornell Collision and Why 

It Happened. Journal of Field Robotics. 25 (10), 775–807. 



232 

 

 

Forrest, A. & Konca, M. (2007) Autonomous Cars and Society. Report, Worcester 

Polytechnic Institute. 

 

Furda, A. & Vlacic, L. (2011) Enabling Safe Autonomous Driving in Real-World 

City Traffic Using Multiple Criteria Decision Making. IEEE Intelligent 

Transportation Systems Magazine. 3 (1), 4–17. 

 

Gadepally, V.N. (2013) Estimation of Driver Behavior for Autonomous Vehicle 

Applications.Doctoral Thesis, Ohio State University 

 

Galar, M., Fernandez, A., Barrenechea, E., Bustince, H. & Herrera, F. (2012) A 

review on ensembles for the class imbalance problem: Bagging-, boosting-, and 

hybrid-based approaches. IEEE Transactions on Systems, Man and Cybernetics Part 

C: Applications and Reviews. 42 (4), 463–484. 

 

Gettman, D. & Head, L. (2003) Surrogate Safety Measures from Traffic Simulation 

Models. Transportation Research Record: Journal of the Traportation Research 

Board. 104–115. 

 

Gettman, D., Pu, L., Sayed, T. & Shelby, S.G. (2008) Surrogate Safety Assessment 

Model and Validation : Final Report. (June), FHWA-HRT-08-051. 

 

Ghahramani, Z. (2001) An introduction to Hidden Markov Models and Bayesian 

Networks. International Journal of Pattern Recognition and Artificial Intelligence. 

15 (1), 9–42. 

 

Gindele, T., Brechtel, S. & Dillmann, R. (2015) Learning Driver Behavior Models 

from Traffic Observations for Decision Making and Planning. IEEE Intelligent 

Transporation Systems Magazine. 7 (1), 69–79. 

 

Golob, T.F., Recker, W. & Pavlis, Y. (2008) Probabilistic models of freeway safety 

performance using traffic flow data as predictors. Safety Science. 46 (9), 1306–1333. 



233 

 

 

Golob, T.F. & Recker, W.W. (2004) A method for relating type of crash to traffic 

flow characteristics on urban freeways. Transportation Research Part A: Policy and 

Practice. 38 (1), 53–80. 

 

Google (2015) Google Self-Driving Car Project Monthly Report (May 2015). 

 

Guan, D., Yuan, W., Lee, Y.K. & Lee, S. (2009) Nearest neighbor editing aided by 

unlabeled data. Information Sciences. 179 (13), 2273–2282. 

 

Guido, G., Vitale, A., Astarita, V., Saccomanno, F., Giofré, V.P. & Gallelli, V. (2012) 

Estimation of Safety Performance Measures from Smartphone Sensors. Procedia - 

Social and Behavioral Sciences. 54,1095–1103. 

 

Gurney, J.K. (2013) Sue My Car Not Me : Products Liability and Accidents Involving 

Autonomous Vehicles JOURNAL OF LAW, TECHNOLOGY & POLICY,2013. 

 

Guyon, I. & Elisseeff, A. (2003) An Introduction to Variable and Feature Selection. 

Journal of Machine Learning Research (JMLR). 3 (3), 1157–1182. 

 

Haboucha, C.J., Ishaq, R. & Shiftan, Y. (2017) User preferences regarding 

autonomous vehicles. Transportation Research Part C. 78,37–49. 

 

Habtemichael, F.G. & De Picado Santos, L. (2014) Crash risk evaluation of 

aggressive driving on motorways: Microscopic traffic simulation approach. 

Transportation Research Part F: Traffic Psychology and Behaviour. 23,101–112. 

 

Hajian-Tilaki, K. (2013) Receiver operating characteristic (ROC) curve analysis for 

medical diagnostic test evaluation. Caspian Journal of Internal Medicine. 4 (2), 627–

635. 

 

Hardy, J. & Campbell, M. (2013) Contingency Planning over Probabilistic Obstacle 

Predictions for Autonomous Road Vehicles. IEEE Transactions on Robotics. 29 (4), 



234 

 

913–929. 

 

Hassan, H.M. & Abdel-Aty, M. a (2013) Predicting reduced visibility related crashes 

on freeways using real-time traffic flow data. Journal of safety research. 4529–36. 

 

Hayward, J.C. (1972) Near-miss determination through use of a scale of danger. 

Highway Research Record. 38, 424–34. 

 

He, H. & Garcia, E.A. (2009) Learning from imbalanced data. IEEE Transactions on 

Knowledge and Data Engineering. 21 (9), 1263–1284. 

 

Helbing, D., Hennecke, A., Shvetsov, V. & Treiber, M. (2002) Micro-and Macro-

Simulation of Freeway Traffic. PERGAMON Mathematical and Computer Modelling. 

35 (13), 517–547. 

 

Herbrish, R. (2002) Learning Kernel classifier, theory and algorithms.The MIT 

Press 

 

Highways Agency & Robert Goodwill (2014) New generation of motorway opens on 

M25 - Press release GOV. [Online]. Available from: 

https://www.gov.uk/government/news/new-generation-of-motorway-opens-on-m25. 

 

Highways England (2017) Roads managed by Highways England. [Online] [online]. 

Available from: https://www.gov.uk/government/publications/roads-managed-by-

the-highways-agency. 

 

Himmelsbach, M., Hundelshausen, F. Von, Luttel, T., Manz, M., Muller, A., 

Schneider, S. & Wunsche, H.-J. (2009) 'Team MuCAR-3 at C-ELROB 2009', in 

Proceedings of 1st workshop on field robotics, civilian European land robot trial, 

University of Oulu, Oulu, Finland. 2009 pp. 978–951. 

 

Ho, T.K. (1998) The random subspace method for constructing decision forests. 

IEEE Transactions on Pattern Analysis and Machine Intelligence. 20 (8), 832–844. 



235 

 

 

Holland, J.H. (1992) Genetic Algorithms - Computer programs that ‘evolve’ in ways 

that resemble natural selection can solve complex problems even their creators do 

not fully understand. Scientific American p.66–72. 

 

Hossain, M. (2011) Development of a real-time proactive road safety management 

system for urban expressways. Doctoral Thesis. Tokyo Institue of Technology. 

 

Hossain, M. & Muromachi, Y. (2012) A Bayesian network based framework for 

real-time crash prediction on the basic freeway segments of urban expressways. 

Accident; analysis and prevention. 45,373–81. 

 

Hossain, M. & Muromachi, Y. (2013) A real-time crash prediction model for the 

ramp vicinities of urban expressways. IATSS Research. 37 (1), 68–79. 

 

Hou, J., List, G.F. & Guo, X. (2014) New Algorithms for Computing the Time-to-

Collision in Freeway Traffic Simulation Models. Computational Intelligence and 

Neuroscience. 2014. 

 

Howard, T.M. (2009) Adaptive model-predictive motion planning for navigation in 

complex environments. Doctoral Thesis. Carnegie Mellon University. 

 

Huang, E., Antoniou, C., Wen, Y., Ben-Akiva, M., Lopez, J. & Bento, L.C. (2013) 

'Real-Time Multi-Sensor Multi-Source Network Data Fusion Using Dynamic Traffic 

Assignment Models', in Proceedings of the 12th International IEEE Conference on 

Intelligent Transportation Systems, St. Louis, MO, USA, October 3-7, 2009. [Online]. 

2013 

Huang, F., Liu, P., Yu, H. & Wang, W. (2013) Identifying if VISSIM simulation 

model and SSAM provide reasonable estimates for field measured traffic conflicts at 

signalised intersections. Accident Analysis and Prevention. 50,1014–1024. 

 

Huguenin, F., Torday, A. & Dumont, A. (2005) 'Evaluation of traffic safety using 

microsimulation', in 5th Swiss Transport Research Conference. 2005. 



236 

 

 

Hundelshausen, F. Von, Himmelsbach, M., Hecker, F., Mueller, A. & Wuensche, H. 

(2008) Driving with Tentacles : Integral Structures for Sensing. Journal of field 

Robotics. 25 (9), 640–673. 

 

Hyden, C. (1987) The Development of a Method for Traffic Safety Evaluation: the 

Swedish Traffic Conflict Technique. Bulletin 70, Lund University of Technology, 

Lund. 1–8. 

 

Ikeda, H., Expressway, M., Corporation, P. & Kaneko, Y. (1999) Abnormal Incident 

Detection System Employing Image Processing Technology. October. 748–752. 

 

Imprialou, M.-I. (2015) Developing accident-speed relationships using a new 

modelling approach,Doctoral Thesis, Loughborough University. 

 

Imprialou, M.M., Quddus, M. & Pitfield, D. (2015) 'Exploring the Role of Speed in 

Highway Crashes : Pre-Crash-Condition-Based Multivariate Bayesian Modelling', in 

Transportation Research Board 94th Annual Meeting. 2015 pp. 1–17. 

 

Jeon, J., Cowlagi, R. V, Peters, S.C., Karaman, S., Frazzoli, E., Tsiotras, P. & 

Iagnemma, K. (2013) 'Optimal Motion Planning with the Half-Car Dynamical Model 

for Autonomous High-Speed Driving', in American Control Conference. 2013 pp. 

188–193. 

 

Jiménez, F., Naranjo, J.E. & Gómez, O. (2012) Autonomous manoeuvring systems 

for collision avoidance on single carriageway roads. Sensors 12 (12), 16,498–521. 

 

Kala, R. & Warwick, K. (2013) Motion planning of autonomous vehicles in a non-

autonomous vehicle environment without speed lanes. Engineering Applications of 

Artificial Intelligence. 26 (5–6), 1588–1601. 

Kammel, S., Ziegler, J., Pitzer, B., Gindele, T., Jagzent, D., Schr, J. & 

Hundelshausen, F. Von (2008) Team AnnieWAY ’ s Autonomous System for the 

2007 DARPA Urban Challenge. Journal of Field Robotics. 25 (9), 615–639. 



237 

 

 

Karlaftis, M.G. & Vlahogianni, E.I. (2011) Statistical methods versus neural 

networks in transportation research: Differences, similarities and some insights. 

Transportation Research Part C: Emerging Technologies. 19 (3), 387–399. 

 

Katrakazas, C., Quddus, M., Chen, W.-H. & Deka, L. (2015) Real-time motion 

planning methods for autonomous on-road driving : State-of-the-art and future 

research directions. Transportation Research Part C: Emerging Technologies, 60, 

416-442. 

 

Kessler, A.M. (2015) Elon Musk Says Self-Driving Tesla Cars Will Be in the U . S . 

by Summer, New York Times. 

 

Kockelman, K.M. & Ma, J. (2007) Freeway speeds and speed variations preceding 

crashes withing and across lanes. Journal of Transportation Research Forum. 46 

(1964), 43–61. 

Koller, D. & Friedman, N. (2009) Probabilistic Graphical Models: Principles and 

Techniques. Vol. 53. The MIT Press. 

 

Kolski, S., Ferguson, D., Bellino, M. & Siegwart, R. (2006) 'Autonomous Driving in 

Structured and Unstructured Environments', in 2006 IEEE Intelligent Vehicles 

Symposium. pp. 558–563. 

 

Koopman, P. & Wagner, M. (2016) Challenges in Autonomous Vehicle Testing and 

Validation Driver Out of the Loop, in 2016 SAE World Congress . 

 

Kosonen, I. (1996). Hutsim: Simulation Tool for Traffic Signal Control Planning, 

Doctoral Thesis, Helsinki University of Technology. 

 

Kuhnt, F., Kohlhaas, R., Schamm, T. & Marius, J.Z. (2015) Towards a Unified 

Traffic Situation Estimation Model – Street-dependent Behaviour and Motion 

Models –. International Conference on Information Fusion. 1223–1229. 

 



238 

 

Kushleyev, A. & Likhachev, M. (2009) 'Time-bounded lattice for efficient planning 

in dynamic environments', in 2009 IEEE International Conference on Robotics and 

Automation. [Online]. May 2009 pp. 1662–1668. 

 

Kyriakidis, M., Happee, R. & Winter, J.C.F. De (2015) Public opinion on automated 

driving : Results of an international questionnaire among 5000 respondents. 

Transportation Research Part F: Psychology and Behaviour. 32,127–140. 

 

Laumond, J. (1998) Robot Motion Planning and Control. Jean-paul Laumond (ed.). 

Vol. 229. Springer-Verlag Berlin Heidelberg. 

 

Laurikkala, J. (2001) Improving identification of difficult small classes by balancing 

class distribution. Proceedings of the 8th Conference on AI in Medicine in Europe: 

Artificial Intelligence Medicine. 63–66. 

 

LaValle, S.M. (2006) Planning Algorithms. Cambridge University Press. 

 

Lee, C., Hellinga, B. & Saccomanno, F. (2003) 'Real-time crash prediction model for 

application to crash prevention in freeway traffic', in Transportation Research Board 

82nd Annual Meeting. 2003. 

 

Lee, C., Saccomanno, F. & Hellinga, B. (2002) Analysis of Crash Precursors on 

Instrumented Freeways. Transportation Research Record. 1784 (1), 1–8. 

 

Lee, U. & Vasseur, P. (2014) 'Local path planning in a complex environment for 

self-driving car', in 4th Annual IEEE International Conference on Cyber 

Technologoy in Automation, Control and Intelligent Systems. 2014 Hong Cong, 

China: . pp. 445–450. 

 

Lefèvre, S. (2012) Risk Estimation at Road Intersections for Connected Vehicle 

Safety Applications. Doctoral Thesis, INP Grenoble and INRIA. 

 

Lefèvre, S., Laugier, C. & Ibañez-Guzmán, J. (2012) 'Risk assessment at road 



239 

 

intersections: Comparing intention and expectation', in IEEE Intelligent Vehicles 

Symposium, Proceedings. 

 

Lefèvre, S., Vasquez, D. & Laugier, C. (2014) A survey on motion prediction and 

risk assessment for intelligent vehicles. ROBOMECH Journal. 1 (1), 1–14. 

 

Lemaitre, G., Nogueira, F. & Aridas, C.K. (2016) Imbalanced-learn: A Python 

Toolbox to Tackle the Curse of Imbalanced Datasets in Machine Learning. CoRR. 

abs/1609.01–5. 

 

Leonard, J., How, J., Teller, S., Berger, M., Campbell, S., Fiore, G., Fletcher, L., 

Frazzoli, E., Huang, A., Karaman, S., Koch, O., Moore, D., Olson, E., Peters, S., Teo, 

J., Truax, R., Walter, M., Barrett, D., Epstein, A., et al. (2008) A Perception-Driven 

Autonomous Urban Vehicle. Journal of Field Robotics. 25 (February), 727–774. 

 

Li, X., Lord, D., Zhang, Y. & Xie, Y. (2008) Predicting motor vehicle crashes using 

Support Vector Machine models. Accident Analysis and Prevention. 40 (4), 1611–

1618. 

 

Li, Z., Chitturi, M., Noyce, D., Ran, B., Chitturi, M. V & Noyce, D. (2013) 

Development of Next Generation Intersection Control,Technical Report, CFIRE 04-

18, National Center for Freight & Infrastructure Research & Education Department 

of Civil and Environmental Engineering College of Engineering University of 

Wisconsin–Madison. 

 

Lin, L., Wang, Q. & Sadek, A.W. (2015) A novel variable selection method based on 

frequent pattern tree for real-time traffic accident risk prediction. Transportation 

Research Part C: Emerging Technologies. 55,444–459. 

 

Lin, L., Yeh, Y. & Chu, T. (2014) Feature Selection Algorithm for ECG Signals and 

Its Application on Heartbeat Case Determining. 16 (4), 483–496. 

 

Lin, P. (2014) What If Your Autonomous Car Keeps Routing You Past Krispy Kreme? 



240 

 

- Yahoo Finance. [Online] [online]. Available from: 

http://finance.yahoo.com/news/autonomous-car-keeps-routing-past-

130800241.html;_ylt=A2KJ3CUL199SkjsAexPQtDMD (Accessed 1 September 

2014). 

 

Litman, T. (2014) 'Autonomous Vehicle Implementation Predictions Implications for 

Transport Planning', in Transportation Research Board Annual Meeting 2014. 

 

López, V., Fernández, A., García, S., Palade, V. & Herrera, F. (2013) An insight into 

classification with imbalanced data: Empirical results and current trends on using 

data intrinsic characteristics. Information Sciences. 250,113–141. 

 

Lv, Y., Tang, S. & Zhao, H. (2009) Real-time highway traffic accident prediction 

based on the k-nearest neighbor method. 2009 International Conference on 

Measuring Technology and Mechatronics Automation, ICMTMA 2009. 3547–550. 

 

Macek, K., Becker, M. & Siegwart, R. (2006) 'Motion Planning for Car-Like 

Vehicles in Dynamic Urban Scenarios', in 2006 IEEE/RSJ International Conference 

on Intelligent Robots and Systems. October 2006 pp. 4375–4380. 

 

Martin, A. (2013) Interactive Motion Prediction using Game Theory. Master Thesis, 

University of Padova. 

 

Martinez-gomez, L. & Fraichard, T. (2009) Benchmarking Collision Avoidance 

Schemes for Dynamic Environments, ICRA Workshop on Safe Navigation in Open 

and Dynamic Environments. 

 

Mathworks (2016) MATLAB. 

 

McNaughton, M., Urmson, C., Dolan, J.M. & Lee, J.-W. (2011) 'Motion planning for 

autonomous driving with a conformal spatiotemporal lattice', in 2011 IEEE 

International Conference on Robotics and Automation. May 2011 pp. 4889–4895. 

 



241 

 

Mertz, C., Navarro-serment, L.E., Maclachlan, R., Rybski, P., Steinfeld, A., Supp, A., 

Urmson, C., Vandapel, N., Hebert, M., Thorpe, C., Duggins, D. & Gowdy, J. (2013) 

Moving Object Detection with Laser Scanners. Journal of Field Robotics 30(1), 17–

43. 

 

Merwe, R. van der, Doucet, A., Freitas, N. de & Wan, E. (2000) The Unscented 

Particle Filter, Technical Report CUED/F-INFENG/TR 380, Cambridge University. 

 

Michael E. Tipping (2009) An Efficient Matlab Implementation of the Sparse 

Bayesian Modelling Algorithm (Version 2.0). Signal Processing, IEEE Transactions 

on. 57 (6), 0–14. 

Minderhoud, M.M. & Bovy, P.H. (2001) Extended time-to-collision measures for 

road traffic safety assessment. Accident; analysis and prevention. 33 (1), 89–97. 

 

Mui, C. (2013) Will The Google Car Force A Choice Between Lives And Jobs? 

[Online] [online]. Available from: 

http://www.forbes.com/sites/chunkamui/2013/12/19/will-the-google-car-force-a-

choice-between-lives-and-jobs/?ss=future-tech (Accessed 1 September 2014). 

 

Murphy, K. (2002) Dynamic Bayesian Networks: Representation, Inference and 

Learning.. Doctoral Thesis, University of California, Berkeley. 

 

Murphy, K.P. (2012) Machine Learning: A Probabilistic Perspective, The MIT Press. 

Murphy, L. & Newman, P. (2011) 'Risky planning: Path planning over costmaps 

with a probabilistically bounded speed-accuracy tradeoff', in 2011 IEEE 

International Conference on Robotics and Automation.. May 2011 pp. 3727–3732. 

 

National Highway Traffic Safety Administration (2015) 2014 Crash Data Key 

Findings. Traffic Safety Facts. Technical Report (November), 1–2. 

 

Ntousakis, I.A., Nikolos, I.K. & Papageorgiou, M. (2016) Optimal vehicle trajectory 

planning in the context of cooperative merging on highways. Transportation 

Research Part C. 71,464–488. 



242 

 

 

Oh, C., Oh, J.-S., Ritchie, S.G. & Chang, M. (2001) Real-Time Estimation of 

Freeway Accident Likelihood, Report UCI-ITS-TS-WP-00-8, Department of Civil 

and Environmental Engineering and Institute of Transportation Studies, University 

of California, Irvine. 

 

Ong, S.C.W., Shao Wei Png, Hsu, D. & Wee Sun Lee (2010) Planning under 

Uncertainty for Robotic Tasks with Mixed Observability. The International Journal 

of Robotics Research. 29 (8), 1053–1068. 

 

OpenStreetMap® (2016) OpenStreetMap.  

 

Ozbay, K., Yang, H., Bartin, B. & Mudigonda, S. (2008) Derivation and Validation 

of a New Simulation-based Surrogate Safety Measure Kaan. Transportation 

Research Record,Journal of the Transportation Research Board. 1–19. 

 

Paden, B., Cap, M., Yong, S.Z., Yershov, D. & Frazzoli, E. (2016) A Survey of 

Motion Planning and Control Techniques for Self-driving Urban Vehicles. IEEE 

Transactions on Intelligent Vehicles, 1(1), pp. 33-55, 2016. 

 

Pande, A. (2005) Estimation of Hybrid Models for Real-Time Crash Risk Assessment 

on Freeways,Doctoral Thesis, University of Central Florida. 

 

Pande, A. & Abdel-Aty, M. (2005) A Freeway Safety Strategy for Advanced 

Proactive Traffic Management. Journal of Intelligent Transportation Systems: 

Technology, Planning, and Operations. 9 (3), 145–158. 

 

Pande, A. & Abdel-Aty, M. (2006) Assessment of freeway traffic parameters leading 

to lane-change related collisions. Accident Analysis and Prevention. 38 (5), 936–948. 

 

Park, H. & Haghani, A. (2016) Real-time prediction of secondary incident 

occurrences using vehicle probe data. Transportation Research Part C: Emerging 

Technologies. 70,69–85. 



243 

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 

Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., 

Cournapeau, D., Brucher, M., Perrot, M. & Duchesnay, É. (2012) Scikit-learn: 

Machine Learning in Python. Journal of Machine Learning Research. 12,2825–2830. 

Peng, Y., Abdel-Aty, M., Shi, Q. & Yu, R. (2017) Assessing the impact of reduced 

visibility on traffic crash risk using microscopic data and surrogate safety measures. 

Transportation Research Part C: Emerging Technologies. 74 (January 2008), 295–

305. 

Perkins, S.R. & Harris, J.I. (1967) Criteria for Traffic Conflict Characteristics, HRB 

Rec. 225. Highway Research. Boardd., 35-44, 1967. 

Phillips, C.L., Bruno, M.A., Maquet, P., Boly, M., Noirhomme, Q., Schnakers, C., 

Vanhaudenhuyse, A., Bonjean, M., Hustinx, R., Moonen, G., Luxen, A. & Laureys, 

S. (2011) ‘Relevance vector machine’ consciousness classifier applied to cerebral

metabolism of vegetative and locked-in patients. NeuroImage. 56 (2), 797–808. 

Pivtoraiko, M. & Kelly, A. (2005) 'Efficient Constrained Path Planning via Search in 

State Lattices', in International Symposium on Artificial Intelligence, Robotics, and 

Automation in Space. 2005. 

Pivtoraiko, M. & Kelly, A. (2009) 'Fast and feasible deliberative motion planner for 

dynamic environments', in Proceedings of the 2009 ICRA Workshop on Safe 

Navigation in Open and Dynamic Environments.  

Pivtoraiko, M., Knepper, R.A. & Kelly, A. (2009) Differentially Constrained Mobile 

Robot Motion Planning in State Spaces. Journal of Field Robotics. 26 (3), 308–333. 

Polychronopoulos,  a., Tsogas, M., Amditis,  a. J. & Andreone, L. (2007) Sensor 

Fusion for Predicting Vehicles’ Path for Collision Avoidance Systems. IEEE 

Transactions on Intelligent Transportation Systems. 8 (3), 549–562. 



Powers, D. (2011) Evaluation : From Precision , Recall And F-Measure To ROC , 

Informedness , Markedness & Correlation. Journal of Machine Learning 

Technologies. 2 (1), 37–63. 

Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. (1993) Numerical 

recipes in Fortran (The art of scientific computing). Vol. 35. 

PTV Planung Trasport Verkehr AG (2013) PTV VISSIM 6 User Manual. 

Pu, L. & Joshi, R. (2008) Surrogate Safety Assessment Model (SSAM): Software 

User Manual. 

Quddus, M. A., Wang, C. & Ison, S.G. (2010) Road Traffic Congestion and Crash 

Severity: Econometric Analysis Using Ordered Response Models. Journal of 

Transportation Engineering. 136 (5), 424–435. 

Rasmussen, C.E. (2006) Gaussian processes for machine learning. International 

journal of neural systems. 14 (2), 69–106. 

Rauskolb, F.W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J., Form, 

T., Graefe, F., Ohl, S., Doering, M., Homeier, K., Morgenroth, J., Wolf, L., Basarke, 

C. & Berger, C. (2008) Caroline : An Autonomously Driving Vehicle for Urban 

Environments. Journal of Field Robotics. 25 (January), 674–724. 

Rokach, L. (2010) Ensemble-based classifiers. Artificial Intelligence Review. 33 (1–

2), 1–39. 

Roshandel, S., Zheng, Z. & Washington, S. (2015) Impact of real-time traffic 

characteristics on freeway crash occurrence: Systematic review and meta-analysis. 

Accident Analysis and Prevention. 79,198–211. 

Ross, P.E. (2014) A Cloud-Connected Car Is a Hackable Car, Worries Microsoft - 

IEEE Spectrum. [Online] [online]. Available from: http://spectrum.ieee.org/tech-

talk/transportation/advanced-cars/a-connected-car-is-a-hackable-car (Accessed 1 

244 



245 

 

September 2014). 

 

Saeys, Y., Inza, I. & Larra??aga, P. (2007) A review of feature selection techniques 

in bioinformatics. Bioinformatics. 23 (19), 2507–2517. 

 

Saffarzadeh, M., Nadimi, N., Naseralavi, S. & Mamdoohi, A.R. (2013) A general 

formulation for time-to-collision safety indicator. Proceedings of the Institution of 

Civil Engineers - Transport. 166 (5), 294–304. 

 

Saidallah, M., Fergougui, A. El & Elalaoui, A.E. (2016) A Comparative Study of 

Urban Road Traffic Simulators. MATEC Web Conference, 81(2016) 

 

Saito, T. & Rehmsmeier, M. (2015) The precision-recall plot is more informative 

than the ROC plot when evaluating binary classifiers on imbalanced datasets. PLoS 

ONE. 10 (3), 1–21. 

 

Sargent, D.J. (2001) Comparison of artificial neural networks with other statistical 

approaches. Cancer. 91 (S8), 1636–1642. 

 

Sayed, T. & Zein, S. (1999) Traffic conflict standards for intersections. 

Transportation Planning and Technology. 22(4) (October 2014), 309–323. 

 

Scanlon, J.M., Sherony, R. & Gabler, H.C. (2016) Preliminary potential crash 

prevention estimates for an Intersection Advanced Driver Assistance System in 

straight crossing path crashes. IEEE Intelligent Vehicles Symposium, Proceedings. 

2016–Augus (Iv), 1135–1140. 

Scheuer, A. & Fraichard, T. (1997) 'Collision-Free and Continuous-Curvat ure Path 

Planning for Car-Like Robots', in 1997 IEEE International Conference on Robotics 

And Automation. [Online]. 1997 pp. 867–873. 

 

Schnieder, M. (2017) Development of an improved time-to-collision algorithm - P 

16CVC002_2 - European Short Research Project,Loughborough University. 

 



246 

 

Schröder, J., Gindele, T., Jagszent, D. & Dillmann, R. (2008) 'Path Planning for 

Cognitive Vehicles using Risk Maps', in IEEE Intelligent Vehicles Symposium, 2008. 

[Online]. 2008 pp. 1119–1124. 

 

Schuster, W. (2015) Trajectory prediction for future air traffic management – 

complex manoeuvres and taxiing. Aeronautical Journal. 119,121–143. 

 

Shahdah, U., Saccomanno, F. & Persaud, B. (2015) Application of traffic 

microsimulation for evaluating safety performance of urban signalised intersections. 

Transportation Research Part C: Emerging Technologies. 6096–104. 

 

Shahdah, U., Saccomanno, F. & Persaud, B. (2014) Integrated traffic conflict model 

for estimating crash modification factors. Accident Analysis and Prevention. 71,228–

235. 

 

Shahdah, U.E. (2014) Integrating Observational and Microscopic Simulation Models 

for Traffic Safety Analysis,Doctoral Thesis, University of Waterloo,Ontario, Canada. 

 

Shariff, A. & Rahwan, I. (2016) The social dilemma of autonomous vehicles. Science 

352 (6293), 1573–1576. 

 

Sharma, A. & Collins, E.G. (2014) Robust Sampling-Based Trajectory Tracking for 

Autonomous Vehicles. 3446–3451. 

 

Shaumyan, A. (2016) sklearn-bayes Python Package. 

 

Shew, C., Pande, A. & Nuworsoo, C. (2013) Transferability and robustness of real-

time freeway crash risk assessment. Journal of safety research. 46,83–90. 

 

Shi, Q. & Abdel-Aty, M. (2015) Big Data applications in real-time traffic operation 

and safety monitoring and improvement on urban expressways. Transportation 

Research Part C: Emerging Technologies. 58,380–394. 

 



247 

 

Siegwart, R., Nourbakhsh, I.R. & Scaramuzza, D. (2011) Introduction to 

Autonomous Mobile Robots 2nd edition. MIT Press. 

 

Singh, S. (2015) Critical reasons for crashes investigated in the National Motor 

Vehicle Crash Causation Survey. National Highway Traffic Safety Administration. 

(February), 1–2. 

 

Snider, J.M. (2009) Automatic Steering Methods for Autonomous Automobile Path 

Tracking. Technical Report CMU-RI-TR-09-08, Robotics Institute, Carnegie Mellon 

University (February). 

 

Sobhani, A., Young, W. & Sarvi, M. (2013) A simulation based approach to assess 

the safety performance of road locations. Transportation Research Part C: Emerging 

Technologies. 32,144–158. 

 

Sousanis, J. (2011) World Vehicle Population Tops 1 Billion Units. [Online]. 

Available from: http://wardsauto.com/ar/world_vehicle_population_110815 

(Accessed 1 September 2014). 

 

Staubach, M. (2009) Factors correlated with traffic accidents as a basis for evaluating 

Advanced Driver Assistance Systems. Accident; analysis and prevention. 41 (5), 

1025–33. 

 

Strobl, C., Boulesteix, A.-L., Zeileis, A. & Hothorn, T. (2007) Bias in random forest 

variable importance measures: illustrations, sources and a solution. BMC 

Bioinformatics. 825. 

 

Sun, J. & Sun, J. (2015) A dynamic Bayesian network model for real-time crash 

prediction using traffic speed conditions data. Transportation Research Part C: 

Emerging Technologies. 54176–186. 

 

Sun, Y., Wong, A.K.C. & Kamel, M.S. (2009) Classification of Imbalanced Data : a 

Review. International Journal of Pattern Recognition and Artificial Intelligence. 23 



248 

 

(4), 687–719. 

 

SYSTRA Limited (2009) S-Paramics Principles. Paramics Microsimulation 

SYSTRA Limited, Edinburgh 

 

Takahashi, O. & Schilling, R.J. (1989) Motion Planning in a Plane Using 

Generalised Voronoi Diagrams. IEEE Transactions on Robotics and Automation. 5 

(2), 143–150. 

 

Theofilatos, A. (2015) An advanced multi-faceted statistical analysis of accident 

probability and severity exploiting high resolution traffic and weather data. Doctoral 

Thesis, National Technical University of Athens, Greece. 

 

Thorpe, C. & Durrant-Whyte, H. (2009) The DARPA Urban Challenge. Martin 

Buehler, Karl Iagnemma, & Sanjiv Singh (eds.). Vol. 56. Springer Berlin Heidelberg. 

 

Thrun, S. (2010) Toward Robotic Cars. Communications of the ACM. 53 (4 (April)), 

99–106. 

 

Thrun, S., Montemerlo, M., Dahlkamp, H., Stavens, D., Aron, A., Diebel, J., Fong, P., 

Gale, J., Halpenny, M., Hoffman, G., Lau, K., Oakley, C., Palatucci, M., Pratt, V., 

Stang, P., Strohband, S., Dupont, C., Jendrossek, L.-E., Koelen, C., et al. (2006) 

Stanley: The robot that won the DARPA Grand Challenge. Journal of field Robotics. 

23 (4), 661–692. 

 

Tipping, M. (2001) Sparse Bayesian Learning and the Relevance Vector Mach. 

Journal of Machine Learning Research. 1,211–244. 

 

Tipping, M.E. (2009) A Baseline Matlab Implementation of ‘ Sparse Bayesian ’ 

Model Estimation. SparseBayes Manual. 2–6. 

 

Tipping, M.E. & Faul, A.C. (2003) Fast Marginal Likelihood Maximisation for 

Sparse Bayesian Models. Ninth International Workshop on Aritficial Intelligence and 



249 

 

Statistics. 1–13. 

 

Toledo, T., Koutsopoulos, H.N. & Ben-Akiva, M. (2003) Modeling Integrated Lane-

Changing Behavior. Transportation Research Record. 1857 (1), 30–38. 

 

Tomek, I. (1976) An Experiment with the Edited Nearest-Neighbor Rule. IEEE 

Transactions on Systems, Man, and Cybernetics. 6 (6), 448–452. 

 

Transport For London (2010) Traffic Modelling Guidelines TfL Traffic Manager and. 

WDOT (2014) Wisconsin Department of Transportation, Model Calibration - Traffic 

Analysis and Microsimulation. [Online] [online]. Available from: 

http://www.wisdot.info/microsimulation/index.php?title=Model_Calibration. 

 

Treat, J.R., Tumbas, N.S., Mcdonald, S.T., Hume, R.D., Mayer, R.E., Stansifer, R. & 

Castellan, N.J. (1979) TRI-LEVEL STUDY OF THE CAUSES OF TRAFFIC 

ACCIDENTS Executive Summary, Technical Report. 

 

Triggs, T.J. & Harris, W.G. (1982) Reaction Time of Drivers to Road Stimuli. 

Medicinski Pregled. 62 (June 1982), 114–9. 

 

Tsui, K.L., So, F.L., Sze, N.N., Wong, S.C. & Leung, T.F. (2009) Misclassification 

of injury severity among road casualties in police reports. Accident Analysis and 

Prevention. 41 (1), 84–89. 

 

Varaiya, P. (1993) Smart cars on smart roads. Problems of control. IEEE 

Transactions on Automatic Control. 38 (2), 195–207. 

 

Verikas, A., Gelzinis, A. & Bacauskiene, M. (2011) Mining data with random forests: 

A survey and results of new tests. Pattern Recognition. 44 (2), 330–349. 

 

Le Vine, S., Zolfaghari, A. & Polak, J. (2015) Autonomous cars: The tension 

between occupant experience and intersection capacity. Transportation Research 

Part C: Emerging Technologies. 521–14. 



250 

 

Vogt, A. & Bared, J.G. (2008) Accident Models for Two-Lane Rural Roads: Segment 

and Intersections - Technical Report FHWA-RD-98-133. (October 1998). 

 

Wang, C., Quddus, M. a. & Ison, S.G. (2013) The effect of traffic and road 

characteristics on road safety: A review and future research direction. Safety Science. 

57264–275. 

 

Wang, L., Abdel-Aty, M., Shi, Q. & Park, J. (2015) Real-time crash prediction for 

expressway weaving segments. Transportation Research Part C: Emerging 

Technologies. 611–10. 

 

Wang, W., Qu, X., Wang, W. & Liu, P. (2013) Real-time freeway sideswipe crash 

prediction by support vector machine. IET Intelligent Transport Systems. 7 (4), 445–

453. 

 

Ward, J., Agamennoni, G., Worrall, S. & Nebot, E. (2014) 'Vehicle collision 

probability calculation for general traffic scenarios under uncertainty', in IEEE 

Intelligent Vehicles Symposium, Proceedings. [Online]. 2014 Dearborn, Michigan, 

USA: . pp. 986–992. 

 

Ward, J., Worrall, S., Agamennoni, G. & Nebot, E. (2014) The warrigal dataset: 

Multi-vehicle trajectories and V2V communications. IEEE Intelligent Transportation 

Systems Magazine. 6 (3), 109–117. 

 

Ward, J.R., Agamennoni, G., Worrall, S., Bender, A. & Nebot, E. (2015) Extending 

Time to Collision for probabilistic reasoning in general traffic scenarios. 

Transportation Research Part C: Emerging Technologies. 51,66–82. 

 

Wei, J., Snider, J.M., Gu, T., Dolan, J.M. & Litkouhi, B. (2014) 'A behavioral 

planning framework for autonomous driving', in IEEE Intelligent Vehicles 

Symposium, Proceedings. [Online]. 2014 pp. 458–464. 

 

Wei, L., Yang, Y., Nishikawa, R.M., Wernick, M.N. & Edwards, A. (2005) 



251 

 

Relevance vector machine for automatic detection a of clustered microcalcifications. 

IEEE Transactions on Medical Imaging. 24 (10), 1278–1285. 

 

Wei Miao Yu, Tiehua Du & Kah Bin Lim (2004) Comparison of the support vector 

machine and relevant vector machine in regression and classification problems. 

ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, 2004. 2 

(December), 1309–1314. 

WHO (2015) Global Status Report on Road. 340. 

 

Wille, J.M. & Form, T. (2008) 'Realizing complex autonomous driving maneuvers: 

The approach taken by team CarOLO at the DARPA urban challenge', in 2008 IEEE 

International Conference on Vehicular Electronics and Safety. September 2008 pp. 

232–236. 

 

Wille, J.M., Saust, F. & Maurer, M. (2010a) 'Comprehensive treated sections in a 

trajectory planner for realizing autonomous driving in Braunschweig’S urban traffic', 

in 13th International IEEE Conference on Intelligent Transportation Systems. 

September 2010 pp. 647–652. 

 

Wille, J.M., Saust, F. & Maurer, M. (2010b) 'Stadtpilot: Driving autonomously on 

Braunschweig’s inner ring road', in 2010 IEEE Intelligent Vehicles Symposium. June 

2010 Ieee. pp. 506–511. 

 

Williams, C.K.I. & Barber, D. (1998) Bayesian classification with Gaussian 

processes. IEEE Transactions on Pattern Analysis and Machine Intelligence. 20 (12), 

1342–1351. 

 

Wilson, D.L. (1972) Asymptotic Properties of Nearest Neighbor Rules Using Edited 

Data. IEEE Transactions on Systems, Man and Cybernetics. 2 (3), 408–421. 

 

Wu, Y., Nakamura, H. & Asano, M. (2013) A Crash Risk Estimation Model for 

Urban Expressway Basic Segments Considering Geometry , Traffic Flow and 

Ambient Conditions. Eastern Asia Society for Transportation Studies. 9. 



252 

 

 

Xu, C., Liu, P., and Wang, W. (2016a) ‘Evaluation of the Predictability of Real-Time 

Crash Risk Models’. Accident Analysis and Prevention 94, 207–215 

 

Xu, C., Liu, P., Wang, W., and Jiang, X. (2013a) ‘Development of a Crash Risk 

Index to Identify Real Time Crash Risks on Freeways’. KSCE Journal of Civil 

Engineering 17 (7), 1788–1797.  

 

Xu, C., Liu, P., Wang, W., and Li, Z. (2012) ‘Evaluation of the Impacts of Traffic 

States on Crash Risks on Freeways.’ Accident; analysis and prevention 47, 162–71. 

  

Xu, C., Liu, P., Yang, B., and Wang, W. (2016b) ‘Real-Time Estimation of 

Secondary Crash Likelihood on Freeways Using High-Resolution Loop Detector 

Data’. Transportation Research Part C: Emerging Technologies 71, 406–418.  

 

Xu, C., Wang, W., and Liu, P. (2013b) ‘A Genetic Programming Model for Real-

Time Crash Prediction on Freeways’. IEEE Transactions on Intelligent 

Transportation Systems 14 (2), 574–586.  

 

Xu, C., Wang, W., Liu, P., and Li, Z. (2015a) ‘Calibration of Crash Risk Models on 

Freeways with Limited Real-Time Traffic Data Using Bayesian Meta-Analysis and 

Bayesian Inference Approach’. Accident Analysis and Prevention, 85, 207–218. 

 

Xu, C., Wang, W., Liu, P., and Zhang, F. (2015b) ‘Development of a Real-Time 

Crash Risk Prediction Model Incorporating the Various Crash Mechanisms across 

Different Traffic States.’ Traffic injury prevention ,16 (1), 28–35. 

 

Xu, W., Pan, J., Wei, J., and Dolan, J.M. (2014) ‘Motion Planning under Uncertainty 

for On-Road Autonomous Driving’. in 2014 IEEE International Conference on 

Robotics and Automation (ICRA), 2061–2067 

 

Yamamoto, T., Hashiji, J., and Shankar, V.N. (2008) ‘Underreporting in Traffic 

Accident Data, Bias in Parameters and the Structure of Injury Severity Models’. 



253 

 

Accident Analysis and Prevention 40 (4), 1320–1329 

 

Yang, H. (2012) Simulation-Based Evaluation of Traffic Safety Performance Using 

Surrogate Safety Measures,Doctoral Thesis, Rutgers University, New Jersey.  

 

Young, W., Sobhani, A., Lenne, M.G., and Sarvi, M. (2014) ‘Simulation of Safety: A 

Review of the State of the Art in Road Safety Simulation Modelling’. Accident 

Analysis and Prevention 66, 89–103 

 

Yu, R. (2013) Real-Time Traffic Safety Evaluation Models and Their Application for 

Variable Speed Limits.Doctoral Thesis, University of Central Florida. 

 

Yu, R. and Abdel-Aty, M. (2014) ‘Analyzing Crash Injury Severity for a 

Mountainous Freeway Incorporating Real-Time Traffic and Weather Data’. Safety 

Science 63, 50–56. 

  

Yu, R. and Abdel-Aty, M. (2013a) ‘Using Hierarchical Bayesian Binary Probit 

Models to Analyze Crash Injury Severity on High Speed Facilities with Real-Time 

Traffic Data.’ Accident; analysis and prevention 62, 161–7.  

 

Yu, R. and Abdel-Aty, M. (2013b) ‘Utilizing Support Vector Machine in Real-Time 

Crash Risk Evaluation.’ Accident; analysis and prevention 51, 252–9.  

 

Yu, R. and Abdel-Aty, M. (2013c) ‘Multi-Level Bayesian Analyses for Single- and 

Multi-Vehicle Freeway Crashes.’ Accident; analysis and prevention 58, 97–105 

 

Yu, R., Abdel-Aty, M., and Ahmed, M. (2013) ‘Bayesian Random Effect Models 

Incorporating Real-Time Weather and Traffic Data to Investigate Mountainous 

Freeway Hazardous Factors.’ Accident; analysis and prevention 50, 371–6.  

 

Zhang, S., Deng, W., Zhao, Q., Sun, H., and Litkouhi, B. (2013) ‘Dynamic 

Trajectory Planning for Vehicle Autonomous Driving’. in 2013 IEEE International 

Conference on Systems, Man, and Cybernetics October 2013.4161–4166.  



254 

 

 

Zhao, P., Chen, J., Mei, T., and Liang, H. (2011) ‘Dynamic Motion Planning for 

Autonomous Vehicle in Unknown Environments’. in 2011 IEEE Intelligent Vehicles 

Symposium (IV) June 2011. 284–289. 

 

Zhu, R.M.H., Zhang, L., and Chen, A. (2006) ‘A New Method to Assist Small Data 

Set Neural Network Learning’. Sixth International Conference on Intelligent Systems 

Design and Applications, 2006. ISDA ’06. 1, 17–22 

 

Ziegler, J., Bender, P., Dang, T., Stiller, C., and Preliminaries, A. (2014a) ‘Trajectory 

Planning for BERTHA - a Local , Continuous Method’. in 2014 IEEE Intelligent 

Vehicles Symposium (IV), June 8-11, Dearborn, Michigan, USA. 450–457 

 

Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss, T., Stiller, C., Dang, T., 

Franke, U., Appenrodt, N., Keller, C.G., Kaus, E., Herrtwich, R.G., Rabe, C., 

Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler, M., Knoppel, C., Hipp, J., 

Haueis, M., Trepte, M., Brenk, C., Tamke, A., Ghanaat, M., Braun, M., Joos, A., 

Fritz, H., Mock, H., Hein, M., and Zeeb, E. (2014b) ‘Making Bertha Drive-an 

Autonomous Journey on a Historic Route’. IEEE Intelligent Transportation Systems 

Magazine  6 (2), 8–20. 

 

Ziegler, J. and Stiller, C. (2009) ‘Spatiotemporal State Lattices for Fast Trajectory 

Planning in Dynamic on-Road Driving Scenarios’. in 2009 IEEE/RSJ International 

Conference on Intelligent Robots and Systems  held October 2009. 1879–1884.  

 

  



255 

 

Appendix 

 

Publications related to this thesis 

A number of publications have been published in peer-reviewed journals or 

presented at conferences as a result of this research. These are the following: 

 

Journal papers: 

 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen (2017), A study to 

predict real-time conflict conditions using highly disaggregated data, In 

IEEE Transactions on Intelligent Transportation Systems (In Press) 

 

 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen, Lipika Deka 

(2015), Real-time motion planning methods for autonomous on-road driving: 

State-of-the-art and future research directions, Transportation Research Part 

C: Emerging Technologies, 60, November 2015, Pages 416-442  

Conferences  

 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen  (2017) A 

Simulation Study of Predicting Conflict-prone Traffic Conditions in Real-

time, in: Transportation Research Board 96th Annual Meeting, Washington 

D.C., USA, January 2017 

 

 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen (2017) A new 

methodology for collision risk assessment of autonomous vehicles, in: 

Transportation Research Board 96th Annual Meeting, Washington D.C., 

USA, January 2017 

 

 Christos Katrakazas (2017), A new methodology for real- time risk 

assessment of autonomous vehicles, in 49
th

 Annual Universities Transport 

Studies Group Conference, Dublin, Ireland. 

 

 Christos Katrakazas, Mohammed Quddus, Wen-Hua Chen  (2016) Real-time 

Classification of Aggregated Traffic Conditions using Relevance Vector 

Machines, in: Transportation Research Board 95th Annual Meeting, 

Washington D.C., USA, January 2016. 

 

 


	Preface_1
	Thesis_Katrakazas_mainPart - Copy 1 (1)



